
NCSC-TG-w$
VERSION 1

NATIONAL COMPUTER SECURITY CENTER

MAR 9 14

R.ASREFERENCEC.

A GUIDE TO
UNDERSTANDING

COVERT
CHANNELANALYSIS

OF
TRUSTED SYSTEMS

20080226281
November 1993

Approved for Public Release:
Distribution Unlimited

NCSC-TG-030
Library No. S-240,572

Version 1

FOREWORD

A Guide to Understanding Covert Channel Analysis of Trusted Systems provides
a set of good practices related to covert channel analysis. We have written this
guide to help the vendor and evaluator communities understand the requirements
for covert channel analysis as described in the Department of Defense Trusted
Computer System Evaluation Criteria (TCSEC). In an effort to provide guidance, we
make recommendations in this technical guide that are not cited in the TCSEC.

This guide is the latest in a series of technical guidelines published by the National
Computer Security Center. These publications provide insight to the TCSEC require-
ments for the computer security vendor and technical evaluator. The goals of the
Technical Guideline Program are to discuss each feature of the TCSEC in detail and
to provide the proper interpretations with specific guidance.

The National Computer Security Center has established an aggressive program to
study and implement computer security technology. Our goal is to encourage the
widespread availability of trusted computer products for use by any organization
desiring better protection of its important data. One way we do this is by supporting
the Trusted Product Evaluation Program. This program focuses on the security fea-
tures of commercially produced and supported computer systems. We evaluate the
protection capabilities against the established criteria presented in the TCSEC. This
program, and an open and cooperative business relationship with the computer and
telecommunications industries, will result in the fulfillment of our country's informa-
tion systems security requirements. We resolve to meet the challenge of identifying
trusted computer products suitable for use in processing information that requires
protection.

I invite your suggestions for revising this technical guide. We will review this docu-
ment as the need arises.

Patrick R. (gher, 6K 7 November 1993
Director
National Computer Security Center

ACKNOWLEDGMENTS

The National Computer Security Center (NCSC) extends special recognition and
acknowledgment to Virgil D. Gligor as primary author and preparer of this document,
to Jonathan K. Millen for providing significant technical input for the covert channel
identification and bandwidth estimation sections, and to the first covert channel
working group of the NCSC (which met from 1989 to 1991) for providing most of the
material presented in Appendices A and B. Capt. James K. Goldston (USAF) and
Capt. James A. Muysenberg (USAF) are recognized for the development, editing,
and publication of this guide.

We wish to thank the many members of the computer security community who
enthusiastically gave their time and technical expertise in reviewing this guide and
providing valuable comments and suggestions.

TABLE OF CONTENTS

FO R EW O R D .. i

ACKNOW LEDGMENTS .. ii

1.0 INTRODUCTION ... 1
1.1 Background ... 1
1.2 P urpose .. 1
1.3 S cope .. 3
1.4 Control O bjective 3
1.5 Document Overview 4

2.0 COVERT CHANNEL DEFINITION AND CLASSIFICATION 5
2.1 Definition and Im plications 5
2.2 C lassification 14

2.2.1 Storage And Timing Channels 14
2.2.2 Noisy and Noiseless Channels 20
2.2.3 Aggregated versus Non-Aggregated Channels 21

2.3 Covert Channels and Flawed TCB Specifications 23

3.0 COVERT CHANNEL IDENTIFICATION 25
3.1 Sources of Information for Covert Channel Identification ... 25
3.2 Identification Methods 27

3.2.1 Syntactic Information-Flow Analysis 28
3.2.2 Addition of Semantic Components to Information-Flow Analysis 32
3.2.3 Shared Resource Matrix (SRM) Method 34
3.2.4 Noninterference Analysis 38

3.3 Potential versus Real Covert Channels 41
3.4 TCSEC Requirements and Recommendations 46

4.0 COVERT CHANNEL BANDWIDTH ESTIMATION 49
4.1 Factors Affecting the Bandwidth Computation 49

4.1.1 Noise and Delay 49
4.1.2 Coding and Symbol Distribution 49
4.1.3 TCB Primitive Selection 50
4.1.4 Measurements and Scenarios of Use 51
4.1.5 System Configuration and Initialization Dependencies 52

iii

OBJECT REUSE GUIDELINE

4.1.6 Aggregation of Covert Channels 52
4.1.7 Transient Covert Channels 53

4.2 Bandwidth Estimation Methods 53
4.2.1 Information-Theory-Based Method for

Channel-Bandwidth Estimation 53
4.2.2 Informal Method for Estimating Covert Channel Bandwidth 60
4.2.3 Differences Between the Two Methods .-................. 62

4.3 TCSEC Requirements and Recommendations 63

5.0 COVERT CHANNEL HANDLING 65
5.1 Elimination of Covert Channels 65
5.2 Bandwidth Limitation 67
5.3 Auditing the Use of Covert Channels 72
5.4 TCSEC Requirements and Recommendations 75
5.5 Handling Policies Based on Threat Analysis 76

6.0 COVERT CHANNEL TESTING 81
6.1 Testing Requirements and Recommendations 81
6.2 Test Documentation 81

7.0 SATISFYING THE TCSEC REQUIREMENTS FOR COVERT
CHANNEL ANALYSIS 83
7.1 Requirements for Class B2 83

7.1.1 Covert Channel Analysis 83
7.1.2 A udit .. 84
7.1.3 Design Documentation 85
7.1.4 Test Documentation 86

7.2 Additional Requirements for Class B3 86
7.2.1 Covert Channel Analysis 86
7.2.2 A , dit .. 87
7.2.3 Design Documentation 87
7.2.4 Test Documentation 87

7.3 Additional Requirements for Class Al 87

ACRONYMS AND ABBREVIATIONS 89

G LO SSA RY ... 91

REFERENCES ... 99

iv

TABLE OF CONTENTS

APPENDIX A ADDITIONAL EXAMPLES OF COVERT CHANNELS 109
A.1 Storage Channels 109

A.1.1 Table-Space Exhaustion Channels 109
A.1.2 Unmount of Busy File System Channels 110
A.1.3 Printer Attachment Channel 110

A.2 Tim ing Channels 111
A.2.1 I/O Scheduling Channels 113
A.2.2 I/O Operation Completion Channels 113
A.2.3 Memory Resource Management Channels 114

A.2.3.1 Data Page Pool Channels 114
A.2.3.2 Active Segment Table Channels 114

A.2.4 Device Controller Contention Channels 115
A.2.5 Exclusive Use of Segments Channels 115
A.2.6 Synchronization Primitive Contention Channels 115

APPENDIX B TOOLS FOR COVERT CHANNEL ANALYSIS 117
B.1 FDM Ina Flow Tool 117

B.1.1 M LS .. 118
B.1.2 SR M .. 118

8.2 GYPSY Flow Analyzer 118
B.3 EHDM M LS Tool 119
B.4 Source-code Analysis Tool 121

v

1.0 INTRODUCTION

1.1 BACKGROUND

The principal goal of the National Computer Security Center (NCSC) is to en-
courage the widespread availability of trusted computer systems. In support of this
goal, the NCSC created a metric, the Department of Defense (DoD) Trusted Com-
puter System Evaluation Criteria (TCSEC) [NCSC TCSEC], against which computer
systems could be evaluated.

The TCSEC was originally published on 15 August 1983 as CSC-STD-001 -83. In
December 1985, the Department of Defense adopted it, with a few changes, as a
Department of Defense Standard, DoD 5200.28-STD. DoD Directive 5200.28, Secu-
rity Requirements for Automated Information Systems (AISs) [DoD Directive], re-
quires the TCSEC be used throughout the Department of Defense. The TCSEC is
the standard used for evaluating the effectiveness of security controls built into DoD
AISs.

The TCSEC is divided into four divisions: D, C, B, and A. These divisions are or-
dered in a hierarchical manner, with the highest division (A) being reserved for sys-
tems providing the best available level of assurance and security. Within divisions C
and B are subdivisions known as classes, which are also ordered in a hierarchical
manner to represent different levels of security in these divisions.

1.2 PURPOSE

An important set of TCSEC requirements, which appears in classes B2 to Al, is
that of covert channel analysis (CCA). The objectives of CCA are:

* Identification of covert channels;

" Determination of covert channels' maximum attainable bandwidth;

* Handling covert channels using a well-defined policy consistent with the
TCSEC objectives; and

" Generation of assurance evidence to show that all channels are handled ac-
cording to the policy in force.

COVERT CHANNEL ANALYSIS GUIDELINE

To help accomplish these objectives, this guide (1) presents the relative merits
of covert channel identification methods and of the covert channel information sourc-
es, (2) recommends sound bandwidth determination and handling policies and
methods based on the TCSEC requirements, and (3) defines the types of evidence
that should be provided for handling assurance.

This document provides guidance to vendors on what types of analyses they
should carry out for identifying and handling covert channels in their systems, and to
system evaluators and accreditors on how to evaluate the manufacturer's analysis
evidence. Note, however, that the only measure of TCSEC compliance is the
TCSEC. This guide contains suggestions and recommendations derived from
TCSEC objectives but which are not required by the TCSEC.

This guide is not a tutorial introduction to any topic of CCA. Instead, it is a sum-
mary of analysis issues that should be addressed by operating systems designers,
evaluators, and accreditors to satisfy the requirements of the B2-A1 classes. Thus,
we assume the reader is an operating system designer or evaluator already familiar
with the notion of covert channels in operating systems. For this reader, the guide
defines a set of baseline requirements and recommendations for the analysis and
evaluation of covert channels. For the reader unfamiliar with CCA techniques used
to date, the following areas of further documentation and study may be useful:

* Mandatory security models and their interpretation in operating systems [Bell
and La Padula76, Biba77, Denning83, Gasser88, Honeywel185a, Honey-
wel185b, Luckenbaugh86, Rushby85, Walter74];

* Experience with covert channel identification reported in the literature to date
[Benzel84, Haigh87, He and Gligor90, Karger and Wray9l, Kemmerer83,
Lipner75, Loepere85, Millen76, Millen8l, Millen89b, Schaefer77, Tsai90,
Wray9l];

* Bandwidth estimation techniques using standard information theory
[Huskamp78, Millen89a, Shannon and Weaver64]; informal bandwidth estima-
tion techniques [Tsai and Gligor88];

* Covert channel handling techniques [Schaefer77, Shieh and Gligor90, Hu91];
and

2

INTRODUCTION

e Other TCSEC guidelines relevant to covert channel handling [NCSC Audit,

NCSC Testing].

The reader who is intimately familiar with CCA techniques may want to refer on-

ly to the sections on the "TCSEC Requirements, and Recommendations" (i.e., Sec-

tions 3.4, 4.3, and 6.1) and on "Satisfying the TCSEC Requirements for Covert

Channel Analysis" (Chapter 7).

1.3 SCOPE

This guide refers to covert channel identification and handling methods which

help assure that existent covert channels do not compromise a system's secure op-

eration. Although the guide addresses the requirements of systems supporting the

TCSEC mandatory policy, the analysis and handling methods discussed apply equal-

ly well to systems supporting any nondiscretionary (e.g., mandatory) security policy

[Saltzer and Schroeder75]. We make additional recommendations which we derive

from the stated objectives of the TCSEC. Not addressed are covert channels that

only security administrators or operators can exploit by using privileged (i.e., trusted)

software. We consider use of these channels an irrelevant threat because these ad-
ministrators, who must be trusted anyway, can usually disclose classified and sensi-

tive information using a variety of other more effective methods.

This guide applies to computer systems and products built with the intention of

satisfying TCSEC requirements at the B2-A1 levels. Although we do not explicitly ad-

dress covert channels in networks or distributed database management systems,

the issues we discuss in this guide are similar to the ones for those channels.

1.4 CONTROL OBJECTIVE

Covert channel analysis is one of the areas of operational assurance. As such,
its control objective is that of assurance. The assurance objective provided in
[NCSC TCSEC] is the following:

Systems that are used to process or handle classified or other sensitive informa-
tion must be designed to guarantee correct and accurate interpretation of the
security policy and must not distort the intent of that policy. Assurance must be
provided that correct implementation and operation of the policy exists through-
out the system's life-cycle.

3

COVERT CHANNEL ANALYSIS GUIDELINE

This objective affects CCA in two important ways. First, covert channels are the
result of an implementation of a nondiscretionary security policy at the operating
system level; therefore, depending on how this policy is implemented within a given
system, the resulting system will have fewer or more covert channels. Second, the
existence of covert channels poses a potential threat to the use of the mandatory
policy throughout the system's life cycle. Thus, the identification and handling of co-
vert channels represents an important tenet of mandatory policy support in B2-Al
systems.

1.5 DOCUMENT ORGANIZATION
This guide contains seven chapters, a glossary, a bibliography, and two appen-

dices. Chapter 2 reviews various definitions of covert channels, presents the policy
implications of those definitions, and classifies channels. Chapter 3 presents various
sources of covert channel information and identification methods, and discusses
their relative practical advantages. Chapter 4 describes bandwidth estimation and il-
lustrates a technique based on standard information theory that can be applied ef-
fectively in practice. Chapter 5 reviews various covert channel handling methods and
policies that are consistent with the TCSEC requirements. Chapter 6 discusses co-
vert channel testing and test documentation. Chapter 7 presents TCSEC require-
ments for CCA, and includes additional recommendations corresponding to B2-Al
evaluation classes. The glossary contains the definitions of the significant terms
used herein. The bibliography lists the references cited in the text. Appendix A cites
some examples of storage and timing channels. Appendix B describes the capabil-
ities of several tools for covert channel identification.

4

2.0 COVERT CHANNEL DEFINITION AND
CLASSIFICATION

In this chapter we provide several definitions of covert channels and discuss the
dependency of these channels on implementations of nondiscretionary access con-
trol policies (i.e., of policy models). Also, we classify channels using various aspects
of their scenarios of use.

2.1 DEFINITION AND IMPLICATIONS

The notion of covert communication was introduced in [Lampson73] and
analyzed in [Lipner75, Schaefer77, Huskamp78, Denning83, Kemmerer83], among
others. Several definitions for covert channels have been proposed, such as the fol-
lowing:

" Definition 1 - A communication channel is covert if it is neither designed nor
intended to transfer information at all. [Lampson73] (Note: Lampson's defini-
tion of covert channels is also presented in [Huskamp78].)

" Definition 2 - A communication channel is covert (e.g., indirect) if it is based
on "transmission by storage into variables that describe resource states."
[Schaefer77]

* Definition 3 - Covert channels "will be defined as those channels that are a
result of resource allocation policies and resource management implementa-
tion." [Huskamp78] (Note: The computing environment usually carries out re-
source allocation policies and implementation.)

* Definition 4 - Covert channels are those that "use entities not normally viewed
as data objects to transfer information from one subject to another."
[Kemmerer83]

The last three of the above definitions have been used successfully in various
security designs for new and retrofitted operating systems and in general covert
channel analyses. However, none of the above definitions brings out explicitly the
notion that covert channels depend on the type of nondiscretionary access control
(e.g., mandatory) policy being used and on the policy's implementation within a sys-
tem design. A new definition using these concepts can be provided that is consis-
tent with the TCSEC definition of covert channels, which states that a covert channel

5

COVERT CHANNEL ANALYSIS GUIDELINE

is "a communication channel that allows a process to transfer information in a man-
ner that violates the system's security policy."

0 Definition 5 - Given a nondiscretionary (e.g., mandatory) security policy model
M and its interpretation I(M) in an operating system, any potential communica-
tion between two subjects I(Sh) and I(Si) of I(M) is covert if and only if any
communication between the corresponding subjects Sh and Si of the model M
is illegal in M. [Tsai90]

The above definition has several consequences that help explain the relevance
(or lack thereof) of covert channels to different access control policies, as listed be-
low:

(1) Irrelevance of Discretionary Policy Models

The above definition implies that covert channels depend only on the interpreta-
tion of nondiscretionary security models. This means the notion of covert channels
is irrelevant to discretionary security models.

Discretionary policy models exhibit a vulnerability to Trojan Horse attacks re-
gardless of their interpretation in an operating system [NCSC DAC, Gasser88]. That
is, implementations of these models within operating systems cannot determine
whether a program acting on behalf of a user may release information on behalf of
that user in a legitimate manner. Information release may take place via shared
memory objects such as files, directories, messages, and so on. Thus, a Trojan
Horse acting on behalf of a user could release user-private information using legiti-
mate operating system requests. Although developers can build various mecha-
nisms within an operating system to restrict the activity of programs (and Trojan
Horses) operating on behalf of a user [Karger87], there is no general way, short of
implementing nondiscretionary policy models, to restrict the activity of such pro-
grams. Thus, given that discretionary models cannot prevent the release of sensitive
information through legitimate program activity, it is not meaningful to consider how
these programs might release information illicitly by using covert channels.

The vulnerability of discretionary policies to Trojan Horse and virus attacks does
not render these policies useless. Discretionary policies provide users a means to
protect their data objects from unauthorized access by other users in a relatively be-
nign environment (e.g., an environment free from software containing Trojan Horses

6

COVERT CHANNEL DEFINITION AND CLASSIFICATION

and viruses). The role of nondiscretionary policies is to confine the activity of pro-
grams containing Trojan Horses and viruses. In this context, the implementation of
mandatory policies suggested by the TCSEC, which forms an important subclass of
nondiscretionary security policies, must address the problem of unauthorized re-
lease of information through covert channels.

(2) Dependency on Nondiscretionary Security Policy Models

A simple example illustrates the dependency of covert channels on the security

policy model used. Consider a (nondiscretionary) separation model M that prohibits

any flow of information between two subjects Sh and Si. Communication in either di-
rection, from Sh to Si and vice versa, is prohibited. In contrast, consider a multilevel

security model, M', where messages from Sh to Si are allowed only if the security
level of Si dominates that of Sh. Here, some communication between Sh and Si may
be authorized in M'.

The set of covert channels that appears when the operating system implements
model M' may be a subset of those that appear when the same operating system
implements model M. The covert channels allowing information to flow from Sh to Si
in interpretations of model M could become authorized communication channels in

an interpretation of model M'.

The dependency of covert channels on the (nondiscretionary) security policy

models does not imply one can eliminate covert channels merely by changing the

policy model. Certain covert channels will exist regardless of the type of
nondiscretionary access control policy used. However, this dependency becomes
important in the identification of covert channels in specifications or code by auto-
mated tools. This is the case because exclusive reliance on syntactic analysis that
ignores the semantics of the security model implementation cannot avoid false il-

legal flows. We discuss and illustrate this in sections 3.2.2 and 3.3.

(3) Relevance to Both Secrecy and Integrity Models

In general, the notion of covert channels is relevant to any secrecy or integrity
model establishing boundaries meant to prevent information flow. Thus, analysis of

covert channels is equally important to the implementation of both nondiscretionary
secrecy (e.g., [Bell and La Padula76, Denning76, Denning77, Denning83, NCSC
TCSEC]) and integrity models (e.g., [Biba77, Clark and Wilson87]). In systems

7

COVERT CHANNEL ANALYSIS GUIDELINE

implementing nondiscretionary secrecy models, such as those implementing the
mandatory security policies of the TCSEC at levels B2-A1, CCA assures the discov-
ery of (hopefully all) illicit ways to output (leak) information originating from a specific
secrecy level (e.g., "confidential/personnel files/") to a lower, or incomparable, se-
crecy level (e.g., "unclassified/telephone directory/"). Similarly, in systems imple-
menting nondiscretionary integrity models, such analysis also assures the discovery
of (hopefully all) illicit ways to input information originating from a specific integrity
level (e.g., "valued/personnel registry!") to a higher, or incomparable, integrity level
(e.g., "essential/accounts payable/"). Without such assurances, one cannot imple-
ment appropriate countermeasures and, therefore, nondiscretionary security claims
become questionable at best. Figures 2-1(a) and 2-1(b) illustrate the notion of illegal
flows in specific nondiscretionary secrecy and nondiscretionary integrity models.

0 0
in)Kout out X,(in

SL(P1) -SL(P2) SL(P1)> <SL(P2) IL(P1) a IL(P2) IL(Pj) > IL(P 2)

(a) Legal and illegal flows in a (b) Legal and illegal flows in a
nondiscretionary secrecy system. nondiscretionary integrity system.
[Bell and La Padula76] [Biba77]

KEY:
legal flow _ "dominates" relation

... -- - illegal flow < 4 "neither dominates nor is
- -)(unsuccessful flow dominated by" relation

Figure 2-1. Legal and Illegal Flows

Example 0 - Relevance of Covert Channels to an Integrity Model

Figure 2-2 illustrates the relevance of covert channels to nondiscretionary integ-
rity models. Although this figure assumes a specific nondiscretionary integrity model
(i.e., Biba's [Biba77]), covert channels are equally relevant to all nondiscretionary in-
tegrity models. In Figure 2-2, a user logged in at the integrity level ILI invokes,

8

COVERT CHANNEL DEFINITION AND CLASSIFICATION

Accounts

Terminal 1 shell legal input Payable

IL illegal THIL, input,,.,

IL2 ,, initiate

o, illegal
user input >L(P) IL(P2)

Terminal 2 process

Trojan horse in untrusted application is receiver of illegal input.

KEY:

legal flow 2: "dominates" relation

.. ----- illegal flow

Figure 2-2. Relevance of Covert Channels to an Integrity Model

through a command processor (i.e., the shell), an accounts payable application that

prints payees' names on signed-check papers on a printer. The user is trusted to

operate at integrity level ILI and, by virtue of this trust, his input to the accounts pay-

able application is also classified at integrity level IL1. For similar reasons, both the

accounts payable application and the printer are activated at the current integrity lev-

el IL1. However, the accounts payable application (and, possibly, the shell) consists

of an untrusted set of programs.

The presence of untrusted software in the above example should not be sur-

prising. Most application programs running on trusted computing bases (TCBs) sup-

porting nondiscretionary secrecy consist of untrusted code. Recall that the ability to

run untrusted applications on top of TCBs without undue loss of security is one of

the major tenets of trusted computer systems. Insisting that all applications that

might contain a Trojan Horse, which could use covert channels affecting integrity, be

included within an integrity TCB is analogous to insisting that all applications that

might contain a Trojan Horse, which could use covert channels affecting secrecy, be

included within a secrecy TCB, and would be equally impractical.

If the untrusted accounts payable application contains a Trojan Horse, the Tro-

jan Horse program could send a (legal) message to a user process running at a

9

COVERT CHANNEL ANALYSIS GUIDELINE

lower integrity level IL2, thereby initiating the use of a covert channel. In this covert
channel, the Trojan Horse is the receiver of (illegal) lower integrity-level input and
the user process is the sender of this input.

The negative effect of exploiting this covert channel is that an untrusted user
logged in at a lower integrity level could control the accounts payable application
through illegal input, thereby producing checks for questionable reasons. One can
find similar examples where covert channels help violate any nondiscretionary integ-
rity boundary, not just those provided by lattice-based integrity models (e.g.,
[Biba77]). Similar examples exist because, just as in the case of TCBs protecting
sensitive information classified for secrecy reasons, not all applications running on
trusted bases protecting sensitive information for integrity reasons can be verified
and proved to be free of miscreant code.

(4) Dependency on TCB Specifications

To illustrate the dependency of covert channels on a system's TCB specifica-
tions (Descriptive or Formal Top-Level), we show that changes to the TCB specifica-
tions may eliminate existent, or introduce new, covert channels. The specifications
of a system's TCB include the specifications of primitives which operate on system
subjects, objects, access privileges, and security levels, and of access authorization,
object/subject creation/destruction rules, for example. Different interpretations of a
security model are illustrated in [Honeywel185a, Honeywel185b, Luckenbaugh86].
Changes to a TCB's specifications may not necessarily require a change of security
model or a change of the security model interpretation.

Example 1 - Object Allocation and Deallocation

As an example of the effect of TCB specification changes on covert channel ex-
istence (and vice versa), consider the case of an allocator of user-visible objects,
such as memory segments. The specifications of the allocator must contain explicit
"allocate/deallocate" (TCB) operations that can be invoked dynamically and that
subjects can share. A covert channel between the subjects using these user-visible
objects exists here [Schaefer77]. However, if the dynamic allocator and, conse-
quently, its specifications are changed to disallow the dynamic alloca-
tion/deallocation of objects in a shared memory area, the covert channel disappears.
Static object allocation in a shared memory area, or dynamic object allocation in a

10

COVERT CHANNEL DEFINITION AND CLASSIFICATION

memory area partitioned on a security level basis, need not change the interpreta-
tion of the system's subjects and objects; it only needs to change the specification
of the rules for the creation and destruction of a type of object. Although eliminating
dynamic sharing of resources and either preallocating objects or partitioning re-
sources on a per-security-level basis represent effective ways to remove some co-
vert channels, they are neither necessary nor possible in all cases because they
may cause performance losses.

