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Abstract 

A mechanism is an institution such as an auction, voting protocol, or a market that defines the 

rules for how humans are allowed to interact, and governs the procedure for how collective 

decisions are made. Computational mechanisms arise where computational agents work on behalf 

of humans. This report describes an investigation of the potential for using computational 

mechanisms to improve the quality of a combat group’s common operating picture, in a setting 

where network bandwidth is scarce. Technical details are provided about a robust emulation of a 

tactical data network (based loosely on the Navy LINK-11) that was developed for the study. The 

report also outlines the basic principles of mechanism design, as well as the features of the 

Vickrey-Clarke-Groves (VCG) auction mechanism implemented for the study. The report 

describes how the VCG mechanism was used to allocate network bandwidth for sensor data 

fusion. Empirical results of the investigation are presented, and ideas for further exploration are 

offered. The overall conclusion of the study is that computational mechanism design is a 

promising alternative to traditional systems approaches to resource allocation in systems that are 

highly dynamic, involve many actors engaged in varying activities, and have varying—and 

possibly competing—goals. 
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1 Introduction 

Systems make decisions. Control systems sense state and decide on control actions to keep key 

state parameters within a control envelope. Program-trading systems monitor financial markets 

and decide when to buy and when to sell. Both use information obtained from the parts of the sys-

tem to make these decisions. In many cases, a decision maker can obtain the necessary informa-

tion from the parts and make optimal decisions accordingly. However, this scheme can break 

down as systems get bigger. Two dimensions of scale are sufficient to demonstrate this point: 

 The system is developed by and/or serves a growing number of human users; and human 

users have their own incentives. For example, in market-trading systems and frequently en-

countered peer-to-peer systems, computational agents act on behalf of humans. In this set-

ting, the users must have an incentive to provide truthful information (e.g., how much a user 

values an item that is for sale) to the decision maker. Without this incentive, we can depend 

on users to hide or misrepresent this information, if it is in their interest to do so, even if this 

deception comes at the expense of the system as a whole.  

 The system is increasingly distributed and performs a growing number and diversity of tasks. 

For example, ad hoc sensor networks and network-centric combat systems will support a 

(possibly open-ended) number and variety of human tasks and computational agents. In these 

settings, it is impractical to assume that a decision maker can be constructed that knows 

enough about each of these tasks to impose an efficient solution. By analogy, one can think 

of the economic distortions (e.g., supply, price, forecasting) introduced by centralized com-

mand economies. Such distortions become more prominent and severe as economies grow 

and become more diversified. 

As systems scale up in these dimensions, interaction protocols are needed that are resistant to stra-

tegic manipulation by selfish users and that efficiently aggregate information from the parts of a 

system to enable effective global decision making. Computational mechanism design is the dis-

cipline of designing such interaction protocols.  

We investigate the application of computational mechanism design to systems of interest to the 

U.S. Department of Defense (DoD), with particular emphasis on using computational mechanisms 

in highly dynamic, resource-constrained, performance-critical systems. To provide the investiga-

tion with clear and realistic scale dimensions, we developed an application framework that emu-

lates a tactical data network. We then investigated the use of one class of mechanism, the Vick-

rey-Clarke-Groves (VCG) auction, to efficiently allocate bandwidth on the tactical network to 

improve the quality of a common operating picture (COP). 

1.1 COMPUTATIONAL MECHANISM DESIGN 

A mechanism is an institution such as an auction, a voting protocol, or a market that defines the 

rules or protocols for how individuals are allowed to interact and governs the procedure for how 
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collective decisions are made. Mechanism design is the subdiscipline of game theory and econom-

ics concerned with designing such institutions so that they achieve prescribed and desirable global 

outcomes. Computational mechanism design
1
 addresses situations where individuals are computa-

tional agents working on behalf of human agents. 

Mechanism design has a deep research tradition in game theory, where it is sometimes known as 

implementation theory, and in microeconomics, where it is sometimes known as institution de-

sign. There are many examples of the practical use of mechanism design to achieve large-scale 

social objectives. McMillan offers a good discussion of the importance of getting the details of 

mechanism design right (in the U.S. public radio spectrum auction) and illustrates the conse-

quences of mechanism defects (in the New Zealand radio spectrum auction) [McMillan 1994].  

Computational mechanism design has a more recent history of practical application. One substan-

tial and well-documented use of computational mechanisms falls under the general heading of e-

commerce. For example, it has been reported that more than 98 percent of Google’s $6.14 billion 

revenue (as of 2006) is achieved through the use of an explicitly designed auction mechanism for 

allocating advertising space on Web pages returned from keyword searches [Edelman 2007]. 

Another substantial application area in e-commerce is in supply chain optimization [Staib 2001, 

Chen 2005, Sandholm 2006]. 

Our investigation focuses on the comparatively less well-understood use of computational me-

chanisms to control or direct the behavior of large-scale, decentralized systems and in particular to 

achieve an efficient allocation of computational resources using economic mechanisms. In this 

use, computational systems are viewed as virtual economies, with computational elements com-

peting to use scarce computational resources to achieve the elements’ individual objectives.  

The research literature provides examples of mechanisms being used to allocate processor cycles 

for scientific computing on the worldwide grid [Chen 2004]; for network routing [Holzman 

2003]; for allocating network capacity [Anshelevich 2004, Anderson 2005]; for sensor fusion 

[Rogers 2006, Dang 2006]; for peer-to-peer systems [Chen 2004]; for task allocation for auto-

nomous robots [Gerkey 2002]; and for electricity markets [Hinz 2003, Federico 2003]. This is not 

in any sense an exhaustive survey, and the use of market mechanisms to control complex system 

behavior is receiving considerable attention.
2
 

1.2 CONTRIBUTION OF THIS WORK 

The viability of techniques such as computational mechanism design can be established only 

when they are applied to problems of sufficient scale and complexity to expose the practical limi-

tations of the techniques in question. When theory is applied to practice, practice invariably 

―pushes back.‖ This ―push back‖ often identifies opportunities to advance and refine the underly-

ing theory of a technique that would never have been identified but for the confounding—and 

 
1
  The term algorithmic mechanism design is sometimes used instead. 

2
  See http://www.marketbasedcontrol.com/, for example. 

http://www.marketbasedcontrol.com/
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impossible to predict—effects of real-world problems. Our work builds on earlier work by Dash 

and others [Rogers 2006, Dang 2006] but adds significantly to the complexity (and, we claim, the 

resulting fidelity) of the experimental setting. In addition, our work emphasizes the importance of 

accounting for human incentives in the process of designing computational mechanisms. With this 

philosophical background, our work has made three key contributions: 

1. We developed an application framework
3
 that exhibits sufficient scale and dynamic com-

plexity to study the feasibility of computational mechanism design in a practical setting. The 

framework emulates a combat tactical data network and includes much of what is required to 

construct a common operating picture from radar sensor data.  

2. We designed and implemented a variant of the well-known VCG auction for use in the ap-

plication framework. The auction is used to efficiently allocate a fixed, but selectable, 

amount of network bandwidth to permit fusion of additional sensor data to improve the 

common operating picture. One novel aspect of our auction is that participants are both buy-

ers and sellers of information, and each can obtain value from buying and selling. 

3. Finally, and perhaps most importantly, we demonstrated that computational mechanisms can 

be used to implement distributed, value-based resource allocation schemes in the kind of 

highly dynamic, resource-constrained, performance-critical systems found in DoD combat 

systems. Such systems are non plus ultra for evaluating the practicality of using computa-

tional mechanisms to control the behavior of complex systems. 

1.3 STRUCTURE OF THIS REPORT 

Section 2 provides a high-level description of forming a common operating picture in tactical data 

networks and introduces the application framework as a way of making the problem domain con-

crete. Section 3 provides a brief overview of the key theoretical constructs underlying mechanism 

design. Section 4 applies these concepts to design an auction mechanism for allocating bandwidth 

in a tactical data network to provide incremental improvements to the common operating picture. 

Section 5 provides further details of how the application framework was used to study the beha-

vior of the auction mechanism. Finally, Section 6 summarizes our key findings from this work. 

 
3
  The implementation has been packaged for use by external research collaborators and has already been made 

available to select researchers at the Naval Postgraduate School and Harvard University. 
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2 Track Data Fusion and Information Gain 

2.1 TRACK DATA FUSION SETTING 

Almost all military group operations rely on the platforms (air, sea, and ground) involved in the 

operation to act as a cohesive force. To act as such a force, the platforms must establish and main-

tain a common understanding of the tactical situation. This common or shared understanding is 

achieved through the sharing and exchange of tactical data from sensors on each of the platforms 

in the group.  

Tactical data is often exchanged and shared among the platforms using a standardized radio net-

work, commonly called a tactical data information link (TADIL). TADILs are characterized by 

their standard message and transmission formats. Golliday’s survey of TADILs circa 1985 is out-

dated in its fine details but still valid in the main features and vocabularies of TADILs today [Gol-

liday 1985]. Our concern is with a subset of TADIL capabilities used to construct a common op-

erating picture. 

