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ABSTRACT 
 

Several Edge-on Impact (EOI) tests on 
transparent glasses and polycrystalline ceramics 
have shown that failure fronts have an extremely 
rough morphology, including the appearance of 
spikes. A simple thermodynamic theory has been 
used to interpret the observed morphological 
instability of failure fronts. For the case of 
isotropic phases, the instability criterion can be 
obtained in explicit form. 
 

1. INTRODUCTION 
 
When a high-speed projectile impacts a 

brittle material, such as glass or polycrystalline 
ceramic, severe damage and fragmentation is 
normally observed before projectile penetrates. 
Several types of transparent  glasses have already 
been studied using the EOI test (Senf, et al, 
1997; Strassburger, 2006). Fused silica and 
AlON is a material being considered for a variety 
of transparent armor, sensor window, and 
radome applications. It is a polycrystalline 
ceramic that fulfills the requirements of 
transparency and requisite mechanical properties 
for transparent armor against armor piercing 
ammunition. AlON has a cubic, spinel crystal 
structure (Fd3m) that can be processed to 
transparency in a polycrystalline microstructure. 
It differs from glasses which do not have any 
periodic crystalline order, but it is akin to 
polycrystalline opaque ceramics, such as 
aluminum oxide.  

AlON was recently investigated by 
Strassburger, Patel, McCauley, and Templeton 
(2006) using EOI test in two different optical 
configurations. In the first, a regular transmitted- 
light shadowgraph set-up was used to observe 
wave and damage propagation. In the second,  a 
modified configuration was used, where the 
specimens were placed between crossed 
polarizers, and the photoelastic effect was 
utilized to visualize the stress waves. Pairs of 
impact tests at approximately equivalent 
velocities were carried out in transmitted plane 
light (shadowgraphs) and crossed polarized light. 

AlON and fused silica specimens were impacted 
using solid cylinder steel projectiles with 
velocities ranging from 270 to 925 m/s.  

 

 
 

Figure 1. Selection of two shadowgraphs and 
corresponding crossed polarizers pictures  

from impact on AlON at 380 m/s 
 
The nucleation of crack centers was 

observed ahead of the apparent fracture front, 
growing from the impacted edge of the 
specimens. A comparison of the shadowgraphs 
the photographs (recorded in a reflected light 
configuration with a coated AlON specimen at 
the same impact conditions) indicated fracture 
nucleation in the interior of the ceramic. 

Figure 1 shows a selection of two regular 
shadowgraphs along with the corresponding 
crossed polarizer photographs for tests with 
AlON at 380 m/s. The high-speed photographs 
show rapidly growing darkened to opaque 
regions, which reflect changes in the optical 
transmission due to pressure-induced refractive 
index changes and damage and fractured zones 
within the specimen. In addition, the nucleation 
of crack centers ahead of the crack front is 
clearly visible 8.7 μs after impact. In contrast to 
the shadowgraphs, where a wave front is not 
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discernible, the crossed polarizer’s configuration 
reveals an approximately semicircular stress 
wave front, which is a little further advanced 
than the damage front visible in the 
shadowgraphs at the same time. In the 
shadowgraph images (Figure 1a) the failure 
(damage) region clearly exhibits very sharp 
failure and damage spikes extending out from the 
front of the main damage region.  

 
2. FORMAL STATEMENT OF THE 

PROBLEM 
 

In the paper, we suggest a simple 
thermodynamic theory which explains the 
appearance of the spikes in the aforementioned 
experiments with AlON. Two different 
theoretical and computational approaches seem 
to be most useful in analyzing different aspects 
of wave propagation in brittle solids. They 
describe failure fronts on different spatial length 
scales.  According to the first, less detailed, 
“macroscopic” approach, the failure front is 
treated as an infinitely thin mathematical surface 
separating intact and comminuted spatial 
domains. According to the second, 
“microscopic” approach, the failure front has 
very thin (though still finite) thickness. Within 
this thin spatial domain, all physical parameters 
of the substance change continuously but 
extremely rapidly. Quite often, additional 
physical processes should be taken into account 
inside these thin domains, whereas outside these 
thin domains, the additional physical processes 
play a relatively minor role. In this respect, the 
situation with the two-scale description of failure 
waves is the same as with the classical 
hydrodynamic and combustion/ detonation shock 
waves (Landau and Lifshitz., 1987; Courant and 
Friedrichs, 1948). 

