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Abstract

We explore a formal approach to dealing with the zero
frequency problem that arises in applications of proba-
bilistic models to language. In this report we introduce
the zero frequency problem in the context of probabilistic
language models, describe several popular solutions, and
introduce localized smoothing, a potentially better alter-
native. We formulate localized smoothing as a two-step
maximization process, outline the estimation details for
both steps and present the experiments which show the
technique to have potential for improving performance.

1 Overview

Language modeling is quickly gaining recognition as the
primary approach to various problems dealing with text.
Because language models are estimated from sparse data,
many elementary events will have zero probability under
the model. In what follows we will briefly introduce
the zero-frequency problem in the context of language
modeling and outline several popular solutions. We will
then propose a possible improvement, based on heuristic
techniques that have proven successful in Information
Retrieval.

The rest of this report is structured as follows. Sec-
tion 1.1 describes the task of language modeling and the
common unigram formulation for language models. Sec-
tion 2 reviews the zero frequency problem, which arises
when maximal likelihood estimates are used in language
models. Section 3 introduces our approach to the zero-
frequency problem: localized smoothing. Our approach
involves a two-step likelihood maximization process, also
detailed in Section 3. We evaluate the approach in Sec-
tion 4, and conclude with important directions for future
research in Section 5.

1.1 Language modeling

Language modeling is concerned with estimating how
likely it is that a given model

�
could have generated

a sample of text � . In other words, language modeling
is an approach to estimating ������� �	�

. There are a num-
ber of approaches to estimating this quantity. Ponte and
Croft (Ponte, 1998) assume � to be a binary vector in the
vocabulary space with probability of occurrence of every
word estimated from

�
. We take a slightly different ap-

proach, assuming � to be a sequence of random variables
��
 ���������������������� �"!$#%��� � , each �&
 �� takes on the words '
in the vocabulary as possible values. We assume that ��
 ��
are independent of each other (a unigram assumption), so
the probability of � under

�
can be rewritten as:

������� �	� �
(*)$+-,/.�0�1�2435
6�7%8 �����&
 ��4�9'�� �	�

The unigram assumption is also known as term inde-
pendence assumption, and is a common practice in the
field of Information Retrieval. It is a known fact that
words in the language do not occur independently, for
example �����&
 �:�;�<!$#=��� �&
 �?>@�A�B�DCFE � is much greater
than ������
 ��;�D!$#G��� �&
 �?>@�A�;�D!$#G� � , since “of the” is a
very common bigram in English, while “the the” is most
likely a typo. However, assuming word independence
is often necessary to gather sufficient statistics about
word occurrence. Furthermore, there is some evidence
that preserving word dependencies may not improve the
accuracy of probabilistic models of text (e.g. pairwise
dependence model by van Rijsbergen (1977)).

Another assumption we make in our model is that �&
 ��
have identical distributions, that is H 6�I JKI L �����&
 �:�?�	' � �
�����&
 MF�N�O' � . This means we do not model the loca-
tion of the words in text, we only focus on content. After
making this assumption, we can rearrange the terms in the
product and group together the tokens ��
 �� which take on
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the same value ' . The resulting formulation is given be-
low:

������� �	� � 5
L ����'�� �	� ��� )�� 1 L I 2G3

2 The zero frequency problem

In this section we look at the estimation of ����'�� �	�
and

at the zero frequency problem that may arise in the esti-
mation. In the above formulae ����'�� �	�

means the prob-
ability of observing the word ' at some position in � , in-
dependently of position and all other words occurring in
� . The most natural way of estimating this quantity is to
use the maximum likelihood of observing ' as a sample
from

�
:

��� ( ��'�� �	� � E�� �
	���'�� �	�
����� �"!$#%� �	�

While this estimate is unbiased, it has a fundamental
problem. If

�
does not contain any instances of the word

' , we have ����'�� �	� �� , which implies ������� �	� ��
for any text sample � that contains ' . This becomes a
very serious problem when