Major kinds of tactical information exchanged on a TADIL are the positions and movements of 

the platforms themselves and track data observed by the platforms. Track data is processed radar 

data which typically represents real objects such as airplanes, helicopters, missiles, ships, boats, 

land vehicles, and submarines. 

This shared tactical data is then used by each platform to create a common operational picture by 

combing selected information from all the platforms. The accuracy and effectiveness of this 

shared tactical picture can critically depend on 

 eliminating or minimizing sensor alignment errors on each platform, platform navigational 

position errors, and sensor biases and position errors, through a process commonly known as 

―data registration‖ or ―gridlock‖  

 minimizing the display of multiple tracks that actually represent one object, through a 

process commonly known as ―track correlation‖
4
  

 minimizing data latency by preventing multiple track reports on the link for a single real ob-

ject through the use of reporting responsibility (R
2
) rules. R

2
 rules assign a track to the plat-

form that has the best quality data for that track (position, velocity, etc.). The platform that is 

selected to report the track is said to have R
2
 for that track. 

R
2
 rules minimize data latency by disallowing the redundant reporting of a single object by mul-

tiple platforms over the data link. The R
2
 approach can be viewed as an extreme minimalist ap-

proach to the treatment of network bandwidth. It has the disadvantage of reducing the diversity of 

the source data to the platforms. At another extreme is an approach that assumes a superabun-

 
4
  The elimination of track identifier conflicts is beyond the scope of this work. 
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dance of network bandwidth, where even raw (unprocessed) radar returns are shared on the 

TADIL. This approach has the disadvantage of requiring communication technologies that are not 

yet practically available. 

 

Figure 1:  Conservative Enhancement to the COP from R
2
 Baseline 

As depicted in Figure 1, the research reported here assumes as its point of departure the minimal-

ist approach characterized by TADILs such as LINK-11 rather than the superabundance approach 

characterized by more progressive capabilities such as those envisioned by the cooperative en-

gagement capability (CEC)
5
 and single integrated air picture (SIAP).

6
  

Our research shows that an auction mechanism can efficiently allocate a finite but selectable 

amount of bandwidth, above and beyond that already used in a conventional R
2
 approach, to im-

prove the COP. We assume that platforms are rational and therefore liable to deceptive behavior if 

it furthers their objectives. This might, in fact, be a reasonable assumption in TADILs that operate 

under multiple coalition flags. In any event, the assumption of rationality is central to mechanism 

design and only serves to broaden the applicability of the results. 

2.2 EMULATING R
2
 ON A LINK-11 TADIL  

The most direct way to highlight the key concepts of the tactical data networks and auction me-

chanisms explored in this research is to examine the research application framework piece by 

piece.  

Figure 2 shows the main track display. In this run of the application, there are four active plat-

forms or participating units (PUs). Each PU has a sensor envelope depicted as a circular region on 

the display. The track picture is quite confused in Figure 2. Each platform is reporting its contact 

data on the TADIL but is doing so from its own frame of reference, without accounting for navi-

gation errors, orientation of radar from true north, and so forth. 

 
5
  For more information, see http://www.globalsecurity.org/military/systems/ship/systems/cec.htm. 

6
  For more information, see http://www.dtic.mil/ndia/systems/Hobart.pdf. 
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Figure 2:  Track Display Prior to Track Correlation 

 

Radar contacts appearing within this region of observation  (RO) are depicted using standard 

symbols, although only a small subset of these symbols is needed in the prototype. A brief expla-

nation of the most important symbols is provided in Figure 3. Time to arrival shows where a con-

tact will be at the end of some time duration, assuming it holds a constant speed and bearing.  

The error ellipses are not part of the standard notation but are displayed to emphasize the sensor 

error associated with each track. The ellipse is computed from the covariance of radar range and 

bearing errors, as well as navigation errors. The covariance data of a PU’s simulated radar is con-

figurable. As discussed later, sensor quality plays an important role in the auction mechanism.  

A minor point worth noting is that the first digit of the track number encodes which PU is report-

ing a track on the link. For example, PU 3 is reporting a hostile track in Figure 3. 
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Figure 3:  Display Symbols and Fusion Goal 

 

In Figure 4, the effects of gridlock and correlation are depicted. It is possible in the research ap-

plication to separately select when each platform chooses to perform gridlock and when each 

chooses to perform correlation.
7 

Correlation requires gridlock, and gridlock without correlation is 

not particularly useful. Both are typically performed. 

Note that in Figure 2 and Figure 4, PU 3 does not have a gridlock ―checkbox‖ because it has been 

assigned the role of the ―grid reference unit‖ (GRU). Typically, the role of the GRU in Navy tac-

tical networks is played by Aegis Class ships, as these generally possess the highest quality track 

data. The application framework uses a relative gridlocking algorithm, and therefore the GRU’s 

coordinate system is adopted as ―truth.‖ 

The GRU imparts unique characteristics to the mechanism by virtue of the asymmetry in track 

quality between the GRU and other PUs. The GRU will almost universally acquire R
2
 for any 

track in its RO. As we’ll show later in this report, this asymmetry influences auction payoff, since 

the GRU always shares all of its data with all the other PUs and therefore has no additional 

―goods‖ to offer when it comes time for the auction. 

 
7
  The display uses SGS and A/C to denote gridlock and correlation, respectively. Historically, SGS is “shipboard 

gridlock system” …. A/C is “auto-correlation.” The acronym SGS/AC is typically used.  
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Figure 4:  Track Display After Track Correlation 

 

The ―minimalist bandwidth‖ effects of R
2
 assignment are shown in Figure 5, which depicts a 

(clipped) portion of the network control station (NCS), another display provided by the applica-

tion framework. The TADIL emulated in this application framework uses a round-robin approach 

to data transmission. The NCS indicates to each PU when it has a ―transmit opportunity;‖ it is the 

task of the PU to transmit its R
2
 data during its transmit opportunity. The time it takes to complete 

each round of communication is called the network cycle time (NCT). 

The Net Cycle Time strip chart in the lower left of the display in Figure 5 shows the total network 

cycle time dropping from slightly more than 4 seconds to slightly less than 3 seconds after grid-

lock and correlation. A corresponding drop in the amount of track data (bytes per second) is 

shown on the Bytes Sent strip chart in the lower right of the display.  
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Figure 5:  Effect of Reporting Responsibility on Bandwidth 

 

A different measure is depicted in the upper right, where a sharp drop in R
2
 information value is 

shown. This information value is computed as a function of the covariance data for all track data 

on the link. For our purpose, it serves as an indirect, if somewhat blunt, measure of the total in-

formation available on the link. When a track is no longer transmitted, the opportunity to fuse its 

data—an opportunity whose value will be inversely related to its covariance—is also lost. We use 

an auction mechanism to recover the most valuable gain in information for a given quantum of 

extra bandwidth. 

2.3 AUCTIONING BANDWIDTH FOR IMPROVEMENTS IN THE COP 

Assuming perfect track correlation, one effect of assigning R
2
 is that the total network cycle time 

is reduced to its minimum. An auction would permit us to efficiently allocate an additional quan-

tum of bandwidth to improve the quality of the COP. By ―efficiently,‖ we mean that the auction 

will choose the track data that, when fused, will result in the largest possible gain in overall COP 

quality when subjected to a maximum network cycle time constraint. 

Figure 6 shows a (clipped) portion of a network control station after a successful auction of 

TADIL bandwidth. Assigning R
2
 had a reduced NCT from over 4 seconds to just under 3 seconds. 

In Figure 6, we set a target maximum NCT to 3.34 seconds. Increasing this value will allow addi-

tional track data to be transmitted and fused but will also result in increased latency between track 

updates. The mechanism allocates bandwidth equal to the difference between the selected maxi-

mum NCT and the actual NCT assuming only R
2
 reporting.  

Assignment of R 2 

reduces NCT 

Assignment of R 2 

reduces traffic 

Assignment of R 2 

reduces global  

information 

Assignment of R 2 

reduces NCT 
Assignment of R 2 

reduces traffic 

Assignment of R 2 

reduces global  
information 
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Each cycle is demarked by a vertical yellow line on the Net Cycle Time strip chart (horizontal bars 

near the midpoint of the graphic). As time progresses, the breakdown display moves from right to 

left, one cycle at a time. Traffic generated by the auction protocol itself is displayed in blue. The 

auction protocol requires three cycles to complete; in the figure, only the last two cycles of an 

auction round are shown. Traffic generated by the normal R
2
 track data is displayed in orange. 

Traffic generated by the additional track data allocated by the auction is displayed in red.  

