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1. Introduction 

Co-processing technologies are currently increasing in performance at a rate superior to Moore’s 
law,* making porting applications to them desirable.  However, with so many different 
competing co-processing technologies, the need for a simple, lightweight cross-platform 
benchmark has become apparent.  To fill this need, we have devised Mstack, a lightweight 
benchmark designed to be run on a number of different classes of co-processors. 

The Mstack benchmark is based on the concept of a median stack.  This concept is used in the oil 
industry for processing particularly noisy seismic data (e.g., drag data from swampy terrain).  
The primary nature of this process is to perform a sort on a small data set (for our purposes,  
5–128 elements in size), so that the median value of the data set may be found.  While this would 
not appear to be a particularly challenging problem, there would normally be a nearly infinite 
number of such data sets to process.  For simplicity, we have truncated this to roughly 1-million 
data sets.  So that we could be certain we were measuring the performance of the central 
processing unit (CPU)/co-processor, memory system, and associated interconnections, we used 
three very simple dummy test cases created “on the fly” at run time (this avoids the significant 
amount of time associated with random number generators and/or disk/tape input/output [I/O]). 

We have implemented or are in the process of implementing Mstack on a variety of different 
co-processor architectures:  on field programmable gate arrays (FPGAs) with Mitrion-C and 
DIME-C, NVIDIA’s† newer graphical processing units (GPUs) which use Compute Unified 
Device Architecture (CUDA), and the Cyclops64‡ architecture.  For our target FPGA platforms, 
we have intentionally selected a number of high level C-to-RTL (register transfer level) 
languages, which are compiled to VHSIC (very high speed integrated circuits) hardware 
description language (VHDL) before being mapped on to the FPGA.  Cyclops64 is a massively 
multicore architecture being developed by IBM.  The economics of the video gaming industry 
have made GPUs a feasible high performance computing platform.  We believe our benchmark 
is an appropriate tool for evaluating all these technologies, as well as a number of other co-
processing platforms. 

In section 2, we describe the trend toward parallelism and co-processing technologies; in section 
3, we discuss the design considerations and implementation choices we have made in devising 
Mstack; in section 4, we review the state of reconfigurable computing, i.e., computers that use 
FPGAs as co-processor technologies, and an array of new high-level methods of programming 

                                                 
*“Moore’s law is the empirical observation made in 1965 that the number of transistors on an integrated circuit for minimum 

component cost doubles every 24 months.  It is attributed to Gordon E. Moore, a co-founder of Intel.” – Wikipedia, Moore’s Law. 
†NVIDIA, which is not an acronym, is a registered trademark of NVIDIA Corporation. 
‡Cyclops64 is a trademark of International Business Machines (IBM) Corp. 
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them; in section 5, we report our results; in section 6, we analyze our results and draw 
conclusions; in section 7, we describe our planned future work in this area; appendix A contains 
the Mstack C reference implementation; appendix B contains the Mstack FORTRAN* reference 
implementation; appendix C contains technical discussions of co-processing platforms we plan to 
port Mstack to in the near future (in furtherance of the future work described in section 7). 

2. Background 

A co-processor is a device that does computation in place of the CPU.  Co-processing 
technologies are particularly “hot” right now because their performance is increasing faster than 
CPU performance (see figures 1 and C-1).  This trend makes porting applications to co-
processors particularly desirable.  Porting the application to a co-processor results in 
performance gains from hardware upgrades that outstrip even Moore’s law. 

 

Figure 1.  Comparison of CPU and FPGA single precision floating point multiplication 
performance (Underwood, 2004). 

However, at the same time, there has been a great diversification in co-processor technology.  
Presently, many different kinds of co-processing technologies are vying for dominance:   

• GPGPU – General purpose computation on graphical processing units, 

• Reconfigurable computing – The use of application-specific logic run on FPGA co-
processors,

                                                 
*Formula Translator. 
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• Multicore and many-core architectures – High Performance Computing systems with many 
relatively simple cores.  Examples in this class include the Cell Broadband Engine,* Sun 
UltraSPARC T1† (Niagara), and IBM Cyclops64. 

Each of these classes has its advantages and disadvantages.  A number of benchmarks have been 
created to test FPGAs (McCarty et al., 1993; Govindaraju et al., 2005) and GPUs (Buck et al., 
2004; Kumar et al., 2000).  However, these benchmarks are limited to coprocessors within a 
given class.  To our knowledge, no inter-class co-processor benchmark has been created.‡  The 
goal of the Mstack benchmark is to evaluate the co-processing technologies on an apples-to-
apples basis to provide a valid comparison between very different specialized devices.  
Ultimately, Mstack’s purpose is enable users to evaluate co-processors’ potential for novel 
concepts in high performance computing—concepts that might appear as options in future high 
performance computing (HPC) systems. 