�
itself is estimated from a

relatively small samples of text (for example from a user’s
query, as we do in our experimental section). Just be-
cause some word ' does not occur in the sample from
which we estimate

�
, we cannot assume that ' has zero

probability under
�

. This problem is called the zero fre-
quency problem and it is not unique to language model-
ing. The zero frequency problem arises in numerous ap-
plications of probabilistic modeling and bayesian classifi-
cation, whenever there is insufficient data to form a good
model. The problem has been extensively studied in the
field of data compression, see (Witten & Bell, 1991) for a
prominent example.

2.1 Traditional approaches to the zero fre-
quency problem

There are a number of solutions to the zero-frequency
problem, popular in different fields where the problem
arises. In the following sections we outline three simple
approaches, suggest reasons why they may be deficient
and why we may want to seek a better alternative.

2.1.1 Parametric smoothing

One approach to avoiding zero values for ����'N� �	�
is to

assume a parametric distribution over the words in the vo-
cabulary, and then fit the parameters of this distribution
with the frequency counts from

�
. There are a num-

ber of applicable distributions. Please note that a popular

Poisson distribution is not applicable for the task, since
if we estimate the mean � from the model itself, we are
still faced with a problem, since the Poisson formulation���-����������� is still zero whenever � �� . One distribution
that is applicable, and used widely is the Gibbs formula:

��� 6����! ��'�� �	� � �#"�$&% 1 L(' ) 3+*-,.0/ � "1$2% 1
/ ' ) 33*4,

This technique is widely known as softmax smoothing
in Reinforcement Learning and related fields. The
formulation avoids zero counts entirely: Gibbs formula
allocates a total mass of �#� . / �#"�$2% 1

/ ' ) 33*4,
to any word

that is not present in
�

, so it can be viewed as a uniform
smoothing technique. The smoothing parameter 5 , also
referred to as temperature, can be used to tune the degree
of smoothing.

The method is popular in several fields, but it has two
fundamental problems for language modeling. First, it as-
sumes a parametric form of the word distributions. This
is a problem, since there have been a few studies indicat-
ing that words do not follow simple distributions from the
exponential family. Second, Gibbs formulation allocates
equal weight to any word that is not found in

�
. In the

next sections we describe two approaches that circumvent
these deficiencies.

2.1.2 Uniform smoothing

A simple approach that avoids assumption about the para-
metric form of word distributions is to simply add a small
number 6 to all probabilities, thus avoiding zero frequen-
cies:

��7 + 6 �984� ����'�� �	� �0� ) �&� ( ��'�� �	�&: � �;>;� ) � 6
This is equivalent to assuming a simple mixture model

for word generation: with probability � ) the word is
generated by the model

�
, and with probability �;>;� ) ,

the word is generated by a uniform model over the entire
vocabulary. If we know the size of our vocabulary � < � , we
can set 6 � �
� � < � . However, if the size of the vocabulary
is not known, or if we expect new words to enter the
vocabulary occasionally, it is a common practice to set6 � �
�-�:��� �"!$#%� �	�

, reflecting the fact that we are less
and less likely to see new words as our model

�
gets

larger and larger (this is related to Zipf’s law of word
occurrences).

This method is very simple, and has the advantage
of not assuming parametric distributions for word occur-
rences. However, it suffers from assigning equal proba-
bilities to all words that do not occur in

�
. This means

that if neither of the words “the” and “Zipf” are in
�

, the

2



uniform smoothing method will assign equal likelihoods
to their occurrence in � . This is a problem, since we know
that “the” is a very common word, and so is likely to oc-
cur in any piece of text, while “Zipf” is certainly not. The
following method resolves this deficiency.