Although the spatial domain of intensive 
fracture in the Edge-on Impact AlON 
experiments are, in fact, quite thick, we begin 
our analysis with the simpler macroscopic 
approach. Within each of the spatial domains, the 
energy densities  inte  and dame  per unit mass of 
the intact and damaged states are given by the 
following quadratic forms of displacement 
gradients, respectively: 
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where  ijkl
inc  and ijkl

damc  are the elasticity tensors 
of the two states,  and ρ  is the original mass 
density (a subscript after comma is used to 
denote differentiation with respect to the spatial 
coordinates ix ). Limiting ourselves with the 
approximation of linear elasticity, we ignore all 
effects of mass density change. The positive 
constant bq  takes into account the energy 
required to produce various defects (interfaces, 
vacancies, shear bands, holes, etc.) distributed 
within unit mass of the bulk of damaged 
substance. This term is analogous to the constant 
used in the theory of slow combustion, which 
takes into account the energy 
release/consumption due to chemical reactions 
(Landau and Lifshitz., 1987; Courant and 
Friedrichs, 1948).. See the papers (Grinfeld, and 
Wright, 2002, 2004) for a more detailed 
discussion of the model. 

In addition to appropriate initial and external 
boundary conditions,  the master system includes 

  
a) the bulk momentum equation within each of 
the bulk domains, 
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b) the displacement continuity equation across 
the failure front,  
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c) and the momentum continuity across the 
failure front, 
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where jinm
ji uuep ,, /)( ∂∂=  is the stress 

tensor, and in  is the unit normal to the failure 
front. 

The last equation across the failure front 
describes the kinetics of failure as follows: 
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where c  is the velocity of the failure front, and 
the tensor .

.
j
kμ  is defined as  
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It plays the same role as the scalar Gibbs 
chemical potential μ of a liquid substance; K  is 
a positive (kinetic) constant or function with 
dimension [velocity]�¹. We assume explicitly 
that the displacements and traction remain 
continuous across the interface. This is not the 
only reasonable option. Another reasonable 
option, especially when dealing with  highly 
fragmented states, would be the model of a 
friction-free interface with discontinuous 
displacements. In this case the last (kinetic) 
constitutive equation (2.5) should be modified as 
well (a similar system was analyzed in the 
context of phase transformations in the 
monograph (Grinfeld, 1991)).  
        We limit our study with two-dimensional  
propagation and consider an initially resting 
uniform half-plane, 0≥x , experiencing an 
impact at 0=x  by the oblique force P  (see 
Figure 2). 
 

 
 

  
Figure 2. Oblique impact of a brittle substance. 

 
 

 The system (2.2)–(2.6) allows piece-wise linear 
solutions of the following form: 
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where id± , ia± , and c  are certain constants. The 
sign )(−+  marks the quantities related to the 
intact (damaged) state. The constant c  gives the 
speed of the failure front across which the 
displacement gradients ia±  suffer the finite 
discontinuities. The solution mentioned above 
allows the consideration of the quasi-static 
problem oblique impact (loading) when the 

applied force has the components π=±
xxp and 

τ=±
zxp . The resulting formula is particularly 

simple and transparent in the quasi-static 
approximation, i.e., when inertia is neglected in 
the equations (2.2) and (2.4); then, formula of the 
velocity of the failure front: 
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here ±± μλ ,  are the Lame elastic modules of 
the intact and comminuted materials that are 
assumed isotropic. The Poisson ratios are 
defined as ( )±±±± += μλλν 2/ . 
 

 
3. MORPHOLOGICAL INSTABILITY OF 

FAILURE FRONT 
 
    In order to explore morphological stability of 
the piece-wise linear solution we present the 
elastic displacement ),,( tzxu i

±  and the speed 
of the interface ),( tzc  in the following form:  
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where ),,(~ tzxu i
±  and ),(~ tzc are small 

disturbances. The above presentations should be 
substituted in the bulk equations and in the 
boundary conditions (1), (2), which should then 
be linearized with respect to the small 
disturbances. We then look for the solutions of 
the linearized system in the following form ( k  is 
the in-plane wave-number and η  is the rate of 
growth):  
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where the functions )(XW i

±  should decay 
exponentially at ∞±→X .  

