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ABSTRACT

We discuss a fundamental radar imaging problem for narrowband electromagnetic waves that
extends the recent results originally obtained in [1, 2] in the scalar, or acoustic, setting. In particular we
demonstrate the ability to efficiently image three-dimensional convex conducting bodies by using the
knowledge of the scattered electric field for one fixed monochromatic illumination of the target. In this
problem our knowledge of the scattered electric wave is understood to be in the form of measurements of
the amplitude and phase of the tangential components of the radiated electric field (generated by the radar
target) on a finite two-dimensional array. We also provide a more general version of this streamlined result
that describes imaging of multiply connected nonconvex objects with the same measurements.
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1. INTRODUCTION

We begin with a few introductory remarks that outline what we mean by narrowband
electromagnetic imaging. The problem concerns estimating the shape and size of an object on the basis of
known information in the form of measurements of reflected waves taken at some distance from the
unknown object. Specifically, how do we form a three-dimensional image of a potentially very distant
object using something like a radar or collection of such sensors? Figure 1 depicts such a measurement
scenario.

Radar Target

Wave Receiving

Single Transmitted Received/Measured
Wave Scattered Wave

Figure 1. Data collection scenario.

The problem is simple: image the scatterer, or target, with a single incident wave with the aid of
measurements of the scattered wave taken on a finite two-dimensional array. For example, the scattered
wave is a frequency-dependent, i.e., narrowband, induced voltage response created by the illumination of
the target. Although the underlying physics and mathematics that lead us to the imaging algorithm can
appear complicated, the algorithm we will ultimately employ is extremely easy to understand and
implement.

The imaging algorithm may be summarized as follows. The measured electric field, as a function of
two variables on the array and for a chosen origin of the problem, is decomposed into its generalized
Fourier modes, and a combined one-dimensional power spectrum of this signal is generated. The critical



point in the power spectrum where the combined spectral energy transitions from a highly oscillatory
behavior and begins a super exponential decay is then found. This index is determined by computing the 12

normi of the accumulated energy of these modes and defining the cutoff at ninety percent of the total
spectral energy. The index cutoff is converted to a length through division by the wave number (2t/k) of
the narrowband waveform used in probing the target. This length represents the radius of the smallest
sphere, centered at the origin we previously specified, which must contain the unknown scatterer. The
process is then repeated with new center, or origin, and terminated when enough centers of interest have
been considered. Finally, the intersection of all the computed spheres is computed and the resulting
common region is taken as an approximation to the convex scatterer.

We mention that the power spectrum possesses three very pronounced and particular behavior
regimes as a function of increasing mode number. Figure 2 illustrates the three regions of interest and
shows the combined power spectra, labeled as I Pn I for a candidate example. The first regimes takes place
within 0 < n < 45, the second roughly within 45 < n < 55, and the final region for all n beyond this.

1. i.e., L2 norm of a discrete collection of complex numbers.
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Figure 2. Oscillation and decay of the combined power spectra.

First, there is a region of highly oscillatory modes, followed by a region of extremely rapid decay,
finally followed by a region of essentially null values. The index at which this power spectrum begins this
rapid decline defines the radius of the smallest sphere with a specified origin, which must contain the
scattering object. 2 By considering several origins we construct several such spheres, each of which must
contain the scatterer. Hence, by considering the intersection of all such spherical regions we arrive at an
approximation to a three-dimensional image of the assumed target. Figure 3 provides an illustration of this
process.

2. For the moment, we mention that the reason for this is intimately related to the unique analytic continuation of the
measured electric field on an array. We will revisit this in the section treating the supporting theory behind our main
result and defer further discussion until such time, due to its technical nature.
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Figure 3. An example of two-dimensional projection of the intersection of three spherical-containing regions and the
true convex target.

The remainder of this report reviews the physics that govern this problem and how that physics and
some mathematical analysis lead to a well-understood and fully justified target characterization algorithm.
Moreover, this treatment suggests additional innovative object characterization techniques through its
description of the fundamental scattering processes at work. These results will be presented in forthcoming
articles.
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2. THE PHYSICAL MODEL

We begin with a brief overview of the fundamental inverse scattering problem at the heart of our
application. Our imaging technique will employ novel processing of measurements of electromagnetic
waves. Hence, to illustrate the origins, success, and limitations of the algorithm, we begin with a brief
review and characterization of what we term the forward, or direct, scattering problem: given a well-
defined scattering object and a specified incident wave, we formulate the response to that incident
illumination and analytically predict how such a wave would interact with the scatterer.

We start with the time-dependent Maxwell's equations in free space, i.e., in a subdomain of 0 c R3

in which there are no electric or magnetic current densities, for which the electric field E and the magnetic
field B satisfy

V A F(x, t) + [toatB(x, t) = 0, (1)

V A B(x, t)-Faot(x, t) = 0. (2)

Here, x = (x 1 , x2 , x 3 ) e R3 is our spatial variable and t e R denotes time. The constant quantities

t0 and -0 are, respectively, the magnetic permeability and electric permittivity of free space. We briefly
mention that the electric and magnetic fields are complex-valued vector quantities as functions of both

position and time, so that E, B: R3 x R-4C 3 . Additionally, V A is the standard curl operation and a,

denotes differentiation in time.