2.1.3 Smoothing with a prior (global smoothing)

We can avoid the problem highlighted in the previous sec-
tion by selecting a better mixture model in place of the
uniform model. A natural choice is to substitute the prior
probability ����' � instead of 6 for every word:

����'�� �	� �0� ) � � ( ��'�� �	�&: � �;>;� ) � ����' �

This will have the desired effect of closer matching
the specifics of language, giving higher likelihood to
observing “the” than to observing “Zipf”. The prior
probability ����' � is estimated from the universe of all
English texts, in practice this means as large a collection
of texts as we can get a hold of. It is worth mentioning
that a common practice is to smooth the prior probability
����' � with a uniform model, to avoid the possibility of
some words missing from our large collection (however
the weight allocated to the uniform model is much
smaller than the weight allocated to ����' � ).

This formulation has been rather successful in appli-
cations of language modeling, but there is still room for
improvement. We may observe that a global model may
not be the best fit for the mixture. This is due to the fact
that a global model gives the true prior probability ����' �
for occurrence of ' in a random piece of text. If we are
considering documents in a narrow domain, this distribu-
tion may be a poor fit. For instance, the word “Zipf” is
a fairly common word in the Information Retrieval litera-
ture, whereas in a random piece of text the prior probabil-
ity of observing “Zipf” is virtually nonexistent. This dis-
crepancy leads us to examine approaches that model the
context of our model

�
, which we do in the next section.

3 Localized Smoothing

In this section we introduce the main contribution of this
work: an approach to localized smoothing: mixing the
model

�
with its context. We will refer to the context as

the zone of
�

. We assume a similar mixture model: with
probability � ) the word ' is generated by the original
maximum likelihood model of

�
, with probability � � 8 +F)

it is generated by the contextual model of
�

, and with
probability � ,/( 8 ��� ( the word is generated by the global
model of word occurrences:

����'�� �	� �

�0� ) ��� ( ��'�� �	�2: � � 8 +F) ����'�� � � 8 +F) �&: � ,/( 8 ��� ( ����' �
The motivation is as follows. When estimating the

likelihood of � , we assume that salient words will
come from

�
, related concepts and synonyms will be

generated by contextual model, and the functional words
will be generated by the prior (global) model. Now we
turn our attention to estimating the zone model of

�
.

First, we have to identify the zone of a model
�

. The
zone is the projection of

�
onto the space of text sam-

ples, some of which are expected to contain the context
of
�

. In probabilistic terms, we define the zone of
�

to
be the subset of text samples that maximizes the posterior
likelihood of

�
being their source:

� C � �"� �	� �����	� 
���� I � 2�������� 2��� ���
� � �-� 8 ����� � ��� �

Note that the size � of this subset � � 8 ����� � ��� is not spec-
ified, and is a variable in maximization. Once we have
determined the zone of

�
, we can estimate the model of

that zone. We define the zone model to be the model that
maximizes the probability of observing the set of samples�-� 8 ����� � ��� :

� � 8 +F) �����	��
���)�� ����� � 8 ����� � ��� � �����
Note that the two maximization steps are distinct: in

the first step we are searching over all subsets of text sam-
ples, while in the second we are searching in the space of
models. We now turn to the details of estimation in each
step.

3.1 Maximum likelihood context zone of �
We defined the zone to be a subset �-� 8 ����� � ��� of our space
of text samples, which maximizes the posterior probabil-
ity of the model

�
being its source. We can use Bayes

theorem to express this posterior as the ratio of probabil-
ity of �-� 8 ����� � ��� under the model

�
over the prior prob-

ability for � � 8 ����� � ��� . Note that the prior probability for�
drops out because it is a constant in the maximization

step:

� C � �"� �	� �����	� 
���� I � 2 � ����� 2��� ���
� � �-� 8 ����� � � � �

�����	� 
����� I � 2������� 2���
����� � 8 ����� � ��� � �	�
�����-� 8 ����� � � � �

Note that we must use a smoothed version of ����� 6 � �	�
in the numerator, as warranted in Section 2. We assume
smoothing with a prior model, but any other smoothing
could be used. Because �-� 8 ����� � � � is the set of indepen-
dent text samples, we can rewrite the joint probability as
the product of the marginals as follows:

3



� C � �"� �	� � ��� � 
���� I � 2�� ����� 2���
�5
6�7%8

����� 6 � �	�
����� 6 �

The formulation above suggests an simple composition
of the zone. Observe that the product is maximized as
long as the individual terms in the product each exceed
1. Therefore the zone may be composed of text samples
� 6 which are more likely under the model

�
than they

are likely a-priori, in our universe of text samples. We
may, for reasons suggested in Section 4, wish to further
constrain the zone to the samples � 6 which have the like-
lihood ratio exceeding

��� � :
� C � �"� �	� � �-� 6 � ����� 6 �

�	�
����� 6 �

����� � �
Now that we have defined the composition of the zone

of
�

, we turn our attention to estimating the maximum
likelihood model for that zone.

3.2 Maximum likelihood model of the con-
text zone

We defined the zone model
� � 8 +F) to be the model that

maximizes the likelihood of observing �-� 8 ����� � � � :
� � 8 +F) � ���	� 
����) � �����-� 8 ����� � � � � � � �

Note that
� � 8 +F) as defined above also maximizes its

own posterior likelihood ��� � � � � � 8 ����� � � � � when ��� � � �
is uniform over

� �
. As before, because � � 8 ����� � � � is the

set of independent samples, we can decompose the joint
probability into the product of the marginals:

� � 8 +F) � ���	� 
����) � �5
6�7%8 ����� 6 �

� � �

We employ our definition of ������� �	�
, as specified in

Section 1.1 to obtain:

� � 8 +F) � ��� � 
���)�� �5
6�7 8

5
L ����'N� � � � ��� )�� 1 L I 2���3

Now we observe that we can re-arrange the ordering of
terms in the product:

� � 8 +F) � ��� � 
���) � 5 L
�5
6�7 8 ����'N�

� � � ��� )�� 1 L I 2 � 3
Observe that ����'�� � � �

is independent of � , so we can
transform the product of exponents to an exponent of the
sum:

� � 8 +�) � ��� � 
���) � 5 L ����'�� ����� . ��	� � ��� )�� 1 L I 2
��3
Logarithm is a non-decreasing transformation, so we

can take the logarithm of the above expression without
any affect on maximization. We also bring the sum to
the outside of the logarithm, and use negation to change
maximization to minimization:

� � 8 +F) �
� ��� � 
���) � >�� L

� �� 6�7%8 E��-��	���'�� � 6 ������� � ����'�� � � �
The next step is to note that minimization is unaf-

fected if we multiply the objective by a constant. Since. �6�7 8 ����� ��!$#���� 6 � is a constant ( � � 8 ����� � � � is fixed and we
are maximizing over

� �
), we can write:

� � 8 +F) �
����� � 
���) � >�� L

� . �6�7%8 E��-��	���'�� � 6 �. �6�7 8 ����� ��!$#���� 6 �
����� � ����'�� ��� �

However, the term before the logarithm is simply
the maximum likelihood estimate for ' under the set�-� 8 ����� � ��� :

� � 8 +F) � ��� � 
��	)�� > � L � � ( ��'N� �-� 8 ����� � � � ����� � ����'�� � � �

Observe that the objective function in the minimization
above is exactly the relative entropy between �-� 8 ����� � � �
and

� �
. Entropy is minimized when two distributions are

identical, which leads us to a simple and intuitive formu-
lation for

� �
:

����'N� ��� � �9��� ( ��'N� �-� 8 ����� � � � �

3.3 Mixing probabilities

We have detailed both maximization steps involved in
forming a context model. One practical issue remains:
selection of appropriate mixing weights � ) , � � 8 +�) and� ,/( 8 � � ( . An obvious constraint is that weights sum to
one. There exist a number of approaches to selecting
the weights so as to maximize some objective, such as
log likelihood of the training data (e.g. the use of EM
algorithm by T. Hoffman in his work on global topic
mixtures). At this point in our research we opt for us-
ing a closed-formed estimates derived by (Witten & Bell,
1991):