Though this example illustrates the dependency of covert channels on TCB
specifications, it is not a general solution for eliminating covert channels. In fact, we
can find other examples to show that changing a TCB's specifications may actually
increase the number of covert channels.

Example 2 - Upgraded Directories

As a second example of the strong dependency between the covert channel
definition and TCB specifications, consider the creation and destruction of upgraded
directories in a system supporting mandatory security and using specifications of in-
terfaces similar to those of UNIX ®&. The notion of an upgraded directory
[Whitmore73, Schroeder77, Gligor87], its creation and removal, is illustrated in Fig-
ures 2-3(a)-(d).

In such a system, whenever a user attempts to remove an upgraded directory
from level Lh > Li where he is authorized to read and write it (as in Figure 2-3(c)),
the remove operation fails because it violates the mandatory authorization check
(the level of the removing process, Lh, must equal that of the parent directory, Li). In
contrast, the same remove operation invoked by a process at level Li < Lh suc-
ceeds (Figure 2-3(d)).

However, a covert channel appears because of the specification semantics of
the remove operation in UNIX "rmdir." This specification says a nonempty directory
cannot be removed. Therefore, if the above user logs in at level Li and tries to re-
move the upgraded directory from the higher level Lh, the user process can discover
whether any files or directories at level Lh > Li are linked to the upgraded directory.
Thus, another process at level Lh can transmit a bit of information to the user

*UNIX is a registered trademark of the UNIX Systems Laboratories.

11

COVERT CHANNEL ANALYSIS GUIDELINE

Create (UD, Lh, D)Proces --x----:, -/
' Upgraded Create (UD, Lh, D Upgraded

Al Directory UD Directory UD

level Lh level Lh

level Li, _ level Li

read
* ~Process IN _____

Directory D write Directory D

(a) Failed attempt to create (b) Successful creation of
an upgraded directory. an upgraded directory.

Remove (UD, Lh, D)

Prcs X Upgraded Remove (UD, Lh, D Upgraded

Directory UD Directory UD

level Lh level Lh

level Li level Li

read
____________Process _ _ _ _ _ _

Directory D write Directory D

(c) Failed attempt to remove (d) Successful removal of
an upgraded directory. an upgraded directory.

KEY:

successful operation
- ->- unsuccessful operation

Figure 2-3. Creation and Destruction of an Upgraded Directory
at Level Lh > Li

process at level Li < Lh by creating and removing (e.g., unlinking) files in the up-
graded directory. Figure 2-4 illustrates this concept.

12

COVERT CHANNEL DEFINITION AND CLASSIFICATION

PCreate (F, Lh, UD)
,, 7write ,. Upgraded

,! Error - - -Directory UD FlSError
" - ;- File F

level Lh

level Li -

"Process P write

Remove (UD, Lh, DI Directory D

(a) Unsuccessful removal of nonempty upgraded directory UD.

Remove (F, Lh, UD)
S, write Upgraded

/ Directory UD ---------------
No Error I ei -•-- -, File F ,

i level Lh

level Li

Process P write

Remove (UD, Lh, D Directory D

(b) Successful removal of empty upgraded directory UD.

KEY:
- successful operation

--X - unsuccessful operation

---- -- bit leakage

Figure 2-4. Covert Channel Caused by (UNIX) TCB Interface Conventions
(where Lh > L)

This covert channel would not appear if nonempty directories, and the directory
subtree started from them, could be removed (e.g., as in Multics [Whitmore73, Bell

13

COVERT CHANNEL ANALYSIS GUIDELINE

and La Padula76]). However, if the specification of directory removal is changed,
disallowing removal of nonempty directories (as in UNIX), the covert channel ap-
pears. One cannot eliminate the channel without modifying the UNIX user-visible in-
terface. This is an undesirable alternative given that user programs may depend on
the interface convention that nonempty UNIX directories cannot be removed. One
cannot invent a new TCB specification under which either directories are not user-
visible objects or in which the notion of upgraded directories disappears for similar
reasons; that is, the UNIX semantics must be modified.

2.2 CLASSIFICATION

2.2.1 Storage and Timing Channels

In practice, when covert channel scenarios of use are constructed, a distinction
between covert storage and timing channels [Lipner75, Schaefer77, NCSC TCSEC,
Hu9l, Wray9l] is made even though theoretically no fundamental distinction exists
between them. A potential covert channel is a storage channel if its scenario of use
"involves the direct or indirect writing of a storage location by one process [i.e., a
subject of I(M)] and the direct or indirect reading of the storage location by another
process." [NCSC TCSEC] A potential covert channel is a timing channel if its sce-
nario of use involves a process that "signals information to another by modulating its
own use of system resources (e.g., CPU time) in such a way that this manipulation
affects the real response time observed by the second process." [NCSC TCSEC] In
this guide, we retain the distinction between storage and timing channels exclusively
for consistency with the TCSEC.

In any scenario of covert channel exploitation, one must define the synchroniza-
tion relationship between the sender and the receiver of information. Thus, covert
channels can also be characterized by the synchronization relationship between the
sender and the receiver. In Figure 2-5, the sender and the receiver are asynchro-
nous processes that need to synchronize with each other to send and decode the
data. The purpose of synchronization is for one process to notify the other process it
has completed reading or writing a data variable. Therefore, a covert channel may
include not only a covert data variable but also two synchronization variables, one
for sender-receiver synchronization and the other for the receiver-sender synchroni-
zation. Any form of synchronous communication requires both the sender-receiver
and receiver-sender synchronization either implicitly or explicitly [Haberman72]. Note