Rather than dealing directly with the problem in the time domain, we will recast this system of six
coupled partial differential equations into one that depends on frequency. On the basis of this system, we
arrive at our narrowband, or fixed-frequency, imaging result.

To accomplish this goal, we employ the Fourier transform mapping functions, or distributions, in
time into ones depending on angular frequency w. In this way we define frequency-dependent electric and
magnetic fields as

E(x,w) = e-iwtE(x, t)dt and H(x, w) = fe-iWtB(x, t)dt, (3)

R R

whose inversions are given by
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1(,t Wr(dB 1 r Hiwt, wdw
(x, t) = feiwtE(x, w)dw and B(x, t) fe-ije H(x, w)dw. (4)

R R

We note that i = J-II represents the imaginary unit.

Employing the Fourier transform essentially converts differentiation in time into multiplication in
frequency. Hence, we arrive at the frequency-dependent Maxwell system

V A E(x, w) - iwgoH(x, w) = 0, (5)

V A H(x, w) + iwFoE(x, w) = 0. (6)

We now take a moment to distinguish between two fundamentally different types of electric and

magnetic fields. By this we mean outgoing, or scattered or radiating waves (Es, Hs), and incoming, or local
incident plane waves (E', Hi). We define the total fields we would measure with any physical device as the
sum of these two types of waves. Namely, we will use, and so we define here, the total fields E and H as

E(x) = Ei(x) + ES(x), H(x) = Hi(x) + HS(x). (7)

Any outgoing pair of electric and magnetic fields must satisfy the so-called Silver-Mtiller radiation
condition, which we recall is given by either

lim (HS A x - rEs) = 0, r = IxI (8)
r -

or

lim (ES A x + rH s ) = 0, r IxI. (9)
r .-.



Equivalently, Es = (Es, Es, E) and Hs = (Hs, Hs, f3) means that each Cartesian coordinate

component E:R3 --) C and HS:R 3 ---> C,J 1, 2, 3, of the two vector fields Es and Hs satisfies the

Sommerfeld radiation condition, which is

lim (ar- ik)Ej = lim (aik)Hj = 0, r = JxJ. (10)
r ---) r ---)

The Silver-MUller and Sommerfeld radiation conditions imply the asymptotic behaviors

ikixi

ES(x) = e(E() + O()l')), 1XI -(
1XI

and

eik1x1
F = + O(l')), ) +xl o (12)

2 2 2 2
where i = (x/Ixl) and Jx = x1 + x 2 + x3 . Here, the quantities E_ and H_ denote the far-field patterns,
or scattering amplitudes, of the outgoing waves Es(x) and H(x). We emphasize that for most remote
electromagnetic sensing experiments, these are the quantities we measure. Additionally, the electric and
magnetic scattering amplitudes defined on the unit sphere with normal v 2 must also satisfy the asymptotic
boundary conditions

( vs2 , E_) = v2, H_) = 0, where H_o = V 2 AE_ . (13)

We mention that this equation simply means that the electric and magnetic scattering amplitudes are
2purely tangential vector fields, possessing no normal contribution in any direction x E S

Incoming electric and magnetic waves are ones similar to the radiating case, only they satisfy the
conjugate of the Silver-Mfiller and Sommerfeld radiation conditions. That is, rather than having constant
phase fronts that migrate outward, in the usual sense, they travel and converge on the origin as a function

of positive time. Additionally, by a local plane wave propagating in the direction y we mean a certain type

of incoming wave-specifically, a Herglotz wave with a Dirac kernel supported in the direction y

We will now turn our attention to the case of the scattering of an incident wave pair (E i, H i) from a
perfect conducting scatterer. In particular, what we mean is that the tangential components of the total

electric field must vanish throughout the surface of the scatterer, so that if VD(x) denotes this normal of the

scatterer D at some point x, then we have
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VD(X) A E(X) = 0, Vx c aD. (14)

In summary, the problem is to understand how an incident pair of fields (E, H) interacts with the
conductor D and generates the scattered pair of fields (Es, Hs) as a function of various parametrizations of
the incident wave energy, e.g., their frequency or energy and direction. We note that the problem may be
stated and treated as a system of partial differential equations, admitting very insightful analysis and
solution techniques via the theory of finite elements. For more on this approach see [3, 4]. For the purposes
of the exposition of this report, however, we will choose to frame this problem in terms of integral
equations for the clarity they provide in terms of the operator mappings between the scattering system
inputs (E', H') and its outputs (Es, HS).

