
The Mailman algorithm: a note on matrix vector multiplication∗

Yale university technical report #1402.

Edo Liberty

Computer Science

Yale University

New Haven, CT

Steven W. Zucker

Computer Science and Appled Mathematics

Yale University

New Haven, CT

Abstract

Given an m × n matrix A we are interested in applying it to a real vector x ∈ Rn in less then the

straightforward O(mn) time. For an exact, deterministic computation at the very least all entrees in A

must be accessed, requiring O(mn) operations and matching the running time of naively applying A to

x. However, we claim that if the matrix contains only a constant number of distinct values, then reading

the matrix once in O(mn) steps is sufficient to preprocess it such that any subsequent application to

vectors requires only O(mn/ log(max{m, n})) operations. Theoretically our algorithm can improve on

recent results for dimensionality reduction and practically it is useful (faster) even for small matrices.

Introduction

A classical result of Winograd ([1]) shows that general matrix-vector multiplication requires Ω(mn) opera-

tions, which matches the running time of the naive algorithm. However, since matrix-vector multiplication

is such a common, basic operation, an enormous amount of effort has been put into exploiting the special

structure of matrices to accelerate it. For example, Fourier, Walsh Hadamard, Toeplitz, Vandermonde, and

others can be applied to vectors in O(npolylog(n)).

Others have focussed on matrix-matrix multiplication. For two n×n binary matrices the historical Four

Russians Algorithm [2] (modified in [3]) gives a log factor improvement over the näive algorithm, i.e, running

∗Research supported by AFOSR and NGA

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
The Mailman algorithm: a note on matrix vector multiplication

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Yale University,Department of Computer Science ,New Haven,CT,06520

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

time of n3/log(n). Techniques for saving log factors in real valued matrix-matrix multiplications were also

found. These include Santoro and Urrutia [4] and Savage [5]. These methods are reported to be practically

more efficient then naive implementations. Classic theoretical results by Strassen [6] and Coppersmith and

Winograd [7] achieve better results then the above mentioned but are slower then the naive implementation

for small and moderately sized matrices. The above methods, however, do not extend to matrix-vector

multiplication.

We return to matrix-vector operations. Since every entry of the matrix, A, must be accessed at least once,

we consider a preprocessing stage which takes Ω(mn) operations. After the preprocessing stage x is given

and we seek an algorithm to produce the product Ax as fast as possible. Within this framework Williams

[8] showed that an n × n binary matrix can be preprocessed in time O(n2+ε) and subsequently applied to

binary vectors in O(n2/ε log2 n). Williams also extends his result to matrix operations over finite semirings.

However, to the best of the authors’ understanding, his technique cannot be extended to real vectors.

In this manuscript we claim that any m × n matrix over a finite alphabet1 can be preprocessed in time

O(mn) such that it can be applied to any real vector x ∈ Rn in O(mn/ log(max{m,n})) operations. Such

operations are common, for example, in spectral algorithms for unweighted graphs, nearest neighbor searches,

dimensionality reduction, and compressed sensing. Our algorithm also achieves all previous results (excluding

that of Williams) while using a strikingly simple approach.

The Mailman algorithm

Intuitively, our algorithm multiplies A by x in a manner that brings to mind the way a mailman distributes

letters, first sorting the letters by house and then delivering them. Recalling the identity Ax =
∑n

i=1 A(i)x(i),

metaphorically one can think of each column A(i) as indicating one “address” or “house”, and each entry x(i)

as a letter addressed to it. To continue the metaphor, imagine that computing and adding the term A(i)x(i)

to the sum is equivalent to the effort of walking to house A(i) and delivering x(i). From this perspective, the

naive algorithm functions by delivering each letter individually to its address, regardless of how far the walk

is or if other letters are going to the same address. Actual mailmen, of course, know much better. First,

they arrange their letters according to the shortest route (which includes all houses) without moving; then

they walk the route, visiting each house regardless of how many letters should be delivered to it (possibly

none).

1A(i, j) ∈ Σ, and |Σ| is a finite constant.

2

To extend this idea to matrix-vector multiplication, our algorithm decomposes A into two matrices, P

and U , such that A = UP . P is the ”address-letter” correspondence matrix. Applying P to x is analogous to

arranging the letters. U is the matrix containing all possible columns in A. Applying U to (Px) is analogous

to walking the route. Hence, we name our algorithm after the age-old wisdom of the men and women of the

postal service.