� ) �
. L�� ) E��-�
	���' � �	�

. L�� ) � � : E��-�
	���'�� �	� �

4



� � 8 +F) �
. L�� � 8 +F) E��-��	���'�� � C � � �. L�� � 8 +F) �$� : E��-��	���'�� � C � � � �

To ensure the weights sum to one, we employ nesting
as follows:

����'�� �	� �0� ) �&� ( ��'�� �	�&: � �;>;� ) � �
� 
 � � 8 +F) ����'�� � � 8 +�) � : � � > � � 8 +F) � ����' � �

Note that in our experiments ����' � is further smoothed
by a uniform model, as described in Section 2.1.3.

4 Experiments

In this section we describe an implementation of the
localized smoothing approach described in Section 3.
We test our formulation against a popular approach of
smoothing with a prior (global smoothing), detailed
in Section 2.1.3. Aside from smoothing, we keep all
modeling details exactly the same for both approaches.
We compare the effectiveness of the two approaches on
the TREC ad-hoc retrieval task (Allan, Callan, Feng, &
Malin, 1999).

We use Detection Error Tradeoff (DET) curves (see
Figure 1) to evaluate the impact of smoothing approaches
on retrieval performance. DET curves are used exten-
sively in signal detection literature and have several ad-
vantages over the traditional Recall-Precision curves used
in the Information Retrieval community. The motivat-
ing factor for choosing DET curves over Recall-Precision
curves in this evaluation is that DET curves are less influ-
enced by “richness” (the a-priori probability of on-target
item in the dataset). For a more detailed description of
DET curves, see (Martin, Doddington, Kamm, & Or-
dowski, 1997).

4.1 Experimental setup

The ad-hoc retrieval task is the task of ranking a collec-
tion of documents by their estimated relevance to the
user’s query. We use a set of 50 queries (title versions
of TREC queries 251-300). Each query consists of 3-4
words on average (typical for web queries). We use the
AP’1988 collection of newswire articles as our data set.
The collection contains around 80,000 documents, the
average document length is around 300 words. Out of
the original 50 queries, 48 queries were judged by TREC
assessors to have relevant documents in the dataset. The
number of relevant documents ranged from 1 to 280, with
an average of 35.

Our experiments take the following form. For each
of the 48 queries, we form a maximum-likelihood model� �� ( from the words in the query. The models

� �� ( are
extremely sparse, since queries contain very few words.
We smooth each model

� �� ( either globally (Section
2.1.3), or using our localized approach (Section 3), to ob-
tain a smoothed version

� �
. Then, for each document

�

in the collection, we compute the posterior likelihood that
the smoothed model

� �
is the source from which

�
was

generated: ��� � � � � � . We consider this posterior to be an
estimator of the degree of relevance to the query and rank
the documents by ��� � � � � � .1

4.2 Effect of zoned smoothing

In our first experiment we set the zoning threshold
�

to 1 (Section 3.1), corresponding to true maximization.
Figure 2 shows the distributions of document scores (log-
likelihood ratios) for documents that were judged relevant
and non-relevant by TREC assessors. The distributions
are pooled across all 48 queries, and so are biased towards
queries with more relevant documents. The distributions
were constructed using a non-parametric kernel density
estimator2.The left graph shows the distributions obtained
using global smoothing, the right half presents the results
of our localized approach.

One thing that becomes immediately apparent from
looking at the distributions is the increase in the variance
of scores when using localized approach. However, the
variances did not increase proportionally: with global
smoothing the variance of non-relevant documents was
lower than that of the relevant ones, but with localized
smoothing the variance of non-relevant documents
became much higher than that of the relevant documents.
Another peculiarity of the localized smoothing approach
is the small bump in the density of non-relevant docu-
ments at the high scores. This suggests that localized
approach produced a number of very highly-ranked
non-relevant documents. This would be a discouraging
observation if our goal was to produce a low-recall
high-precision system.