In any domain Q c R3 within which there are no charge or current sources, each type of outgoing or
incoming wave satisfies our frequency-dependent Maxwell system

V AE i 's - ikHi' s = V AH'S+ikEs = 0, k = w/c = w(t 0oe0) - , (15)

and hence, the total fields E and H do as well. This system of coupled partial differential equations has an
alternative integral equation representation called the Stratton-Chu integral equation, which for a perfect
conductor has the form

E(x) = E'(x) + VAVA fG(x-y)v(y)AH(y)ds(y), (16)
JD

H(x) = H'(x) + V A f G(x - y)v(y) A H(y)ds(y). (17)
aD

Here, ds(y) denotes surface measure on the boundary of the conducting scatterer D, and the integrals
exist as improper ones as x --- aD 3 y. Again, we emphasize that the pair (E, H) denotes the total
electromagnetic and magnetic fields, and we identify the integral kernel G(x - y) appearing in both integral
equations as the fundamental solution of the scalar Helmholtz equation. Specifically, G is the outgoing
fundamental, or distributional, solution of

3

(A+k2)G(x-y) = 8(x-y), x,ye R3 , A E,x, (18)
j=1

8



where 6 e 6'(R3 ) is the so-called Dirac distribution, or "delta function," and is given by

G(x-y) I e Ix-yI X#Y. (19)

The asymptotic behavior of the convolution kernel G is of extreme importance; hence, we take a few
moments to examine it. Suppose the point y is contained within the finite ball of radius R centered at the

32 2 2origin, which we write as BR(O). Suppose further that x x/Ixl E S2 = {x E x + x2 + x3 = I } and
G(x) is the outgoing fundamental solution to the operator A + k2 in R3 . Then,

1 eik l  -ik
G(x-y) -41i I e k(, . (20)

This claim is evident when we examine the asymptotics of the term Ix - yl. First, if y is required to
remain in a finite region, while x may tend to infinity, then

I Ix I + + O(IxI-2), IxI ' . (21)
-Ix

Since y E BR(O), then

max S21 x,y - R < 
(22)

Hence,

G(x-y)= 4e e -ik(x,y) + O(Ixl-,)), 1I (23)

The asymptotic behavior of the acoustic outgoing fundamental solution G coupled with the
asymptotic behavior of the scattered electric and magnetic waves implies that the electric and magnetic
scattering amplitudes are given by

ik -
(24).

E_ = --XA Je v((y)AH(y))Axds(y) (24)

a D



H_ X i k A jeikx'y) v((y) A E(y))ds(y). (25)
aD

The formulations for the electric and magnetic scattering amplitudes now provide us an operator we
term F, whose analytical properties will be of significant interest. It tells how and why we can image
conducting bodies with narrowband measurements of the scattered electromagnetic waves made at a
distance. For this reason we will examine a few more aspects of the operator F and briefly discuss how it
indicates and describes the interaction between an incident incoming magnetic wave Hi and a conducting
body. More importantly, we will hit on how such a description benefits us in suggesting a reconstruction,
or three-dimensional imaging algorithm.

From the previous analysis we see that the electric scattering amplitude is generated by the surficial
current j VD A H generated on the boundary of the conductor D by the interaction of an incident pair of
waves (E', H'). In summary,

E_(x) = (Fj)(x): = JK(x,y)j(y)ds(y), (26)
aD

where the kernel of operator F is

ik -ik (x, y) - (7

K(x, y): = e(27)

If we recall and write the second of the Stratton-Chu integral equations as a function of the incident
magnetic wave

Si eik(y,) 2(S 2 )

S = (x)ds(), o- TL , (28)

S
2

where the subscript indicates the parametrization of H -- e.g., in this instance H' is a superposition of(X
entire plane waves, also called Herglotz waves, and plays the role of the weighting of such square
integrable tangential vector waves and is the Herglotz kernel-as

H(x) = Hi(x) + V A f G(x- y)v(y) A H(y)ds(y) (29)
aD

10



= :i(x) + (BH)(x), (30)

then, formally given an known parametrization of an incident magnetic wave H. , the electric scattering

amplitude is generated by

Ec(x) = HK(x,y)vD^ ((I-B['H)(y)ds(y) (31)

aD

(FH' A. (32)

In the next section, we present the main result of this report, which is that the coefficients in the
generalized Fourier series representation of E_ on A encode the boundary of the scatterer aD. Moreover,
this result gives us a robust and efficient algorithm that can reconstruct the scatterer with limited but
appropriately sampled values of E_ on A. The details of the properties of F and the representation of the
signal E- on the array A that support these results will then be discussed in detail in Section 4.

11



3. MAIN RESULTS

Before discussing the main results we need to address two issues. The first concerns the dependence
of the electric scattering amplitude on the origin of the physical problem. Since we are at liberty to define
the origin where we choose and this value changes the values of the measured quantity we have, we must
determine this influence. Moreover, we will demonstrate that this analysis leads us to a very attractive and
easily implementable algorithm for characterizing the scattering body. The second issue regards the vector
representation of the tangential vector field on our measurement array.

We begin with a quick treatment of the continuous dependence of the electric scattering amplitude
with the origin c E R3 . In what we developed in the previous section, we assumed the origin to be the
standard one, namely, c = 0. However, if instead we choose any arbitrary point c to be the center of our
universe, then the electric scattering amplitude is generated by

E_(x) = (Fj(-c))(x) (33)

= K(x, y)j(y- c)ds(y) (34)
aD-c

ik e-k(x Y)xA x Aj(y- c)ds(y) (35)

aD-c

-7 ek f e-(x YA Aj(y)ds(y) (36)

aD

ik (x, C)= D(x)(Fj)(x), D,(x) = e i  
, (37)

where aD-c is the translate of aD to the c-centered origin. Hence, given the true scattering amplitude E_
produced by the physical interaction with the incident wave, we may produce its value if instead we insist
that the point c is the origin by performing a unitary operation, i.e., a simple phase multiplication at each
point where we measure the field. We further add that this concept of shifting and choosing various origins
plays a very powerful and useful role in the imaging algorithm.