Allocate bandwidth up to a maximum 

of 3.34 sec NCT in the most efficient 

way to maximize quality of the COP

 

Figure 6:  NCT After a Successful Bandwidth Auction 

 

What has been described so far is, at root, the solution to an optimization problem using a simple 

knapsack algorithm. Given a bag of a finite capacity (here, a total amount of network bandwidth 

determined in part by the maximum NCT), find the collection of items that fills the bag to its 

maximum capacity (here, a collection of track descriptors), so that the solution maximizes an ob-

jective function (here, the quality of the COP).  

The algorithmic heart of the auction we implemented is, in fact, a knapsack optimization algo-

rithm. The mechanism goes beyond a mere knapsack, however, because it provides incentives for 

each PU to truthfully reveal information that is known only to each PU and that is required to 

construct an optimal knapsack solution. Specifically, each PU has information about its own track 

quality that it derives from the covariance of its radar apparatus; the mechanism provides incen-

tives for each PU to truthfully reveal its track quality. 

Intuitively, PUs will value track data of higher quality (i.e., lower covariance) over track data with 

lower quality (i.e., higher covariance). However, if we assume that PUs are rational, they will 

truthfully reveal their track data only if it is in their best interest to do so. Perhaps by over-
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estimating its track quality, a PU might manage to ―sell‖ its poor quality data at a higher price (in 

a sense of ―sell‖ that is defined later in this report). Or, perhaps by underestimating its track quali-

ty, a PU might manage to have bandwidth allocated to transmit some other PU’s tracks to it rather 

than send its own. Deceptive behavior among participants in a tactical data network might seem 

farfetched but is certainly not inconceivable in coalition rather than single-flag settings. In any 

case, the assumption of rational behavior is essential for mechanism design. 

The task of the auction designer for this application setting is to ensure that each PU has an 

incentive to truthfully reveal its radar covariance.  

We now turn to the details of the incentive compatibility and other theoretical aspects of mechan-

ism design in Section 3 and to the precise details of how radar covariance relates to incentives and 

platform payoff in Section 4. We will return to the application framework in the Section 5 discus-

sion on empirical results. 
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3 Mechanism Design 

Mechanism design concerns designing institutions (or protocols) that govern the interactions of 

rational individuals with private preferences in a way that leads to a collective decision. The insti-

tution generally incentivizes the participants to reveal their own private preferences and guides the 

group decision so that it satisfies some global criterion. In this section, we will describe mechan-

isms and describe a specific mechanism, the VCG auction, in more detail. 

3.1 SOME CONCEPTS OF MECHANISM DESIGN 

Assume that there are n individuals 1,…, n (or participants or agents) who must collectively make 

a decision that affects each of them. The decision is to choose from a set, A, of alternatives. Ex-

ample situations include 

 Example (1): Individuals are citizens of a community. The decision is whether to spend 

community funds on a community project. The alternatives are ―yes‖ or ―no.‖ The mechan-

ism is voting. 

 Example (2): Individuals are bidders at an auction. The decision is how to allocate items X, 

Y, and Z to bidders B1, B2, … Bn. The alternatives are every possible allocation of items to 

bidders (e.g., B1 gets items X, Y, and Z or B2 gets X and Y, and bidder B9 gets item Z). The 

mechanism is an English (open-cry, first-price) auction. 

Of course we are investigating mechanism design in a computational setting. The example that we 

elaborate later in this paper is 

 Example (3): Individuals are computational agents representing ships in a battle group. The 

decision is how to allocate spare network bandwidth to send additional track data from one 

ship to the other ships. The alternatives are the various ways to allocate bandwidth. The me-

chanism is the VCG (sealed-bid, second-price) auction. 

3.1.1 Individual Preferences 

Group decisions are guided by individuals’ preferences, which vary by situation. Mechanisms 

must be able to handle all combinations of those preferences.  

Individuals participating in a group decision observe the situation and gather all the information 

they need to guide their preferences. For example, individuals are likely to value an umbrella 

higher and sunscreen lower when it is raining than when it is sunny. This observed information is 

represented abstractly by a parameter known as type. An individual’s type is typically denoted by 

θi and the type profile (the vector of all individuals’ types) as θ = (θ1, θ2, … θn).  
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3.1.2 Social Choice Function 

The collective decision is represented as function  f(.) that maps the set of all type profiles to the 

set of all alternatives. This function is known as the social choice function. In other words, the 

social choice function chooses an alternative from the set of alternatives when given information 

that determines everyone’s preferences. For example, θi might represent the track data that is cur-

rently owned by each ship i. This type then determines this ship’s preference for how network 

bandwidth should be allocated in order for it to receive additional track data. 

The social choice function is guided by an evaluation criterion, which is usually a function of the 

utility that the individuals accord to each alternative. Utility is a way to quantify preference and is 

a function of the alternative and the type. Given a situation characterized by type θi , ui(x1, θi) > 

ui(x2, θi) indicates that individual i prefers alternative x1 to x2 in the situation abstractly described 

by θ. Designing a mechanism involves determining a measure for utility. In our example, infor-

mation gain due to acquiring track data from another ship is our measure of utility. 

A social choice function is said to be efficient if it maximizes the total utility of all individuals 

when ―choosing‖ an alternative. The goal of mechanism design is to implement a social choice 

function that satisfies a criterion such as efficiency. For example, an efficient social choice func-

tion for Example (3) is one that allocates bandwidth for sending tracks in a way that maximizes 

the total utility of all ships. 

3.1.3 The Induced Game 

Mechanism design has an intimate relationship with game theory. A game is a formal representa-

tion of a situation in which a number of individuals strategically interact; that is, each individual’s 

ultimate welfare not only depends on one’s own actions, but also on the actions of the other indi-

viduals. Strategy is an important concept for games. A strategy is a ―complete contingent plan or 

decision rule that determines how a player will behave in every possible situation.‖ For example, 

each ship will choose a strategy that determines whether to accurately reveal its track data. 

Formally, a game (in a game theoretic sense) consists of a set of players (or individuals), a set of 

strategies for each player, and a payoff function for each player that determines the payoff asso-

ciated with every possible strategy profile (that is, the vector of strategies chosen by every player) 

[Mas-Colell 1995]. 

A central goal of game theory is to determine which strategy profile will be chosen by the set of 

individuals in some specific game. The central goal of mechanism design is to design the strategy 

set, rules of interaction, and payoff function so that the desired social choice function is imple-

mented for all type profiles. A mechanism induces a game in the sense that, for a given situation, 

the type profile determines a strategy profile for the induced game. If the equilibrium associated 

with that game is consistent with the social choice function, the mechanism has achieved its goal. 

If the mechanism achieves this goal for all possible type profiles, it is said to implement the social 

choice function; for example,  
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 for any given situation described by what ships own what track data (the type profile)  

 there exists a profile of ship strategies for what track data to reveal (the strategy profile)  

 so that the allocation of bandwidth (the outcome)  

 resulting from the auction (the mechanism)  

 is the one with the highest total utility (an efficient social choice) 

3.2 SOME DETAILS ABOUT THE VCG AUCTION 

Auctions are a common type of mechanism, and the VCG auction is one of the most studied types 

of auctions. Another name for the VCG auction is the second-price, sealed-bid auction.  

3.2.1 Single-Item Auction 

Consider the single-item VCG auction where there is a single item up for auction. The partici-

pants submit a bid. The highest bidder wins but pays the amount of the second highest bid.  

The key thing to notice about the VCG auction is that the winner’s bid does not affect the price 

paid by the winner. The auction incentivizes bidders to directly reveal the true value they place on 

the item, even in this competitive setting, and ensures that the bidder who values the item the most 

wins it. To see this, order the bidders by their true values where Vi denotes bidder i’s true value: 

V1 < V2 <, …, < VN-1 < VN. If all bidders bid their true values then bidder N wins, pays VN-1 and 

gains VN – VN-1. If bidder N bids higher than their value, the result remains the same. If bidder N 

bids lower than their true value, but still greater than VN-1, the result remains the same. If bidder N 

bids lower than VN-1 they lose the auction and gain zero. Therefore, bidder in is quite content to 

bid their true value. If some other bidder, bidder i, bids higher than VN, they  would win the auc-

tion, pay VN and have a net ―gain‖ of Vi – VN, which is negative and therefore a loss. 

This mechanism realizes the principle: ―lying doesn’t pay.‖ Bidding something other than the 

bidder’s true value was never beneficial and sometimes was detrimental. This mechanism is in-

centive compatible; it leads to bidders truthfully revealing the true values they place on items. 

3.2.2 Multi-Item Auction 

In the multi-item auction, there are many items up for auction, and each bidder bids on every sub-

set of these items.
8
 The desired outcome of the auction is to maximize the total value to all the 

bidders resulting from the auction, which is how we define the optimal allocation. Just as for the 

single-item VCG auction, optimality is achieved by constructing a payment scheme that incenti-

vizes bidders to reveal their true values for items. The payment bidder i makes in a VCG auction 

is 

 
8
  Later, we make an important simplifying assumption about the linearity of track values to avoid combinatorial 

complexity. 
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(1) 

ij

*j

ij

* ij )x(v)x(v  

and the utility gain for bidder i as a consequence of the auction is 

(2) 

ij

*j

ij

* ij*i*i )x(v)x(v)x(v)x(u  

where  

 *x denotes the optimal allocation of a collection of goods to the participants in the auction. 