14

COVERT CHANNEL DEFINITION AND CLASSIFICATION

Decoder 3 Sender S Encoderl:
R-S S-R

~~~~----------------L---------
r1

Encoder 2:
- S-R r

L----------- :9 :

Uh upi
r -- - - - - - i iI

*-. ..... I IIIi I
R-S Synch.:wA S-R Synch. '"w DataVariable , Variable Variable ,

1'jw --- -- w
- L----------------. U q%r-------------Ii ,:Decoder 2: L------... , S-R , " . . .JL -------I I

L------------

-Encoder 3: Receiver R Decoder 1 
S • @_evlR-S S-- S--------- j @Lve i......

Note: Processes Uh, . . . , Ui ... , Um, .. . , Un, .. Up, . . . , Uq may introduce noise
whenever they write on the variables, and may introduce delay whenever they do not
write on variables and run between the sender and the receiver.

Figure 2-5. Representation of a Covert Channel between Sender S and
Receiver R (where Lh > Li or Lh >< L)

that synchronization operations transfer information in both directions, namely from
sender to receiver and vice versa and, therefore, these operations may be indistin-
guishable from data transfers. Thus, the synchronization and data variables of Figure
2-5 may be indistinguishable.

Some security models, and some of their interpretations, allow receiver-sender
communication for subsets of all senders and receivers supported in the system.
For example, all mandatory security models implemented in commercial systems to
date allow information to flow from a low security level to a higher one. However,
sender-receiver synchronization may still need a synchronization variable to inform
the receiver of a bit transfer. A channel that does not include sender-receiver

15



COVERT CHANNEL ANALYSIS GUIDELINE

synchronization variables in a system allowing the receiver-sender transfer of mes-
sages is called a quasi-synchronous channel. The idea of quasi-synchronous chan-
nels was introduced by Schaefer in 1974 [Reed and Kanodia78].

In all patterns of sender-receiver synchronization, synchronization data may be
included in the data variable itself at the expense of some bandwidth degradation.
Packet-formatting bits in ring and Ethernet local area networks are examples of syn-
chronization data sent along with the information being transmitted. Thus, explicit
sender-receiver synchronization through a separate variable may be unnecessary.
Systems implementing mandatory security models allow messages to be sent from
the receiver to the sender whenever the security level of the sender dominates that
of the receiver. In these cases, explicit receiver-sender synchronization through a
separate variable may also be unnecessary.

The representation 'of a covert channel illustrated in Figure 2-5 can also be

used to distinguish between scenarios of storage and timing channels. For example,
a channel is a storage channel when the synchronization or data transfers between
senders and receivers U. storage variables, whereas a channel is a timing channel
when the synchronizatior'*or data transfers between senders and receivers include
the use of a common time reference (e.g., a clock). Both storage and timing chan-
nels use at least one storage variable for the transmission/sending of the information
being transferred. (Note that storage variables used for timing channels may be
ephemeral in the sense that the information transferred through them may be lost
after it is sensed by a receiver. We discuss this in more detail in Appendix A.) Also,
a timing channel may be converted into a storage channel by introducing explicit
storage variables for synchronization; and vice versa, a storage channel whose syn-
chronization variables are replaced by observations of a time reference becomes a
timing channel.

Based on the above definitions of storage and timing channels, the channels of
Examples 1 and 2 are storage channels. Examples 3 and 4 below illustrate scenar-
ios of timing channels. Appendix A presents additional examples of both storage
and timing channels.

16



COVERT CHANNEL DEFINITION AND CLASSIFICATION

Example 3 - Two Timing Channels Caused by CPU Scheduling

Quantum-based central processing unit (CPU) scheduling provides two typical
examples of timing channels (Figure 2-6). In the first example, the sender of infor-

Sender's 1 0 0 1
Quantum -0 .-- --

Use ' 'I I ~ I I I II
I I ~ I I I I I

Receiver's,: '
Quantum ' j L.--

Use ti t2 t3 t4 t 5 t6 t7  t8  time

{ < T and receives a 0Receiver computes t2 - t-= T and receives a 1

(a) CPU Quantum Channel [Huskamp78]

1 0 0 1
Sender iXX ; XSendr.. , 'XX ... - Receiver detects whether

I I time

sender runs at times ti,
II I I I

Receiver - XX:XX XX I XX, t 2,... , tn and receives
S 1 ,' time Os and 1 s

ti t2  t3  t4  t5

(b) CPU Interquantum Channel [Huskamp78]

Figure 2-6. Two CPU Timing Channels

mation varies the nonzero CPU time, which it uses during each quantum allocated to
it, to send different symbols. Fot 0 and 1 transmissions, the sender picks two
nonzero values for the CPU time used during a quantum, one representing a 0 and
the other a 1. This channel is called the "quantum-time channel" in [Huskamp78].
The receiver of the transmitted information decodes the transmitted information by
measuring its waiting time for the CPU. If only the receiver and the sender are in the
system, the receiver can decode each transmitted bit correctly with probability one
for some quantum sizes. A condition of this channel is that the sender be able to
block itself before the end of some quantum and reactivate itself before the

17



COVERT CHANNEL ANALYSIS GUIDELINE

beginning of the next quantum. The sender can meet this condition in a variety of
ways depending upon the size of the quantum (e.g., a typical range for quanta is
50-1000 milliseconds). For example, the sender may use an "alarm clock" to put it-
self to sleep for a fraction of the quantum time, or it may generate a page fault
(whose handling may take only a fraction of a quantum time also). A quantum of
100-200 milliseconds is sufficiently large for either case.

In the second example of Figure 2-6, the sender transmits information to the re-
ceiver by encoding symbols, say Os and is, in the time between two successive
CPU quanta. This channel is called the "interquantum-time channel" [Huskamp78],
and is shown in Figure 2-6(b) for the case where only the sender and the receiver
appear in the system. To send information, the sender and the receiver agree on
set times for sending the information. The transmission strategy is for the sender to
execute at time "ti" if the i-th bit is 1, and to block itself if the i-th bit is 0. The re-
ceiver can tell whether the sender executes at time ti because the receiver cannot
execute at the same time.

Example 4 - Other Timing Channels Caused by Shared Hardware Resources

The CPU scheduling channels of Example 3 appear because processes at dif-

ferent secrecy or integrity levels share a hardware resource, namely the CPU. Other
sharable hardware resources provide similar timing channels. For example, in any
multiprocessor design, hardware resources are shared. Multiple processors share
the same bus in shared-bus architectures, share the same memory ports in bus-per-
processor architectures, and share multiple busses and memory ports in crossbar-
switch architectures, as shown in Figure 2-7. In all multiprocessor architectures,
each instruction referencing the memory must lock the shared resource along the
CPU-memory interconnection path for at least one memory cycle. (The number of
cycles during which the shared resource must be locked depends on the instruction
semantics.) Hardware controllers of the shared resource mediate lock conflicts.
When the shared resource is no longer needed during the execution of the instruc-

tion, the resource is unlocked.

Whenever two processes at two different levels execute concurrently on two

separate processors, a covert channel appears that is similar to the CPU
interquantum channel presented in Example 3. That is, the sender and the receiver
processes establish by prior agreement that the sender process executes at time

18



COVERT CHANNEL DEFINITION AND CLASSIFICATION

P, @Lh Pn @ Li l

Processor 0 Processor n Processor 0 .... Processor n

Buss

Po0 PotmMemory Memory ... Memory

0 " ,='m 0,, (*Poesr a meCU

o
(a) Shared-Bus Architecture (b) Bus-per-CPU Architecture

KEY:

Processor 0 Processor n P1, R sc , P n = Processes
Lh,A , L = Security Levels

Memory , instrc i t h bit identifies shared resources

(r Processors can be CPUs
or 1/0 processors)

Switch Switch

(c) Crossbar-Switch Architecture

Figure 2-7. Examples of Shared Hardware Resources in Multiprocessor
Architectures

"ti" if the i-th bit is a 1 and does not execute (or at least does not execute memory-
referencing instructions) at time "ti" if the i-th bit is a 0. The receiver can execute a
standard set of memory-referencing instructions and time their execution. Thus, the
receiver can discover whether the sender executes at time "ti" by checking whether
the duration of the standard set of timed instructions was the expected 1 or longer.
As with the CPU channels of Example 3, these channels appear in any

19



COVERT CHANNEL ANALYSIS GUIDELINE

multiprocessor system regardless of the nondiscretionary model interpretation. Note

that adding per-processor caches, which helps decrease interprocessor contention
to shared hardware resources, cannot eliminate these channels. The sender and re-
ceiver processes can fill up their caches and continue to exploit interprocessor con-
tention to transmit information.

Appendix A provides other examples of timing channels, which also appear due
to the sharing of other hardware resources.

2.2.2 Noisy and Noiseless Channels

As with any communication channel, covert channels can be noisy or noiseless.
A channel is said to be noiseless if the symbols transmitted by the sender are the
same as those received by the receiver with probability 1. With covert channels,

each symbol is usually represented by one bit and, therefore, a covert channel is
noiseless if any bit transmitted by a sender is decoded correctly by the receiver with
probability 1. That is, regardless of the behavior of other user processes in the sys-
tem, the receiver is guaranteed to receive each bit transmitted by the sender.

The covert channel of Example 2 is a noiseless covert channel. The sender and

receiver can create and remove private upgraded directories, and no other user can
affect in any way whether the receiver receives the error/no_error signal. Thus, with
probability 1, the receiver can decode the bit value sent by the sender. In contrast,
the covert channels of Examples 3 and 4 are noisy channels because, whenever ex-
traneous processes-not just the sender and receiver-use the shared resource,
the bits transmitted by the sender may not be received correctly with probability 1
unless appropriate error-correcting codes are used. The error-correcting codes
used depend on the frequency of errors produced by the noise introduced by ex-
traneous processes (shown in Figure 2-5) and decrease the maximum channel
bandwidth. Thus, although error-correcting codes help change a noisy channel into
a noiseless one, the resulting channel will have a lower bandwidth than the similar
noise-free channel.

We introduce the term "bandwidth" here to denote the rate at which information
is transmitted through a channel. Bandwidth is originally a term used in analog com-
munication, measured in hertz, and related to information rate by the "sampling
theorem" (generally attributed to H. Nyquist although the theorem was in fact known

20



COVERT CHANNEL DEFINITION AND CLASSIFICATION

before Nyquist used it in communication theory [Haykin83]). Nyquist's sampling
theorem says that the information rate in bits (samples) per second is at most twice
the bandwidth in hertz of an analog signal created from a square wave. In a covert
channel context, bandwidth is given in bits/second rather than hertz, and is com-
monly used, in an abuse of terminology, as a synonym for information rate. This use
of the term "bandwidth" is also related to the notion of "capacity." The capacity of a
channel is its maximum possible error-free information rate in bits per second. By
using error-correcting codes, one can substantially reduce the error rates of noisy
channels. Error-correcting codes decrease the effective (I.e., error-free) information
rate relative to the noisy bit rate because they create redundancy in the transmitted
bit stream. Note that one may use error-detecting, rather than error-correcting,
codes in scenarios where the receiver can signal the sender for retransmissions. All
of these notions are standard in information theory [Gallager68].

2.2.3 Aggregated versus Nonaggregated Channels
Synchronization variables or information used by a sender and a receiver may

be used for operations on multiple data variables. Multiple data variables, which
could be independently used for covert channels, may be used as a group to amor-
tize the cost of synchronization (and, possibly, decoding) information. We say the re-
sulting channels are aggregated. Depending on how the .sender and receiver set,
read, and reset the data variables, channels can be aggregated serially, in parallel,
or in combinations of serial and parallel aggregation to yield optimal (maximum)
bandwidth.

If all data variables are set, reset, and read serially, then the channel is serially
aggregated. For example, if process Ph of Example 2 (Figure 2-4) uses multiple
upgraded directories designated "empty/nonempty" before transferring control to
process Pi, the signaling channel will be serially aggregated. Similarly, if all data vari-
ables are set, reset, and read in parallel by multiple senders and receivers, then the
channel is aggregated in parallel. Note that combinations of serial/parallel aggrega-
tion are also possible. For example, the data variables may be set in parallel but
read serially and vice versa. However, such combinations do not maximize band-
width and are, therefore, of limited interest.

Parallel aggregation of covert channel variables requires, for bandwidth maxi-
mization reasons, that the sender and receiver pairs be scheduled on different

21



COVERT CHANNEL ANALYSIS GUIDELINE

processors at the same time as a group, as illustrated in Figure 2-8 and in

Coscheduled n-sender-process group
SMi , ...

Channel 1 Channel 2 Channel n

Coscheduled n-receiver-process group

Note: M.,... (RMj,... RMn) are atoie Sndr(Receiver) messages.

Figure 2-8. Example of n Channels Aggregated in Parallel

[Gligor86]. Otherwise, the bandwidth of the parallel aggregation degrades to that of a
serially aggregated channel. The application programmer can strictly control group
scheduling of senders and receivers in multiprocessor operating systems such as
Medusa or StarOS [Osterhout8O, Jones79], which use "coscheduling" [Osterhout82].
Also group scheduling may be possible in multiple workstation systems such as
those used in LOCUS [Walker83] or Apollo [Leach83] whenever multiple worksta-
tions are available to a single application. In such systems, the analysis of individual
covert channels is insufficient to determine the maximum covert channel bandwidth.

Parallel aggregation of covert channels also requires, for bandwidth maximiza-
tion reasons, that the synchronization messages between all senders, and those be-
tween all receivers, be transmitted at a much higher speed than those between
senders and receivers. In practice, messages sent among senders, and those sent
among receivers, have negligible transmission delays compared to those used by
covert channels between senders and receivers. (Also, note that all messages
among senders and those among receivers are authorized messages.)

22



COVERT CHANNEL DEFINITION AND CLASSIFICATION

2.3 COVERT CHANNELS AND FLAWED TCB SPECIFICATIONS
An unresolved issue of covert channel definition is whether one can make a dis-

tinction between a covert channel and a flaw introduced by the implementation of
the security models. In other words, one would like to differentiate between imple-
mentation flaws and covert channels, if possible, for practical reasons. For example,
both implementors and evaluators of systems supporting mandatory access controls
in class B1 could then differentiate between flaws and covert channels. They could
determine whether instances of leakage of classified information must be eliminated
or otherwise handled or ignored until the B2 level and above.

The covert communication Definition 5 does not differentiate between covert
channels and interpretation or TCB specification flaws. This definition implies that, in
a fundamental sense, covert channels are in fact flaws of nondiscretionary access
control policy implementations, which are sometimes unavoidable in practice
regardless of the implementors' design (e.g., Example 3). However, the focus of that
definition on the notion of model implementation may help provide a criterion for dis-
tinguishing between different types of covert channels or implementation flaws.

To define a distinguishing criterion, let us review Examples 1-4. Examples 1 and
2 show that a change of the TCB specification can, in principle, eliminate the
existent covert channels in the specific systems under consideration. In contrast, Ex-
amples 3 and 4 show that as long as any system allows the sharing of the CPUs,
busses, memory, input/output (I/O) and other hardware resources, covert channels
will appear for any TCB specification. Furthermore, Example 2 illustrates that, in
many systems, a change of TCB specification that would eliminate a covert channel
may sometimes be impractical. That is, evidence may exist showing that
contemplated changes of the TCB specification would cause a significant loss of
compatibility with existing interfaces of a given system. Similar examples can be
found to illustrate that changes of TCB specifications may help eliminate other co-
vert channels (or flaws) at the expense of loss of functionality or performance in a
given system (e.g., Example 1).

The following criterion may help distinguish between different types of covert
channels (or flaws) in practice, thereby providing the necessary input for covert
channel, or flaw, handling at levels B1 versus levels B2-Al:

23



COVERT CHANNEL ANALYSIS GUIDELINE

" Fundamental Channels - A flaw of a TCB specification that causes covert

communication represents a fundamental channel if and only if that flaw ap-

pears under any interpretation of the nondiscretionary security model in any

operating system.

" Specific TCB Channels - A flaw of a TCB specification that causes covert

communication represents a specific TCB channel if and only if that flaw ap-

pears only under a specific interpretation of the nondiscretionary security

model in a given operating system.

* Unjustifiable Channels - A flaw of a TCB specification that causes covert com-

munication represents an unjustifiable channel if and only if that flaw appears

only under a specific but unjustifiable interpretation of a nondiscretionary se-

curity model in a given operating system. (The primary difference between

specific TCB and unjustifiable channels is in whether any evidence exists to

justify the existence of the respective channels.)

Using this criterion, the covert channels of Examples 3 and 4 are fundamental

channels, whereas those of Examples 1 and 2 are specific TCB channels.

The above criterion for distinguishing different types of covert channels (or

flaws) suggests the following differentiation policy for B1 and B2-A1 systems. For B1

systems, there should be no handling obligation of fundamental covert channels;

specific TCB channels should be handled under the policies in force for classes B2-

Al (as recommended in Chapter 5 of this guide); unjustifiable channels should be

eliminated by a change of TCB specification or model implementation for any

B-rated systems.

24



3.0 COVERT CHANNEL IDENTIFICATION
We discuss in this chapter the representation of a covert channel within a

system, the sources of information for covert channel identification, and various
identification methods that have been used to date and their practical advantages
and disadvantages. We also discuss the TCSEC requirements for covert channel
identification and make additional recommendations.

A covert channel can be represented by a TCB internal variable and two sets of
TCB primitives, one for altering (PAh) and the other for viewing (PVi) the values of
the variable in a way that circumvents the system's mandatory policy. Multiple primi-
tives may be necessary for viewing or altering a variable because, after
viewing/altering a variable, the sender and/or the receiver may have to set up the
environment for sending/reading the next bit. Therefore, the primary goal of covert
channel identification is to discover all TCB internal variables and TCB primitives that
can be used to alter or view these variables (i.e., all triples <variable; PAh, PVi >). A
secondary, related goal is to determine the TCB locations within the primitives of a
channel where time delays, noise (e.g., randomized table indices and object
identifiers, spurious load), and audit code may be placed for decreasing the channel
bandwidth and monitoring its use. In addition to TCB primitives and variables imple-
mented by kernel and trusted processes, covert channels may use hardware-
processor instructions and user-visible registers. Thus, complete covert channel
analysis should take into account a system's underlying hardware architecture, not
just kernels and trusted processes.

3.1 SOURCES OF INFORMATION FOR COVERT CHANNEL
IDENTIFICATION

The primary sources of information for covert channel identification are:

* System reference manuals containing descriptions of TCB primitives, CPU
and I/O processor instructions, their effects on system objects and registers,
TCB parameters or instruction fields, and so on;

* The detailed top-level specification (DTLS) for B2-Al systems, and the For-
mal top-level specification (FTLS) for Al systems; and

• TCB source code and processor-instruction (micro) code.

25



COVERT CHANNEL ANALYSIS GUIDELINE

The advantage of using system reference manuals for both TCB-primitive and

processor-instruction descriptions is the widespread availability of this information.

Every implemented system includes this information for normal everyday use and,

thus, no added effort is needed to generate it. However, there are disadvantages to

relying on these manuals for covert channel identification. First, whenever system

reference manuals are used, one can view the TCB and the processors only as

essentially "black boxes." System implementation details are conspicuous by their

absence. Thus, using system reference manuals, one may not attain the goal of dis-

covering all, or nearly all, channels. Whenever these manuals are the only sources

of information, the channel identification may only rely on guesses and possibly on

analogy with specifications of other systems known to contain covert channels. Sec-

ond, and equally important, is the drawback that analysis based on system refer-

ence information takes place too late to be of much help in covert channel handling.

Once a system is implemented and the manuals written, the option of eliminating a

discovered covert channel by removing a TCB interface convention may no longer

be available. Third, few identification methods exist that exhibit any degree of preci-

sion and that can rely exclusively on information from system reference manuals.
The inadequacy of using only system reference manuals for CCA is illustrated in Ex-

ample 6 of Section 3.2.3.

Most identification methods developed to date have used formal top-level TCB

specifications as the primary source of covert channel identification. The use of top-

level specifications has significant advantages. First, these specifications usually

contain more detailed, pertinent information than system reference manuals. Sec-

ond, use of top-level specifications helps detect design flaws that may lead to covert

channels in the final implementation. Early detection of design flaws is a useful pre-
requisite for correct design because one can minimize efforts expended to correct

design flaws. Third, tools aiding the identification process exist for the FTLS and

thus one gains additional assurance that all channels appearing within the top-level

specifications are found (see Appendix B).

However, total reliance on analysis of top-level specifications for the identifica-

tion of covert channels has two significant disadvantages. First, it cannot lead to the

identification of all covert channels that may appear in implementation code. Formal

methods for demonstrating the correspondence between information flows of top-

level specifications and those of implementation code do not exist to date. Without

26



COVERT CHANNEL IDENTIFICATION

such methods, guarantees that all covert storage channels in implementation code
have been found are questionable at best. The only significant work on
specification-to-code correspondence on an implemented system (i.e., the Honey-
well SCOMP [Benzel84]) reported in the literature to date has been thorough but in-
formal. This work shows that, in practice, a significant amount of implementation
code has no correspondent formal specifications. Such code includes performance
monitoring, audit, debugging, and other code, which is considered security-policy ir-
relevant but which, nevertheless, may contain variables providing potential storage
channels.

Second, formal/descriptive top-level specifications of a TCB may not include
sufficient specification detail of data structures and code to detect indirect informa-
tion flows within TCB code that are caused by the semantics of the implementation
language (e.g., control statements, such as alternation statements, loops, and so on;
pointer assignments, variable aliasing in structures [Schaefer89, Tsai90]). Insufficient
detail of specifications used for information flow and storage channel analysis may
also cause inadequate implementation of nondiscretionary access controls and
channel-handling mechanisms. This is the case because, using the results of top-
level specification analysis, one cannot determine with certainty the placement of
code for access checks, channel use audits, and time delays to decrease channel
bandwidth within TCB code.

In contrast with the significant efforts for the analysis of design specifications, lit-
tle practical work has been done in applying CCA to implementation code or to
hardware. Identifying covert storage channels in source code has the advantages
that (1) potentially all covert storage channels can be found (except those caused
by hardware), (2) locations within TCB primitives for placement of audit code, de-
lays, and noise can be found, and (3) adequacy of access-check placement within
TCB primitives could be assessed [Tsai90]. However, analysis of TCB source code
is very labor-intensive, and few tools exist to date to help alleviate the dearth of
highly skilled personnel to perform such labor-intensive activity.

3.2 IDENTIFICATION METHODS

All of the widely used methods for covert channel identification are based on
the identification of illegal information flows in top-level design specifications and
source code, as first defined by [Denning76, 77, 83] and [Millen761. Subsequent

27



COVERT CHANNEL ANALYSIS GUIDELINE

work by [Andrews and Reitman8O] on information-flow analysis of programming lan-
guage statements extended Denning's work to concurrent-program specifications.

3.2.1 Syntactic Information-Flow Analysis

In all flow-analysis methods, one attaches information-flow semantics to each
statement of a specification (or implementation) language. For example, a statement
such as "a: = b" causes information to flow from b to a (denoted by b+a) whenever
b is not a constant. Similarly, a statement such as "if v = k then w: = b else w: = c"
causes information to flow from v to w. (Other examples of flows in programming-
language statements are found in [Denning83, Andrews and Reitman80, Gasser88]).
Furthermore, one defines a flow policy, such as "if information flows from variable x
to variable y, the security level of y must dominate that of x." When applied to speci-
fication statements or code, the flow policy helps generate flow formulas. For exam-
ple, the flow formula of "a: = b" is security_level(a) 2 security_level(b). Flow formulas
are generated for complete program and TCB-primitive specifications or code based
on conjunctions of all flow formulas of individual language statements on a flow path.
(Formula simplifications are also possible and useful but not required.) These flow
formulas must be proven correct, usually with the help of a theorem prover. If a pro-
gram flow formula cannot be proven, the particular flow can lead to a covert channel
flow and further analysis is necessary. That is, one must perform semantic analysis
to determine (1) whether the unproven flow is real or is a false illegal flow, and (2)
whether the unproven flow has a scenario of use (i.e., leads to a real-not just a
potential-channel). Example 5 of this section and Examples 7 and 8 of Section 3.3
illustrate the notion of false illegal flow and the distinction between real and potential

channels.

Various tools have been built to apply syntactic flow analysis to formal specifica-
tions. For example, the SRI Hierarchical Development Methodology (HDM) and En-
hanced HDM (EHDM) tools [Feiertag80, Rushby84] apply syntactic analysis to the
SPECIAL language. Similarly, the Ina Flo tool of the Formal Development Method-
ology (FDM) [Eckmann87] and the Gypsy tools [McHugh and Good85, McHugh and
Ackers87] have been used for syntactic information-flow analyses. Appendix B re-
views these tools. Experience with information-flow analysis in practice is also re-
ported in references [Millen78, Millen81].

28



COVERT CHANNEL IDENTIFICATION

Syntactic information-flow analysis has the following advantages when used for
covert channel identification:

* It can be automated in a fairly straightforward way;

* It can be applied both to formal top-level specifications and source code;

* It can be applied incrementally to individual functions and TCB primitives; and

* It does not miss any flow that leads to covert channels in the particular speci-
fication (or code).

All syntactic information-flow analysis methods share the following three draw-
backs:

" Vulnerability to discovery of false illegal flows (and corresponding additional
effort to eliminate such flows by manual semantic analysis);

* Inadequacy of use with informal specifications; and

* Inadequacy in providing help with identifying TCB locations for placing covert
channel handling code.

All syntactic flow-analysis methods assume each variable or object is either ex-
plicitly or implicitly labeled with a specific security level or access class. However,
as pointed out in [Kemmerer83], covert channels use variables not normally viewed
as data objects. Consequently, these variables cannot necessarily be labeled with a
specific security level and, therefore, cannot be part of the interpretation of a given
nondiscretionary security model in an operating system. Instead, these variables are
internal to kernels or trusted processes and their security levels may vary dynam-
ically depending upon flows between labeled objects. Therefore, the labeling of
these variables with specific security levels to discover all illegal flows also renders
these code-analysis methods vulnerable to discovery of false flow violations. These
false flow violations are called "formal flow violations" in references [Millen78,
Schaefer89, Tsai9O].

29



COVERT CHANNEL ANALYSIS GUIDELINE

Example 5 - A False Illegal Flow