We recall that the electric scattering amplitude we measure in remote sensing on a flat or curved two-
dimensional array will consist of two orthogonal components. By this we mean that the electric scattering

13



amplitude is a vector-valued function. Also, since any flat or smoothly curved array is locally equivalent to
the unit sphere, we begin with a very brief discussion of two-dimensional vector fields supported on the

2 2unit sphere S . In what follows, for a scalar function u(O, 0) defined on the unit sphere S , we will use the
so-called surficial gradient, defined by

V = S 2 sin0To' -0)' (38)

which is an element of the tangent space of the unit sphere, denoted by Ts2.

Let v be a complex-valued vector field supported on the unit sphere S2. Then we say that

222

v e TL2(S2), provided that in the representation of the vector field on the sphere S2

V(X) = ( XmVs 2 Yn() +P'XA VS 2 Yn (x), S2 (39)

n= lm=-n

obeys the condition

f(I vs2Y:(x)) + (v(X), ,A VS2 Yn(X)) 1')ds(x) <00 , (40)

S
2

where the terms (v, Vs, Yn) and (V, x A Vs, Yn) represent the projections of the tangential field on S2

onto the orthonormal bases V Yn' and X A Vs, Y. Here, the functions Yn(x) are the spherical

harmonics, of order n and degree m on S2 with x sin0, coso, sin0sino,cosO, 0 E [0, it] and
p [0, 27t]. For our purposes we define the harmonic functions in the following way:

S(l)m 2n + I(n-m)!Pm(cos)e . imo

= em l+l(n+)rn csO)e ,e,n =L { -r (1

4 1, m<O

14



Above, the functions P '(cosO) are the associated Legendre functions; c.f. [5, 6] for more details on their
various properties and governing equation. This definition of the spherical harmonics allows us to express
their complex conjugates as simply

Yn(x) = Y-m(x). (42)

Also, this definition yields a complete orthonormal set on L2 (S2 ) in the sense that

f(x) Yn, (,)dS(x) = 8n, (43)

S
2

where 8n.' . is the Kronecker delta. Lastly, we note that the finiteness criterion amounts to requiring that

the generalized Fourier coefficients satisfy

oC m2 + 1,,,2.< o (44)
n1 in = -nI

We now have all the key ingredients in place and state the main result of this article as the following
theorem.

Theorem 1. Let BR(c) denote the sphere of finite radius R centered at the point c e R3 , and let E- be
known on some section F c S2 of the unit sphere and have a series expansion in tangential spherical
harmonics defined on F,

E_ (x) = CX IV 2Y n  ()+ 'iAVSZY ?(x), x_ F, (45)

n ---- in = -n

with Fourier coefficients depending on R and c. Then the following are equivalent

I. BR(c) contains 3D

2. There exists a magnetic currentj supported within BR(C), depending on R and c, such that

E_ (x) f K(x-y)j(y)dy, x F. (46)

BR(c)

15



3. The weighted energy of the Fourier coefficients, depending on R and c, is finite.

n

Wn w(R, c) oc c4(R,c 2~~( ~c) (ek(R + Icj ~ (7
n=1 m=-n

Remark 1. The theorem states several important facts all at once. In summary, each item implies one
another, which is to say that given any item, the other two are true as well. In what follows we address
these implications and provide some explanation.

To begin it states that if the scatterer aD can be placed or fully contained within some sphere of radius R
centered at the point c, then there exists a magnetic current supported on the boundary of a two-
dimensional surface contained within this sphere, which when integrated against the kernel of the electric
scattering amplitude generator yields the known electric scattering amplitude E_.

Next, the result states that such a scattering amplitude must have partial Fourier coefficients that decay
faster than (2n/ek(R + 1cl)) 2n, as n tends to infinity. This is the observable quantity we exploit for various
centers c, which then determines the value of R for each such c. Upon intersecting all such spheres for an
appropriate collection of centers, this quantity yields an approximation of the convex hull of the scatterer,
which if the scatterer is convex is an approximation of the scatterer itself. We note that in the limit that Ic
tends to infinity and the approximations of the convex hull of aD become better and better, theoretically
speaking. From a numerical point of view this approximation becomes more and more difficult, as it
requires the computation of higher and higher Fourier modes, which is difficult due to the rapid oscillation
of the spherical harmonics for large n. However, even numerically speaking, this approximation can still be
done if we utilize arbitrary machine precision techniques.

Lastly, if what we call the weighted energy of the Fourier coefficients converges for some R and center c,
then it must be that there exists a sphere with such a radius and center that contains the totality of the
scatterer aD, which in turn implies that the electric scattering amplitude is generated by some magnetic
current on the surface of some two-dimensional manifold contained within such a sphere.

In a sense, what is going on here has to do with the analytic continuation of an analytic function. The
function E_, is analytic in several variables, x and k, for instance. Furthermore, it is analytic in x, which
means if we know it on some distant surface away from the scatterer aD, the function may be analytically
continued up to the boundary of the scatterer. Where this continuation is no longer possible coincides with
R for any given c, and means that no longer will the weighted Fourier coefficients converge, and no longer
is there a magnetic current that can be integrated over such a smaller sphere and give rise to the known
field E_.