Our idea can be easily described for an m × n matrix A, where m = log2(n) (w.l.o.g assume log2(n) is

an integer) and A(i, j) ∈ {0, 1}. (Later we shall modify it to include other sizes and possible entrees.) There

are precisely 2m = n possible columns of the matrix A, by construction, since each of the m column entrees

can be only 0 or 1. Now, define the matrix Un as the matrix containing all possible columns over {0, 1} of

length log(n). By definition Un contains all the columns that appear in A. More precisely, for any column

A(j) there exists an index 1 ≤ i ≤ n such that A(j) = U
(i)
n . We can therefore define an n × n matrix, P ,

such that A = UP . In particular the matrix P contains one 1 entree per column such that P (i, j) = 1 if

A(j) = U
(i)
m .

Applying U

Denote by Un the log2(n) × n matrix containing all possible strings over {0, 1} of length log(n). Notice

immediately that Un can be constructed using Un/2 as follows:

U1 = (0 1) , Un =




0, . . . , 0 1, . . . , 1

Un/2 Un/2


 .

Applying Un to any vector z requires less then 3n operations, which can be shown by dividing z into its first

and second halves, z1 and z2, and computing the product Unz recursively.

Unz =




0, . . . , 0 1, . . . , 1

Un/2 Un/2







z1

z2


 =




0 ·∑ z1 + 1 ·∑ z2

Un/2(z1 + z2)




Computing the vector z1 + z2, and the sums
∑

z1 and
∑

z2 requires 3n/2 operations. We get the recurrence

relation

T (2) = 2, T (n) = T (n/2) + 3n/2 ⇒ T (n) ≤ 3n.

The sum over z1 is of course redundant here. However, it would not have been if the entrees in U were

{−1, 1} for example.

3

Constructing P

Since U is applied implicitly (not stored) we are only concerned with constructing P . An entry P (i, j) is set

to 1 if A(j) = U
(i)
n . Notice that by our construction of Un its i’th column encodes the binary value of the

index i. Thus, if a column of A contains the binary representation of the value i, it is equal to U (i). We

therefore construct P by reading A and setting P (i, j) to 1 if A(j) represents the value i. This clearly can

be done in time O(mn), the size of A. Since P contains only n nonzero entries (one for each column of A),

it can be applied in n steps.

Although A is of size log(n)× n, it can be applied in linear time (O(n)) and a log(n) factor is gained. If

the number of rows, m, in A is more then log(n) we can section A into at most dm/ log(n)e matrices each

of size at most log(n) × n. Since each of the sections can be applied in O(n) operations, the entire matrix

can be applied in O(mn/ log(n)) operations.

Remarks

Remark 1 (n < m) Notice that if n < m we can section A vertically to sections of size m× dlog(m)e and

argue very similarly that PT UT can be applied in linear time. Thus a log(m) saving factor in running time

is achieved.

Remark 2 (Constant sized alphabet) The definition of Un can be changed so that it encodes all possible

strings over a larger alphabet Σ, |Σ| = S .

Um =




σ1, . . . , σ1 . . . σ`, . . . , σ`

Un/S . . . Un/S




The matrix Un of size logS(n)×n encodes all possible strings of length logS(n) over Σ and can be applied in

linear time O(n). If the number of rows in A is larger, we divide it into sections of size log|Σ|(n)× n. The

total running time therefore becomes O(mn log(S)/ log(max{m,n}).

Remark 3 (Matrix operations over semirings) Suppose we supply Σ with an associative and commu-

tative addition operation (+), and a multiplication operation (·) that distributes over (+). If both A and x

are chosen from Σ the matrix vector multiplication over the semiring {Σ, +, ·} can be performed using the

exact same algorithm. This is, of course, not a new result. However, it includes all other log-factor-saving

results.

4

Dimensionality reduction

Assume we are given p points {x1, . . . , xp} in Rn and are asked to embed them into Rm such that all distances

between points are preserved up to distortion ε and m ¿ n. A classic result by Johnson and Lindenstrauss

[9] shows that this is possible for m = Θ(log(p)/ε2). The algorithm first chooses a random m × n matrix,

A, from a special distribution. Then, each of the vectors (points) {x1, . . . , xp} are multiplied by A. The

embedding xi → Axi can be shown to have the desired property with at least constant probability.