An example of a false flow violation in the fragment of code shown in Figure 3-
1(a) is illustrated in Figures 3-1 (b, c). Here, both the alterer and the viewer of the

SYSTEM_CALL
msgget0-
{

struct a {
key_t key;
int msgflg;

} *uap;
register struct msqid_ds *qp /* ptr to associated q */
uap = (struct a *)u.u_ap;
if ((qp = ipcget(uap-,msgflg, msgque, &s)) = = NULL)

return;
if (obj_access(OBJ_IPCGET, msgque, ASK_READ))

return;
u.u_rvall = qp-,.msg_perm.seq * v.v_msgmni + (qp - msgque);}

struct ipc_perm *

ipcget(flag, base, status)
int flag, *status;
register struct ipc_perm *base;
{

if (base-mode & IPC_ALLOC) {
u.u error = ENOSPb;
return(NULL);

}
if (obj_access(OBJ_IPCGET, base, ASK_WRITE))

return;
*status = 1;
base--mode = IPC_ALLOC I (flag & 0777);
return(base);

}

(a) A fictitious fragment of code in a "msggeto" system call.

Figure 3-1. An Example of a False Illegal Flow Caused by Syntactic Flow

Analysis

"msgque-mode" variable is the TCB primitive "msgget" of Secure Xenix. The flow

30



COVERT CHANNEL IDENTIFICATION

VARIABLE: msgque-mode
ALTERER TCB PRIMITIVE: rnsgget KEY:

PATH msget:(msflg)=* pcge: (lag is an explicit flow [Denning77]PATH:~~~~~~~~~ msgt (mgl)= pgt fa) > is an implicit flow
msgget: (msgque) =* ipcget: (base)
ipcget: (flag) 4 ipcget: (base-mode)

COND: ipcget: !(base+mode & IPCO_ALLOC) &&(obj_access(OBJ_IPCGET,
base, ASK-WRITE))

RESULTING FLOW: msgflg 4 flag 4 msgque-,mode

VIEWER TCB PRIMITIVE: rnsgget
PATH: msgget: (msgque) =* ipcget: (base)

ipcget: (base-mode) -*-> msgget: (qp)
msgget: (qp) =* msgget: (u.u_rvall)

COND: msgget: !(qp = NULL) &&!(obj_access(OBJ_IPCGET, msgque,
ASK_READ))

RESULTING FLOW: msgque-mode =* qp = u.u_rvall

(b) A flow path and flow condition of code fragment in Figure 3-1 (a).

msgget (uap4msgflg,.) msgget
I LI

flag u. u_rval

security check' security check2

msgque-,.mode qp

security check' = lobj_access(OBJ_IPCGET, base, ASK_-WRITE)

security check2 = lobj_access(OBJ_IPCGET, msgque, ASK_READ)

(c) Graphic representation of the flow path of Figure 3-1 (b).
Figure 3-1. An Example of a False Illegal Flow Caused by Syntactic Flow

Analysis

formula sl(u.u_rvall) 2 sl(qp) 2 sl(msgque-mode) 2 sl(f lag) 2 sI(uap-*.msgflg), where sl

31



COVERT CHANNEL ANALYSIS GUIDELINE

stands for the security level, cannot be proven because the security levels of the
variables vary dynamically, depending on the security levels of the processes invok-
ing the "msgget" primitive. Thus, syntactic flow analysis would identify this flow as il-
legal. However, an examination of the program conditions under which this flow can
actually occur (shown in Figure 3-1(b)) quickly reveals this flow is legal. This flow
can occur because the conditions enabling the flow at run time include security
checks of the nondiscretionary model interpretations for both viewing and altering
InterProcess Communication (IPC) objects. These checks prevent all illegal flows
through the "msgque.mode" variable.

Practical examples of false illegal flows appear in all covert channel analyses
relying exclusively on syntactic flow analysis. For example, sixty-eight formulas that
could not be proven have been found in the SCOMP analysis using the Feiertag
Flow tool [Benzel84, Millen89b]. Only fourteen of these flows caused covert chan-
nels; the balance were all false illegal flows. Similar examples can be given based
on experience with other flow tools. For instance, even in a small (twenty-line) pro-
gram written in Ina Jo, the Ina Flow tool discovered one hundred-seventeen illegal
flows of which all but one were false [Cipher9O].

Information-flow analysis does not lend itself to use on informal (e.g., English
language) specifications. This means that, if one uses information-flow analysis for
B2-B3 class systems, one should apply it to source code. Furthermore, discovery of
illegal flows in formal top-level specifications (for class Al systems) offers little help
for identifying TCB locations where covert channel handling code may be necessary.
The identification of such locations requires semantic analysis of specifications and
code.

3.2.2 Addition of Semantic Components to Information-Flow
Analysis

Reference [Tsai90] presents a method for identification of potential storage
channels based on (1) the analysis of programming language semantics, code, and
data structures used within the kernel, to discover variable alterability/visibility; (2)
resolution of aliasing of kernel variables to determine their indirect alterability; and
(3) information-flow analysis to determine indirect visibility of kernel variables (e.g.,
the "msgque-mode" variable in Figure 3-1). These steps precede the application of
the nondiscretionary (secrecy or integrity semantic) rules specified in the

32



COVERT CHANNEL IDENTIFICATION

interpretation of the security model, and implemented in code, to the shared vari-

ables and kernel primitives. This last step helps distinguish the real storage chan-
nels from the legal or inconsequential ones. The delay in the application of these

rules until the security levels of shared variables can be determined with certainty
(i.e., from the levels of the objects included in the flows between variables) helps

avoid additional (manual) analysis of false illegal flows. Furthermore, discovery of all
locations in kernel code where shared variables are altered/viewed allows the cor-
rect placement of audit code and time-delay variables for channel-handling mecha-

nisms, and of access checks for nondiscretionary policy implementation.

A disadvantage of this method is that its manual application to real TCBs re-

quires extensive use of highly skilled personnel. For example, its application to the

Secure Xenix system required two programmer-years of effort. Thus, using this
method in real systems requires extensive use of automated tools. Although the
method is applicable to any implementation language and any TCB, its automation
requires that different parser and flow generators be built for different languages.

The addition of an automated tool for semantic information-flow analysis to syn-

tactic analysis is reported in [He and Gligor90]. The semantic component of this tool
examines all flows visible through a TCB interface and separates the legal from the
illegal ones. Since this analysis uses the interpretation of a system's mandatory se-
curity model in source code, false illegal flows are not detected. Although one can

apply this method to any system, the tool component for semantic analysis may dif-
fer from system to system because the interpretation of the mandatory security
model in a system's code may differ from system to system. The separation of real

covert channels from the potential ones, which requires real scenarios of covert
channel use, must still be done manually. Compared to the separation of all poten-
tial channels from flows allowing a variable to be viewed/altered through a TCB inter-
face, the separation of real channels from potential channels is not a labor-intensive

activity since the number of potential channels is typically several orders of magni-
tude smaller than the number of flows through a TCB interface.

33



COVERT CHANNEL ANALYSIS GUIDELINE

3.2.3 Shared Resource Matrix (SRM) Method

The SRM method for identifying covert channels was proposed by
[Kemmerer83], and used in several projects [Haigh87]. When applied to TCB speci-
fications or code, this method requires the following four steps:

(1) Analyze all TCB primitive operations specified formally or informally, or in

source code;

(2) Build a shared resource matrix consisting of user-visible TCB primitives as
rows and visible/alterable TCB variables representing attributes of a
shared resource as columns; mark each < TCB primitive, variable > entry
by R or M depending on whether the attribute is read or modified. (This
step assumes one has already determined variable visibility/alterability
through the TCB interface.) Variables that can neither be viewed nor al-
tered independently are lumped together and analyzed as a single vari-
able. We show a typical shared-resource matrix in Figure 3-2 and discuss
it in Example 6.

(3) Perform a transitive closure on the entries of the shared resource matrix.
This step identifies all indirect reading of a variable and adds the corre-
sponding entries to the matrix. A TCB primitive indirectly reads a variable y
whenever a variable x, which the TCB primitive can read, can be modified
by TCB functions based on a reading of the value of variable y. (Note that
whenever the SRM method is applied to informal specifications of a TCB
interface as defined in system reference manuals-and not to internal TCB
specifications of each primitive, which may be unavailable-performing this
step can only identify how processes outside the TCB can use information
covertly obtained through the TCB interface. Therefore, whenever people
using the SRM method treat the TCB as a black box, they can eliminate
the transitive closure step since it provides no additional information about
flows within the TCB specifications or code.)

(4) Analyze each matrix column containing row entries with either an 'R' or an
'M'; the variable of these columns may support covert communication
whenever a process may read a variable which another process can write
and the security level of the former process does not dominate that of the

34



COVERT CHANNEL IDENTIFICATION

latter. Analysis of the matrix entry leads to four possible conclusions
[Kemmerer83]:

(4.1) If a legal channel exists between the two communicating processes
(i.e., an authorized channel), this channel is of no consequence; la-
bel it "L".

(4.2) If one cannot gain useful information from a channel, label it "N".

(4.3) If the sending and receiving processes are the same, label the

channel "S".

(4.4) If a potential channel exists, label it "P".

The labeling of each channel is a useful means of summarizing the results of
the analysis.

(5) Discover scenarios of use for potential covert channels by analyzing all en-
tries of the matrix. Examples 7 and 8 of Section 3.2.5 illustrate potential
covert channels that cannot be exploited because real scenarios of use
cannot be found.

The SRM method has been used successfully on several design specifications
[Kemmerer83, Haigh871. This method has the following advantages:

" It can be applied to both formal and informal specifications of both TCB soft-
ware and hardware; it can also be applied to TCB source code.

* It does not differentiate between storage and timing channels and, in princi-
ple, applies to both types of channels. (However, it offers no specific help for
timing channel identification.)

* It does not require that security levels be assigned to internal TCB variables
represented in the matrix and, therefore, it eliminates a major source of false
illegal flows.

However, lack of security-level assignment to variables has the following nega-

tive consequences:

35



COVERT CHANNEL ANALYSIS GUIDELINE

* Individual TCB primitives (or primitive pairs) cannot be proven secure (i.e.,
free of illegal flows) in isolation. This shortfall adds to the complexity of in-
cremental analysis of new TCB functions.

* The SRM analysis may identify potential channels that could otherwise be
eliminated automatically by information-flow analysis.

Although the SRM method is applicable to source code, tools to automate the
construction of the shared resource matrix for TCB source code, which is by far the
most time-consuming, labor-intensive step, do not exist to date. The manual use of
this method on source code-as with other methods applied manually-is suscept-
ible to error.

Example 6 - Inadequacy of Exclusive Reliance on Informal TCB Specifications

The major advantage of the SRM method over syntactic information flow analy-
sis, namely its applicability to informal TCB top-level specifications, is diminished to
some extent by the fact that informal top-level specifications lack sufficient detail.
We illustrate this observation (1) by showing the results of applying the SRM method
to a UNIX TCB specification as found in the Xenix reference manuals [IBM87] using
three internal variables of the file subsystem (i.e., "mode," "lock," and "file_table")
as the target of CCA, and (2) by comparing this analysis with the automated analysis
performed for the same three variables and the Secure Xenix TCB source code with
the tool presented in [He and Gligor90].

Figure 3-2 illustrates the results of this comparison. In this figure, the bold-faced
matrix entries denote the information added to the original SRM matrix as a result of
the automated analysis. This figure shows that about half of the relevant primitives
were missed for one of the variables (i.e., "mode") and a third were missed for an-
other variable (i.e., "file-table").

Furthermore, more than half of the R/M entries constructed for the primitives
found to reference the three variables in system manuals were added R/M designa-
tors by the automated analysis of source code. Although different results can be ob-
tained by applying the SRM method to different informal specifications, this example
illustrates that the application of SRM (and of any other method) to informal specifi-
cation can be only as good as the specifications.

36



COVERT CHANNEL IDENTIFICATION

SHARED GLOBAL SHARED GLOBALVAFIABLES VARIABLES
PRIMITIVES 

PRIMITIVES

file mode lock file
mode lock table table

access R aclcreat R M

chmod R M aclopen R M

chsize R M brk R M

close R M R M brkctl R M

creat R M R M R M chdir R M

dup R M R chown R M

exec R M M R creatsem R M R M

fcntl RM RM exit RM R

fstat R M fork RM R

link RM ioctl R

locking R R M mknod R M

open RM RM RM nbwaltsem R

read RM opensem RM RM

stat RM pipe RM RM

unlink R M rdchk R

utime R M sdfree R M

write R M M sdget R M

(1) R = read and M = modify. seek R
(2) Primitives in Boldface: primitives that shmat R M

are found to be able to read/modify a
shared global variable in the source shmctl R M
code but not in the specification (DTLS). shmget R M

(3) Primitives in Italics: primitives that are
found to be able to read/modify a sigsem R

shared global variable both in the sync R M
source code and in the specification vhangup R
(DTLS). vhangup R

(4) Rules (2) and (3) also apply to the waltsem R
readability/modifiability of primitives to a
shared global variable.

Figure 3-2. Shared Resource Matrix for Three Variables

37



COVERT CHANNEL ANALYSIS GUIDELINE

3.2.4 Noninterference Analysis

Noninterference analysis of a TCB requires one to view the TCB as an abstract
machine. From the point of view of a user process, a TCB provides certain services
when requested. A process' requests represent the abstract machine's inputs, the
TCB responses (e.g., data values, error messages, or positive acknowledgements)
are its outputs, and the contents of the TCB internal variables constitute its current
state. Each input results in a (TCB) state change (if necessary) and an output. Each
input comes from some particular process running at a particular security level, and
each output is delivered only to the process that entered the input that prompted it.

[Goguen and Meseguer82] formulated the first general definition of information
transmission in the state-machine view of a TCB, generalizing on an earlier but more
restricted definition by [Feiertag8O]. They defined the concept of noninterference be-
tween two user processes. The definition was phrased in terms of an assumed initial
or start-up state for the machine. It stated, in effect, that one user process was
noninterfering with another when the output observed by the second user process
would be unchanged if all inputs from the first user process, ever since the initial
state, were eliminated as though they had never been entered. Goguen and
Meseguer reasoned that if inputs from one user process could not affect the outputs
of another, then no information could be transmitted from the first to the second.
(One can verify this property using Shannon's definition of information transmission

[Millen 89b].)

To define noninterference precisely, let X and Y be two user processes of a
certain abstract-machine TCB. If w is a sequence of inputs to the machine, ending
with an input from Y, let Y(w) be the output Y receives from that last input (assuming
the machine was in its initial state when w was entered). To express noninterfer-
ence, w/X is the subsequence that remains of w when all X-inputs are deleted, or
"purged," from it. Then X is noninterfering with Y if, for all possible input sequences
w ending with a Y-input, Y(w) = Y(w/X).

It is somewhat unintuitive that noninterference relates a whole sequence of in-
puts, including, perhaps, many X-inputs, to a single Y-output. In CCA, the traditional
view is that whenever a covert channel exists between X and Y, each individual X-
input has an effect on the next Y-output. Noninterference analysis suggests another
view may be appropriate, however. Note that user process Y might enter an input to

38



COVERT CHANNEL IDENTIFICATION

request an output at any time. Suppose, in fact, that Y enters an input every time X

did. Ignoring other inputs, the overall input sequences looks like: xlylx 2y2 . ..XnYn.

The definition of noninterference applies not only to the whole sequence, but to all

the initial segments of it ending in a Y-input, namely: (xlyl), (XlYlX2Y2), . . • , (x1Y1 • •
. XnYn). Noninterference requires that every Y output is unaffected by a#l previous X

inputs. Thus, it seems necessary to analyze all past X inputs because of the follow-

ing: Suppose each X input is reported as a Y output after some delay; a covert

channel arises just as it would if the X input came out immediately in the next Y out-

put.

In practice, it is cumbersome to analyze the entire history of inputs to the

machine since its initial state. However, this analysis is unnecessary because the

current state has all the information needed to determine the next Y-output. Thus,

noninterference of X with Y can be expressed in terms of the current state instead

of the whole prior input history.

Clearly, if X is noninterfering with Y, an X input should have no effect on the
next Y output. Noninterference is actually stronger than this, however, since it re-

quires that an X input has no effect on any subsequent Y output. To avoid analyzing

unbounded input sequences, it is useful to partition TCB states into equivalence

classes that are not distinguishable using present or subsequent Y outputs. That is,

two states are Y-equivalent if (1) they have the same Y output in response to the

same Y input, and (2) the corresponding next states after any input are also Y-

equivalent. (This definition is recursive rather than circular; this is computer science!)

[Goguen and Meseguer84] proved a theorem, called the "Unwinding Theorem,"

which states that X is noninterfering with Y if and only if each X input takes each

state to a Y-equivalent state; a simpler version of this theorem was given by
[Rushby85].

Unwinding is important because it leads to practical ways of checking noninter-

ference, especially when given a formal specification of a TCB that shows its states

and state transitions. The multilevel security policy requires that each process X at a

given security level should interfere only with a process Y of an equal or higher se-

curity level. To apply this requirement in practice, the TCB states must be defined,

and the Y-equivalent states must be determined.

39



COVERT CHANNEL ANALYSIS GUIDELINE

A straightforward way of identifying Y-equivalent states in a multilevel secure
TCB is to label state variables with security levels. If Y is cleared for a security level
s, then the two states are Y-equivalent if they have the same values in those state
variables having a security level dominated by s. A less formal way of expressing
this statement is that Y has (or should have) a blind spot when it tries to observe the
current state. Y can observe state variables at or below its own level, but state vari-
ables at a higher level are in the blind spot and are invisible. So two states are Y-
equivalent if they look the same under Y's "blind spot" handicap.

The state-variable level assignment must have the property that the effect of
any input turns equivalent states into equivalent states. This means that invisible
variables cannot affect the visible part of the state. This property is one of three that
must be proved in a noninterference analysis. The other two properties are that (1)
any return values reported back to Y depend only on variables visible to Y, and (2)
an input from a higher level user process X cannot affect the variables visible to us-
er process Y.

Noninterference analysis has the following important advantages:

* It can be applied both to formal TCB specifications and to source code;

* It avoids discovery of false illegal flows; and

" It can be applied incrementally to individual TCB functions and primitives.

However, it has three practical disadvantages. First, one can only apply it to for-
mal TCB top-level specifications and, possibly, to source code. Therefore, its appli-
cation to systems in classes where analyses of formal specifications or source code
is not required (i.e., class B2-B3 systems) can only be recommended but not man-
dated. Only the Al system design, which requires specification-to-code correspon-
dence, can be construed to require covert channel identification on source code
(during the specification-to-code correspondence). Second, manual application of
noninterference to significant-size TCBs may be impractical, and automated tools
are currently unavailable for use in significant-size systems. Third, noninterference
analysis is "optimistic." That is, it tries to prove that interference does not appear in
TCB specifications or code. Thus, its best application is TCB specifications of
trusted-process isolation rather than to TCB components containing large numbers
of shared variables (i.e., kernels). Noninterference analysis was used to discover

40



COVERT CHANNEL IDENTIFICATION

covert channels of the Logical Co-processing Kernel (LOCK)-a successor of the

Secure Ada Target (SAT) [Boebert85]. The process of using the Gypsy system to

verify noninterference objectives, and the consequences of discovering that a real

operating system does not quite attain them, was discussed in reference [Haigh87].

3.3 POTENTIAL VERSUS REAL COVERT CHANNELS

Covert channel identification methods applied statically to top-level specifica-

tions or to code produce a list of potential covert channels. Some of the potential

covert channels do not have scenarios of real use. These potential channels are

artifacts of the identification methods. However, false illegal flows do not necessarily

cause these potential channels. As illustrated in Figure 3-1 (b), all flows have a con-

dition that enables the flow to take place as the system runs (e.g., dynamically). A

general reason why a potential covert channel may not necessarily be a real covert

channel is that, at run time, some flow conditions may never become true and, thus,

may never enable the illegal flow that could create a covert channel. Another reason

is that the alteration (viewing) of a covert channel variable may not be consistent

with the required alteration (viewing) scenario. For example, a field of the variable

may be altered but it could not be used in the scenario of the covert channel. Simi-

larly, not all TCB primitives of a channel can be used in real covert channel scenar-

ios. The ability to use some TCB primitives of a channel to transfer information may

depend on the choice of the primitive's parameters and the TCB state. Examples 7,

8, and 9 illustrate these cases. To determine whether a potential covert channel is a

real covert channel, one must find a real-time scenario enabling an illegal flow.

Example 7 - An Example of a Potential Covert Channel

Figure 3-3(a) illustrates the difference between potential and real covert chan-

nels. Two UNIX TCB primitives "read" and "write" share the same internal function
"rdwr" but pass different values to the parameter of this function. CCA on the inter-

nal function "rdwr" reveals all possible information flows within "rdwr" (i.e., both

flows that lead to real channels and flows that only lead to potential channels).

Among the latter are flows with the condition "mode = FWRITE." These flows cannot

be exploited by TCB primitive "read" because it can never enable this condition.

Similarly, TCB primitive "write" cannot exploit those flows with the condition
"mode = FREAD." Thus, among the potential covert channels arising from the invo-

cation of the internal function "rdwr," those with condition "mode = FWRITE" cannot

41



COVERT CHANNEL ANALYSIS GUIDELINE

read write
I I I I

mode = FREAD mode = FWRITErdwr( mode )

(a) Internal function rdwr shared by system calls read and write.

mode = *mode =
FREAD FWRITE

KEY:

0 +q+(92" All flows in internal function rdwr

:Flows exploitable only by system call read

1:Flows exploitable only by system call write

Q: Flows exploitable by both system calls read and write

(b) Flow partition in internal function rdwr.

Figure 3-3. Potential and Real Covert Channels Corresponding to
Different Flow Partitions

be real covert channels for the "read" primitive, and those with the condition
"mode = FREAD" cannot be real covert channels for the "write" primitive. Real-time
scenarios do not exist for those potential covert channels. Figure 3-3 (b) shows the
partitioning of flows in internal function "rdwr" based on whether a flow can be ex-
ploited by the "read" and "write" primitives.

Example 8 - Real and Potential Covert Channels In Secure Xenix

Figure 3-4 illustrates examples of real and potential covert channels of Secure
Xenix. The two tables shown in Figure 3-4 contain two basic types of covert storage

42



COVERT CHANNEL IDENTIFICATION

C Vannel File Inode Disk Message Process Text
TCB Table Table Space ID Table ID Table Table
Primitive

creat AV AV AV

exec AV AV

fork a a AV AV

msgget AV

msgctl A

open AV AV AV

wait A

(a) Examples of resource-exhaustion channels in Secure Xenix"

Charnnel Number of Number of Message Process
TCB Var Free Blocks Free Inodes Identifier Identifier
Primitive

creat A A

chsize A a

fork A a AV

msgget V

msgctl A

ustat V V

(b) Examples of event-count channels in Secure Xenixm

Figure 3-4. Examples of Potential and Real Channels

channels: resource-exhaustion and event-count channels. Resource-exhaustion

channels arise wherever system resources are shared among users at more than

one security level. To use a resource-exhaustion channel, the sending process

chooses whether or not to exhaust a system resource to encode a signal of a 0 or
1. The receiving process detects the signal by trying to allocate the same system

resource. Depending on whether the resource can be allocated, the receiving pro-

cess can determine the value of the signal from the sending process.

In event-count channels, the sending process encodes a signal by modifying

the status of a shared system resource (but not exhausting the resource). By query-
ing the status of the resource, either through TCB primitives returning the resource

43



COVERT CHANNEL ANALYSIS GUIDELINE

status explicitly or by observing the return result of some TCB primitives that allo-
cate the resource, the receiving process can detect the signal from the sending pro-
cess.

In the tables of Figure 3-4, each row is marked with a TCB primitive and each
column with a shared global variable. Entries in the tables indicate whether a TCB
primitive can alter (A or a) and/or view (V or v) the corresponding global variable. An
upper-case A in an entry indicates that the TCB primitive can alter the global vari-
able as the means of encoding and transferring information through the variable.
Similarly, an upper-case V in an entry indicates that the TCB primitive can view the
value of the global variable and detect the signal transmitted by sending user pro-
cesses. Thus, for any shared global variable, the set of TCB primitives that have a
capital A and those that have a capital V constitute a real covert channel. For exam-
ple, TCB primitives "creat" and "open" can be used by the sending and the receiv-
ing processes to transfer information through the shared global variable representing
the "file_table" in the system. On the other hand, a lower-case a in an entry means
that, although the TCB primitive can alter the global variable, the alteration cannot
be used for encoding information in the global variable. For example, the execution
of the TCB primitive "fork" alters the "file table" because it increments the file refer-
ence count for the child process it creates. This alteration, however, is different from
that of allocating a file-table entry and, thus, it does not provide a real scenario for
sending a signal. Similar reasoning explains why the entries marked with a lower-
case v in Figure 3-4 cannot be used in real scenarios of covert channels.

The distinction between an alteration of a global variable that can be used to
encode information (i.e., entry denoted by A) and one that cannot (i.e., entry de-
noted by a) can be eliminated if a finer partitioning of the "file table" structure is
performed. That is, if the file reference count of the "file table" is viewed as a sepa-
rate variable within the "file_table" structure, then the TCB primitive "fork" would not
appear to alter the "file_table" structure. Instead, "fork" would alter only the new
variable, namely, the file reference count. In either case, however, the covert chan-
nel analysis should yield the same results.

Example 9 - Dependencies on TCB State and Primitive Parameters

The covert channel examples of Figure 3-5 illustrate both system-state and pa-
rameter dependencies found in UNIX systems. For example, the primitive "creat"

44



COVERT CHANNEL IDENTIFICATION

System state: System state:
file does not exist. file exists.

Invocation: P1: PA channel: Invocation: P1: PA
<creat, u.u_error = 0/23 > No. Free <creat, u.u_error = 0/23 >

Result: Blocks (nfb) P1Result:
creates a new file, length 0; nfb 0' '1' truncates the existing file; nfb
is unchanged; transmit '0' to A 10, is incremented; transmit '1' to
P3. P3.

Invocation: P1: PA Result:

< close, u.u_error = 0 > channel: a file table entry is allocated;

File Table (f) transmit '1' to P2.
Result:

a file table entry is deallocated; ------ Invocation: P2: PAiPV
transmit '0' to P2. <creat, u.u_error = 23 >

Invocation: P2: PA/PV Reslt:

<creat, u.u_error = 0 > P2 file table is exhausted; receive
____ ____ ____ ____ ____1' from P1.

Result: ' I System state:

a file table entry is allocated; Syse stae
receive '0' from P1. file exists;

channel:Result:

System state: No. Free transmit '0' to P3.
file exists. - - Inodes (nfi)Results: ." . -."System state:

transmit '0' to P3. file does not exist.
transmit__0__to_P3.___\_.__-___ Result:

System state: " transmit '1' to P3.
file does not exist. P3

Results:
transmit '1' to P3.

Invocation: P3: PV System state: System state: System state: System state:

<ustat, nfb is unchanged. nfi is unchanged. nfi is decremented. nfi is incremented.

u.u_error = 0 > Result: Result: Result: Result:
receive '0' from PI. receive '0' from P2. receive 1' from P2. receive 1'from P1.

KEY:

PA/PV = altering/viewing primitive
P1, P2, P3 = untrusted processes

Figure 3-5. An Example of the Use of Multiple Channels by Three
Processes

can alter (i.e., decrement) the total number of free inodes (nfi) only if the object to

be created does not exist. If the object exists, "creat" has no effect on nfi. In addi-