We now offer a concise version of this result in the form of an algorithm that has been successfully
implemented in the acoustic setting.

Algorithm 1. (Convex 3D Imaging).

1. Measure E_ on some two-dimensional array A.

16



2. Determine the tangential analysis eigenfunctions spanning the array A that are used to determine
the spectrum, i.e., generalized Fourier coefficients, of the signal E_ (functions such as V Y" and
x A V Yn in the case when A is the unit sphere3).

3. Optimally span a collection of points c and compute the associated generalized Fourier
coefficients for that center.

4. Determine the radius R for each such center by examining where the partial sums of the Fourier
coefficients begin a rapid transition to zero.

5. Intersect all such spheres to define the approximation of the convex hull of the scatterer.

Remark 2. We are also compelled to make another remark concerning the uniqueness of reconstructing the
true scatterer in this problem. Our main result states that the measured asymptotic wave we know may be
analytically continued in a unique fashion up to some natural boundary that corresponds to the boundary of
some scatterer. To be fair, we must mention that in general this scatterer need not coincide with the true
scatterer of interest. Rather, what we ultimately arrive at in this process is the so-called scattering support
of the measured field, or the scatterer. See [1, 2] for more of the fundamental details concerning this object,
as this object can be highly nontrivial and rather complex. For our purposes here, we define this object
through the following convention.

Definition 1. Let ch(suppf) denote the convex hull of the support of a distributionfand let s = -1/2. Then
the convex scattering support of the far field E_ for a perfectly conducting electromagnetic scatterer is

cSkSuppE = n ch(suppf), (48)

Ff= E_

where fe TL (HS(R)) .

What we can uniquely determine is the common element to all candidate scattering objects that
could give rise to the measured field of interest. We need to make this interjection and state this result,
since to date there is no rigorous proof that a perfectly conducting scatterer may be uniquely determined

3. For more complex measurement arrays, these eigenfunctions may be analytically or numerically computed by
treating a standard eigenvalue, eigenfunction problem whose formulation follows from the spectral theory of compact
linear operators presented in the next section.

4. The space of distributions H (R-) for s = -1/2 is the standard Sobolev space H_ (R )of distributions having
compact support in R3;i.e., they are TL2 vector fields on a two-dimensional manifold such as the surface of a sphere.
Moreover, since we are assuming that the scatterer is perfectly conducting, we may specify s = -1/2 rather than having
to take more general values of s falling within the interval (-2, 0) for which the original theory of scattering support
was developed.

17



from one single fixed energy excitation with measurements taken on such a section of the unit sphere, or
two-dimensional array. Nonetheless, on the basis of uniqueness results and several numerical studies of
this problem in the acoustic setting, it is widely suspected that the convex scattering support and the
scatterer's true support are one and the same in the case of a perfectly conducting electromagnetic obstacle.
A careful study and proof of this conjecture would constitute a major breakthrough in the academic realm
of scattering theory; however, it is beyond the current scope of this report.

Remark 3. We should also take a moment to offer a generalization of this result, which allows us to image
more complex three-dimensional targets that need not be convex. In the case of multiply connected
nonconvex targets, we can offer a theoretically based method that can image such systems. However, a
practical numerical implementation of such a result has yet to be done and is beyond the work presented in
[7].

More generally, we have the following formulation.

Theorem 2. If Q denotes a (possibly) multiply connected finite subset of R3, and E_ is known on some
section F c S of the unit sphere and has a series expansion in tangential spherical harmonics defined on
1,

E_ (x) = V Vs21i(X)+3nx^VS2 ym(X), X e F, (49)

n1=1 m=-n

with Fourier coefficients depending on Q then, the following are equivalent:

1. Q contains aD.

2. There exists a magnetic currentj, supported within and depending on " such that

E_(x) = JK(x-y)j(y)dy, xe F. (50)
Q

3. The weighted energy of the Fourier coefficients, now depending on " is finite.

o,m(Qa) 2+I P(,2)J2 (51)
n=l m=-n

For the purpose of brevity we shall not go into the rather complex nature of the exact asymptotics of
these more generalized weights wn(L2), since their description is so highly connected with the geometry
and number of components of Q. We shall have to content ourselves that this formulation extends the
previous theorem and represents the more general methodology of imaging nonconvex scatterers, since the
test region 0 is allowed to be nonconvex, whereas the aforementioned spheres were not.

18



In the supporting theory to follow in the next section we give the appropriate indications that
corroborate the claim made here and tie it to a result previously obtained in the scalar acoustic scattering
case [7]. Additionally, we provide the mathematical machinery that yields a numerically feasible algorithm
that can image such scatterers of interest.

19



4. SUPPORTING THEORY

We begin with a basic physical treatment of the scattering problem that inspires the more rigorous
supporting theory, which underpins the two theorems given in the previous section.