Clearly a naive application of A to each vector requires O(mn) operations. Recently Ailon and Liberty

[10], modifying the work of Ailon and Chazelle [11], allows A to be applied in O(n log(m)) operations. We

now claim that, in some situations, an older result by Achlioptas can be (trivially) modified to out preform

this last result. In particular, Achlioptas [12] showed that the entries of A can be chosen i.i.d from {−1, 0, 1}
with some constant probabilities. Using our method and Achlioptas’s matrix, one can apply A to each vector

in O(n log(p)/ log(n)ε2) operations (remainder m = O(log(p)/ε2)). Therefore, if p is polynomial in n then

log(n) = O(log(p)) and applying A to xi requires only O(n/ε2) operations. For a constant ε this outperforms

the best known O(n log(m)) and matches the lower bound. Notice that the dependance on ε is 1/ε2 instead

of log(1/ε) which makes this result actually much slower for most practical purposes.

Experiments

Here we compare the running time of applying a log(n) × n , {0, 1} matrix A to a vector of floating point

variables x ∈ Rn using three methods. The first is a naive implementation in C. This simply consists of two

nested loops ordered with respect to memory allocation. The second is an optimized matrix vector code.

We test ourselves against LAPACK which uses BLAS subroutines. The third is, of course, the mailman

algorithm following the preprocessing stage.

Although the complexity of the first two methods is O(n log(n)) and that of the mailman algorithm is

O(n) the improvement factor is well below log(n). This is because the memory access pattern in applying

P is problematic at best, and creates many cache faults. Bare in mind that these results might depend on

memory speed and size vs. CPU speed of the specific machine. The experiment below denotes the time

required for the actual multiplication not including memory allocation. (Experiments were conducted on an

Intel Pentium M 1.4Ghz processor, 598Mhz Bus speed and 512Mb of RAM.)

As seen in figure 1 , the mailman algorithm operates faster then the naive algorithm even for 4 × 16

5

4 6 8 10 12 14 16 18

Naive
LAPACK
Mailman

4 6 8 10 12 14 16 18

Naive
LAPACK
Mailman

Figure 1: Running time of three different algorithms for matrix vector multiplication. Naive is a nested

loop written in C. LAPACK is a machine optimized code. The mailman algorithm is described above. The

matrices were of size m (on the x axis) by 2m and they were multiplied by real (double precision) values

vectors. The right figure plots the running times relative to those of the naive algorithm.

matrices. It also outperforms the LAPACK procedure for most matrix sizes. The machine specific optimized

code (LAPACK) is superior when the matrix row allocation size approaches the memory page size. A machine

specific optimized mailman algorithm might take advantage of the same phenomenon and outperform the

LAPACK on those values as well.

Concluding remark

It has been known for a long time that a log factor can be saved in matrix-vector multiplication when

the matrix and the vector are over constant size alphabets. In this paper we described an algorithm that

achieves this while also dealing with real-valued vectors. As such the idea by itself is neither revolutionary

nor complicated, but it is useful in current contexts. We showed, as a simple application of it, that random

projections can be achieved asymptotically faster then the best currently known algorithm, provided the

number of projected points is polynomial in their original dimension. Moreover, we saw that our algorithm

is practically advantageous even for small matrices.

6

References

[1] Shmuel Winograd. On the number of multiplications necessary to compute certain functions. Commu-

nications on Pure and Applied Mathematics, (2):165–179, 1970.

[2] M.A. Kronrod V.L. Arlazarov, E.A. Dinic and I.A. Faradzev. On economic construction of the transitive

closure of a direct graph. Soviet Mathematics, Doklady, (11):1209–1210, 1970.

[3] N Santoro and J Urrutia. An improved algorithm for boolean matrix multiplication. Computing,

36(4):375–382, 1986.

[4] Nicola Santoro. Extending the four russians’ bound to general matrix multiplication. Inf. Process. Lett.,

10(2):87–88, 1980.

[5] John E. Savage. An algorithm for the computation of linear forms. SIAM J. Comput., 3(2):150–158,

1974.

[6] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, (4):354–356, 08 1969.

[7] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. In STOC ’87:

Proceedings of the nineteenth annual ACM conference on Theory of computing, pages 1–6, New York,

NY, USA, 1987. ACM.

[8] Ryan Williams. Matrix-vector multiplication in sub-quadratic time: (some preprocessing required). In

SODA ’07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages

995–1001, Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathematics.

[9] W.B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. Contemp.

Math., 26:189–206, 1984.

[10] Nir Ailon and Edo Liberty. Fast dimension reduction using rademacher series on dual bch codes. In

Symposium on Discrete Algorithms (SODA), accepted, 2008.

[11] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast Johnson-Lindenstrauss

transform. In Proceedings of the 38st Annual Symposium on the Theory of Compututing (STOC), pages

557–563, Seattle, WA, 2006.

7

[12] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins.

J. Comput. Syst. Sci., 66(4):671–687, 2003.

8