 * ix  denotes the optimal allocation of the collection goods when bidder i is excluded from the auction. 

 )x(vi  denotes the value that bidder i places on the allocation. 

The utility (the term on the left-hand side of the equation) in Equation (2) is the value associated 

with the allocation minus the payment (which is the term in brackets). The first term in the pay-

ment is the value of the allocation for an auction that excludes bidder i. The second term uses the 

optimal allocation when i is included in the auction. The second term is necessarily less than or 

equal to the first term, since the first term is based on the optimal allocation when i is excluded. 

This means that the total value to all bidders excluding bidder i decreases as a consequence of i’s 

participation in the auction. This decrease in value can be viewed as the opportunity cost of i’s 

participation. Hence i’s utility gain from the auction is its value for the allocation minus the op-

portunity cost for its participation.  

Another way to look at this is that bidder i’s payoff (that is, utility gain) is the incremental value 

of bidder i’s participation as shown by slightly rewriting Equation (2) as follows: 

(3) 

n

1i ij

* ij*j*i )x(v)x(v)x(u  

3.2.3 Proof of Incentive Compatibility 

This payment scheme can be shown to incentivize bidders to reveal true values. Let’s say that 

bidder i misrepresents its true valuation function. This could result in some other allocation, x̂ . 

Subtract the utility resulting from the false valuation from the utility with the true valuation.  
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(4) 

n

1j

j

n

1j

*ji*i )x̂(v)x(v)x̂(u)x(u  

Since the optimal allocation yields a sum of bidder values that is the highest, the difference in Eq-

uation (4) must be greater than or equal to zero. Therefore, the payoff resulting from an untruthful 

valuation is less than for the truthful valuation; ―lying doesn’t pay.‖ 

What is the intuition for VCG incentive compatibility? Why would bidder i lie? Lying does not 

change the bidder’s true valuation function; lying can only change bidder i’s allocation, which in 

turn can change the value it accrues due to a ―better‖ allocation. However, bidder i’s actual goal is 

to maximize its payoff—the valuation of bidder i’s allocation is only part of the payoff. Increasing 

bidder i’s valuation draws utility from other bidders, but we can see from Equation (3) that payoff 

depends on the sum of all bidders’ valuations, not just on bidder i’s valuation. When bidder i lies, 

its valuation might increase, but all other bidders’ might decrease even more, thereby decreasing 

bidder i’s payoff. The optimal allocation occurs when bidder i tells the truth. 

3.2.4 Revisiting the Single-Item Auction 

It helps to explain the single-item auction from the more general point of view of the multi-item 

auction. 

Continue to assume that there are n participants, that x denotes an allocation of items to partici-

pants, and that x
*
 denotes the optimal allocation. Since, in the single-item case, only one partici-

pant is allocated an item, every possible allocation results in, at most, one participant having a 

positive valuation while the remaining participants have zero valuations. Therefore, the first term 

in expression (1) above has only one non-zero term, and the second summation is equal to zero. 

Assume that participant i makes the highest bid and participant m makes the second to the highest 

bid. Expression (1) simplifies to vm(x
*
), which is the second highest bid. 

This perspective shows that the single-item VCG payment is indeed a special case of the more 

general multi-item VCG payment. 
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4 “Mechanism Engineering” 

By ―mechanism engineering,‖ we mean the practical use of the science of mechanism design in 

the construction of an engineering—here a software-intensive system engineering—artifact. It is a 

phrase that captures the essence of what we are exploring. This section discusses some of the is-

sues that one will face when developing a mechanism for use in a realistic complex system. Of 

course, our context is the sensor data fusion application described in Section 5.  

4.1 RELEVANCE OF AUCTIONS TO SYSTEM DESIGN 

One might ask what auctions have to do with systems design. An auction is an allocation of a de-

sired resource to a collection of self-interested participants, where the allocation optimizes the 

total value (or utility) of the participants. Allocation of resources, both human and computational, 

is central to system design. The opportunities for intentionally and unintentionally conflicting 

self-interest increases as systems grow larger. Therefore, incentivizing behavior that can lead to 

optimal resource allocation when deception is possible and the level of global control and aware-

ness is limited is important. Mechanisms (auctions, in this case) do that. 

4.2 REQUIREMENTS FOR DESIGNING A MECHANISM FOR SENSOR FUSION 

We are not designing a mechanism from scratch. We decided to use a variant of the VCG auction 

for several reasons: (1) we read about an example of its use for sensor fusion in work by both 

Rogers and Dang and (2) it is a well-known mechanism with well-known prosperities [Rogers 

2006, Dang 2006]. When considering an auction, one must answer the following questions: 

 Who are the participants and what are their incentives? 

 What items (or resources) are being auctioned (or allocated)? 

 What are the valuation functions? 

 What are the desired properties of the social choice? 

4.2.1 Participants 

Each ship is a participating unit (PU). Each PU has a set of objects within its region of observa-

tion that it is tracking. Regions of observation overlap, and therefore more than one PU can track 

the same object. When PUs share data about common objects, their tracking accuracy increases, 

and therefore each PU’s data can be of value to other PUs. 

4.2.2 Resources 

The scarce resource is network bandwidth. The network is allocated as shown in Figure 7 below.  

In this example, there are four PUs; accordingly, one network cycle comprises four transmission 

periods, one period for each PU. If auctions are excluded, each PU in turn broadcasts its track da-
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ta, that is, the tracks for which the PU has been assigned R
2
. Network cycle time is defined as the 

time required to transmit track data from all PUs.  

In tactical data networks such as the one emulated here, network bandwidth is expressed as tracks 

per network cycle time. Bandwidth is intimately related to latency of track updates. When setting 

up the auction, we choose a maximum latency (Max NCT). The difference between Max NCT 

and network cycle time is what is being auctioned. 

PU1 PU2 PU3 PU4

PU1 PU2

Max Net Cycle Time

R2 Tracks Fusion Tracks Auction Messages

Net Cycle Time

Auctioned TimePU1 PU2 PU3 PU4

PU1 PU2

Max Net Cycle Time

R2 Tracks Fusion Tracks Auction Messages

Net Cycle Time

Auctioned Time

 

Figure 7: How Network Bandwidth Is Consumed 

 

The auction mechanism selects the additional (non-R
2
) tracks that will yield the most valuable 

improvements in the common operating picture. Bandwidth is also consumed by the auction pro-

tocol itself. Each auction requires three net cycles to complete. In our implementation, no non-R
2
 

tracks are transmitted during an auction, although this is not essential. Auctions are initiated pe-

riodically, by default once every 15 net cycles, but this can be adjusted. In Figure 7, an auction is 

being initiated by PU3. It will continue for two additional cycles, after which each PU will trans-

mit its R
2
 tracks and any other tracks that have been selected as fusion tracks, until the next auc-

tion is initiated.  

Figure 7 is slightly misleading in one sense. Our implementation does not include the cost of con-

ducting an auction (the auction messages) in the allocation of additional bandwidth beyond the 

network cycle time. The Max NCT will be exceeded during the auction if the difference between 

the Max NCT and network cycle time is less than the auction overhead. This is not a flaw in the 

implementation, but rather a tradeoff. If auction intervals are sufficiently far apart, the transient 

overload is compensated by the value of the extra track data that can be sent.  
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4.2.3 Valuation 

PUs are interested in acquiring and computing the most accurate information about tracked targets 

and in using this information to ensure their success in any engagement. However, PUs are also 

offered doctrinal-based incentives to contribute as best they can to the overall information accura-

cy of the battle group. A PU’s mission success can be correlated to the overall information accu-

racy of the battle group, and ―after action rewards‖ will be based on a PU’s contribution to overall 

information accuracy. 

The valuation function converts all the data available to a ship—data from other ships combined 

with its own data—into a measure of track data quality. Each PU tracks multiple objects. Each PU 

derives a total value based on the information it receives for all the objects in its region of obser-

vation (RO). 

4.2.4 Social Choice Function 

Mechanisms implement social choice functions. The one implemented by this auction is to pro-

duce an allocation that optimizes the sum of the valuation functions of all the PUs. 

4.3 DESIGNING THE MECHANISM 

We will make the following assumptions: 

 A cyclic bandwidth allocation protocol is used. Network bandwidth is limited due to a max-

imum net cycle time (NCT). The maximum net cycle time (Max NCT) is determined by the 

maximum latency requirements associated with how old data is allowed to be. 

 A broadcast transmission protocol is used. 