The scattering of a fixed monochromatic electromagnetic wave of wave number k = 2t/X from a
perfect conductor aD situated in the ball BR(O) is equivalent to the radiation problem

V A Es(x) - ikHs(x) = V A Hs(x) + ikEs(x) = 0, x R 3\(aD n D), (52)

where

Esl,D = V G TL2 (aD) (53)

is specified. The general solution of such a radiation problem in the complement of BR(O) admits the form

Es(x) = O tn'V A (xh,)(kr)j;'(x)) + P'nV A VA (xhn )(kr)Y,(x)), r = jx > R, (54)

n=1 i n=-n

(1)where h,n is the spherical Hankel function of the first kind-c.f. [6]-and is defined by

h,n (Z) = Ji(z) + iy"(Z) , (55)

withJn and y, respectively denoting the standard spherical Bessel functions of the first and second kind.

Examining the asymptotic behavior of the outgoing electric field leads to the electric scattering
amplitude, which is known to have the form [8]

n
1 -n mS yn mIn

Ei(x) x) - n Vs2 Y(x). (56)

ni = -n
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Moreover, the tangential electric scattering amplitude is an element of TL2 (S 2) only if

oo n

,,( 2n 2 ' 1m12n

n ekt) 2 + l3m < VR > diam(aD). (57)

n= 1 m=-n

The necessity of the weighted summability of the Fourier coefficients X'n and Pn is a consequence
of the asymptotic behavior of the spherical Hankel functions as a function of its index n. For a fixed
positive argument z,

hl(Z) - (ekz), (58)

Hence, Es has a finite L2 norm on the surface of any sphere of radius r > R in TL2 (Br(O)) only if the partial

sum of the combined Fourier coefficients decay faster than h( I)(IzI) 2 as n -+ for all r > IzI. For each

such r, where we see this convergent behavior indicates where the radiation problem may be posed as a
homogeneous Maxwell system, i.e., how far in toward the origin the analytic scattered field may be
uniquely continued as a free solution to the Maxwell system. That value r* where the analytic continuation
may no longer be performed defines the boundary of the scatterer. The analysis to follow treats the
operators involved in the scattering problem and formalizes this basic physical principle.

n 1 m+ I m12 .  (59)

n = -n

To begin this analysis, we note that we need know only the electric scattering amplitude on some
sector, or neighborhood, of the unit sphere. The significance of this is that there exists a collection of
coordinate charts {pj}' • R2 -) S2 that cover the sector of interest S2. What this means is that there is a
change of coordinates so that a "piece" of the unit sphere may be made to look like a finite two-
dimensional plane, and vice versa. Hence, in talking about the measurement array A or the unit sphere S2

we are talking about the same object, up to a nonlinear change of variables, so that all the norms to follow
can be made equivalent on either the more easily treated unit sphere S2 or the true measurement array A.
See chapter two of [4] for more information concerning this differential geometry.

We proceed with a characterization of the operator that maps induced magnetic currents on the
boundary of the scatterer to the electric scattering amplitude.
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Proposition 1. Let 3D c R3 be smooth surface such that TaD is defined everywhere, and suppose
there are no nontrivial solutions to the interior version of the Stratton-Chu integral equations. Then
F: TL2(aD) - TL2(S2) is compact and linear and has dense range in TL2(S2).

Proof. Linearity is obvious as F(g I + g 2) = FgI + Fg2 for any g 1, 2 in TL2(aD). F is compact, since it has

a so-called Hilbert-Schmidt kernel; i.e., K E TL 2(ds(aD) x ds(S 2)). Let g E TL2 (aD) be a magnetic
current on aD. Let 6 and denote the tangential unit vectors on S2. Then, the previous claim follows,

since

11F11 2 (S 2 JaDK(x,y)ds(y) 
2 ds(x) (60)

f_ _ I ik ( i, ) I1 2
< l2e ds(x), (61)

16t a D

k 2- (D) (S 2) <oo, (62)

where pt(aD) and t(S 2) are the finite surface measures of the scatterer and the unit sphere, respectively.
Now, given that K has a Hilbert-Schmidt kernel, we find that given g E TL2 (aD) a magnetic current on
aD,

1Fg1 2  
(S2) < 11KII12  

2 ( S2))IIgII2  2 < o , (63)TL'( TL (ds (aD) xdsS) TL (al))

proves the image of g is included in TL 2(S2).

Lastly, we note that our operator F is equivalent up to a r/2 rotation of the tangential field E_ on S2

with the far-field operator presented in [8] in theorem 7.4, which is known to have dense range in

TL 2(S2), provided that k2 is not a Dirichlet eigenvalue for the interior problem on aD.

We now address the range of the operator F acting on magnetic currents on the surface of the sphere

BR(C) in terms of the restriction of the original operator F to TL2 current distributions supported on the

boundary BR(c). Below, FlaB(,) denotes this restriction.

Proposition 2. Let FIB,(c) be the restriction of F to BR(C). Then FlaB,(,) possesses a Hilbert

adjoint, such that
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Fa (): TL2(S2) - TL2 ( BR(C)) (64)

and for g TL 2(S2)

(FjaB,()g)(Y) = - VBR(C) A ei"x'Y) AxAg()ds(x)) AvB(c), ye EaBR(C). (65)

Proof. Since F is compact and linear between two Hilbert spaces, then by the Riesz representation theorem
there exists a bounded linear operator F coinciding with the action of the adjoint F* of F such that it maps

TL 2(S2) to TL2 (aBR(c)). F* may be computed by equating the pairings

(Fj, g)TL2(S2) = (j, F*g)TL'(aBR(c)) (66)

for any j E TL2 (aBR(C)) and g e TL 2(S2). Hence, we find that

P(j, g) = (Fj, g)TL2(S2) (67)

= J S c) -ik(x'y)x^ x A j (y)ds(y),'gx ))c
2 ds(i) (68)

fS
2  aB,(c)

faB (f (e i kX ^ A (69)

= Bft (j(y), (V C)ik e-ik (xY)x A X A g(x)ds(x A VB (,) 2 ds(y) (70)

S(j, Fg) TL2 (aB,(c)) 4 (71)
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Hence, the claim is proved.