tion, the primitive "creat" can be used to alter (i.e., increment) the total number of

45



COVERT CHANNEL ANALYSIS GUIDELINE

free blocks (nfb) in the system if the file being created currently exists. That is, if the
file exists, "creat" truncates the file, and as a result increments nfb. Otherwise,
"creat" has no effect on nfb. (The disk-block-space channel is also affected by this
condition.) Furthermore, the alteration of the disk-block-space channel, and of the nfi
and nfb channels by the primitive "creat," is determined by the file system specified
in the parameter of the "creat" invocation.

The example of Figure 3-5 also illustrates the combined state and parameter
dependencies. Consider again the channel that modulates the nfb and the disk-
block-space channel. Primitive "chsize" can be used to alter these channel vari-
ables (i.e., deallocate memory and increase the total number of free blocks) only if
the file on which it is applied exists, and only if its parameter indicates file shrinkage.
When used to expand the size of an existing file, primitive "chsize" does not alter
the channel variables but merely changes the ip-i_size field of the inode.

Other examples of parameter dependency and combined state and parameter
dependencies, unrelated to those of Figure 3-5, can be found. For example, the
primitive "semget(key, nsems, semflg)" can affect the semaphore-identifier channel
and the semaphore-map exhaustion channel. Within this primitive, if parameter
"key" is equal to IPC_CREAT, thereby denoting the creation of a semaphore, a
semaphore identifier, its associated semaphore data structure, and a set containing
"nsems" semaphores are created for key. In contrast, if parameter key is not equal
to IPC_CREAT, nothing is created.

Furthermore, if parameter key does not already have a semaphore identifier as-
sociated with it, and if the Boolean expression (semflg and IPC_CREAT) is true, a
"semget" call creates for parameter key a semaphore identifier, its associated data
structure, and the set containing "nsems" semaphores. If parameter key already has
a semaphore identifier associated with it, a new semaphore structure is not created.

3.4 TCSEC REQUIREMENTS AND RECOMMENDATIONS

Covert channel identification requirements appear for the classes B2-A1 of the
[NCSC TCSEC]. The B2 requirements of CCA state that the "system developer shall
conduct a thorough search for storage channels .... "

For class B2, the search for covert storage channels should be conducted on
system reference manuals and on the DTLS of the TCB. Although the TCSEC does

46



COVERT CHANNEL IDENTIFICATION

not require storage channel identification in the TCB source code and in hardware
(microcode) specifications, such a search would ensure the completeness of the
identification results. Although no specific identification method is required, arbitrary,
ad hoc, undocumented methods, which system evaluators cannot repeat on inde-
pendently selected test cases, are unacceptable. This nonacceptance is justified by
the notion that system developers must conduct a thorough search for covert chan-
nels and an evaluation team must evaluate the search.

Use of any identification method on informal top-level specifications may yield
incomplete results, as illustrated in Example 6 of this section in the context of the
SRM method. For this reason, it seems important to apply the storage channel iden-
tification method to the TCB source code. Otherwise, the thoroughness of the covert
channel identification search may be in doubt. Furthermore, source-code analysis
may be useful in the definition of covert channel scenarios that help distinguish real
and potential channels. Therefore, we recommend analyzing both the DTLS and the
source code for covert channel identification at class B2.

The B3-class requirement of the TCSEC extends the above B2-class
requirement to all covert channels (i.e., to timing channels). Although this extension
imposes no added requirement in terms of the identification method used, timing
channel scenarios should be developed. These scenarios should include all system
sources of independent timing such as the CPU and the I/O processors. Inclusion of
all these sources will provide additional assurance that classes of timing channels
are not overlooked. [Huskamp78] provides an example of complete timing channel
analysis for the CPU scheduling channels.

The Al-class requirement of CCA includes all the B2-B3-class requirements
and extends them by stating, "Formal methods shall be used in analysis."

One may apply CCA methods to both formal specifications and source code of
the TCB. Examples of such methods include syntactic information-flow analysis (with
or without the use of semantic analysis), SRM, and noninterference analysis. Other
formal methods for covert channel identification may exist and may be equally suit-
able at level Al. The identification method chosen by the developer should be ap-
plied to the FTLS. Unless the identification of covert channels is made a part of the
specification-to-code correspondence, in which case source-code analysis is

47



COVERT CHANNEL ANALYSIS GUIDELINE

included, we recommend complementing FTLS analysis with formal or informal
source-code analysis. Otherwise, covert channels may remain undetected.

48



4.0 COVERT CHANNEL BANDWIDTH ESTIMATION
In this chapter we discuss various factors that affect the covert channel band-

width computation, including TCB primitive selection, parameter and state depen-

dencies, and channel aggregation. We also present both information-theory-based

and informal methods for maximum bandwidth estimation, and discuss various fac-

tors that degrade the covert channel bandwidth. The TCSEC requirements and rec-

ommendations are also discussed.

4.1 FACTORS AFFECTING THE BANDWIDTH COMPUTATION

The computation of covert channel bandwidths is one of the key aspects of co-

vert channel analysis. This is the case because most decisions about how to handle

identified channels rely on the determination of channel bandwidth. Therefore, it is

important to examine briefly the factors that primarily affect the computation of co-

vert channel bandwidth.

4.1.1 Noise and Delay

Two of the most important factors affecting the bandwidth of a covert channel in

any operating system or hardware platform are the presence of noise and the de-

lays experienced by senders and receivers using the channel. The primary sources

of noise and delay are the processes Up,... ,Uq shown in Figure 2-5, which can in-

terpose themselves due to scheduling of various hardware resources between send-

ers and receivers. Although these processes can degrade the maximum attainable

bandwidth of a channel significantly (e.g., up to about 75% [Tsai and Gligor88]), the

degradation is not certain in all architectures and at all times since it depends on the

nature of the multiprogrammed system (e.g., single user, multiprocess workstation,

multiuser time sharing system) and on the system load. Thus, while the noise and

delay factors are significant, the computation of the maximum attainable bandwidth

of any channel must discount both noise and delays, and must assume that only the

senders and receivers are present in the system [Millen89a].

4.1.2 Coding and Symbol Distribution

In general, the attainable maximum bandwidth (i.e., capacity) depends on the

choice of symbol encoding scheme agreed upon by a sender and a receiver. Cod-

ing schemes exist that allow the exploitation of the maximum attainable bandwidth of

49



COVERT CHANNEL ANALYSIS GUIDELINE

a channel on the distribution of symbols in the space of transmitted messages
[Millen89a]. However, informal covert channel analysis usually assumes a 0 or a 1
represents each symbol transmitted. Thus, the distribution of Os and ls becomes an
important factor of bandwidth computation whenever using informal methods. Where
the time required to transmit a 0 is close (on the average) to the time required to
transmit a 1, one can assume that Os and 1s are used with approximately equal fre-
quency. This assumption is based on the fact that the bandwidth (i.e., capacity) of
discrete memoryless channels is maximized under such distributions. (Section 4.2
below illustrates both an informal bandwidth-computation method, where such dis-
tributions are assumed, and an information-theory-based method, where such dis-
tributions are not assumed.)

Informal bandwidth computation methods do not achieve, in general, the
maximum bandwidth of a channel because they do not use appropriate coding tech-
niques. Formal bandwidth-computation methods not only allow the precise determi-
nation of attainable maximum bandwidth but also help define coding schemes that
can be used to attain those bandwidths [Millen89a].

4.1.3 TCB Primitive Selection

In most systems, covert channel identification associates multiple TCB primi-
tives with a covert channel variable. For example, most UNIX covert channel vari-
ables can be altered or viewed by a number of primitives that varies between about
ten and forty. Among the primitives of each variable, one must select those having
the highest speed for the bandwidth computation. Although one should measure
each primitive's speed with only senders and receivers using the system, one
should not conduct these measurements independently of the covert channel sce-
nario of use (i.e., without using parameters and TCB state conditions that would be
present when a channel is in use). Otherwise, the bandwidth computation could lead
to unrealistically high or low values. Low values may cause security exposures
whereas high values may cause performance degradation whenever delays are
used based on bandwidth values. We can illustrate the latter case by the "chsize"
primitive of UNIX. The speed of this primitive depends on whether a file is shrunk
(low speed) or expanded (higher speed). However, the use of "chsize" with the ex-
pand option cannot be made in covert channels requiring disk free block alteration

50



COVERT CHANNEL BANDWIDTH ESTIMATION

because this primitive does not alter the disk free block variable. We discuss this in
more detail in the next section.

4.1.4 Measurements and Scenarios of Use

The performance measurements of the TCB primitives of covert channels re-
quire one to include not only the altering and viewing primitives but also the perfor-
mance of the primitives that initialize the environment for the altering and viewing of
a variable. The environment initialization primitives may differ for the altering and
viewing primitives. For example, the environment initialization primitive for altering a
variable to transmit a 1 may differ from that necessary to transmit a 0. Similarly, the
environment initialization primitives for viewing a 1 may differ from those necessary
for viewing a 0. Furthermore, the same primitive may use different amounts of time
depending upon whether it is used to set (read) a zero or a one (e.g., whether it re-
turns an error). Scenarios of covert channel use are needed to determine which en-
vironment initialization primitives must be taken into account. Section 4.2 provides
examples of different environment initialization primitives and their use for two real
covert channels of UNIX.

Also included in the measurements is the process- or context-switching time.
The measurement of this time is needed because, during the transmission of every
bit of information through a covert channel, control is transferred between the send-
er and receiver at least twice. In most operating systems, the measurement of the
minimum process switching time is a fairly complex task. The reason for this com-
plexity is that with every process switch the measurement environment changes
and, therefore, the measurement of each switch may yield different values.
Sometimes it is also difficult to measure individual process-switching times because
process switching may be possible only as a side-effect of some primitives. Other
processes may be scheduled to run during a switch from one process to another,
thereby adding unwarranted delay to switching time. To eliminate the difference be-
tween measured process-switching times within the same system, one must ensure
that only a few processes are present in the system when taking measurements and
repeat the measurements a large number of times (e.g., a hundred thousand times)

to ensure choosing the minimum value.

Real scenarios of covert channel use include sender-receiver synchronization.
This synchronization delays the covert channel and, therefore, decreases the

51



COVERT CHANNEL ANALYSIS GUIDELINE

channel's bandwidth. However, since one cannot predict the synchronization sce-

nario (because it is privately agreed upon by the sender and receiver), we generally

assume the bandwidth decrease caused by synchronization is negligible. This as-

sumption helps ensure computing the maximum bandwidth.

All primitive measurements and process-switching time measurements must be

repeatable. Otherwise, independent evaluators cannot verify the bandwidth computa-

tions.

4.1.5 System Configuration and Initialization Dependencies

TCB primitive measurements and process switching times depend very heavily

on a number of system architecture parameters. These parameters include:

" System-component speed (e.g., disk, memory, and CPU);

* System configuration (e.g., configurations using or not using caches);

" Configuration-component sizes (e.g., memory sizes, cache sizes); and

" Configuration initialization.

The least obvious dependency is memory size. The same measurement on two

systems configured identically but using different memory sizes may yield different

results. For example, in systems with smaller memory the primitives will appear to

be slower due to the additional swapping and buffer management necessary to ac-

commodate the measurement environment. Similarly, to ensure repeatable results,

one must properly initialize the measurement environment.

4.1.6 Aggregation of Covert Channels

In general, both serial and parallel aggregation of distinct covert channels can

increase the effective bandwidth available to senders and receivers for covert trans-

mission of information. The easiest way to approximate the effect of aggregation on

the maximum channel bandwidths is to (1) set the context-switching time to zero for

both serial and parallel aggregation, and (2) to sum the bandwidths of the individual

channels for parallel aggregation. However, the TCSEC requirements and guidelines

neither require nor recommend that one consider aggregation in covert channel ana-

lysis. However, one needs to consider the notion of channel aggregation in the area

52



COVERT CHANNEL BANDWIDTH ESTIMATION

of threat analysis, whenever such analysis is performed in the environment of sys-
tem use (see Section 5.4 below).

4.1.7 Transient Covert Channels

Transient covert channels are those which transfer a fixed amount of data and
then cease to exist. Normally, bandwidth and capacity calculations apply only to
channels that are sustainable indefinitely. Thus, it would seem transient channels are
an irrelevant threat. However, if a large volume of data can be leaked through a
transient channel, one must consider channel bandwidth analysis and handling, for
the threat of channel use becomes real.

4.2 BANDWIDTH ESTIMATION METHODS

4.2.1 Information-Theory-Based Method for Channel-Bandwidth
Estimation

Millen presents in [1989a] a method based on Shannon's information theory
[Shannon and Weaver64]. In this method, one assumes the covert channels are
noiseless, no processes other than the sender and receiver are present in the sys-
tem during channel operation, and the sender-receiver synchronization takes a negli-
gible amount of time. These assumptions are justified if the goal is the computation
of the maximum attainable bandwidth. With these assumptions, one can model most
covert channels that arise in practice as finite-state machines (graphs). Furthermore,
these graphs are deterministic in that for any state transition corresponding to a giv-
en channel symbol (e.g., 0 or 1), only one next state appears in the graph. Figure
4-1 illustrates a state graph for a two-state channel. Most covert channels of interest

0/a 1/d

State 0 0b State 1
1/c

Figure 4-1. Two-State Graph for a Covert
Channel

in practice can be represented with two-state graphs. This is because, for most

53



COVERT CHANNEL ANALYSIS GUIDELINE

channels, the current state of the channel depends on the last signal sent and, thus,
only two states are necessary to capture the scenario of information transfer.

Example 10 - Scenario for a Two-State Covert Channel

A scenario for the transfer of Os and 1 s using a two-state graph can be defined
by associating each transition of the graph with the transfer of a 0 or a 1. Each tran-
sition covers a sender's action followed by a receiver's action.

For example, to send 0 in state 0:

- sender transfers control to receiver;
- receiver reads the channel variable;

- receiver records 0;
- receiver resets the environment (if necessary);
- receiver transfers control to sender.

To send 0 in state 1:

- sender sets the channel variable to 0;
- sender transfers control to receiver;
- receiver reads the channel variable;
- receiver records 0;
- receiver resets the channel environment (if necessary);
- receiver transfers control to sender

To send 1 in state 0:

- sender sets the channel variable to 1;
- sender transfers control to receiver;
- receiver reads the channel variable;
- receiver records 1;
- receiver transfers control to sender

To send 1 in state 1:

- sender transfers control to receiver;
- receiver reads the channel variable;

- receiver records 1;

54



COVERT CHANNEL BANDWIDTH ESTIMATION

- receiver transfers control to sender.

One can determine the time required to send a 0 or 1 by listing the correspond-
ing sequence of TCB primitive calls and adding up their times. Recall that the TCB
primitive calls, and their total duration, depend on the state of the channel. Also, re-
call that the reading (not just the setting) of a 0 or a 1 will have different durations
even if they are represented by the same TCB primitive call. For example, if the
reading of a 0 in one state is represented by the "open" primitive call with a suc-
cessful return and in the other state by "open" with a failure return, the reading of
the 0 in the two states will have different durations because the latter call always has
a shorter duration. The sequences of TCB primitive calls necessary to transfer Os
and ls using a two-state graph may be different, and thus they may take four dif-
ferent amounts of time, say a, b, c, and d time units, respectively (as shown in Fig-
ure 4-1).

To determine the bandwidth of a channel represented with a two-state graph,
N(t), one must find the number of possible transmissions of duration t. The band-
width (i.e., capacity) of a channel can be expressed in terms of Nh(t) as follows:

C = lim(Iog2Nh(t))/t.

To find Nh(t), let No(t) be the total possible number of transmissions of duration
exactly t beginning in one of the two states, and let Ni(t) be the total possible num-
ber of transmissions of duration exactly t beginning in the other state. (In general,
there will be an Nh(t) for the h-th state where h ranges over the state set.) The num-
ber of transmissions satisfies a system of difference equations that can be read off
the two-state graph. Each equation is based on the fact that the set of transmissions
beginning in a given state consists of a union of several disjoint sets, discriminated
by the initial symbol of the transmissions. The number of transmissions with a given
initial symbol is equal to the total number of (shorter) transmissions beginning in the
next state after the transition for that symbol.

The following system of equations can be used for the file-lock channel:

No(t) = NO(t - a)+ Nl(t - c)

NI(t) =NO(t - b) + N1 (t - d)

55



COVERT CHANNEL ANALYSIS GUIDELINE

In general, the h-th equation has the form:

Nh(t: = i(Ni(t - Thi),

where Thi is the time taken by a transition from state h to state i.

Note that NO(t) is nonzero only for those values of t that are expressible as a

sum of multiples of a, b, c, and d. To determine the bandwidth of the channel, it is

only necessary to find the asymptotic upper limit of NO(t) as t approaches infinity

[Shannon and Weaver641. This may be found in the form:

NO() = Ah*Xt

Substituting this solution, we obtain the system of equations:

Ah*xt = i(Ai*xt-Thi)

and C = lim(Iog 2(Ah(xt))/t = 1og2x, when t-*infinity.

Note that there may be multiple solutions for x in the above equations. The larg-

est solution provides the bandwidth (capacity).

We can express this system of equations in matrix form as (P-I)A = 0, where P

is a matrix of negative powers of x. Since (P-I) is singular, its determinant Det(P-1)

= 0. Figure 4-2 shows the system of equations, their determinant, and the solution.

Example 11 - Application to Two Secure Xenix Channels

Two of the Secure Xenix channels whose bandwidths were computed in refer-

ence [Tsai and Gligor88] for a PC/AT configuration are the inode table channel and

the upgraded directory channel. In this example we illustrate Millen's method de-

scribed above using measurements of Secure Xenix TCB primitives on an IBM PS/2

model 80 configuration. Tcs represents the context switch time, which is 3 millisec-

onds. The values of Tr (Ts) represent the duration of reading (setting) the covert

channel variable, and the value of Tenv represents the duration of setting up the

transfer environment (e.g., a state transition).

56



COVERT CHANNEL BANDWIDTH ESTIMATION

Ax t = Aoxt-a + AIxt-C
Ajx t = Aoxt-b + AIx t-d Thus,

A,x)Aoxt + Ax 0t ifntC = lirn (log 2 Nh (t))/t implies:I: (x'a"- 1)Ax t + x"  AIXt  =0 t->infinity

x- A0 xt  + (x - 1)Aix t =0 C = lim (log Ah X)t log xlog2X
t- >infinity /

x-a -C

x-b x-d =0 where Nh(t) is the total number of

transmissions of duration exactly
x-(a+d)_-xa .- d + 1 -X(b +c) =0 tinstateh.

Figure 4-2. Simultaneous Equations, Determinant, Capacity (Bandwidth)

The Inode Table Channel

In this example the state 0 of the inode table channel is represented by the
inode table full state, and the state 1 by the inode table nonfull state. Figure 4-3
shows the state transitions defined below and their durations.

1 /2T s + open(f) 0/2Tcs + close(s) + open(s) + close(s)

Full Nonfull
~1 /2Tcs + open(s) + open(f)]@

0/2Tcs + open(s) + close(s)

18 m 
. s. 

) 8 2 m3018.2 ms

-36.2 -18 -18.2 X-48.4
x -x -x +1 - =0

x = 1.003356346 0<Iog 2 x<1/18

C = 1000 log 2x = 47.63 bits/sec

Figure 4-3. State Graphs for the Inode Table Channel

57



COVERT CHANNEL ANALYSIS GUIDELINE

State 0:

When the inode table is full, two Tcs and one viewing primitive "open(f)" with a
failure return are needed to transfer a 1 from a sending process to a receiving pro-
cess. Thus, the following times are needed to transfer a 1 from state 0:

Tr(full-full) = open(f), T,(fullkfull) = 0, Tenv(full-full) = 0.

When switching from the full state to the nonfull state, an alteration primitive
"close(s)," a viewing primitive "open(s)," an environment set-up primitive "close(s),"
and two Tcs are needed to send a 0. Thus, the following times are needed to trans-
fer a 0 from state 0:

Tr(full,nonfull) = open(s), Ts(full-nonfull) = close(s), Tenv(fullknonfull) = close(s).

State 1:

When the transition is from the nonfull state to the nonfull state, a viewing primi-
tive "open(s)," an environment set-up primitive "close(s)," and two Tcs are needed
to transfer a 0. Thus, the following times are needed to transfer a 0 from state 1:

Tr(nonfull-nonfull) = open(s), Ts(nonfull-*nonfull) = 0, Tenv(nonfull-nonfull) = close(s).

When switching from the nonfull state to the full state, an alteration primitive
"open(s)," a viewing primitive "open(f)," and two Tcs are needed to transfer a 1.
Thus, the following times are needed to transfer a 0 from state 1:

Tr(nonfull*full) = open(f), Ts(nonfull-lfull) = open(s), Tenv(nonfull.full) = 0.

The bandwidth (i.e., capacity) of this channel, denoted by C in Figure 4-3, is
47.63 bits/second.

The Upgraded Directory Channel

In this example the state 0 of the upgraded directory channel is represented by
the directory-full state, and the state 1 by the directory-nonfull state. The state transi-
tions defined below and their durations are shown in Figure 4-4.

58



COVERT CHANNEL BANDWIDTH ESTIMATION

1/2Tcs + rmdir(f) /2Tcs + unlink(s) + rmdir(s) + mkdir(s)

(~Nonempty Empty j-- "S~ /2 Tcs + c re at(s) + rmdir(f) '

0/2Tcs + rmdir(s) + mkdir(s)

3026 46ne8t Empt -:1111) m
3056 ms6 ms

-3472 -3026 -446 -3524X - X -X -+1 -X =0

x = 1.00051598 0 < log2x < 1/446

C = lO00og2X = 0.512 bits/sec

Figure 4-4. State Graphs for the Upgraded Directory Channel

State 0:

When an upgraded directory is nonempty, two Tcs and one viewing primitive
"rmdir(f)" with a failure return are needed to transfer a 1 from a sending process to
a receiving process.

Tr(nonempty-nonempty) = rmdir(f), Ts(nonempty-i-nonempty) = 0,
Tenv(nonempty-nonempty) = 0.

When switching from the nonempty state to the empty state, an alteration primi-
tive "unlink(s)," a viewing primitive "rmdir(s)," an environment set-up primitive
"mkdir(s)," and two Tcs are needed to send a 0. Thus, the following times are need-
ed to transfer a 0 from state 0:

Tr(nonempty-empty) = rmdir(s), Ts(nonempty-empty) = unlink(s),
Tenv(nonempty-empty) = mkdir(s).

59



COVERT CHANNEL ANALYSIS GUIDELINE

State 1 :

When the transition is from the empty state to the empty state, a viewing primi-
tive "rmdir(s)," an environment set-up primitive "mkdir(s)," and two Tcs are needed
to transfer a 0. Thus, the following times are needed to transfer a 0 from state 1:

Tr(empty.empty) = rmdir(s), Ts(empty.empty) = 0, Tenv(empty-empty) = mkdir(s).

When switching from the empty state to the nonempty state, an alteration primi-
tive "creat(s)", a viewing primitive "rmdir(f)", and two Tcs are needed to transfer a 1.
Thus, the following times are needed to transfer a 1 from state 1:

Tr(empty.nonempty) = open(f), Ts(empty-*nonempty) = open(s),
Tenv(empty-nonempty) = 0.

The bandwidth of this channel is denoted by C in Figure 4-4 and is 0.512
bits/second.

4.2.2 Informal Method for Estimating Covert Channel Bandwidth

A simple formula for computing the maximum attainable bandwidth of a noise-
less covert channel in absence of any spurious processes that would delay senders
and receivers was presented in [Tsai and Gligor88]. The formula is:

B(0) = b*(Tr + Ts + 2Tcs)**(-1),

In this formula, b represents the encoding factor (which we assume to be 1 in
most practical cases), and

= , Tr(i) + Tenv(i)
Tr n

i=1

where n is the number of total possible transitions. T,(i) and Tr(i) are the times nec-
essary to set and read a 0 or a 1 after having transmitted a 0 or a 1. Thus, n = 4.
Tenv(i) is the time to set up the environment to read a 0 or a 1. Note that in these

60



COVERT CHANNEL BANDWIDTH ESTIMATION

formulas it is assumed that all environment setup for both variable reading and set-
ting is done by the receiving processes.

In deriving this formula it is assumed that the setting of 0's and 1 's take the
same amount of time, and that all transmissions contain an equal distribution of 0's
and 1's.

Example 12 - Application of the Bandwidth Estimation Formula

The maximum bandwidths of the two channels of Example 11 can be recalculat-
ed by using the above formula, as foiiows:

The Inode Table Channel

Ts= [Ts(f ull-f ull) + Ts(f ull-,nonf ull) + Ts(nonfull-i-nonfull) + Ts(nonfull-full)]/4

= [0 + close(s) + 0+ open(s)]/4

= (open + close)/4 = (12 +.2)/4 = 3.05 (ins)

T, = [T,(f ull-of ull) + Tenv(f ull-full) + Tr(full.*nonfull) + Ten,(full-,nonfull) + Tr(nonfull-*nonf ull)
+ Tenv(nonlfull-ononfull) + Tr(nonfull-*full) + Ten,(nonful..*full)]/4

= [open(f) + 0+ open(s) + close(s) + open(s) + close(s) + open(f) + 0]/4

= open + close/2 = 12.1 (ins)

Therefore,

13(0) = 1000/(12.1 + 3.05 + 6) = 47.28 bits/sec

The Upgraded Directory Channel

Ts= [Ts(nonempty-nonempty) + Ts(nonempty-eempty) + Ts(empty-i-empty)
+ Ts(empty-nonempty)]/4

= [0 + unlink(s) + 0 + creat(s)]/4

= (creat + unlink)/4 = (30 + 22)/4 = 13 (ins)

61



COVERT CHANNEL ANALYSIS GUIDELINE

Tr = [Tr(nonempty-ononempty) + Tenv(nonempty-o-nonempty) + Tr(nonempty-oempty)
+ Tenv(nonempty-empty) + Tr(empty-empty) + Tenv(empty+empty)

+ Tr(empty--non-empty) + Tenv(empty .nonempty)]/4

= [rmdir(f) + 0 + rmdir(s) + mkdir(s) + rmdir(s) + mkdir(s) + rmdir(f) + 0]/4

= [rmdir(s) + rmdir(f)]/2 + mkdir/2

= (180 + 3020)/2 + 260/2 = 1730 (ms)

Therefore,

B(0) = 1000/(1730 + 13 + 6) = 0.572 bits/sec

4.2.3 Differences between the Two Methods

Comparing the results of Examples 11 and 12 one might be tempted to con-

clude that the two bandwidth computation methods yield similar results for all covert

channels. This conclusion, however, is not always the case. Millen's method yields
higher bandwidths whenever the times to set up transmission environments and/or

those to transmit Os differ significantly from those to transmit I s. This may be the

case after delays are placed in some but not all TCB primitives of a channel (e.g., in

the error return path of a primitive needed to use the channel; this ensures that

undue performance penalty is not incurred.). Subsequent recomputation of the (de-
layed) channel bandwidth by the two methods would yield significantly different re-

sults. Experience with using the two methods for Secure Xenix shows that in cases
where the times to transmit a 0 and a 1 are close, the two methods yield results that

differ by at most 20%.

Millen's method is superior to that presented in [Tsai and Gligor88] not only be-

cause it always helps compute the maximum attainable bandwidth but also because

during its use one is required to define a realistic scenario of covert channel use.

This process helps remove any misunderstandings that might arise when different

parties use different assumptions to define the environment set-up times for a chan-

nel.

62



COVERT CHANNEL BANDWIDTH ESTIMATION

4.3 TCSEC REQUIREMENTS AND RECOMMENDATIONS

The TCSEC requirements for bandwidth determination of covert channels state,
"The system developer ... shall make a determination (either by actual measure-
ments or by engineering estimation) of the maximum bandwidths of each identified

channel."

As explained in Section 4.1, the measurements or estimation of the maximum
bandwidth must assume that the covert channels are noiseless, that no processes-
other than the sender and receiver-are present in the system when measurements
are performed, and that the synchronization time between senders and receivers is
negligible. If the channel's bandwidth is estimated using informal methods, measure-
ments of the channel's fastest primitives must be done to determine the values of
Ts(i), Tr(i), Tenv(i) as defined in Section 4.2.2, and the smallest measured value of
Tcs must be chosen. For both formal and informal bandwidth determination methods,
the selection of the TCB primitives measured should be based on realistic scenarios
of channel use and should take into account any parameter of TCB state depen-
dency that is relevant for a channel. The system configuration and architecture
parameters should be specified for each set of measurements. All measurements
necessary for bandwidth determination should be repeatable. Channel aggregation
should be considered even though it is not supported by any TCSEC requirements
or recommendations.

The TCSEC requirements for level Al state, "Formal methods shall be used in

the [covert channel] analysis."

In the context of bandwidth measurement or estimation, this requirement sug-