 PUs are rational and therefore can be expected to act in their own best interest.  

4.3.1 Auction Protocol 

Conducting the auction entails the following steps: 

1. The auctioneer initiates a new auction round by requesting that each PU send ―non-R
2
 track 

data.‖ Each PU broadcasts, for each track in its RO for which it does not have R
2
, the range 

and bearing covariance for that track. Each PU broadcasts this data at its next transmit op-

portunity (TO); therefore, this step consumes one network cycle.  

2. The auctioneer requests that each PU send its track valuations for its ―coveted tracks.‖ Non-

R
2
 track data from Step 1 is coveted by a PU if the track is correlated to a track within the 

PU’s RO. Tracks are valued according to the potential information gain that will follow from 

some later data fusion of this track data if it is chosen to be sent. In the current auction, in-

formation gain is expressed by the range and bearing covariance of track data. This step con-

sumes one network cycle. 

3. The auctioneer uses the track values from the PUs to determine the total information gain 

associated with each track if that track is sent to each coveting PU. The auctioneer then uses 
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a knapsack algorithm to allocate bandwidth to PUs to send the tracks that maximize total in-

formation gain, assuming 

 PU information gain is a linear function, that is, for tracks A and B,  

IG({A,B}) = IG(A) + IG(B). 

 Each track requires a constant amount of network bandwidth. 

4. The auctioneer announces the ―winning tracks,‖ that is, the set of tracks selected by the 

knapsack algorithm in Step 3. The auctioneer also records the information gain of and pay-

ment made (in units of information gain) by each PU (see Equation (5)), which will be used 

as the basis for after-action rewards (explained in Section 4.3.3). Steps 3 and 4 together con-

sume one network cycle. This completes the auction round initiated in Step 1. 

5. Each PU broadcasts, at each transmit opportunity, its R
2
 track data as well as any non-R

2
 

track data that have been identified as ―winning tracks‖ in Step 4. 

4.3.2 Optimization 

Let vi(Z,F) denote PU i’s information gain for the track data represented by the matrix Z and the 

bandwidth allocation represented by the matrix F. You can think
9
 of Z as a matrix where Zij 

represents PU i’s track data for track object j. Naturally, some of these entries will be null, since 

not all PUs have information about all tracks. 

F denotes the amount of bandwidth dedicated to sending each track. To understand F, think of it 

as a matrix where the number of rows is equal to the number of PUs and the number of columns is 

equal to the number of track objects. Fij represents the amount of network time devoted to PU i for 

broadcasting track j. Naturally, some of these entries will be zero, since not all tracks are seen by 

all PUs. Others are zero as a consequence of the allocation that results from the auction.  

Our goal is to optimize the use of the additional network latency (defined in Section 4.2.2 as the 

difference between the Max NCT and NCT) to transmit additional track data. This additional la-

tency represents the size of the ―knapsack.‖ We need to fill the knapsack by sending the appropri-

ate track information in a way that maximizes the total information gain across all the PUs.  

We now define the payoff and payment functions for this mechanism. 

4.3.3 Incentives for the Mechanism 

If the problem were strictly an optimization problem, we would be done. However, it is actually a 

problem of joint decision making amongst a collection of self-interested PUs that hold private 

information that affects the outcome. The goal of designing a mechanism is to incentivize beha-

vior in a way that leads to a desirable outcome. For this auction, this means defining and design-

ing the right payment structure. 

 
9
  We say “you can think of” because we do not need to probe into the details of how Z and F are represented. 
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What does payment mean in this setting? In a traditional (non-computational) setting, participants 

value items being auctioned in terms of money and make bids in terms of money. The VCG auc-

tion incentivizes bidders to reveal the bidder’s true value for the items being auctioned. Payment 

is made in terms of money. Payoff is then the difference between the value of the allocated 

item(s) (again, in terms of money) and the payment. 

Also, recall that the incentive compatibility of the VCG auction arises because, from any partici-

pant’s point of view, maximizing its payoff is equivalent to maximizing total value.  

In our computational setting, information gain is the measure of utility. To create an incentive-

compatible mechanism for our computational setting, we have to make sure that maximizing 

payoff is equivalent to maximizing total information gain. This equivalence reflects an important 

aspect of ―mechanism engineering.‖ Computational participants inherit their ―computational in-

centives‖ from humans. This notion is captured nicely by Rosenschein and Zlotkin in Rules of 

Encounter [Rosenschein 1994]: 

“We are interested in social engineering for machines. We want to understand the kinds of 

negotiation protocols, and punitive and incentive mechanisms, that would cause individual 

designers to build machines that act in particular ways. Since we assume that the agents‟ de-

signers are basically interested in their own goals, we want to find interaction techniques 

that are „stable‟, that make it worthwhile for the agent designer not to have machine deviate 

from the target behavior.” 

The structure of the auction has to incentivize humans to design the agents to behave in an incen-

tive-compatible manner. Therefore, mechanism engineering not only involves designing computa-

tional protocols, but also involves designing and/or changing social institutions, understanding the 

relationship between such social institutions and the designers of computational protocols, and 

understanding the behavior of designed computational protocols. 

In our setting, the agent designers have two driving incentives, which are based on the doctrine of 

the armed services: 

 Survivability of the individual PU depends on the survivability of the battle group, which in 

turn depends on maximizing the information gain of the whole group. This logic incentivizes 

every PU to maximize their contribution to the group’s information gain. Increasing one’s 

own information gain is not always the best route to one’s own survival. 

 ―After-action reviews,‖ which lead to promotions and other rewards, use contribution to total 

information gain as an important evaluation criterion. In effect, the auction also acts as an 

accounting device that records the marginal contribution of each PU to the group’s informa-

tion gain. Payment occurs outside of the auction mechanism itself.  

These incentives are consistent with viewing information gain as our measure of utility in this 

setting. Each PU tries to both increase its own information gain and minimize its effect on the 

group’s information loss. This is consistent with a traditional VCG auction in which all individu-

als try to increase their own value by bidding on items they greatly value but at the same time re-
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ducing their payment, which is the total value loss associated with their participation in the auc-

tion. 

4.3.4 Payoff and Payment for the Mechanism 

Equation (5) represents the payment made by ship i to the auctioneer. 

(5) 

ij

*
j

ij

*
ij )F,Z(v)F,Z(v  

Equation (5) represents the lost opportunity for information gain due to PU i’s participation in the 

auction. In other words, PU i’s participation cost the other participants this much information 

gain—this is a payment in terms of information gain since PU i’s ―account‖ is, in effect, debited 

this amount for its effect on the total information gain. 

The first term in the expression represents the total information gain due to an optimal allocation 

when ship i does not participate in the auction (F-i*). The second term in the expression 

represents the total information gain minus PU i’s contribution due to an optimal allocation when 

ship i does participate (F*). 

There is an important subtlety in this situation that was not true for the traditional VCG auction. 

Expression (5) might be negative. In other words, PUs might make negative payments. 

To see this subtlety, note that PU i’s presence in the auction contributes to the total information 

gain by 

 broadcasting its track data to the other ships and  

 receiving track data from other ships. This is accounted for in vi(Z, F). 

The first form of contribution is reflected in the second term of expression (5). If this contribution 

is large enough, it can cause the payment to be negative. This can be interpreted as an addition to 

PU i’s account for sending valuable track data to the other PUs. If we only consider the value of  

ship i receiving data, the second term would have to be less than or equal to the first term, as we 

discussed earlier. 

The second form of contribution is not reflected at all in the payment. Rather, it is reflected in the 

first term of the payoff, which is 

(6) 
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4.3.5 Incentive Compatibility 

A mechanism is incentive compatible when directly revealing the truth for all participants is an 

equilibrium. (That is, truthfully revealing the participants’ preferences is an equilibrium strategy 

profile.) We use exactly the same argument as the traditional VCG incentive-compatibility argu-

ment shown above to show that this mechanism is incentive compatible. 

The difference between this mechanism and a ―pure VCG auction‖ is that each participant stands 

to benefit from both receiving and sending track data. The traditional VCG is usually applied to 

auctions (where participants are buyers) or to reverse auctions (where participants are sellers), but 

not when participants are both buyers and sellers. 

Hence, in principle,
10

 there are two opportunities to lie. A PU can lie about its value function 

and/or can lie about the quality of its track data. Lying about the value function might cause more 

track data to be sent to a PU. Lying about track quality might make it seem more desirable for the 

PU to send its track data to others. Neither of these ―incentives‖ is really an incentive. (Note that 

in our current implementation, it is impossible for a PU to lie about its value function. A PU’s 

information gain only depends on the track data that it receives, not on any private information.) 

Let Equation (7) below, which is simply a rewriting of Equation (6), represent the payoff to PU i 

as a consequence of participating in the auction when it tells the truth. Z denotes the true track 

data, and F
*
 denotes the optimal allocation, that is, the allocation of bandwidth that results in the 

highest overall information gain. 