Next, we address the so-called singular system, or singular value decomposition of F restricted to
TL2 currents on the boundary of the sphere BR(C). Since F is linear and compact then we know it admits the
general representation

n 2

FIaB(c) = _D (:Y n (R, c)(P Wm(R, c) xV ,,(R, c). (72)

n=I n = -n 1 1

Here, the superscripts (j = 1) and (j = 2) refer to the tangential components in the 0 and directions,

respectively, and the term ® is the tensor or outer product of the two orthonormal bases J) and (p(J) for

j = 1, 2. We add that the action of FIaB (,) acting on some TL2 currentj is n, In 11,17?

n 2

(F1 Bn(cI)( j ) = 'J W ( R , c) (j, p c)In4(R, ,J) . (73)S, inn ,  0) (73)i

n = 1 = -n / =

We also mention that this decomposition then goes to define the Hilbert adjoint of F aB (, .) through

'n 2
F1 aB,(,) = in (R, -U) -(J)FI 08.(, = (D n C) ., (c)Pn, n ®& Wn,?n,,(4

n in = -n i I

where the above overline denotes complex conjugation. Furthermore, we add that the countable singular
system

A,(j) A ) A(j )
{7 nm , (Pn,, in , a in = in =-n, ... n}' (75)

of F: TL 2 (aBR(c)) ---) TL 2(A) any finite two-dimensional measurement array A may be constructed by
determining those functions A, Q) A, () AU) such that any of the following identities are satisfied for

j = 1,2.

F1 A,(j) A,(J) A,(j)aB,(c)(Pn,tn = n, 171 W'n,, (76)
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F 1 , ) WA,() A,(j) A,(j)n' iB( ) n, nm = n, con, in (7 7 )

F J1*aB ) WA:,(j) = C A,(i) 2 A,(j) (8FIoB.(C)FI OBR(C)WN, m = (O,m ))2tln, m (78)

* A 'j

Fl aBR(c)FIBR(c)Pn,m) = A , (j).2 A,(j)(aB,(=n,n n m ) Pn, m "(79)

Solutions of these systems may be computed numerically, with some effort, or determined through
the computation of a collection of multidimensional integrals. These integrals stem from the coordinate
mapping TP from the array A and the segment of the unit sphere S2 on which we know the scattered field
E_0 ; i.e., the push forward TP A -> S2 is a diffeomorphism so that the pullback T -1 exists and P -1: S2

A. In this sense, the measured signal on the two-dimensional array admits the representation

oo n

mX , -1 m no-1 (80)

n = I tn = -n

The next result tells us what the analysis basis for the measured electric scattering amplitude is on A;
namely, Vs2 Y,no-' and Vs ,YnnT -I also provides a more evident formulation of the eigenvalue problem,

SAS (1) A,(2)which must be solved to determine the singular values A, in and A,(2

Proposition 3. Let A be a smooth finite two-dimensional manifold with a boundary, such that ' P A -4 S2

and T-1.: S2 -> A are the usual push forward and pull back mappings. Moreover, let E be the measured
electric scattering amplitude on the array A and let FlaB,(,) and F1 aB,(C) denote the restriction of F to
aBR(C) and its Hilbert adjoint. Then

A,(1) V yn OT-1  (81)
Wn,m i - s (

IA, (2 ) V oynT- 1

Nn,mi) = X AVs2Y , (82)

and Am, in j 1, 2 may be determined from
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* - = (1'))2Vs2 ovn0 1 -I
F1B )FI YBT(c) - = 0A, 2 -Y (83)

FlaB,(c)F aB,(c)X s A V Y . A (2) 2O
(:nm ) xAVs, s2Yn °T -  (84)

A 2Proof. Let Ea denote the electric scattering amplitude on the unit sphere S and the array A, respectively,
and letj denote the magnetic current giving rise to the two fields. Then,

Xn, = (EA_' VS 2 Yn°T-1)L2(A) (85)

= (FIaB,(c) i, VSY-1$ )L2(A) (86)

= (j, Tl*aB,(c)V,S2Yn°OTlP)L2(R) (87)

(1) A (I) (88)(j',n(Pmn,m )L2(R,) (8

A, (I) A, (1) 2
(PJ, cn,m (pn,in )L2(R3)* (89)

Since PIj is the projection of any vector field in L (R, C3) onto the orthonormal basis
A(j) A(j)

IOnn, . }. , this amounts to saying

* A,(I) A, (I) A, (1)
F aBI(c)WI, In = nz (Pn,in (90)

holds for ,T(I) = V Yd1 .Similarly, examining the coefficients Pm in the much the same way,

,= EA,A Vs2Y'n° I)L 2(A) (91)
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= (F1aRB(cj, x A VS2Y,,n?T- I )L2(A) (92)

(j, A VS2Yn I -I)L (R') (93)

A, (2) A, (2).J, n,m ( )L'(R3) (94)

A,(2) A,(2) (95)

(P 2 j, an: m Pnm )L2(R3),

implies

F* A,(2) A,(2) A,(1) (96)
SBR(c)'Vn, in = in, 9, in

and, more precisely, that WA,(2 = x A Vs, n2°.T - 1. This completes the proof.