The dispersion equation for η  is somewhat 
lengthy and cumbersome without further special 
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assumptions. For the case of isotropic states and 
two-dimensional geometry it reads as follows: 

(3.3) 
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The last formula becomes relatively 
compact and instructive in the limit of an 
incompressible damaged state ( 2/1=−ν ) and 

when in the intact state 3/1=+ν .  Then, it 
reads as follows: 

 
(3.4) 
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The wave front is morphologically unstable 

if the linearized master equation permits 
solutions of the above form and with the rate η  
corresponding to exponential growth in time. 
The last formula (3.4) shows that shear stresses, 
τ , play a stabilizing role (similar to the case of 
morphological instabilities of solid-solid phase 
interfaces, discussed in Grinfeld, 1991). In 
addition, at 0=τ , the failure front is 
morphologically unstable in the most interesting 
case when the shear modulus −μ of the damaged 

state is less than the shear modulus μ+ of  the 
intact state. This instability has a simple physical 
meaning. It means that penetration of fingers of 
damaged material into intact material is the 
fastest way of releasing accumulated elastic 
energy from the system. 

 
4. INTUITIVE INTERPRETATION OF 

THE MORPHOLOGICAL INSTABILITY 
OF FAILURE FRONTS 

 

A plausible interpretation of the stress 
driven destabilization of failure fronts can be 
based on the principle of the fastest energy 
release (or of the entropy production) of 
irreversible thermodynamics. In the context of 
fracture, the principle postulates that fracture 
develops in such a way that the maximum elastic 
energy should be released (per fixed amount of 
damaged bonds). Simply stated, the propagation 
of fingers has a simple physical meaning. It 
means that penetration of fingers of damaged 
material into intact material is the fastest way of 
releasing accumulated elastic energy from the 
system.  

 

 
 

Figure 3. Towards intuitive interpretation of 
the hackle zone formation. 

 
Figure 3 shows two different morphologies 

of the advancing front: Figure 3a illustrates an 
advancing failure front that does not change its 
morphology and remains flat, and the Figure 3b 
shows an advancing front in the form of a 
horizontal finger. It is assumed that the two 
newly created comminuted areas, shown in red 
in the figures  3a and 3b, are equal. It should be 
intuitively clear that the finger-like morphology 
of the failure front allows much more elastic 
energy to be released than the morphologically 
stable front shown on 3a). Indeed, the 
propagating flat front on 3a) releases the elastic 
energy only within the small rectangle (between 
the original and final front positions), whereas 
the finger-like front allows to release the 
accumulated elastic energy from everywhere to 
the right of the original front (including in the 
material that remains in the intact state). So the 
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"fingering" of the front allows the accumulated 
energy to be released in a more efficient way 
than with the morphologically stable propagation 
of the flat failure front. This is the potentially 
possible mechanism of morphological 
destabilization of the failure front discussed in 
this paper. 

 
 
5. CONTINUUM MODEL OF DAMAGE 
 

The model considered above is a certain two-
state discrete fracture model (Grinfeld and 
Wright, 2002, 2004). A continuum fracture 
model should include a damage parameter κ  
that can assume a continuum range of values. 
Corresponding elastic energy e  function is 
becoming a function of the elastic gradients jiu |  
and of the damage parameter κ : 

),( , κjiuee = .  For such a model the bulk 
equations of equilibrium includes a) the 
condition of  mechanical equilibrium, and b) the 
equation of “chemical” equilibrium, i.e., of 
equilibrium with respect of damage proliferation:  
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It is more or less typical for the system with 

damage that full equilibrium with respect to 
damage proliferation cannot be achieved. In such 
situations, we have to switch from the equation 
of chemical equilibrium (5.2) to its quasi-static 
analogue: 
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where η  is a certain positive kinetic constant.  

The important issue here is the choice of an 
appropriate energy function ),( | κjiuee = .  For 
the purposes of fracture mechanics such a 
function can be found by combining the 
approaches of the theories of vacancies in 
ceramics sintering (Lifshitz, 1963) and of the 
damage mechanics (Kachanov, 1986). 