gests that Millen's method (1989a)-defined and illustrated in Section 4.2.1 -should
be used. Any other relevant information-theory-based method for covert channel
bandwidth estimation could be acceptable on a case-by-case basis.

63



5.0 COVERT CHANNEL HANDLING
In this chapter we present three general methods for the handling of known co-

vert channels that have been proposed and used to date. We also present a set of
handling policies based on the analysis of the covert channel threats and risks that
is consistent with the objective of the handling guideline of [NCSC TCSEC].

5.1 ELIMINATION OF COVERT CHANNELS

The first method is the elimination of covert channels. Elimination requires
changing the design and/or implementation of a system to remove covert channels
from the system. These changes include:

" The elimination of resource sharing between any potential participants in co-
vert leakage of information by preallocating maximum resource demands to
all participants or by partitioning resources on a per-security-level basis;

* The elimination of interfaces, features, and mechanisms which can cause co-
vert leakage.

Example 13 - Elimination of Resource Sharing and Resource Partitioning

To illustrate elimination of covert channels by the elimination of resource shar-
ing, let us reconsider Example 1. The dynamic allocation/deallocation of objects trig-
gers dynamic allocation of memory segments, which provides a resource-exhaustion
channel. If the memory is statically partitioned on a per-process or per-security-level
basis, the resource-exhaustion channel is eliminated. However, as pointed out in Ex-
ample 1, this partitioning is not always practical. For example, if the memory (or any
other TCB resource, such as internal tables) is partitioned, memory utilization may
decrease because some partitions may not be as frequently used as others. This in-
frequent use may cause a significant degradation in performance. We can find ex-
amples of resource partitioning that do not impose undue performance degradation.
For instance, the name space of the UNIXO System V interprocess communication
objects can be partitioned on a per-security-level basis without significant perfor-
mance degradation.

Resource partitioning on a per-user, or a per-process, basis is not always possi-
ble (e.g., shared hardware resources, such as busses, cannot be partitioned on a
per-user or per-process basis). However, the use of these resources can, in

65



COVERT CHANNEL ANALYSIS GUIDELINE

principle, be partitioned in time on a per-security-level basis. That is, processes run-
ning at the same time can share hardware resources only if the processes run at

the same level. For example, in the case of the multiprocessor configurations pre-
sented in Example 4, and illustrated in Figure 2-7, a dual-mode process dispatcher
can be implemented. In normal mode, the use of the CPUs is not partitioned. How-
ever, to eliminate the timing channels discussed in Example 4, the processes wait-
ing for service in the "ready" queue(s) can be loaded in available CPUs during the
same quantum only if they have the same security level. In this mode, called the
time-partitioned mode, the timing channels caused by bus or memory locking by
each memory reference become harmless. Trusted processes should be exempt
from time-partitioned dispatching whenever it can be shown they do not exploit co-
vert channels. (Furthermore, threat analysis performed in the environment of system
use may exempt other non-TCB applications from the time-partitioned mode of op-
eration. This exemption is an accreditation-policy matter and, thus, beyond the
scope of this guide.)

The performance degradation that may be caused from the time-partitioned dis-

patching depends on the mix of processes ready to run at any instance. In some
environments, where families of processes run concurrently (i.e., are coscheduled,
we discuss in Section 2.2.3), the performance degradation will be minimized since
all processes of a family run at the same security level. Performance degradation
will be significant whenever all processes of the "ready" queue(s) run at different
security levels because partitioned-mode dispatching will idle all but one CPU. The
overall performance degradation can be mitigated whenever partitioned mode dis-
patching can be turned on/off selectively by security administrators. In Section 5.4
we discuss policy factors, such as threat analysis, required for such actions.

Example 14- Elimination of TCB Interfaces, Features, or Mechanisms

In Example 2 we presented a covert channel caused by the UNIX interface con-
vention of preventing the removal of nonempty directories. We argued that
eliminating this UNIX convention may be impossible in practice due to user program
reliance on the inability to delete nonempty directories. However, in other instances,
the elimination of TCB interface conventions, features, or mechanisms causing co-
vert channels is possible. For example, programs can encode classified information
by modulating the extent to which they use resources, which is reflected in different
accounting (e.g., billing) information returned to users. One could remove this

66



COVERT CHANNEL HANDLING

accounting channel by eliminating billing on a user-level basis (i.e., by imposing

fixed uniform limits on the extent to which a resource could be used, such as fixed

maximum CPU time, fixed maximum I/O time). [Lampson731 Alternatively, this chan-

nel can be eliminated by producing accounting information on a per-level basis. Nei-

ther alternative seems particularly troublesome, in practice.

5.2 BANDWIDTH LIMITATION

The second method of handling known covert channels is based on bandwidth-

limitation policies. Such policies require the reduction of the maximum, or alterna-

tively the average, bandwidth of any channel to a predefined acceptable limit. One

can limit bandwidths by:

" Deliberately introducing noise into channels (e.g., using random allocation al-

gorithms for shared resources such as indices in shared tables, disk areas,

process identifiers; introducing extraneous processes that modify covert chan-

nel variables in random patterns); and

" Deliberately introducing delays in each TCB primitive of a real channel.

Example 15 - Introduction of Noise and Delays In Channels

The process identifier channel is an event-count channel that in most systems

can have a bandwidth of 10 to 500 bits per second. This channel appears because

most TCBs create a new process identifier by incrementing a process-identifier vari-

able whenever a new process is created. Thus, a receiver process could detect

whether the sender process transmitted a 0 or a 1 bit by determining whether the

identifiers of two processes it creates are consecutive numbers. One can reduce the

bandwidth of this channel by changing the process-identifier allocation algorithm of

the TCB. That is, the TCB could allocate unused identifiers in the identifier space

(pseudo) randomly in a nonmonotonic sequence. Depending upon the randomization

characteristics of the allocation algorithm, the bandwidth of the process-identifier

channel can be reduced to negligible values. Similar considerations apply to the oth-

er allocation algorithms of object identifiers. Note that using random allocation of

identifiers introduces negligible overhead and performance degradation in a TCB.

An additional example of noise introduction in covert channels is the notion of

"fuzzy time" introduced in [Hu9l]. Security kernels can constrain user processes to

67



COVERT CHANNEL ANALYSIS GUIDELINE

use only virtual time (i.e., time related only to a user's process activity but not to real
time). [Lipner751 To ensure little correlation between real and virtual time by a user
process (i.e., a receiver), the relationship between real and virtual time is random-
ized. This is the underlying principle of the notion of "fuzzy time." The randomization
appears to degrade system performance very little (i.e., 5-6% on a VAX system
[Hu91]). Thus, "fuzzy time" seems practical even in systems where performance
degradation is a significant concern.

An alternative method of reducing channel bandwidths includes the deliberate
introduction of spurious processes. That is, user-level processes are introduced in
the system to perform random alteration of channel variables. As illustrated in Figure
2-5, processes Up, ... ,Uq can introduce noise by altering a channel variable. Fur-
thermore, these processes can introduce delays in channels by interposing them-
selves between the senders and receivers. Analysis presented in [Tsai and
Gligor88] shows that the introduction of spurious processes can reduce up to about
75% of the bandwidth of typical channels. However, the introduction of spurious pro-
cesses for bandwidth-degradation purposes may not be cost-free. Spurious pro-
cesses tend to degrade system performance-not only channel bandwidth.

The deliberate introduction of delays in TCB primitives of real channels is typi-
cally used only for limiting the bandwidth of resource-exhaustion channels. The rea-
son is that one can place delays in these channels in a way that does not degrade
system performance until these channels are used. Resource-exhaustion channels
make use of resource-exhaustion exception (error) returns to transmit zeros or ones.
By placing delays within the return path of an exception, the channel bandwidth is
reduced proportionally with the frequency of either the zeros or the ones in the code
used by the channel users. In normal mode of TCB operation, however, perfor-
mance is not degraded because resource-exhaustion exceptions are generally rare
(unless channels are used).

It is generally advisable to introduce settable delays within TCB primitives, for
two reasons. First, settable delays give system management the opportunity to de-
termine the extent of performance degradation incurred by setting delays selectively
on a per-channel basis. Second, whenever the same operating system is used on
different hardware platforms, the delay values need to be changed to account for in-
creased or decreased bandwidth for the same channel.

68



COVERT CHANNEL HANDLING

The placement of delays in TCB primitives can be a more complex task than it
may first appear. Tradeoffs appear in the placement of delays in the TCB. On one

hand, the placement of a delay in functions closer to the TCB interface (i.e., in high-

level functions) offers the potential of minimizing the impact of the delay on the en-

tire TCB. For each covert channel, each TCB primitive can be dealt with separately.
Thus, one can choose a minimum delay value for each particular TCB primitive and

covert channel variable. On the other hand, disadvantages of this delay placement

strategy are:

" More coding is needed because for each covert channel, every TCB primitive

of the channel would have to be delayed individually; Example 16 illustrates
this concept.

* A minimum delay value may not be achievable for every covert channel

because, sometimes, it is unclear from the perspective of high-level TCB

functions what variables and other functions the low-level functions use. For
example, when a user issues a "creat" call in UNIX, the setting of an error
message ENFILE, when returning from "copen," may be done either in code

using the file structure or in code using the i-nodes. This concept is illustrated
in Example 17. In this case, it is impossible to achieve minimum delay for

both error situations simultaneously.

Delays could be added in low-level TCB functions common to many TCB primi-
tives. This action is possible because, in practice, each resource within the TCB is
managed by a few dedicated functions (resource managers). Thus, all user pro-

cesses that make use of a resource share these low-level resource-management
functions. Delays added to low-level functions will virtually delay all TCB primitives
that could take advantage of the corresponding covert channel. However, the dis-

advantage of this approach is that the length of delay must be determined by the
highest-bandwidth channel (e.g., by the fastest TCB primitive) using this low-

bandwidth channel. Consequently, TCB primitives used by low-bandwidth channels
(or slower TCB primitives that reference the same shared global variable) some-
times tend to be delayed unnecessarily.

69



COVERT CHANNEL ANALYSIS GUIDELINE

Example 16 - Delay Placement In a Resource-Exhaustion Channel

For most covert channels, one must place delays in more than one location of
the TCB code. The control-flow paths presented in this example refer to the
resource-exhaustion channel provided by the variable "inode-i_flag" of UNIX. This
example shows that multiple control paths, both through different TCB primitives of a
channel and through the same TCB primitive, must be covered by delays.

Some Control-Flow Paths for the Inode_i_flag Variable

creat:

(1) creat-ocopen.namei-,access

(2) creat-copen-access

open:

(1) open-copen-*namei-+access
(2) open.copen-access

unlink:

(1) unlink
(2) unlink namei-+access

utime:

(1) utime+namei+access

(2) utime access

chsize:

(1) chsize

This example shows that delay addition to a channel should be placed in low-
level TCB functions shared by multiple control paths for the same channel. The low-
level TCB functions that are common to all control paths of the inode+ i_flag chan-
nel include those of "access," "unlink," and "chsize."

70



COVERT CHANNEL HANDLING

Example 17 - Ambiguity In Delay Placement

The setting of a specific error message within a TCB primitive may correspond

to the viewing of multiple covert channels. Thus, the highest-level functions of a TCB

primitive cannot determine which channel is being used. Therefore, achieving mini-

mum delay in high-level TCB functions is not always possible. The highest-level

functions of TCB primitives where different channels can be distinguished should be

found and used for placement of minimum delays. The primitive "creat" of UNIX, in

which the ENFILE error is set for both the inode_space and file-table channels, il-

lustrates this case.

File Table Channel

(1) creat+copen+falloc

Inode Space Channel

(1) creat+copen-namei-iget
(2) creat-copen-mknod-ialloc-iget

In event-count channels, the addition of time delays is not advisable. These

channels can be used in normal mode of TCB operation rather than in exception

cases, and addition of delay would degrade performance significantly. Wherever

possible, bandwidth limitation should be achieved by using a randomization

algorithm for assigning the next available index or identifier. For TCB primitives that
simply read, rather than allocate, indices and identifiers, use of delays may still be

necessary whenever the randomization algorithm cannot introduce a sufficient

amount of noise to achieve the target bandwidth limit. This situation may arise when

the index or identifier range is too small for effective randomization. Example 18 il-
lustrates the selection of randomization points for the process identifier channel of

UNIX (variable proc-p_pid of UNIX).

Example 18 - Randomization Points of the Process-Identifier Channel in UNIX

fork

(1) fork

71



COVERT CHANNEL ANALYSIS GUIDELINE

walt

(1) wait
(2) wait-freeproc
(3) wait-sleep-issig-freeproc

getpid

(1) getpid

setpgrp

(1) setpgrp

In the process identifier channel of UNIX, a randomization algorithm should be
used within the TCB functions listed below to assign the next available identifier. The
invocation of identifier-reading TCB primitives, such as "getpid" and "setpgrp,"
could also be delayed unconditionally to help limit the channel bandwidth whenever
the identifier randomization is inadequate (e.g., provides monotonically increasing
identifiers in all cases).

5.3 AUDITING THE USE OF COVERT CHANNELS

The third method of handling known covert channels is that of deterrence of co-
vert channel use. This method allows all users to exploit known channels but pro-
vides a mechanism discouraging channel use. The main deterrence method is
channel auditing. This method assumes audit mechanisms can unambiguously de-
tect the use of a channel. Thus, users can be assured of detection of any unauthor-
ized use of covert channels. Note, however, that the TCSEC requires only the ability
to audit covert channels be provided-not that covert channels be actually audited.
This detail limits somewhat the effectiveness of audit as a real deterrent.

Covert channel auditing requires that sufficient data be recorded in audit trails to
enable the identification of (1) individual covert channel use, or use of certain chan-
nel types; and (2) identification of the senders and receivers of individual channels
or of channel types (i.e., the identification of the covert channel users). Furthermore,
discovery of covert channel use must be certain (i.e., covert channel auditing must
not be circumventable), and false detection of covert channel use must be avoided.
Circumvention of covert channel auditing is undesirable because it allows leakage of

72



COVERT CHANNEL HANDLING

information to remain undetected. False detection of covert channel use is also un-
desirable because it may make it impossible to distinguish between innocuous user
activity and covert channel use.

Estimation of actual covert channel bandwidth is possible and desirable once
covert channel use has been determined by audit-trail analysis. Note that, in gen-
eral, it is impossible to discover the actual information being leaked through covert
channels from audit trails because a user can encrypt it before leakage. Also, one
cannot distinguish between real information and noise leakage merely by inspecting
audit trails. Constant streams of either zeros or ones are the only recorded patterns
one can unambiguously classify as noise.

Most of the problems identified in covert channel auditing are fundamental and
are shared by most operating systems; these problems include (1) inability of distin-
guishing use of covert channels from innocuous use of TCB primitives, and (2) am-
biguity in distinguishing senders from receivers among covert channel users. These
problems appear because single TCB primitives may both alter and view a variable
or attribute, depending on the argument values of that primitive and on the system
state, and because different TCB primitives may be shared by different covert chan-
nels. Such primitives allow users to disguise covert channel use, thereby circum-
venting audit, and cause false detection of covert channels [Shieh and Gligor90].
Figures 3-2 and 3-4 show examples of such primitives.

Key design concerns of covert channel auditing are those of determining what
events should be recorded by auditing mechanisms and what data should be main-
tained by auditing tools to ensure that all covert channel use can be discovered.
The identification of covert channels can be summarized as sets of <variable,
PAh,PVi> triples (where PAh/PVi represents a TCB primitive altering/viewing the vari-
able, as shown in Figures 3-2 and 3-4), suggesting that recording all events includ-
ing pairs of < PAh, variable> and < PVi, variable> is necessary and sufficient for
covert channel auditing. However, recording such events is fraught with both practi-
cal and fundamental difficulties because audit-record formats and mechanisms cur-
rently used in practice include only process identifiers, object identifiers, process
and object security levels, type of event (e.g., primitive identifier), and event out-
come (i.e., success or error value); viz., Refs. [NCSC TCSEC, NCSC Audit]. Fields

73



COVERT CHANNEL ANALYSIS GUIDELINE

for recording covert channel variables are not included in existent audit-record for-
mats. [Shieh and Gligor90] provide examples of such fields and their setting.

In resource-exhaustion channels one can sometimes identify <PVi, variable>
pairs from recorded primitive identifiers and event outcomes. For example, when-
ever the event outcome is an error that can be unambiguously associated with a
channel variable, the auditor can infer that the recorded primitive identifier repre-
sents PVj. However, whenever the event outcome is no-error and if PVi = PAh, the
auditor cannot tell whether the recorded primitive identifier is for a PVj- or a PAh-type
of primitive; nor can the auditor tell whether the recorded primitive identifier repre-
sents a PAh type of primitive or an innocuous TCB primitive, whenever PV ! = PAh
occurs. Whether the use of a TCB primitive is innocuous or covert channel related
depends on the state of the system and on the values of the primitive's parameters.
Thus, the recording of channel variables is necessary for all no-error outcomes of a
primitive associated with a covert channel.

Fundamental difficulties with recording channel variables appear because many
TCB primitives are shared by several covert channels. Thus, a PAh- or a PVi-type
primitive may refer to variables of multiple channels. The actual use of a single vari-
able cannot be discerned even when all potential variables are known and even
when the error outcomes of a PVj primitive can be unambiguously associated with
single channel variables. For example, a user can infer a no-error outcome of a
shared PVj primitive on a given variable from an error outcome of the same PVj
primitive on another variable. This process enables users to disguise the use of a
channel as transmission of noise (e.g., constant strings of Os or is) on multiple
channels (an example of reference [Shieh and Gligor90]). In such cases, auditors
have to maintain additional information to enable the detection of all potential use of
covert channels.

Examples of the storage channel auditing problems mentioned above have
been illustrated in the context of the Secure Xenix system in reference [Shieh and
Gligor90]. Solutions to these problems are also presented in that reference. We
must note, however, that not all use of covert channels can be audited. Example 4
of section 2.2 illustrates a few instances of covert timing channels usage where au-
diting is impractical.

74



COVERT CHANNEL HANDLING

5.4 TCSEC REQUIREMENTS AND RECOMMENDATIONS

TCSEC requirements for covert channel handling are included in the audit and
documentation requirements. Section 8 of the TCSEC, "A Guideline on Covert Chan-
nels," makes additional recommendations.

The audit requirements of the TCSEC state, "The TCB shall be able to audit the
identified events that may be used in the exploitation of covert storage channels."

The design documentation requirements state:

[Documentation] shall also present the results of the covert channel analysis and
the trade-offs involved in restricting the channels. All auditable events that may
be used in the exploitation of known covert storage channels shall be identified.
The bandwidths of known covert channels, the use of which is not detectable by
the auditing mechanisms, shall be provided.

The [NCSC TCSEC] guidelines on covert channels suggest the following com-
bination of the above methods: (1) use elimination methods wherever possible to
eliminate channels with bandwidths over 0.1 bits/second; (2) use bandwidth-
limitation methods to reduce, whenever possible, the maximum bandwidth of every
channel that cannot be eliminated to 1 bit/second or less; (3) use deterrence meth-
ods, namely audit, for channels with bandwidths over 0.1 bit/second; and (4) use a
"don't care" policy for covert channels with bandwidths less than 0.1 bit/second.

The TCSEC requirements for handling covert channels and the covert channel
guidelines presented in Section 8 of the TCSEC suggest the following handling poli-
cy:

* Covert channels with bandwidths under some predefined lower limit b are ac-
ceptable;

* Covert storage channels with bandwidths over lower limit b shall be auditable;
the bandwidths of all storage channels that are not auditable shall be docu-
mented;

* Covert channels with bandwidths over some predefined upper limit B > b re-
present a significant threat and, wherever possible, they should either be
eliminated or their bandwidth should be reduced to B bits/second; and

75



COVERT CHANNEL ANALYSIS GUIDELINE

* Covert storage channels with bandwidths over b bits per second should be

audited; this gives system administrators the ability to detect and procedurally

correct significant compromise.

This policy allows for the existence of storage channels that are not auditable.

Also, it allows for the possibility that covert storage and timing channels with band-

widths over B = 1 bit/second will exist in secure systems. However, the suggested
values of b = 0.1 bits/second and B = 1 bit/second are not justified based on any

specific policy. The only basis for deriving these values is the determination that:

* Covert channel handling may impose performance penalties, and that band-
widths of 1 bit/second are acceptable in most environments; and

* Although covert channels with bandwidth of over 1 bit/second may be allowed
in a secure system, covert channels with bandwidths of over 100 bits/second

approximate the rate at which many (old) computer terminals are run (or us-

ers can type). Therefore, the existence of such channels in a secure com-

puter system would seem inappropriate.

(Note: This guide may not contain the current covert channel bandwidth policy,

which is subject to change. Please contact the NCSC for information about the cur-
rent policy.)

5.5 HANDLING POLICIES BASED ON THREAT ANALYSIS

Although the intent of the TCSEC handling requirements and guideline is sound,

the justification of the particular values of bandwidth limits b (0.1 bits/second) and B
(1 bit/second) may be less than satisfactory for the following reasons:

* The threat posed by covert channels depends on the specific application en-

vironment of use; therefore, the appropriateness of the bandwidth limits b and
B cannot be determined without threat analyses within the specific application

environment. Hence, these limits cannot be specified during the design or

evaluation process. Whenever practical, a system should include variable co-
vert channel delays whose values can be set by security administrators

[IBM87].

76



COVERT CHANNEL HANDLING

* The threat posed by covert channels depends on the characteristics of the
covert channels themselves. For example, (1) some covert channels have a
maximum attainable value that may be very high but the noise and delay un-
der normal system load decrease the attainable maximum bandwidth of these
channels under an acceptable limit B; (2) some covert channels can be ex-
ploited more readily than others having simpler scenarios of use; (3) some
covert channels cannot be audited because they appear at low system levels
where audit is impractical; or (4) some covert channels can be aggregated
serially or in parallel, increasing the effective bandwidth available to senders
and receivers, and some others cannot be aggregated [Tsai and Gligor88].

These considerations indicate that the values of the bandwidth limits b and B can
only be determined after a threat analysis which includes the above factors. Let us
consider an example illustrating the necessity of threat analysis in the environment
of secure system use.

Example 19 - Application Dependency of Bandwidth Limits

Consider an application environment in which classified satellite images are pro-
cessed (e.g., satellite images of various agricultural crops in certain countries). Each
image frame consists of 512x512 picture elements (pixels), each pixel having 8 bits,
and each application includes up to 10,000 frames. A multilevel secure system is
used which includes a covert channel of 10,000 bits/second. This means an image
frame can be declassified by using this covert channel in approximatively 200 sec-
onds. Thus, up to 18 frames can be declassified in an unauthorized manner per
hour. The need to operate this channel for more than one hour to declassify less
than 0.2% of the data makes this threat negligible. The likelihood of detecting the
use of this channel by (off-line) audit is very high due to its long period of operation.
Thus, in this environment b can be set to 10,000 bits/second or even higher. Of
course, information concerning the source of the satellite images may have a higher
classification. The vulnerability of this information to covert channels may require its
separate processing by trusted software rather than by untrusted application code.

In contrast, consider an application environment where 64-bit encryption keys
are generated whose lifetimes are comparable with that of a login session (i.e., 8
hours). Even if these keys are encrypted when stored on nonvolatile storage, their
actual use by application software would be in cleartext form. If the secure system

77



COVERT CHANNEL ANALYSIS GUIDELINE

used in this application contains a 0.1 bit/second channel, each session key can be
declassified in less than 11 minutes, rendering the key vulnerable for most of its life-
time. The likelihood of being able to detect the use of this channel through off-line
audit may not be very high because of the relatively short period of channel use.
On-line audit of this channel may be even less likely. Thus, in this application envi-
ronment B could not be set to 0.1 bit/second. Instead, a B of 0.002 bit/second would
seem more appropriate because, at that rate, it would take at least 8 hours to de-
classify a key.

The classification range of the information processed in a trusted system and,
therefore, the trusted system class (i.e., B2-A1) must also be considered in threat
analysis. Covert channels of high bandwidths (e.g., 1,000-10,000 bits per second)
may be acceptable in a B2 system in which only Top Secret and Secret information
is processed, and leakage below the Secret level is impossible. In contrast, the
same leakage rate may be unacceptable in Al systems that process multilevel in-
formation, since the possibility of unauthorized declassification of Top Secret infor-
mation might be a real threat.

In threat analyses, one must also consider the characteristics of each covert
channel. For example, the CPU scheduling channels of Example 3 may have a
maximum bandwidth of 5-300 bits/second on systems comparable to today's fast
workstations (depending on the operating system and scheduling parameters
[Huskamp78]). However, compared with the upgraded directory channels, the CPU
scheduling channels are much more difficult to use in any real system due to lack of
control over scheduling parameters and due to noise introduced by background pro-
cesses. Thus, these channels (and also those illustrated in Example 4 which use
shared hardware resources) are significantly less likely to be used in practice than
the noiseless upgraded-directory channels of Example 2. On the other hand, other
noisy channels such as the various identifier channels may be more likely to be
used than the upgraded directory channels because the likelihood of auditing cor-
rectly a noiseless channel is higher than that of auditing correctly a noisy channel.
Thus, the high likelihood of detecting the use of the upgraded directory channel may
deter its use.

This example indicates the need for establishing a threat-analysis policy on a
per environment and system basis. It also suggests this analysis cannot be carried
out at system evaluation time without postulating the characteristics of the

78



COVERT CHANNEL HANDLING

application environment. Finally, this example suggests few of the important param-
eters that should be considered for such an analysis.

79



6.0 COVERT CHANNEL TESTING
6.1 TESTING REQUIREMENTS AND RECOMMENDATIONS

The TCSEC requirements of test documentation at class B2 state, "... [Test