The main result presented in this section owes itself in part to what is known as Picard's Theorem.
The theorem essentially provides a representation for a compact linear operator A between two Hilbert
spaces H1 and H2 in terms of the operator's singular system, as well as a means to assess whether a given
element of the second space H2 is also an element of the closure of the range of A. We take a moment to
state the theorem and refer to [8] for its proof.

Theorem 3 (Picard). Let A : H -- H2 be a compact linear operator from the Hilbert space H1 into the
Hilbert space H 2 with the denumerable singular system { ,, On, }= 1 i.e.,

AOn = (TnxV,n  (97)

and

A * n = GnOnp, (98)

and let (.,.) denote the inner product on H2. Then, the equation Af = g is solvable if and only if
•*1_

g E N(A ) and
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00n 2 <0 (99)

n= G

Moreover, any f of the form

f o(' ) (100)

nnn= I

solves Af= g.

Finally, we state the following range characterizations of F, which we will need for the proof of the
made theorem to follow.

Lemma 1. Let BR,, 2(CI,2) be of two spheres of radii R1 and R 2 having centers c1 and c2, such that
BR,(C I ) contains BR,(c 2 ). Then

R(FJ aBR,(C)) c R(FIaB,(c)) (101)

Proof. Let BR, 2(C, 2 ) be as stated above. Let f, 2 e TL2 (aBR, 2c(I 2)). Then the trivial extension of the
form

= W f(x) ,  x cBR,(C1) (102)

f0 , x D BR (C1 )

proves the claim.

Next, we demonstrate that in the case when the closure of BR,(CI) has no intersection with the
closure of BR2(C2), then the only common element in the ranges of FlaBR, (c) and FIaBR,(,.) is the trivial
electric scattering amplitude E_ = 0. This amounts to saying that two disjoint conducting scatterers can
never produce the same electric scattering amplitude on any open set away from their support.

Proposition 4. Let BRI 2(c 1 2) be as before. Then

BR,(CI)nBR,(C2 ) = 0 : R(FIaBR,(Cl)) C R(FIaB,,(,,)) = {0}. (103)
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Proof. Each tangential component of E_ on S2 satisfies Rellich's lemma; c.f. [8]. Hence, if we treat each
component, this is a immediate consequence of corollary 5.1.2 in [9].

Proof of the Main Theorem. Application of Picard's Theorem to the identified spaces
H1 = TL2 (aBR(C)) and H2 = TL2 (S ) and the range characterizations of FlaB,(c) now prove the
theorem in the previous section. Specifically, Green's theorem proves 1) => 2), while the asymptotics for
the generalized Fourier coefficients for any free solution of the Maxwell system on the complement of
BR(c) proves 2) z: 3). Lastly, assuming 3) and knowing that the range of FIlBR(C) is dense in TL 2 (S2 ) and
employing lemma 1 and proposition 4 we arrive at 1). (C.f. [9] for the details of these arguments.) This
completes the proof.

Given Picard's Theorem, and our range characterization of the operator FIaBR(C), we now have a
definitive test that can determine whether a scatterer is fully within some region Q of interest by means of
testing the convergence of the sum

(1) 2 (2) 2

nA2 = I -n (, m- + ( ) (104)

n=1 M m=- , n,nm(Qi) 0"

In theory, if the sum does not converge, then we can conclude that the scatterer is not fully within the
test region 0, whereas if the sum does converge, we can conclude that the scattering support of the scatter
is fully contained within this set.

We note that this formulation states both Theorems 1 and 2 at the same time; namely, Q may play the
role of the sphere BR(C) or any other finite multiply connected, possibly nonconvex set. In the more general
setting, once we have determined the appropriate singular system for the operator F restricted to the
boundary of Q-i.e., we solve the eigenvalue eigenfunction equations in proposition 3 with BR(C) simply
replaced by the more general K2-we may perform the same Picard test and conclude whether the scatterer
is fully within Q or not, as indicated by the finiteness of the series. There is good reason to believe that this
test may be done in the electromagnetic case discussed here, again on the basis of the numerical procedure
and results obtained in [7].
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5. SUMMARY AND CONCLUSIONS

The results presented here are fundamental to many advanced radar detection and imaging efforts
and offer us an avenue by which the three-dimensional shape of rotating bodies may be determined with
narrowband monostatic sensors.

We have rigorously developed and presented the underlying theory of the scattering of a single
monochromatic, or narrowband, incident electromagnetic wave and its interaction with a perfectly
conducting object. Moreover, we have carefully detailed how this scattering problem leads to a viable and
robust reconstruction, or three-dimensional imaging algorithm, that is capable of estimating the size and
shape of either a convex or multiply connected nonconvex scatterer with this extremely limited
information.
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