(7) 

n

1i ij

*ij*j*i )F,Z(v)F,Z(v)F,Z(u  

PU i’s lying about valuation or track data cannot affect the second term in the above equation, 

since this allocation assumes that PU i is not participating and is therefore also neither sending nor 

receiving track data. PU i’s lying about valuation or track data can result in an allocation other 

than F
*
 shown in the first term in the above equation. When PU i lies, the allocation changes but 

the valuation is still determined by the true valuation functions and the actual track data that is 

sent. Since F
*
 results in the highest total valuation, any other allocation must result in a total valu-

ation that is less than or equal to the total valuation resulting from F
*
 and consequently a payoff to 

PU i that is less than or equal to the payoff resulting from F
*
. Therefore, it is not rational for any 

PU to lie—at least from the point of view of increasing the PU’s payoff. 

 
10

  Later, we will explain that in our implementation, presented here, there really is only one opportunity to lie, not 
two. A more general implementation would provide two opportunities, and therefore we will assume this in our 
proof. 
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4.3.6 Optimal Bandwidth Allocation 

While participants are involved in independent, distributed decision making, the auctioneer must 

perform an optimization computation based on the participants’ reported values. This computation 

can be done by interpreting the bandwidth optimization problem as a knapsack problem and using 

a 0-1 knapsack algorithm.  

The knapsack problem assumes that you have a collection of items that need to be carried in a 

knapsack. Each item has a weight and a value. The carrier of the knapsack establishes a maximum 

weight limit for the knapsack. The problem is to maximize the total value of the knapsack con-

tents while adhering to the weight limit. 

In our problem, the bandwidth for PU i to send track data for track j, Fij is the weight. The infor-

mation gain to the system due to PU i sending it track data is the value. The algorithm requires an 

integer weight; therefore, wi = ceiling(100*fi) and the weight limit is 100. 

Let F[i,w] denote the maximum value of a knapsack when considering items 1 through i and a 

maximum weight of w where i varies from 0 to N and w varies from 0 to Wmax. The recursive 

expression for the algorithm is 

 F[i, w] = F[i-1, w] if w > Wmax 

 F[i, w] = max( F[i-1,w-wi] + vi, F[i-1,w] ) if w ≤ Wmax 

A ―C‖ implementation of the 0-1 knapsack with pseudo-polynomial runtime complexity is pro-

vided in Appendix A. 
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5 Exploring the Mechanism  

The previous section discussed various pragmatic considerations of mechanism engineering, at 

least as those pragmatics were exposed by our choices of application area and mechanism. In this 

section, we discuss our use of the application framework, briefly introduced in Section 2, to study 

the behavior of the mechanism in a demanding setting. 

5.1 USING THE APPLICATION FRAMEWORK TO STUDY THE MECHANISM 

At the core of the emulated tactical data network is a track data generator. The track generator 

provides the raw track data that is then consumed by each PU. Each PU then adjusts the raw track 

data to reflect the range and bearing error that is defined for the radar apparatus hosted by that PU, 

which may vary from PU to PU. 

 

Figure 8 shows the main track display for a scenario with four PUs, prior to gridlock and correla-

tion. The total set of tracks generated includes both those that are displayed in white icons and 

those displayed in grey. Those in white are visible to at least one PU, while those in grey are not 

visible. A track will not be visible if it is outside of the region of observation of all PUs. Also, a 

track will not be visible if it is within the region of observation of a PU but it falls beneath the 

tangent plane or if it is too close to the PU given the pulse repetition frequency (PRF) of the radar. 

Track data is refreshed every four seconds, which corresponds to the scan rate of SPS-48C ra-

dar.
11

 

 
11

  For more information, see https://wrc.navair-rdte.navy.mil/warfighter_enc/weapons/SensElec/ 
RADAR/sps48.htm. This system is pronounced “forty-eight Charlie” by aficionados.  

https://wrc.navair-rdte.navy.mil/warfighter_enc/weapons/SensElec/%0bRADAR/sps48.htm
https://wrc.navair-rdte.navy.mil/warfighter_enc/weapons/SensElec/%0bRADAR/sps48.htm
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Figure 8:  Uncorrelated Tracks with Truth Tracks Revealed 

 

The point to observe in  

Figure 8 is that there is significant dynamism in the application framework (many tracks, realistic 

refresh rate). Figure 9 shows features of the framework that can be used to vary the characteristics 

of scenarios. Beginning with ―Link characteristics‖ in Figure 9 and working counterclockwise 

 The capacity of the TADIL can be varied from 5,000-100,000 bits per second. Greater ca-

pacity results in shorter network cycle time. 

 Auction frequency can be varied from 1 to 50 cycles, where N means conduct an auction 

every N cycles. Since each auction requires three cycles to complete, a value greater than or 

equal to three results in continuous auctions being conducted. 

 The number of PUs can vary from 1 to 12. However, if there are fewer than two PUs, there 

are no opportunities for data fusion (or gridlock or correlation), and additional PUs are easily 

accommodated. 

 The NCT that is required to transmit all R
2
 data (the ―Base Load NCT‖) will depend on both 

the selected capacity of the TADIL and the specific configuration of tracks produced from 

the track generator. 

 The maximum NCT can be varied from 0 to 20 seconds and determines how much band-

width is allocated (Max NCT  Base Load NCT) to transmitting additional tracks to improve 

the COP.  

Truth tracks in grey 

Not visible due to  
tangent plane or PRF  
proximity to platform 
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Link characteristics

Auction frequency

R2 base load

Max NCT

Participating units (PUs)

 

Figure 9:  Framework Features to Study Mechanism Performance 

 

When auctions have been enabled (see Figure 4, to the right of the SGS gridlock and A/C correla-

tion checkboxes), an auction is conducted at the selected auction interval (by default, every 15 

cycles). Figure 10 shows the features of the application framework that allow us to study the be-

havior of the mechanism within different scenarios. Examining the highlights from the top down 

and left to right 

 The NCT is broken down into three constituents: (1) for the baseline R
2
 reporting, (2) for the 

overhead of conducting the auction, and (3) for transmitting the highest value tracks identi-

fied by the auction. 

 The target maximum NCT (horizontal yellow line) and actual net cycle times are displayed. 

Note the transient phases where the maximum NCT is exceeded, as permitted by this me-

chanism (see the discussion of the alternative definitions of spare bandwidth in Section 4.3). 

For example, see ―Transient overrun‖ on the NCT, where the red ―transmit‖ line crosses the 

yellow ―Max NCT.‖ 

 The payment (Equation (5), pg. 24) and utility (information gain) for each auction round are 

displayed on the lower left, and the overall payoff (Equation (7), pg. 25) for each PU is dis-

played in the lower right. Note the ―negative payment‖ for PU 2 in the figure—a possibility 

that is discussed in Section 4.3. 
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Auction overhead

Steady-state R2 reporting

Non-R2 tracks for fusion

Payoff for PU 3

Information gain for PU 3

Payment by PU 3

NCT allocated for non-R2 tracks Transient overrun

 

Figure 10:  Framework Features to Study Auction Payoff and Efficiency 

One interesting aspect of the auction is its effect on the platform that serves as a GRU (grid refer-

ence unit). As noted in Section 2, the GRU (in this scenario, PU 3 plays the role of GRU) is typi-

cally assigned to the platform with the most capable radar. Because of this, the GRU assumes R
2
 

for all tracks within its range of observation.  

Within the auction, however, the GRU has already published all its track data, and hence it cannot 

add further value by sharing additional track data. This is indicated by the relatively low (to other 

PUs) payoff for PU 3 and by the high payment it makes by virtue of being a net recipient of non-

R
2
 track data from other PUs. The asymmetric role of the GRU and its impact on the auction me-

chanism produced a number of interesting real-world seemingly anomalous (but yet, correct) be-

havior that required close study to understand. 

A formal argument of ―incentive compatibility‖ for the mechanism we implemented was provided 

in Section 4.3. The upshot of this argument is that any PU that might otherwise be disposed to lie 

about its track quality for the purpose of improving its payoff would be dissuaded from doing so, 

assuming, of course, that the PU is ―rational.‖ Nonetheless, it is interesting and useful to study the 

behavior of the auction mechanism when one or more PUs lie about their track quality, notwith-

standing the formal argument.  

We studied the behavior of the mechanism when PUs lie so that we could observe the stability of 

the mechanism when the underlying assumptions of purely rational PU behavior have been vi-
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olated. As we later show, there were some unanticipated, and positive, results from undertaking 

this additional aspect of the investigation. 

PU 2 over-reports its 

track quality by 10x

Diminished payoff is the net 

result of PU 2’s deception 
PU 2 now receives a payment 

but has reduced information gain

 

Figure 11:  Adverse Effects of Deceptive Bidding in the Auction 

The application framework supports the investigation of deceptive bidding by allowing any PU to 

over- or underestimate the quality of all its track data by a constant deception factor. The presence 

of a lie can be detected by the framework but is not directly visible to other PUs, of course. If the 

framework detects any deception, it runs two auctions—one auction assuming that all PUs are 

truthful about their track quality and one auction with any deceptive reports of track quality.  