documentation] shall include results of testing the effectiveness of the methods used
to reduce covert channel bandwidths."

Covert channel testing demonstrates that covert channel handling methods cho-
sen by system designers work as intended. These methods include covert channel
elimination, bandwidth limitation, and (ability to) audit. Testing is also useful to con-
firm that potential covert channels discovered in the system are in fact real chan-
nels. Furthermore, testing is useful when the handling method for covert channels
uses variable bandwidth-reduction parameters (e.g., delays) that are settable by sys-
tem administrators (e.g., by auditors).

Bandwidth estimation methods necessary for the handling of covert channels
may be based on engineering estimation rather than on actual measurements.
Bandwidth estimations provide upper bounds for covert channels before employing
any handling methods. In contrast, covert channel testing always requires doing ac-
tual measurements to determine the covert channel bandwidths after implementing
the chosen handling method in a system.

6.2 TEST DOCUMENTATION
Test plan documentation, including test conditions, test environment set-up, test

data, expected test outcome, and actual test result documentation are discussed in
the security testing guideline [NCSC Testing] in detail. Therefore, we do not repeat
the discussion here. The security testing guideline also gives an example of the test
plans for a real channel (i.e., for the upgraded-directory channel of Example 2).

81



7.0 SATISFYING THE TCSEC REQUIREMENTS FOR
COVERT CHANNEL ANALYSIS

We present in this chapter the TCSEC requirements relevant to covert channel
analysis and suggest ways to satisfy them. For each class containing them, we
show the requirements of CCA (which include channel identification, bandwidth mea-
surement or estimation, audit, and design documentation). We also summarize the
recommendations made in the TCSEC guidelines on covert channels. Our recom-
mendations, though derived from TCSEC objectives, are not requirements.

7.1 REQUIREMENTS FOR CLASS B2

7.1.1 Covert Channel Analysis

Channel Identification

The TCSEC requirement for CCA states, "The system developer shall conduct a
thorough search for covert storage channels..."

Developers shall identify the sources of information used to satisfy this require-
ment. These sources shall include system reference manuals and the DTLS. They
should include source code and processor specifications whenever the identification
method includes source code and hardware analysis. Developers should show the
identification method they use to be sound and reliable (e.g., repeatable). This im-
plies, among other things, that independent evaluators can use the method on the
same sources of covert channel information and get the same results. Otherwise,
the identification evidence will lack credibility.

Bandwidth Measurement or Engineering Estimation

The TCSEC requirement for this area states, "The system developer shall ...
make a determination (either by actual measurement or by engineering estimation)
of the maximum bandwidth of each identified channel."

In measuring or estimating covert channel bandwidth, developers should con-
sider the following factors (as discussed in Section 4.1):

* For maximum bandwidth, assume the channel is noiseless and the presence
of other processes in the system do not delay the senders and receivers.

83



COVERT CHANNEL ANALYSIS GUIDELINE

* The choice of informal estimation methods requires defining (and possibly jus-

tifying) assumptions about the coding method and, therefore, the distribution

of Os and ls in all transmissions. Whenever possible, use Millen's information-

theory-based method, which yields the maximum bandwidth and also provides

the required coding method to achieve it [Millen89a].

" Covert channel measurements should include the fastest primitives for alter-

ing, viewing, and setting up the transmission environment. Also, bandwidth

measurements should involve the demonstrably fastest process (context)

switch time.

* To determine bandwidth, derive the TCB primitives to measure from real sce-

narios of covert channel use. Take into account parameter and TCB state de-

pendencies of each selected primitive (if any).

* Specify the measurement environment. This specification includes (1) the

speed of the system components, (2) the system configuration, (3) the sizes

of the memory and cache components, and (4) the system initialization. Docu-

ment the sensitivity of the measurement results to configuration changes.

(This documentation enables accreditors to assess the real impact of covert

channels in different environments of use.)

* Sender-receiver synchronization time may be considered negligible and,

therefore, ignored.

* Consider channel aggregation in bandwidth estimation.

* All measurements must be repeatable.

7.1.2 Audit

The TCSEC Audit requirements state, "... The TCB shall be able to audit the

identified events that may be used in the exploitation of covert storage channels."

To satisfy this requirement, audit mechanisms should include the following fea-

tures whenever possible (viz., discussion of Section 5.3):

9 The audit record should include the storage channel variables.

84



SATISFYING THE TCSEC REQUIREMENTS FOR COVERT CHANNEL ANALYSIS

* The audit code of the TCB should cover all control paths leading to the alter-
ation or viewing of the storage channel variables.

* The audit record should include sufficient information to identify unambiguous-
ly the senders and receivers of a storage channel.

* The audit mechanism should be noncircumventable whenever audit is turned
on for a covert channel.

7.1.3 Design Documentation

Part of the TCSEC requirements for this area states the following:

... This documentation shall also present the results of the covert channel ana-
lysis and the tradeoffs involved in restricting the channels. All auditable events
that may be used in the exploitation of known covert storage channels shall be
identified. The bandwidths of known covert storage channels, the use of which is
not detectable by the auditing mechanism, shall be provided....

Documentation of Identified Channels

The documentation of each identified storage channel should consist of the vari-
able the channel views/alters and the TCB primitives that alter or view the variable.
Developers should distinguish potential covert channels from real ones.

Documentation of Bandwidth Estimation

Developers must document measurements of each covert channel primitive and
should include the bandwidth computation for each channel. They should document
the measurement environment as specified in Section 7.1.1.

Documentation of Covert Channel Auditing

Documentation shall include a definition of each event used in the exploitation
of a covert channel. This documentation should cite the definition of the TCB primi-
tives and TCB paths leading to a covert channel variable. Developers should also
identify and justify the covert storage channels that cannot be audited.

85



COVERT CHANNEL ANALYSIS GUIDELINE

Channel Restriction and Handling Policies

The documentation shall include a description of (1) how covert channels are

eliminated, and (2) how covert channel bandwidth is limited to a value deemed ac-

ceptable. Sections 5.1 and 5.2 provide a discussion of channel restriction methods.

Covert channel-handling policies should be consistent with the intent of the

TCSEC guidelines. Covert channel bandwidth limits (b, B)-as defined in Sections

5.4 and 5.5-are considered outside the purview of the TCSEC. System accreditors

should specify these limits for the specific threat environment the system will be

used in.

7.1.4 Test Documentation

Part of the TCSEC requirements for test documentation states, "... [Test docu-

mentation] shall include results of testing the effectiveness of the methods used to

reduce covert channel bandwidths."

See the security testing guideline [NCSC Testing], which discusses these re-

quirements.

7.2 ADDITIONAL REQUIREMENTS FOR CLASS B3

Class B3 incorporates all requirements of class B2. In addition, the following re-

quirements apply.

7.2.1 Covert Channel Analysis

Channel Identification

The only additional B3-class requirement is the identification of timing channels.

Developers must define timing channel scenarios and identify all system compo-

nents providing independent sources of timing (e.g., CPUs and I/O processors).

Developers may use the same sources of information and methods for identifying

timing channels as those used for identifying storage channels.

Bandwidth Measurement or Engineering Estimation

There are no additional requirements.

86



SATISFYING THE TCSEC REQUIREMENTS FOR COVERT CHANNEL ANALYSIS

7.2.2 Audit

There are no additional requirements.

7.2.3 Design Documentation

Documentation of Identified Channels
The only additional requirement for this class is the documentation of all timing

channels. Developers should document these channels by specifying the variable of
the TCB state that may be changed by direct or indirect actions of user processes.
These channels include CPU-scheduling channels, I/O-processor-scheduling chan-
nels, and page-replacement channels.

7.2.4 Test Documentation

There are no additional requirements.

7.3 ADDITIONAL REQUIREMENTS FOR CLASS Al
Class Al contains all the class B3 requirements. The only additional require-

ments of class Al appear in CCA.

Covert Channel Analysis
Part of the TCSEC requirement for this area states, "... Formal methods shall

be used in analysis."

Channel Identification
Developers can apply formal methods on both formal specifications and source

code of the TCB. These methods include syntactic information-flow analysis (with or
without the use of semantic analysis) and noninterference analysis. Developers shall
apply the chosen identification method to the FTLS. Unless the identification of co-
vert channels is made a part of the specification-to-code correspondence (in which
case source-code analysis is included), developers should complement the FTLS
analysis with formal or informal source-code analysis. Otherwise, covert channels
may remain undetected.

87



COVERT CHANNEL ANALYSIS GUIDELINE

Bandwidth Measurement or Engineering Estimation

The requirement to use formal methods suggests that developers should use

Millen's method (1989a)-defined and illustrated in Section 4.2.1. Any other

information-theory-based method for covert channel bandwidth estimation may be

acceptable on a case-by-case basis.

88



ACRONYMS AND ABBREVIATIONS

AIS Automated Infomation System

CCA Covert Channel Analysis

CPU Central Processing Unit

DAC Discretionary Access Control

DoD Department of Defense

DTLS Descriptive Top-level Specification

EHDM Enhance Hierarchical Development Methodology

FDM Formal Development Methodology

FTLS Formal Top-level Specification

GVE Gypsy Verification Environment

HDM Hierarchical Development Methodology

I/O Input/Output

IPC InterProcess Communication

LOCK Logical Co-processing Kernel

LRU Least Recently Used

MAC Mandatory Access Control

MLS Multilevel Secure

NCSC National Computer Security Center

SAT Secure Ada Target

SRM Shared Resource Matrix

89



ACRONYMS AND ABBREVIATIONS

TCB Trusted Computing Base

TCSEC Trusted Computer System Evaluation Criteria

TLS Top-level Specification

90



GLOSSARY

ACCESS
Ability and means to communicate with (i.e., input to or receive output from)
or otherwise make use of any information, resource, or component in an AIS.
NOTE: An individual does not have "access" if the proper authority or a
physical, technical, or procedural measure prevents them from obtaining
knowledge or having an opportunity to alter information, material, resources,

or components.

ACCESS TYPE
Privilege to perform an action on a program or file. NOTE: Read, write,
execute, append, modify, delete, and create are examples of access types.

ACCREDITATION
Formal declaration by a designated approving authority that an AIS is
approved to operate in a particular security mode using a prescribed set of
safeguards.

ADMINISTRATIVE USER
A user assigned to supervise all or a portion of an AIS.

AUDIT
Independent review and examination of records and activities to assess the
adequacy of system controls, to ensure compliance with established policies
and operational procedures, and to recommend necessary changes in
controls, policies, or procedures.

AUDIT MECHANISM
The processes used to collect, review, and/or examine system activities.

AUDITOR
An authorized individual, or role, with administrative duties, which include
selecting the events to be audited on the system, setting up the audit
parameters which enable the recording of those events, and analyzing the
trail of audit events.

91



GLOSSARY

AUDIT TRAIL
Chronological record of system activities to enable the reconstruction and
examination of the sequence of events and/or changes in an event.

BANDWIDTH
A characteristic of a communication channel that is the amount of information
that can be passed through it in a given amount of time, usually expressed in
bits per second.

BELL-LA PADULA SECURITY MODEL
Formal-state transition model of a computer security policy that describes a
formal set of access controls based on information sensitivity and subject
authorizations.

CATEGORY
Restrictive label that has been applied to both classified and unclassified
data, thereby increasing the requirement for protection of, and restricting the
access to, the data. NOTE: Examples include sensitive compartmented
information, proprietary information, and North Atlantic Treaty Organization
information. Individuals are granted access to special category information
only after being granted formal access authorization.

CERTIFICATION
Comprehensive evaluation of the technical and nontechnical security features
of an AIS and other safeguards, made in support of the accreditation process,
to establish the extent to which a particular design and implementation meets
a set of specified security requirements.

CHANNEL
An information transfer path within a system. May also refer to the mechanism
by which the path is effected.

COVERT CHANNEL
Unintended and/or unauthorized communications path that can be used to
transfer information in a manner that violates an AIS security policy. See also:
Covert Storage Channel, Covert Timing Channel.

92



COVERT CHANNEL ANALYSIS GUIDELINE

COVERT STORAGE CHANNEL
Covert channel that involves the direct or indirect writing to a storage location
by one process and the direct or indirect reading of the storage location by
another process. NOTE: Covert storage channels typically involve a finite
resource (e.g., sectors on a disk) that is shared by two subjects at different
security levels.

COVERT TIMING CHANNEL
Covert channel in which one process signals information to another process
by modulating its own use of system resources (e.g., central processing unit
time) in such a way that this manipulation affects the real response time
observed by the second process.

DATA
Information with a specific physical representation.

DATA INTEGRITY
Condition that exists when data is unchanged from its source and has not
been accidentally or maliciously modified, altered, or destroyed.

DESCRIPTIVE TOP-LEVEL SPECIFICATION (DTLS)
Top-level specification that is written in a natural language (e.g., English), an
informal program design notation, or a combination of the two. NOTE:
Descriptive top-level specification, required for a class B2 and B3 AIS,
completely and accurately describes a trusted computing base. See formal
top-level specification.

DISCRETIONARY ACCESS CONTROL
Means of restricting access to objects based on the identity and need-to-
know of users and/or groups to which the object belongs. NOTE: Controls are
discretionary in the sense that a subject with a certain access permission is
capable of passing that permission (directly or indirectly) to any other subject.
See mandatory access control.

DOMAIN
Unique context (e.g., access control parameters) in which a program is
operating; in effect, the set of objects that a subject has the ability to access.

93



GLOSSARY

EXPLOITABLE CHANNEL
Covert channel that is intended to violate the security policy governing an AIS

and is usable or detectable by subjects external to the trusted computing

base. See covert channel.

FORMAL SECURITY POLICY MODEL
Mathematically precise statement of a security policy. NOTE: Such a model

must define a secure state, an initial state, and how the model represents

changes in state. The model must be shown to be secure by proving that the

initial state is secure and that all possible subsequent states remain secure.

FORMAL TOP-LEVEL SPECIFICATION (FTLS)
Top-level specification that is written in a formal mathematical language to

allow theorems, showing the correspondence of the system specification to

its formal requirements, to be hypothesized and formally proven. NOTE:

Formal top-level specification, required for a class Al AIS, completely and

accurately describes the trusted computing base. See descriptive top-level

specification.

FUNCTIONAL TESTING
Segment of security testing in which advertised security mechanisms of an

AIS are tested under operational conditions.

MANDATORY ACCESS CONTROL
Means of restricting access to objects based on the sensitivity (as

represented by a label) of the information contained in the objects and the

formal authorization (i.e., clearance) of subjects to access information of such

sensitivity. See discretionary access control.

MULTILEVEL DEVICE
Device that is trusted to properly maintain and separate data of different

security levels.

OBJECT
Passive entity that contains or receives information. NOTE: Access to an

object implies access to the information it contains. Examples of objects are:

records, blocks, pages, segments, files, directories, directory trees and

94



COVERT CHANNEL ANALYSIS GUIDELINE

programs, as well as bits, bytes, words, fields, processors, video displays,
keyboards, clocks, printers, and network nodes.

OVERT CHANNEL
Communications path within a computer system or network that is designed
for the authorized transfer of data. See covert channel.

PROCESS
A program in execution. See domain and subject.

READ
Fundamental operation in an AIS that results only in the flow of information
from an object to a subject. See access type.

READ ACCESS
Permission to read information in an AIS.

SECURITY ADMINISTRATOR
An administrative role (or user) responsible for the security of an AIS and
having the authority to enforce the security safeguards on all others who have
access to the AIS (with the possible exception of the auditor.) Also called
system administrator.

SECURITY LEVEL
The combination of a hierarchical classification and a set of nonhierarchical
categories that represents the sensitivity of information.

SECURITY POLICY
The set of laws, rules, and practices that regulate how an organization
manages, protects, and distributes sensitive information.

SECURITY POLICY MODEL
An informal or formal presentation of a security policy enforced by the AIS. It
must identify the set of rules and practices that regulate how an AIS
manages, protects, and distributes sensitive information. See Bell-La Padula
security model and formal security policy model.

95



GLOSSARY

SECURITY TESTING
Process to determine that an AIS protects data and maintains functionality as

intended. NOTE: Security testing may reveal vulnerabilities beyond the scope

of the AIS design.

SUBJECT
Active entity in an AIS, generally in the form of a person, process, or device

that causes information to flow among objects or changes the system state.
NOTE: Technically, a process/domain pair.

SUBJECT SECURITY LEVEL
Sensitivity label(s) of the objects to which the subject has both read and write
access. NOTE: Security level of a subject must always be dominated by the

clearance level of the user with which the subject is associated.

TCB PRIMITIVE
An operation implemented by the TCB whose interface specifications (e.g.,

names, parameters, effects, exceptions, access control checks, errors, and
calling conventions) are provided by system reference manuals or DTLS/FTLS
as required.

TOP-LEVEL SPECIFICATION (TLS)
A nonprocedural description of system behavior at the most abstract level;
typically, a functional specification that omits all implementation details.

TROJAN HORSE
Computer program containing an apparent or actual useful function that
contains additional (hidden) functions that allows unauthorized collection,
falsification or destruction of data.

TRUSTED COMPUTING BASE (TCB)
Totality of protection mechanisms within a computer system, including
hardware, firmware, and software, the combination of which is responsible for

enforcing a security policy. NOTE: The ability of a trusted computing base to
enforce correctly a unified security policy depends on the correctness of the
mechanisms within the trusted computing base, the protection of those

96



COVERT CHANNEL ANALYSIS GUIDELINE

mechanisms to ensure their correctness, and the correct input of parameters
related to the security policy.

USER
Person or process accessing an AIS by direct connections (e.g., via
terminals) or indirect connections. NOTE: "Indirect connection" relates to
persons who prepare input data or receive output that is not reviewed for
content or classification by a responsible individual.

VERIFICATION
The process of comparing two levels of an AIS specification for proper
correspondence (e.g., security policy model with top-level specification, top-
level specification with source code, or source code with object code). NOTE:
This process may or may not be automated.

WRITE
Fundamental operation in an AIS that results only in the flow of information
from a subject to an object. See access type.

WRITE ACCESS
Permission to write to an object in an AIS.

97



REFERENCES

[Andrews and Reitman80]
G. R. Andrews and R. P. Reitman, "An Axiomatic Approach to Information

Flow In Programs," ACM Transactions on Programming Languages and Systems,
2:1, pp. 56-76, January 1980.

[Bach86]
M. J. Bach, The Design of the UNIX Operating System, Prentice-Hall Inc.,

Englewood Cliffs, New Jersey, 1986.

[Bell and La Padula76]
D. E. Bell and L. J. La Padula, Secure Computer System: Unified Exposition

and Multics Interpretation, The MITRE Corp., Report No. MTR-2997 Revision 1,
Electronic Systems Division, U. S. Air Force Systems Command, Technical Report
ESD-TR-75-306, Bedford, Massachusetts, March 1976 (available as NTIS AD-
A023588).

[Benzel84]
T. V. Benzel, "Analysis of a Kernel Verification," Proceedings of the IEEE

Symposium on Security and Privacy, Oakland, California, pp. 125-131, April 1984.

[Biba77]
K. J. Biba, Integrity Considerations for Secure Computer Systems, The

MITRE Corp., Report No. MTR-3153 Revision 1, Electronic Systems Division, U. S.
Air Force Systems Command, Technical Report ESD-TR-76-372, Bedford,
Massachusetts, April 1977.

[Boebert85]
.W. E. Boebert, R. Y. Kain, and W. D. Young, "Secure Computing: The

Secure Ada Target Approach," Scientific Honeyweller, 6:2, pp. 1-17, July 1985.

[Cipher9O]
IEEE Computer Society Technical Committee on Security and Privacy,

Minutes of the First Workshop on Covert Channel Analysis, Cipher Newsletter,
Special Issue, pp. 8-12, July 1990.

99



REFERENCES

[Clark and Wilson87]

D. D. Clark and D. R. Wilson, "A Comparison of Commercial and Military

Computer Security Policies," Proceedings of the IEEE Symposium on Security and

Privacy, Oakland, California, pp. 184-194, April 1987.

[Denning76]

D. E. Denning, "A Lattice Model of Secure Information Flow,"

Communications of the ACM, 19:5, pp. 236-243, May 1976.

[Denning77]

D. E. Denning and P. J. Denning, "Certification of Programs for Secure

Information Flow," Communications of the ACM, 20:7, pp. 504-513, July 1977.

[Denning83]

D. E. Denning, Cryptography and Data Security, Addison-Wesley, Reading,
Massachusetts, 1983 (reprinted).

[DoD Directive]

Department of Defense, Security Requirements for Automated Information

Systems (AlSs), DoD Directive 5200.28, 21 March 1988.

[Eckmann87]

S. T. Eckmann, "Ina Flo: The FDM Flow Tool," Proceedings of the 10th
National Computer Security Conference, Baltimore, Maryland, pp. 175-182,

September 1987.

[Feiertag80]

R. Feiertag, A Technique for Proving Specifications are Multilevel Secure,
Technical Report CSL-109, Computer Science Laboratory, SRI International, Menlo

Park, California, January 1980.

[Gallager68]
R. G. Gallager, Information Theory and Reliable Communications, John

Wiley and Sons, New York, 1968.

[Gasser88]

M. Gasser, Building A Secure Computer System, Van Nostrand Reinhold,

New York, 1988.

100



COVERT CHANNEL ANALYSIS GUIDELINE

[Gligor86]

V. D. Gligor and C. S. Chandersekaran, "Towards the Development of
Secure Distributed Systems," in Grissonnanche, A. (editor), Information Security:
The Challenge, IFIP Press, Monte Carlo, pp. 395-406, 1986.

[Gligor87]
V. D. Gligor, C. S. Chandersekaran, R. S. Chapman, L. J. Dotterer, M. S.

Hecht, W.-D. Jiang, A. Johri, G. L. Luckenbaugh, N. Vasudevan, "Design and
Implementation of Secure Xenix," IEEE Transactions on Software Engineering,
13:2, pp. 208-221, February 1987.

[Goguen and Meseguer82]
J. A. Goguen and J. Meseguer, "Security Policies and Security Models,"

Proceedings of the IEEE Symposium on Security and Privacy, Oakland, California,

pp. 11-20, April 1982.

[Goguen and Meseguer84]
J. A. Goguen and J. Meseguer, "Unwinding and Inference Control,"

Proceedings of the IEEE Symposium on Security and Privacy, Oakland, California,
pp. 75-86, April 1984.

[Haberman72]
A. N. Haberman, "Synchronization of Communicating Processes,"

Communications of the ACM, 12:7, pp. 171-176, July 1972.

[Haigh87]
J. T. Haigh, R. A. Kemmerer, J. McHugh, and W. D. Young, "An Experience

Using Two Covert Channel Analysis Techniques on a Real System Design,"
IEEE Transactions on Software Engineering, 13:2, pp. 157-168, February 1987.

[Haykin83]

S. Haykin, Communication Systems, John Wiley and Sons, New York, 1983
(second edition).

[He and Gligor90]
J. He and V. D. Gligor, "Information Flow Analysis for Covert-Channel

Identification in Multilevel Secure Operating Systems," Proceedings of the 3rd

101



REFERENCES

IEEE Workshop on Computer Security Foundations, Franconia, New Hampshire, pp.
139-148, June 1990.

[Honeywel185a]
Honeywell Information Systems Inc., SCOMP Interpretation of the Bell-

La Padula Model, Technical Report, McLean, Virginia, March 1985.

[Honeywel185b]
Honeywell Information Systems Inc., Multics Security Model - Bell and

La Padula, Multics Design Document MDD-002, Cambridge, Massachusetts, August
1985.

[Hu91]
W.-M. Hu, "Reducing Timing Channels with Fuzzy Time," Proceedings of

the IEEE Symposium on Research in Security and Privacy, Oakland, California, pp.
8-20, May 1991.

[Huskamp781

J. C. Huskamp, Covert Communication Channels in Timesharing Systems,
Technical Report UCB-CS-78-02, Ph.D. Thesis, University of California, Berkeley,
California, (1978).

[IBM87]
IBM Corp., Secure Xenix, version 1.1 - Descriptive Top-Level

Specifications, June 1987.

[Jones79]
A. K. Jones, R. K. Chansler Jr., I. Durham, K. Schwans, and S. R. Vegdahl,

"StarOS: A Multiprocessor Operating System for the Support Task Forces,"
Proceedings of the 7th Symposium on Operating System Principles, Pacific Grove,

California, pp. 117-127, December 1979.

[Karger87]
P. A. Karger, "Limiting the Damage Potential of Discretionary Trojan

Horses," Proceedings of the IEEE Symposium on Security and Privacy, Oakland,

California, pp. 32-37, April 1987.

102



COVERT CHANNEL ANALYSIS GUIDELINE

[Karger and Wray9l]
P. A. Karger and J. C. Wray, "Storage Channels in Disk Arm Optimization,"

Proceedings of the IEEE Symposium on Research in Security and Privacy, Oakland,

California, pp. 52-61, May 1991.

[Kemmerer83]

R. A. Kemmerer, "Shared Resource Matrix Methodology: An Approach to
Identifying Storage and Timing Channels," ACM Transactions on Computer

Systems, 1:3, pp. 256-277, August 1983.

[Kemmerer86]
R. A. Kemmerer, Verification Assessment Study Final Report, National

Computer Security Center, Technical Report C3-CR01-86, Library No. S-228,204,
March 1986.

[Lampson73]
B. W. Lampson, "A Note on the Confinement Problem," Communications of

the ACM, 16:10, pp. 613-615, October 1973.

[Leach83]

P. J. Leach, P. H. Levine, B. P. Dorous, J. A. Hamilton, D. L. Nelson, and B.
L. Stumpf, "The Architecture of an Integrated Local Network," IEEE Journal on
Selected Areas in Communications, 1:5, pp. 842-856, November 1983.

[Lipner75]
S. B. Lipner, "A Comment on the Confinement Problem," Operating

Systems Review, 9:5, pp. 192-196, November 1975.

[Loepere85]

K. Loepere, "Resolving Covert Channels within a B2 Class Secure
System," Operating Systems Review, ACM SIGOPS, 19:3, pp. 9-28, July 1985.

[Luckenbaugh86]

G. L. Luckenbaugh, V. D. Gligor, L. J. Dotterer, C. S. Chandersekaran, and N.
Vasudevan, "Interpretation of the Bell-La Padula Model in Secure Xenix,"
Proceedings of the 9th National Computer Security Conference, Gaithersburg,
Maryland, pp. 113-125, September 1986.

103



REFERENCES

[McHugh and Akers87]
J. McHugh and R. L. Akers, A Formal Justification for the Gypsy

Information Flow Tool, Technical Report, Computational Logic Inc., Austin, Texas,
1987.

[McHugh and Good85]
J. McHugh and D. I. Good, "An Information Flow Tool for Gypsy,"

Proceedings of the IEEE Symposium on Security and Privacy, pp. 46-48, April 1985.

[Millen76]
J. K. Millen, "Security Kernel Validation In Practice," Communications of

the ACM, 19:5, May 1976.

[Millen78]
J. K. Millen, "An Example of a Formal Flow Violation," Proceedings of the

IEEE International Conference on Computer Software and Applications, Chicago,
Illinois, pp. 204-208, 1978.

[Millen8l]
J. K. Millen, "Information Flow Analysis of Formal Specifications,"

Proceedings of the IEEE Symposium on Security and Privacy, pp. 3-8, April 1981.

[Millen89a]
J. K. Millen, "Finite-State Noiseless Covert Channels," Proceedings of the

Computer Security Foundations Workshop, Franconia, New Hampshire, pp. 81-85,
June 1989.

[Millen89b]
J. K. Millen, Foundations of Covert-Channel Detection, The MITRE

Corporation, Technical Report MTR-10538, January 1989.

[NCSC Audit]
National Computer Security Center, A Guide to Understanding Audit in

Trusted Systems, NCSC-TG-001, version 2, June 1988.

[NCSC DAC]
National Computer Security Center, A Guide to Understanding

Discretionary Access Control, NCSC-TG-003, version 1, 30 September 1987.

104



COVERT CHANNEL ANALYSIS GUIDELINE

[NCSC TCSEC]

National Computer Security Center, Department of Defense Trusted

Computer System Evaluation Criteria, DoD 5200.28-STD, December 1985.

[NCSC Testing]
National Computer Security Center, A Guide to Understanding Security

Testing and Test Documentation in Trusted Systems, Draft, 1989.

[Osterhout8O]
J. K. Osterhout, S. H. Scelza, and P. S. Sinhu, "Medusa: An Experiment In

Distributed Operating System Structure," Communications of the ACM, 23:2, pp.
92-105, February 1980.

[Osterhout82]
J. K. Osterhout, "Scheduling Techniques for Concurrent System

Structure," Proceedings of the 3rd International Conference on Distributed

Computing Systems, Ft. Lauderdale, Florida, pp. 22-30, October 1982.

[Reed and Kanodia78]
D. P. Reed and R. K. Kanodia, "Synchronization with Eventcounts and

Sequencers," Communications of the ACM, 21:2, pp. 115-122, February 1978.

[Rushby84]

J. Rushby, "The Security Model of Enhanced HDM," Proceedings of the

7th DODINBS Computer Security Conference, pp. 120-136, September 1984.

[Rushby85]