Figure 3 displays the same information as Figure 2,
only in a form of a DET curve, allowing easier analysis.
We see that localized feedback indeed shows inferior per-
formance at low recall (high miss rate). We also clearly
see the effect of increased variance in the distribution of
non-relevant scores. On a DET curve, increased variances
of non-relevant scores translate to steeper curves (see

1Actually, we rank by �������
	��� ���������
	���� , which is seen to be
equivalent after transforming the posterior using Bayes theorem and
noticing that the prior �
	�� � � does not affect the ranking of documents

2We used gaussian kernels with automatic bandwidth selection
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Figure 1: DET curves are a way to visualize tradeoff between misses and false alarms. Left: distributions of on-target and off-
target scores, shaded areas under the curves correspond to miss and false alarm errors. Right: corresponding DET curve, obtained
by varying the threshold from � � to � . NOTE: on a DET curve lower means better.
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Figure 1).

The increased variance of non-relevant documents
makes sense. When we use a global smoothing approach,
all documents that do not contain query words are as-
signed their prior in the collection as a whole, which is
uniformly very low. When we use a zoned model for
smoothing, a large class of documents that are nearby
to the zone receive a significant boost in their scores,
whereas documents that are not nearby are assigned a
fraction of their global prior, driving their scores even
lower. From Figure 3, we see that increased variance
appears to have a detrimental effect overall – resulting
in better performance only at high levels of recall (miss
rate below 20%). Improvements in that region are gener-
ally ignored by researchers in IR, though other fields (e.g.
TDT) may consider the improvement useful.

4.3 Impact of thresholding the zone

The detrimental effect of very high variance leads us
to consider tightening the context zone around

� �� (
(Section 3.1). To do this, we perform a number of
experiments setting

�
to various values and observing the

effect it has on performance. We experimented with
�

taking values ���/���K� � �K� �

. Note that successively larger
values of

�
translate to smaller and smaller sizes of the

context zone around
� �� ( .

The results are presented in Figure 4. We observe
that increased values of

�
indeed result in improved per-

formance in the low-recall region. For example, setting� � � �

results in a consistent five-fold improvement in
False Alarm rate at low levels of recall. However, the
performance rapidly gets worse at higher recall. Setting
threshold to

� � � appears to give reasonable results over-
all, and we compare this setting to the performance of
global smoothing in Figure 5. We observe that perfor-
mance in the low-recall range is still worse, but not nearly
as much as with

� � � . However, for higher recall, lo-
calized smoothing gives dramatic improvements reducing
the false alarm rate 5 to 6 times. This is an interesting
improvement from the standpoint of evaluating the tech-
nology, even if it does not translate to higher relevance of
top-ranked documents.
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Figure 4: Effects of threshold
�

on performance of localized smoothing.

5 Directions for future work

We believe the technique of localized smoothing pre-
sented in this paper has significant potential for improving
the quality of language models. Our evaluation demon-
strated that simple maximization of the posterior does not
produce an optimal context zone for the original model
(our approach performed poorly for

� � � ). We intend to
investigate alternative optimization procedures for finding
the optimal query zone. We also need to investigate how
this approach compares to smoothing used in other lan-
guage modeling formulations (e.g. Ponte, 1998).

6 Conclusions

We presented a novel approach to localized smoothing
of language models, based on modeling the context zone
around the original model. Our technique relies on a two-
step likelihood maximization, which is detailed in Sec-
tion 3. We tested our approach against a commonly used
global smoothing technique on a standard set of TREC
queries. Experiments show that our approach provides
significant improvements in the high-recall region, but re-
sults in decreased quality at the top of the ranked list.
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