The quasi-static system presented above was 
used to numerically explore the behavior of a 

circular plate with a thin elliptic cavity under 
action of external pressure for the energy density 
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with the damage function )(κφ (Grinfeld and 
Wright, 2002, 2004) 
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 Thus, the suggested model depends on 6 

constants: min
* ,,,,, cκκξνμ o . The first two 

of them are just the shear modulus and Poisson’s 
ratio of the intact substance. The physical 
meaning of the remaining four constants will be 
explained elsewhere. For a certain choice of the 
constants, the evolution of the relative damage 
parameter */κκ  is shown in the Figure 4. The 
depth of gray color reflects the magnitude of the 
relative damage parameter — white corresponds 
to a fully damaged material and black to a fully 
undamaged. Not surprisingly, the largest damage 
occurs at the tips of the cavity. 

 
 

 
 

Figure 4. Development of damage in a 
circular elastic plate with an elliptic cavity. 
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Figure 5 illustrates developing damages for 
the case of a brittle ring under the action of 
different outer and inner pressure. It is very 
instructive from at least two points of view.  

First, this geometry is representative of the 
important problem of penetration of a rod-like 
projectile with a circular cross section through a 
thin brittle isotropic ring.  

Second, this example is particularly 
instructive from the standpoint of morphological 
instability of failure fronts. The formulated 
problem is obviously radially symmetric since 
the intact and damaged states are assumed 
isotropic, the boundary circles are assumed 
concentric, and the pressure loading does not 
violate the radial symmetry. Thus, the problem 
under consideration possesses a solution 
describing evolution with radial symmetry. This 
solution would be easy to model numerically if it 
were stable with respect to small perturbations of 
radial symmetry, however, such non-radial small 
perturbations are always present in any 
numerical implementation.  

 
 

 
 

Figure 6. Isotropic brittle ring under 
unequal outer and inner pressures. 

 
The results of (Grinfeld et al, 2006), briefly 

presented in the section 3, prompt us to make a 
conjecture that the radial solution of the system 
(5.1), (5.2) for the ring under unequal pressures 
is unstable and cannot be obtained numerically. 
Figure 6 completely confirms this conjecture. At 
this early stage of our research, it remains totally 
unclear what parameters control the number of 
microcracks in the model. It will be the subject 
of our future theoretical analysis and numerical 
experiments.  

 
6. CONCLUSION 
 
A transparent polycrystalline AlON was 

tested in an Edge-On Impact configuration. 
Damage propagation was observed in a regular 
shadowgraph set-up and in a dynamic 
photoelastic model using crossed polarizers. 
Photographs recorded in a reflected light 
configuration with a coated AlON specimen at 
the same impact conditions confirmed that 
damage/fracture, and isolated crack nucleation 
occurred in the interior of the ceramic; the failure 
(damage) front proceeded through the AlON 
plate with a spikes-like morphology.  

We have presented a simple model for a 
failure front based on an analogy with slow 
combustion, and we have presented a formula for 
the velocity of failure wave generated by oblique 
impact on a brittle material. We then 
demonstrated that under rather general 
assumptions, the flat failure front is 
morphologically unstable. The last conclusion 
shows an additional analogy between failure 
fronts and slow combustion fronts (however, the 
mechanisms of destabilization are totally 
different). 

Theoretical results, based on the two-state 
model of damage, have been confirmed by 
numerical experiments based of the IDZ-models 
suggested earlier in (Grinfeld and Wright, 2002, 
2004)  

The morphological instability of failure 
fronts sheds light on a) the appearance of spikes 
in the AlON edge-on impact experiments, b) on 
failure fronts and crack bifurcations as observed 
in experiments on static indentation of brittle 
materials, and c) on appearance of radial cracks 
in dynamic experiments with penetration of 
projectiles through brittle materials. 

 This suggests that the investigation into 
AlON offers insight into damage evolution not 
only in AlON, but also in other opaque ceramics 
where only surface damage can be observed with 
optical methods. Further experimental and 
theoretical studies are mandatory before making 
ultimate conclusions. 
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