J. Rushby, The SRI Security Model, Technical Report, Computer Science
Laboratory, SRI International, Menlo Park, California, April 1985.

[Saltzer and Schroeder75]
J. H. Saltzer and M. D. Schroeder, "The Protection of Information in

Computer Systems," Proceedings of the IEEE, 63:9, pp. 1278-1308, September
1975.

105



REFERENCES

[Schaefer77]
M. Schaefer, B. Gold, R. Linde, and J. Scheid, "Program Confinement in

KVM/370," Proceedings of the 1977 Annual ACM Conference, Seattle, Washington,
ACM, New York, pp. 404-410, October 1977.

[Schaefer891
M. Schaefer, "Symbol Security Condition Considered Harmful,"

Proceedings of the IEEE Symposium on Security and Privacy, Oakland, California,
pp. 20-46, April 1989.

[Schroeder77]
M. D. Schroeder, D. D. Clark, and J. H. Saltzer, "The Multics Kernel Design

Project," Proceedings of the 6th ACM Symposium on Operating Systems
Principles, West Lafayette, IN, pp. 43-45, November 1977. (Also available in the
Operating Systems Review, 11:5, November 1977.)

[Shannon and Weaver64]
C. E. Shannon and W. Weaver, The Mathematical Theory of

Communication, The University of Illinois Press, Urbana, Illinois, 1964.

[Shieh and Gligor90]
S. P. Shieh and V. D. Gligor, "Auditing the Use of Covert Channels In

Secure Systems," Proceedings of the IEEE Symposium on Research in Security
and Privacy, Oakland, California, May 1990.

[Tsai90]
C.-R. Tsai, V. D. Gligor, and C. S Chandersekaran, "A Formal Method for

the Identification of Covert Storage Channels In Source Code," IEEE
Transactions on Software Engineering, 16:6, pp. 569-580, June 1990. (Also in the
Proceedings of the IEEE Symposium on Security and Privacy, Oakland, California,
pp. 74-86, April 1987.)

[Tsai and Gligor881
C.-R. Tsai and V. D. Gligor, "A Bandwidth Computation Model for Covert

Storage Channels and Its Applications," Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, California, pp. 108-121, April 1988.

106



COVERT CHANNEL ANALYSIS GUIDELINE

[Walker83]

B. Walker, G. Popek, and G. Thiel, "The LOCUS Distributed Operating

System," Proceedings of the 9th ACM Symposium on Operating System Principles,

Bretton-Wood, New Hampshire, pp. 49-70, December 1983.

[Walter74]

K. G. Walter, W. F. Ogden, W. C. Rounds, F. T. Bradshaw, S. R. Ames, K. J.

Biba, J. M. Gilligan, D. D. Schaeffer, S. I. Schaen, and D. G. Shumway, Modeling

the Security Interface, Technical Report No. 1158, Case Western Reserve

University, Cleveland, Ohio, August 1974.

[Whitmore73]

J. Whitmore, et al., Design for Multics Security Enhancements, Honeywell

Information Systems Inc., Technical Report ESD-TR-74-176, HQ Electronic Systems

Division, Hanscom AFB, Massachusetts, December 1973.

[Wray9l ]

J. C. Wray, "An Analysis of Covert Timing Channels," Proceedings of the

IEEE Symposium on Research in Security and Privacy, Oakland, California, pp. 2-7,

May 1991.

107



APPENDIX A
ADDITIONAL EXAMPLES OF COVERT CHANNELS

This appendix provides additional examples of storage and timing channels. For
simplicity, in all covert channel examples below we assume the security level of the
sending process S dominates that of the receiving process R. However, one can
find similar examples where the security levels of S and R are incomparable using

the dominance relation defined in the system.

A.1 STORAGE CHANNELS

The following examples of covert storage channels are identified in the litera-
ture; for example, see [Lopere85] or [Tsai and Gligor88]. These examples are nec-
essarily generic in nature and are meant to be a starting point for identification of
covert storage channels in specific systems.

A.1.1 Table-Space Exhaustion Channels

The table-space exhaustion channel is similar to the memory-resource exhaus-
tion channel. The channel is present on systems in which the TCB allocates a fixed
amount of space for its tables rather than employing some type of dynamic alloca-
tion scheme. For the purpose of creating an example here, suppose that a TCB has
allocated a fixed table to keep track of processes created in the system. A sending
process S whose security level dominates that of a receiving process R would trans-
mit information in the following manner:

(1) Process R creates processes (one or more of these processes can be

deleted by the sender S) until the process table space is exhausted. The
new processes simply sleep or block indefinitely.

(2) Process R then synchronizes with process S.

(3) To send a 1 or 0, process S either deletes a process (in common with R)

or doesn't and then blocks.

(4) Process R attempts to create another process (again, in common with S).
It records a 1 or 0 depending on its success. Process R then synchronizes

109



COVERT CHANNEL ANALYSIS GUIDELINE

with process S, and the operation continues in this fashion until all of the
desired information is transferred.

A.1.2 Unmount of Busy File System Channels
This covert storage channel is exploitable in a segmented memory architecture

system in which the file system cannot be unmounted if some segments are still in
the address space of a process. If a process attempts to unmount a file system and
is given an answer busy or not busy, a higher security level process owning seg-
ments contained in the file system can transfer information to a lower security level
process attempting the unmount. The scenario is as follows:

(1) Process R (whose security level is dominated by that of S) begins by re-
leasing all of the segments on the file system. Processes R and S have
one segment in common which they can both map into their address
spaces.

(2) Process R then synchronizes with process S.

(3) To send a 1 or 0, process S either maps the common segment into its ad-
dress space (or does nothing if it is already there) or unmaps the common
segment from its address space (or does nothing if it is already not there).
Process S then blocks.

(4) Process R receives a 1 or 0 by attempting to unmount the file system and
reviewing the result. If the unmount was successful, R remounts the file
system.

(5) Process R then synchronizes with process S and the exchange continues
until completion of the desired transfer.

A.1.3 Printer Attachment Channel

When physical printers or other I/O devices are shared resources in a system, a
sending process S at a high security level could potentially transfer information to a
receiving process R at a lower security level by creating contention for the the de-
vice(s). As always, the sender and receiver must have some way to synchronize. To
send a 1, the sender process S simply checks to see if the printer is attached, and
attaches it if it is not. To send a 0, the sender process S checks to see if the printer

110



APPENDIX A - ADDITIONAL EXAMPLES OF COVERT CHANNELS

is attached, and detaches it if it is. The receiver process R attempts to attach the
printer, receiving a 0 if successful, and a 1 otherwise. The receiver process R then
detaches the printer if the attach call was successful.

A.2 TIMING CHANNELS

One way to think of the difference between covert timing channels and covert
storage channels is that covert timing channels are essentially memoryless, whereas
covert storage channels are not. With a timing channel, the information transmitted
from the sender must be sensed by the receiver immediately, or it will be lost. How-
ever, an error code indicating a full disk which is exploited to create a storage chan-
nel may stay constant for an indefinite amount of time, so a receiving process is not
as constrained by time.

As is the case with covert storage channels, covert timing channels will inevita-
bly be present on any system in which sharing of system resources takes place. We
present several examples of covert timing channels in the following sections.

The tasks of identification and handling covert timing channels (i.e., bandwidth
reduction, elimination, or audit) in a secure system are more difficult than for covert
storage channels for the following reasons:

(1) An accepted method (such as the SRM method presented in
[Kemmerer83] and reviewed in Section 3.2.3) for identifying all covert tim-
ing channels does not exist. Although the SRM method has been pre-
sented as a tool for the identification of both covert storage and timing
channels, in the case of timing channels it is no more effective than an ad
hoc examination of each system call.

(2) Tools (such as Ina Flo or HDM MLS-presented in Appendix B) for identi-
fying covert timing channels do not exist. This is largely because the for-
mal specification methodologies that have been developed do not address
timing issues, and this situation is not expected to change in the near fu-
ture [Haigh87]. This is the case because none of the existent tools can
help discover timing channel scenarios.

(3) Covert timing channels involve the exploitation of normal system activity
(and sometimes the direct exploitation of hardware), thus they are much

111



COVERT CHANNEL ANALYSIS GUIDELINE

more difficult to audit than covert storage channels. Attempts to perform
meaningful audit of normal system activity will result in the generation of
massive amounts of unusable data, added kernel complexity, and reduced
performance. For example, it is practically impossible to audit the CPU tim-
ing channels of Example 3 and the bus, memory-port, and crossbar-switch
contention channels of Example 4, Section 2.2.1.

Despite the problems listed above, to a certain extent one can design a secure
system that limits or eliminates some types of covert timing channels. For example,
one can eliminate a potential covert timing channel by time-partitioning a shared re-
source on a security-level basis (see Section 5.1). The addition of noise (for exam-
ple, in the form of added processes) can also reduce the bandwidth of most covert
timing channels.

The following sections enumerate some of the covert timing channels that are
identified in the literature (for example, see [Schaefer77, Huskamp78, Karger and
Wray9l1]). These examples are necessarily generic in nature and are meant to be a
starting point for identification of covert timing channels in specific systems. We
make two basic assumptions for all of the examples detailed in the following sec-
tions. First, in each scenario we assume the communicating processes either have
a continuous clock available that has reasonable resolution, or the processes create
a time reference by using simple counters in memory segments or files. Second, we
assume the communicating processes are running alone on the system (i.e., little or
no noise is present). This second assumption ensures calculating the maximum
channel bandwidths.

These two assumptions help identify some of the countermeasures that can be
used against some covert timing channels in a secure system. The first is to
virtualize the clock in the system by resetting the clock at every context switch
[Lipner75]. However, this action could render the system useless, since many sys-
tem functions depend on a real, continuous time source. Also, this countermeasure
is ineffective when the communicating processes have constructed their own time
references. The other countermeasure that applies to most covert timing channels is
the addition of noise to the system in the form of added processes. While this coun-
termeasure can effectively reduce the bandwidth of the channel, it adds unwanted
overhead to the system.

112



APPENDIX A - ADDITIONAL EXAMPLES OF COVERT CHANNELS

A.2.1 I/O Scheduling Channels

Consider a movable head I/O device that uses a scheduling algorithm called the
"elevator algorithm." The algorithm works as follows: requests are enqueued by
ascending cylinder number. Requests are then dequeued in order of ascending cyl-
inder number until no greater cylinder number remains (i.e., the upper end of the
cylinder is reached) and then are dequeued in descending order until no lower num-
bered cylinders remain (i.e., the lower end of the cylinder is reached). This process
is continuously repeated.

Again, let process R be a receiver at a low security level and process S be the
sender at a higher security level. Process R is the owner of cylinders 51 through 59
of a disk, to which S has read access. Process R issues a request for cylinder 55,
waits until notified of its completion, and then relinquishes the CPU. Process S then
issues a request for either cylinder 53 (to send a 0) or 57 (to send a 1), and then re-
linquishes the CPU. Process R then issues requests for cylinders 58 and 52, record-
ing a 1 or 0 depending on which request completes first.

Note that similar timing channels can be found for other I/O scheduling algo-
rithms. One way to eliminate these channels is to keep a process from viewing its
requests until the entire queue of requests has been completed. This action also
leads to underutilization of the I/O processing power.

A.2.2 I/O Operation Completion Channels

Assume process S and process R own separate portions of the same movable-
head I/O device. Process S and process R synchronize themselves to run alter-
nately by using the system's synchronization facilities. For an example of the syn-
chronization primitives that could be used, see [Reed and Kanodia78]. To send a 1,
process S requests a read on a part of the disk that is farthest from process R's
portion of the disk. To send a 0, process S does nothing. Process R issues a read
to its portion of the disk and determines the bit of information received depending
on the time that it takes for the request to complete.

Note that both the I/O scheduling and the I/O completion channels are similar to
the CPU quantum and CPU interquantum channels of Example 3, Section 2.2.1.

113



COVERT CHANNEL ANALYSIS GUIDELINE

A.2.3 Memory Resource Management Channels

Below we describe two possible covert timing channels associated with the ac-
tivity of memory resource management. Both involve a sending process conveying
information by modulating the frequency with which a receiver process obtains a re-

source. The first channel involves the ability of the sender to modulate the data pag-
ing rate; the second involves the sender modulating the time the receiver takes to
obtain addressability to a segment via an active segment table.

A.2.3.1 Data Page Pool Channels

Suppose a sender process S whose security level dominates that of a receiver
process R can request the same page of data in a demand-paging environment. In
this scenario, the receiver process R's security level must dominate the security lev-
el of the page, and the processes S and R must possess "read" access to the
page. The sender process S may not possess "write" access to the page. Imagine
also that the page has not been referenced, and so is not resident in main memory.
Additionally, the processes S and R must agree on a set of pages to be used to ex-
ploit this covert channel. Process S can now modulate process R's response time

(and thus send a bit of information to R) when reading the page by either referenc-
ing the page or not (bringing the page into memory or not). If process S is reading
(or not reading) from a new page each time, it can continually send information to R.
Since memory is not infinite, a new page cannot be referenced each time. A poten-

tially continuous channel still exists, though, as long as process S has more pages
available to it than the memory management working set size, the pages are refer-
enced in a circular fashion, and the memory manager is using a Least Recently
Used (LRU) page-replacement algorithm.

A.2.3.2 Active Segment Table Channels

The active segment table channel is very similar to the data page pool channel,
and is only a threat in a segmented architecture. The sending process S either intro-
duces a new segment into its address space (resulting in the segment being en-
tered into the active segment table) or doesn't, depending on the desired value to
be transmitted. The receiving process R introduces the same segment into its ad-
dress space, and perceives the difference in response time, which varies depending
upon whether or not the entry is already in the active segment table. Similar to the

114



APPENDIX A - ADDITIONAL EXAMPLES OF COVERT CHANNELS

data page pool case, this channel can be made continuous as long as process S
and process R share more segments than there are slots in the active segment ta-
ble and process S releases the previous iteration's segment (removing it from the
table) before proceeding to the next iteration.

A.2.4 Device Controller Contention Channels

Consider a system in which multiple single-level devices, of perhaps different
levels, are handled by the same controller, and I/O to each device is scheduled seri-

ally. Process S, which is writing to device A, can send information to process R (R is
dominated by S), which is writing to device B, by varying the time that it spends do-
ing I/O. Note that this channel's bandwidth can potentially be raised by transmitting
more elaborate bit patterns than just 0 or 1 with the use of encoding techniques (by
associating higher radix digits with different time intervals perceived by the receiver).
For example, a perceived interval of 0 to x would indicate a value of 0, interval x to y
would be a 1, and interval y to z would be a 2. Note, however, that more elaborate

schemes for encoding of data can be more susceptible to the effects of noise.

A.2.5 Exclusive Use of Segments Channels

In some systems, a user is allowed to obtain exclusive use of a segment. If a
process currently has exclusive access to a segment, other requests for access to

the segment are blocked until the segment becomes available. Therefore, a sending
process S at a high security level could potentially gain exclusive access to a seg-
ment, and modulate the time it takes for a receiving process R at a lower security
level to gain access to the segment. Note that, as in the previous section, the band-
width of the channel could potentially be raised by the transmission of more elabo-

rate bit patterns.

A.2.6 Synchronization Primitive Contention Channels

Consider a system where a central lock provides and controls process synchro-
nization primitives. Contention for this central coordination can then be exploited to
create a timing channel. The required configuration is similar to that of Example 4 of
Section 2.2.1: three processors in a system, one process per processor, with a
clock process incrementing a counter in a shared segment. The receiver process R

continuously reads the shared counter, attempts two synchronization primitive calls,
and reads the counter again. The sender process S (whose security level dominates

115



COVERT CHANNEL ANALYSIS GUIDELINE

that of the receiver process R) transmits a bit of data by either making a synchroni-
zation call (thereby causing contention) or waiting for the amount of time it would
take to make two synchronization calls (one with contention), in order to stay syn-
chronized. The receiver process R discriminates binary data by comparing the two
reads of the counter in the shared segment. The delay will be longer if the sender
process S has created contention.

116



APPENDIX B
TOOLS FOR COVERT CHANNEL IDENTIFICATION

The TCSEC requires one use formal methods in the covert channel analysis of

a system targeted for the Al class. A number of tools exist, and are generally asso-
ciated with a particular suite of tools such as the Formal Development Methodology
(FDM), the Enhanced Hierarchical Development Methodology (EHDM), and the Gyp-

sy Verification Environment (GVE). Although the emphasis has been on examining

specifications written in a language such as Ina Jo (FDM), Revised Special (EHDM),

or Gypsy (GVE), some work has been done on analysis of source code for covert

channels using tools (see Section 3.2). The examination for covert channels involves
looking at each variable referenced in the specification, and deciding where informa-

tion flow is possible.

The goal of using these tools is to identify (with respect to a given policy) inse-

cure flows, so that all such flows in a system can be reduced or eliminated. How-
ever, as discussed in Section 3.1, use of a flow tool on a specification does not

guarantee that insecure flows do not exist in an implementation; rather, it guarantees

that insecure flows do not exist in, and are not required by, the specification. For this
reason, one must be careful concerning assertions made about the application of a
given tool to a design. Also, since the tools developed to date are not designed to

find timing channel scenarios, they are useful primarily in the identification of covert

storage channels.

The information-flow tools described below are the FDM Multilevel Secure (MLS)

and SRM tools, the Gypsy Flow Analyzer, and the EHDM MLS tool. Chapter 3 de-

scribes the use of formal methods in the identification of covert channels in source

code.

B.1 FDM INA FLOW TOOL

The Ina Flo Tool [Eckmann87], a software tool to aid CCA, is part of the FDM

developed at Unisys. Ina Flo is composed of two tools: MLS, which is similar to the
HDM MLS tool, and another tool, which implements the Shared Resource Matrix ap-

proach [Kemmerer83].

117



COVERT CHANNEL ANALYSIS GUIDELINE

B.1.1 MLS

The MLS tool of Ina Flo identifies flows in an Ina Jo specification by examining

dependencies between variables and formal parameters of transforms from one
state to the next. If x and y are variables or formal parameters of a transform, and
the new value of y depends on the old value of x, then information flows from x to y.
MLS also includes the following rule for determining security: A flow is secure if and

only if the label (security level) of variable y dominates the label of variable x (i.e.,
the *-property [Bell and La Padula76] is preserved). The user assigns labels to vari-
ables and defines a partial ordering on those labels (defines the dominates relation).
MLS then generates a list of conjectures (one list per transform) which, when prov-
en, guarantee there are no storage channels in the specification. Conjectures that
cannot be proven represent potential covert channels which must be handled with
manual analysis.

Because Ina Jo specifications can be written in a nondeterministic manner, the

dependencies between old and new values of variables can be difficult to determine.
For this reason, the generation of information regarding nondeterministic flows is op-

tional. A preprocessor called "PREMLS" is available that accepts an Ina Jo specifi-

cation and produces a more deterministic version of the same specification.

B.1.2 SRM

The SRM tool of Ina Flo is an implementation of the SRM Method, and is in-
tended to be used on specifications in which the MLS tool cannot be used. This
would be the case when the specification does not contain complete security policy
information. The SRM tool does not provide as much automated capability as the
MLS tool. It simply accepts the Ina Jo specification and generates the corresponding
shared resource matrix. Analysis of this matrix is then a manual procedure.

B.2 GYPSY FLOW ANALYZER

The Gypsy Flow Analyzer [McHugh and Good85] is an information-flow tool that

is part of the GVE. The basis for this tool comes from the Gypsy optimizer, which
contains code to identify "ghost" variables having no effect on the outputs of the
program. These variables are found by conducting a detailed flow analysis of the
Gypsy specification. The flow analysis involves generating the set of all paths

through each routine and determining all contributors to the output of the routine. In

118



APPENDIX B - TOOLS FOR COVERT CHANNEL IDENTIFICATION

addition to the identification of flows resulting from assignment statements, those re-
sulting from control constructs and buffer operations are identified.

The application of a flow tool such as this to the problem of identification of co-
vert channels in secure systems involves the assignment of labels to variables, the
definition of a flow policy, and the definition of a partial ordering among different la-
bel values, much like is done with the MLS tool of the FDM. Note that the choice of
the flow policy is at the discretion of the user of the flow tool. The entire process of
using the Gypsy Flow Tool is summarized in [McHugh and Good85] as follows:

(1) Definition of the desired information flow policy expressed as a Gypsy the-
ory (i.e., a set of Gypsy functions, constants, lemmas, and data types).

(2) Identification of the TCB interface set.

(3) Execution of the flow analysis for the TCB.

(4) Construction of information flow analogues for each routine in the TCB in-
terface set using the results of the previous step.

(5) Creation of information flow policy specifications for the TCB interface rou-
tines and for literals or constants appearing in the flows to the parameters
of the interface set.

(6) Generation of verification conditions for the flow abstraction routines.

(7) Proof of the verification conditions.

Difficulty in proof of the verification conditions indicates existence of flows that
violate the stated flow policy. The source of these illegal flows must be pinpointed
exactly and treated so that the proof step can be completed. Unfortunately, in a
large program, locating illegal flows can be very difficult, and the Gypsy Flow Tool
does not provide much help in this area.

B.3 EHDM MLS TOOL

The EHDM MLS Tool [Rushby84] is an information flow tool that is part of the
Enhanced Hierarchical Development Methodology. It accepts as input a specification
written in Revised Special and produces a set of theorems to be verified. The suc-

119



COVERT CHANNEL ANALYSIS GUIDELINE

cessful verification of these theorems asserts that the specification is multilevel se-

cure as defined by the SRI model in [Rushby84].

A conceptually simple statement of the SRI model is that the information users

can obtain from a system cannot be influenced by users whose security level is

greater than theirs. The model assumes a lattice of security levels and a collection

of users assigned a security level. If operations in the system possess an invocation

level SL 1, then the operation is multilevel secure if:

(1) The value (result) returned to the user depends on objects whose security

levels SL2 satisfy SL2 < = SL1 .

(2) The objects that acquire new values during the operation are at security

level SL 2 such that SL 1 < = SL 2.

(3) If an object at security level SL 2 acquires a new value dependent on the

value of an object at security level SL 1, then SL 2 must dominate SL1.

The SRI model is conceptually similar to the Bell and La Padula model [Bell and

La Padula76]. The MLS tool produces a set of theorems for each operation that cor-

respond to the three conditions stated above. Violations of the model may appear in

the generated output, and may indicate design flaws or covert channels.

Two concerns about the MLS tool are raised in [Kemmerer86]. One is that the

volume of generated theorems will be very high. The other is that all of the theorems

may not be provable in an automated way using the EHDM theorem prover, so the

user may have to edit the PROOF module, adding lemmas that make the verification

conditions provable.

An earlier version of the MLS flow tool (old HDM) was used in the SCOMP ver-

ification effort [Benzel84] to identify a number of covert channels. Isolation of the po-

tential channels consisted of tracing unprovable verification conditions back to the

system specification, and then tracing the lines of the specification back to the lines

of code, using the results of the specification-to-code correspondence effort. This

result indicates it is highly desirable to complete the code correspondence effort be-

fore undertaking the task of applying the MLS flow tool to the specification.

120



APPENDIX B - TOOLS FOR COVERT CHANNEL IDENTIFICATION

B.4 SOURCE-CODE ANALYSIS TOOL

The previous three sections discuss various formal tools that can be used for
the identification of covert storage channels by examining the specification of a sys-
tem. This section outlines the steps of a formal method that has been developed for
the identification of covert storage channels by examination of the source code of a
system. [Tsai90, He and Gligor90] The advantages of a formal source-code ap-
proach to the identification of covert channels are:

(1) All potential storage channels in the implementation examined are discov-

ered.

(2) It avoids discovery of false illegal flows (a problem that appears with the
use of the other tools discussed above).

(3) The method helps to determine whether the mandatory access control
rules are implemented correctly.

(4) It helps determine the source code locations where audit code, delays,
and randomization code should be placed for handling covert channels.

(5) The method is a fully automated search for potential covert storage chan-
nels. [He and Gligor90]

In addition to the advantages stated above, a code level examination for covert
storage channels seems to be stronger than the specification level searches pro-
vided by FDM, GVE, and HDM, since a formal method has not been developed for
showing the correspondence of the specification to the code. The code-level search
for covert storage channels is theoretically similar to specification-level approaches
and is conducted as follows:

(1) Select the set of kernel primitives (TCB interface calls) to be analyzed.

(2) Determine the visibility/alterability of kernel variables when primitives are
invoked.

(3) Apply the mandatory access control policy to the shared variables and
kernel primitives to detect flows which are in violation.

121



COVERT CHANNEL ANALYSIS GUIDELINE

For more details on this method of channel identification, we refer the reader to

[Tsai9O, He and Gligor9O].

* U.S. GOVERNMENT PRINTING OFFICE:1994-517-749/8072
7

122



Form ApprovedREPORT DOCUMENTATION PAGE A OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources.
gathering and maiin,arin the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
Collection of information, ncluding suggestions for reducing this burden, to Washington Headquarters Services Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highways. Suite 1204, Arlington. VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED
November 1993 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A Guide to Understanding Covert Channel Analysis of Trusted
Systems

6. AUTHOR(S)

Virgil Gligor

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
National Security Agency REPORT NUMBER

Attn: 194 (Standards, Criteria, and Guidelines Division) NCSC-TG-030
Ft. George G. Meade, MD 20755-6000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
National Security Agency AGENCY REPORT NUMBER

Attn: 194 (Standards, Criteria, and Guidelines Division) Library No. S-240,572
Ft. George G. Meade, MD 20755-6000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release: distribution unlimited

13. ABSTRACT (Maximum 200 words)

This document provides a set of good practices related to covert channel analysis of systems
employed for processing classified and other sensitive information. It's written to help vendors and
evaluators understand covert channel analysis requirements. It contains suggestions and recom-
mendations derived from Trusted Computer System Evaluation Criteria (TCSEC) objectives but
which aren't required by the TCSEC.

14. SUBJECTTERMS 15. NUMBEROFPAGES

Computer security; Trusted Computer System Evaluation Criteria (TCSEC); automated 129
information system (AIS); covert channel analysis; operating systems. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITYCLASSIFICATION 19. SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
tSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102