The ―Auction Payment and Value‖ panel, located in the lower left of Figure 11, displays the pay-

ment and information gain of each PU in both the lying and truthful auctions, that is, each PU has 

four bars in this bar graph. The results from the lying auction are displayed with crosshatching, 

while results from the truthful auction are displayed in solid colors. In Figure 11 (the meaning of 

which is discussed in the next paragraph), PU 4 makes a negative payment in the truthful auction 

(i.e., receives a payment), while it makes a positive payment in the lying auction. PU 1, on the 

other hand, makes no payment in the truthful auction (it has no solid red bar). The ―Auction 

Payoff‖ in the lower left of Figure 11 displays lying and truthful payoff, as discussed in Equation 

(5).  

Figure 11 is a snapshot of a scenario in which PU 2 lies about its track quality by over-reporting 

the quality of its track data by a factor of 10. This lie should have the effect of making this PU’s 
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track data more appealing to other PUs, and therefore we would expect the result of an auction to 

be that more network bandwidth will be allocated to PU 2 track data, which will lessen PU 2’s 

payment. In the truthful auction, PU 2 makes no (and receives no) payment; in the deceptive auc-

tion, it made a negative payment, which is the equivalent of receiving a payment. On the other 

hand, since more bandwidth is allocated to track data already in PU 2’s possession, it might obtain 

a diminished information gain as a result of the auction. Again, this expectation is confirmed in 

the scenario in Figure 11.  

However, the important point to observe is that PU 2’s payoff, which is the difference between 

information gain and payment, is reduced in the lying auction, which suggests that the loss of in-

formation gain by PU 2 was not offset by the gain in payment. This matters because the argument 

for incentive compatibility refers to payoff. Either the payment or information gain, but never 

both, might be enhanced by deception. 

As expected, then, PU 2 was worse off in the lying scenario than it would have been in the truth-

ful scenario. Here, at least, is one empirical validation of incentive compatibility. 

PU 2 and PU 4 over-report 

track quality by 10x

PU 2’s and PU 4’s payoff is 

worse; PU 3’s payoff is better!

 

Figure 12:  Potential for Bidder Collusion in VCG Auctions 

Our study of deception also produced results that were, on first examination, entirely unexpected. 

For example, consider the snapshot in Figure 12 where two PUs are deceptive. Per incentive com-

patibility, both were expected to obtain worse payoffs than if they had been truthful, and indeed 

this is what occurs. However, PU 3’s payoff is improved. Is this a problem? 
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It turns out that the outcome of the Figure 12 scenario does not violate incentive compatibility, 

since both deceptive PUs were worse off. However, the scenario does demonstrate the well-

documented susceptibility of the VCG mechanism to bidder collusion.
12

  

Bidder collusion is a form of strategic manipulation where two (or more) PUs may arrange a de-

ception so that their joint outcomes are better than they would be in a truthful auction (for exam-

ple, where a lying PU obtains a worse payoff while its truthful confederates receive an improved 

payoff). We might imagine
13

 the situation depicted in Figure 12 as engaging in collusion: the two 

lying PUs 2 and 4, and the truthful PU 3.  

Auctions that are resistant to bidder collusion are well documented; Sandholm recommends the 

use of first-price auctions as an alternative if collusion is a primary concern and possibly other 

remedies, but the investigation of coalition-proofing was beyond the scope of this initial study 

[Sandholm 1996]. 

Another form of strategic manipulation that we observed in the framework is sometimes referred 

to as spiteful bidding. Spiteful bidding can be modeled where a bidder’s payoff is the difference 

between the winning bidder’s utility and the utility of the spiteful bidder. For example, a PU 

might lie about its track quality, and therefore accept a diminished payoff, if the payoff of some 

other truthful PU is also diminished more severely than the payoff of the lying PU. Again, the 

susceptibility of the VCG is well documented [Brandt 2007]. As with collusion, remedies are also 

well documented but beyond the scope of this study. 

It is worth noting that we did not guide the application framework in any way to expose these 

known vulnerabilities of the VCG auction. Doing so would have required considerable effort to 

develop PU bidding strategies that could ―speculate‖ on the global state of the system.  

5.2 OBSERVATIONS AND RESULTS FROM THE MECHANISM IN ACTION 

The previous discussion provided a brief overview of both the research application framework 

used to study an auction mechanism for tactical data networks and the behavior of a particular 

mechanism in that framework. Our empirical studies using the framework were by no means ex-

haustive, but a few observations are worth emphasizing: 

 The application framework has sufficient dynamism and scale to demonstrate, and more im-

portantly to study, the behavior of computational mechanisms. 

 The mechanism we implemented can operate in a performance-critical application, both in 

terms of the computational complexity of ―winner determination‖ (the pseudo-polynomial 0-

1 knapsack) and network overhead. 

 
12

  Note that the information gain for the entire system is diminished in the case of any deception, though this is not 
displayed.  

13
  There was no intentional collusion.  



34 | CMU/SEI-2008-TR-004 

 The mechanism we implemented exhibits known vulnerabilities to strategic manipulation, 

but these particular vulnerabilities are not likely to be exploited in the operational context of 

a tactical data network operating under one flag. This would not be the case in coalition 

(multi-flag) settings, which would necessitate changes in the mechanism. 

 The implementation of the mechanism itself was straightforward and, all things considered, 

quite compact. On the other hand, there are many variants of the mechanism, each of which 

may address, or introduce, subtle effects. 

Admittedly, we have barely scratched the surface of the potential uses of mechanism design in 

tactical data networks. Nevertheless, the empirical aspects of the study suggest (to us) that compu-

tational mechanisms can be used in demanding settings such as tactical data networks. However,  

our experience also suggests that what might at first appear to be only slight variations in the ap-

plication setting—for example the use of point-to-point rather than broadcast communication—

might require significant changes to the mechanism. There are also other classes of mechan-

isms—for example bilateral exchange markets—that may be more suitable to the particulars of 

this tactical data network or others. 

Having only scratched the surface, we only outline those areas for exploration that build most di-

rectly on our existing prototype.  

5.3 AREAS FOR FUTURE EXPLORATION 

Inserting a VCG auction into a realistic sensor data fusion problem has provided us with a rich 

environment for exploring mechanism design. The following four areas of findings and future 

research represent just a sampling of the explorable issues of mechanism engineering. We are 

confident that other issues will also surface as we think further about the practical and theoretical 

aspects of moving from mechanism design to mechanism engineering. The four areas are 

 dynamic environments 

 agent externalities 

 exploring alternative mechanisms 

 preference elicitation, currency, and budget constraints 

5.3.1 Dynamic Environments 

The platforms in our mechanism research application represent a dynamic environment changing 

from cycle to cycle. To date, we have only treated the problem as a sequence of static problems.  

The case in which more than one network cycle needs to be considered when making decisions 

needs to be explored. This situation might arise when there is a need to take sensor readings for 

more than one network cycle or there is some other need to plan across multiple time periods. It 

could also arise if the readings from a past cycle are good enough approximations for the current 

cycle, thus obviating the need to spend network bandwidth resending data. 
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5.3.2 Agent Externalities 

Our allocation problem exhibits externalities—that is, the valuation of each platform for an allo-

cation of bandwidth depends on the details of the sensing and data fusion actions that will be per-

formed by the other platforms. The information gain ―credits‖ accorded to one platform depend 

on the number of other platforms that value its data. In an ordinary VCG auction, allocative exter-

nalities do not exist. Individuals only care about their valuation of the resources that they are per-

sonally allocated.  

Another imposed externality is the decision about the network cycle time: this is a single decision 

that affects all participants and cannot be set separately for each participant. This situation 

presents us with a classic engineering tradeoff between timeliness and information gain. On one 

side, the value of information can decrease as latency increases, that is, as the NCT increases. On 

the other side, as NCT increases, more participants can share more information, which contributes 

to overall information gain. Methodical exploration of the tradeoff space will be an important as-

pect of moving from mechanism design to mechanism engineering. 

5.3.3 Exploring Alternative Mechanisms 

Another view of our problem is that it is a problem of economic exchange, in the sense that each 

platform is interested in ―buying‖ information from other platforms and also capable of ―selling‖ 

information to other platforms. While a VCG mechanism can be used in an exchange environ-

ment, perhaps other mechanisms such as the following work just as well or better:  

 budget-balanced, approximately efficient truthful [Babaioff 2005, Gonen 2007] and approx-

imately truthful [Parkes 2001] exchange mechanisms 

 methods to redistribute payments back to participants [Cavallo 2006]  

 auctions with distributed auctioneers  

 broader market-based [Wellman 1993, Parkes 2004] and negotiation protocols [Fatima 2007]  

5.3.4 Preference Elicitation, Currency, and Budget Constraints 

Incentives and decision preferences in computational agents are ultimately derived from human 

agents. Therefore, a very important part of mechanism engineering is to understand the contextual 

social institutions, appropriately elicit human preferences, and ensure that they are properly codi-

fied in the computational mechanisms.  

For example, in our application, it was important to decide on the incentives of each platform and 

the social choice criterion, and to make sure that they were consistent with the VCG auction. To 

ensure consistency, each platform is ultimately rewarded for its contribution to the group’s infor-

mation gain rather than its own information gain. However, in the scenario adopted for this report, 

this transaction occurs outside of the mechanism; the mechanism maintains accounting records. 

There is motivation for further exploring the whole area of virtual currency to make the transac-

tion part of the mechanism proper and to understand the practical issues of using virtual currency 

to incentivize individuals and organizations.  
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Another related factor that affects this mechanism is the designation of which platform holds re-

porting responsibility. This designation has a strong influence on which tracks are eligible to be 

sent. We were able to construct cases in which the platform holding reporting responsibility 

would receive a negative payoff. This was a result of not considering the implicit information gain 

contributed by that platform. This ―additional‖ information gain is implicit in the sense that it did 

not require any additional bandwidth to be allocated through the auction. Rather, it changed the 

preconditions of the auction. The situation is an example of an interesting interaction between the 

auction mechanism and the specifics of this domain, which need to be methodically identified and 

considered when carrying out mechanism engineering. 

Currently, information gain is the only ―measure of merit‖ that we consider. In a sense, it serves 

as the virtual currency for our application. It is not hard to envision other measures of merit that 

are important, such as relevance. For example, some tracks, such as enemy tracks, might take 

tracking precedence. Adding this factor could introduce tension between two sources of incen-

tives: relevance and information gain, which deserve further exploration. 
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6 Conclusions 

Our research provides strong evidence that 

 Computational mechanism design provides new and useful design principles for the design 

of complex systems, especially those that support users who may have distinct incentives.  

 Computational mechanisms can be used in performance-critical, highly dynamic settings 

such as those found in tactical data networks, with behavior that is predictable using strong 

underlying game and microeconomic theory. 

These results, we believe, are applicable to a much broader class of system than tactical data net-

works; in fact, the research is primarily intended to study mechanism design and only secondarily 

to study its use in a particular setting.  

Nonetheless, the research also demonstrates that the well-known VCG auction can be useful in 

existing DoD tactical data networks as a tool for providing incremental improvements in the qual-

ity of a common operating picture. In addition, we have identified avenues for further refining the 

VCG auction and for using market mechanisms to embrace different tactical data network set-

tings. 

Finally, we have provided the research community with a robust application framework for study-

ing computational mechanisms. This sort of framework—and others like it—will be enormously 

useful to close the gap between the sometimes alien research traditions of game theory and micro-

economics and the practical requirements of software and systems engineering of complex sys-

tems.
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Appendix A:  Acronyms 

A/C auto-correlation 

CEC Cooperative Engagement Capability 

COP common operational picture 

DoD U.S. Department of Defense 

GRU grid reference unit 

NCS network control station 

NCT network cycle time 

PRF pulse repetition frequency 

PU participating unit 

R
2
 reporting responsibility 

RO region of observation 

SGS shipboard gridlock system  

SGS/AC shipboard gridlock system/auto-correlation 

SIAP Single Integrated Air Picture 

TADIL tactical data information link 

TO transmit opportunity 

VCG Vickrey-Clarke-Groves (auction mechanism) 
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Appendix B “C” Implementation of 0-1 Knapsack 

// knapsack.h 

#ifndef _KNAPSACK_H_ 

#define _KNAPSACK_H_ 

/*  

 * Adaptation of work by Dr. Steve Goddard (goddard@cse.unl.edu).  

 * See http://www.cs.unl.edu/~goddard/Courses/CSCE310J.  

*/ 

#include "dlist.h"  // just a list abstraction, defines TDlist 

typedef void *TItem; // things you put in the knapsack 

// these callbacks must return -1 on error and >= 0 on success 

typedef long (*TWeight)(TItem, void *); // item weight 

typedef double (*TBenefit)(TItem, void *);// item benefit 

/* 

 * knapsack – find a solution that puts the most items in the  

 *   knapsack and maximizes the total benefit 

 *  return   - 0 on success, -1 on error. 

 *   If success:  

 *      -  solutionWeight, weight of knapsack 

 *  solutionBenefit, benefit of solution 

 *    -  solution, TDlist list of items in knapsack 

*/ 

int knapsack( 

 TItem *items,    // an array of items 

 long numItems,   // number of items in array 

 long maxWeight,   // knapsack capacity, 0..maxWeight 

 TWeight getWeight,   // callback to get item weight  

 void  *getWeightData,  // callback data 

 TBenefit getBenefit,  // callback to get item benefit 

 void  *getBenefitData, // callback data 

 long *solutionWeight,  // solution weight (return data) 

 double *solutionBenefit, // solution benefit (return data) 

TDlist solution);  // solution list (return data) 

#endif 

mailto:goddard@cse.unl.edu
http://www.cs.unl.edu/~goddard/Courses/CSCE310J
mailto:goddard@cse.unl.edu
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// knapsack.c 

#include <stdlib.h> 

#include <error.h> 

#include "knapsack.h" 

int knapsack( 

 TItem *items,    // an array of items 

 long numItems,   // number of items in array 

 long maxWeight,   // knapsack capacity, 0..maxWeight 

 TWeight getWeight,   // callback to get item weight  

 void  *getWeightData,  // callback data 

 TBenefit getBenefit,  // callback to get item benefit 

 void  *getBenefitData, // callback data 

 long *solutionWeight,  // solution weight (return data) 

 double *solutionBenefit, // solution benefit (return data) 

TDlist solution);  // solution list (return data) 

{ 

 double **B;   // knapsack B matches published algorithm 

 long i, k;   // ranges through items 

 long w;    // ranges through weights 

 long wi;   // ith weight 

 double bi;   // ith benefit 

 long n = numItems;   // n, W match published algorithm 

 long W = maxWeight;  

 long solWeight = 0;  // temporaries to compute the solution 

 double solBenefit = 0;  

 *solutionWeight = 0; 

 *solutionBenefit = 0; 

 // allocate n + 1 so array can be indexed from 1..n  

// with 0 used as the base case 0 solution 

 B = (double **)calloc( (n + 1), sizeof(double *) ); 

 if (B == NULL) { // a serious error occurred 

  perror("B[#items]"); 

  return -1; 

 } 

 // allocate W + 1 so array can be indexed from 0 to W 

 for (i = 0; i < n + 1; i++) { 

  B[i] = (double *) calloc(W + 1, sizeof (double)); 

  if (B[i] == NULL) { // a serious error occurred 

   perror("B[][maxweight]"); 

   return -1;  

  } 

 } 

 // the knapsack algorithm 

 // items range from 1..n 

 // weights range from 0 to W 

 for (i = 1; i <= n; i++) { 

  for (w = 0; w <= W; w++) { 

   wi = getWeight(items[i-1], getWeightData); 

   bi = getBenefit(items[i-1], getBenefitData); 

   if (wi < 0 || bi < 0) { 

    return -1; // bad error; could free B here 

   } 

   if (wi <= w) { // item i can be part of the solution 

    if (bi + B[i-1][w-wi] > B[i-1][w]) { 

     B[i][w] = bi + B[i-1][w-wi]; 

    } 

    else { 

     B[i][w] = B[i-1][w]; 

    } 

   } 

   else { // wi > w 



 

 SOFTWARE ENGINEERING INSTITUTE | 43 

    B[i][w] = B[i-1][w];  

   } 

  } 

 } 

 // construct a list of the items in the knapsack 

 i = n; // i, k are used to match published algorithm 

 k = W; 

 while (i > 0) { 

  if (B[i][k] != B[i-1][k]) { 

   if (solution != NULL) { 

if (Dlist_insert(solution, items[i-1])==NULL){ 

return -1; // bad error; could free B 

} 

   } 

   if (getWeight(items[i-1], getWeightData) < 0 ||  

    getBenefit (items[i-1], getBenefitData) < 0) { 

    return -1; // bad error; could free B here 

   } 

   solWeight += getWeight(items[i-1], getWeightData); 

   solBenefit += getBenefit(items[i-1], getBenefitData); 

   k = k - getWeight(items[i-1], getWeightData); 

   i = i-1; 

  } 

  else { 

   i = i-1; 

  } 

 } 

 *solutionWeight = solWeight; 

 *solutionBenefit = solBenefit; 

 for (i = 0; i < n + 1; i++) { // cleanup 

  free(B[i]); 

 } 

 free(B); 

 return 0; 

} 
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