 

3. The Mstack Benchmark 

We have devised a small, easy-to-compile benchmark based on determining the median value in 
an unsorted array.  Determining the median requires sorting the array, and picking the value in 
the center element in the array.  To sort the array we chose to use the bubblesort algorithm 
because of its simplicity and that for small arrays it may be nearly optimal performance-wise. 

3.1 Design Considerations 

The Mstack benchmark was designed under the “keep it simple stupid” philosophy.  It was 
designed to be practical to run on CPUs as well as on a wide variety of co-processors.  Some of 
the design requirements and constraints that went into developing the benchmark were 

1. The run time must be long enough that it makes sense to accelerate the application.  At the 
bare minimum, this means run times with a length of minutes to hours. 

2. The run time must be short enough that it is reasonable to do at least some runs with a 
simulator or hardware emulator.  This will normally favor a run time of 1 s or less, but a 
few seconds of simulated time should be doable in less than 12 hr of simulation time. 

3. It should fit in main memory but require vastly more space than is likely to be available in 
the caches/dedicated local memory.

                                                 
*Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. 
†UltraSPARC T1 is a trademark of Sun Microsystems. 
‡We are neglecting all-purpose benchmarks and micro-benchmarks such as fast Fourier transform and matrix multiply which 

may not be suitable for highly specialized/optimized architectures devices such as GPUs and FPGAs. 
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4. The amount of input/output (I/O) should be negligible.  After all, we are attempting to 
measure computational performance. 

5. Although it might have been desirable to have an inner loop that can be parallelized and 
vectorized, for many of the platforms undergoing consideration, what matters is having 
middle and/or outer loops that parallelize. 

6. An embarrassingly parallel algorithm was selected, since this minimizes the effort 
associated with parallelization. 

7. We needed a floating point algorithm, but for simplicity’s sake, it was desirable to find as 
simple an algorithm as possible.  That is to say, not a complete code with 100 or more 
boundary condition routines to worry about, but many simple benchmarks such as matrix 
multiply and FFTs that have already been implemented and are well known in the field. 

Keeping these constraints in mind and drawing on Mr. Pressel’s earlier experience in processing 
seismic data for the oil industry, we constructed a benchmark that extracts the key components of 
a median stack.  In seismic data processing, stacking is a method of averaging several values that 
nominally correspond to the same subsurface location.  Ordinarily, this is done with the arithmetic 
mean.  However, in situations when the data are noisy (for example, drag data recorded in swampy 
locations), the presence of outliers can heavily skew the results.  A commonly used alternative 
for noisy data is the median stack, where the data values to be averaged are first sorted so that it 
is possible to determine what the median value is.  The issues involved with this process are 

1. The number of values to be sorted is usually small (never greater than 128, and possibly 
less than 24).  Therefore, we decided to benchmark data sets where the number of channels 
are 5, 50, 75, and 128.  The number of channels determines the number of values to be sorted 
and is physically analogous to the number of sensors recording data after each explosion. 

2. The number of data sets to be averaged would normally be nearly infinite.  For purposes of 
this benchmark, it was decided to use 1 million data sets, although some of them are not 
processed since they would be incomplete (representing the seismic boat turning around).  
When one is using 32-bit floating point data, this should comfortably fit into 1 GB of main 
memory (depending on the implementation, the required amount of main memory is in the 
range of 500 to 600 MB).  Note that in order to be faithful to the origin of this benchmark, 
it is important that all the data be written to main memory before the start of the processing. 

3. Since we lacked ready access to actual data, three data sets were constructed for 
benchmarking purposes.  The first sets all the values to a constant value (1.0 in this case).  
The second sets the values of each channel to the channel number, so the values go from 
1.0 to number_of_channels (in floating point).  The third data set assigns numbers to the 
channels in reverse order and is the only data set that is not already sorted.  These three 
data sets were selected for simplicity and since they are known to be inefficient for one or 
more of the commonly used sorting algorithms.
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4. We selected the bubblesort for use as the sorting algorithm.  For smaller numbers of 
channels, other sorts are unlikely to show their asymptotic performance, and the bubblesort 
will likely be faster because of its simplicity.  This simplicity will also have benefits when 
the benchmark is running on single-instruction-multiple-data (SIMD) arrays of processors 
with small amounts of instruction cache per processor.  Similarly, bubblesort should make 
it easier to implement on FPGAs.  While the reference implementations do not explicitly 
show the use of predicated operations, it was not difficult to produce a C implementation 
that uses the conditional operator and therefore lends itself to being implemented with 
predicated operations.  This should improve the performance on the GPUs.  Additionally, 
note that the performance of the bubblesort is nearly data independent. 

5. Both FORTRAN 77 and C versions of the bubblesort were implemented, including 
OpenMP directives for the parallelization of the outer loop on shared memory platforms. 

6. A minimal amount of output is produced.  This is helpful for debugging purposes and to 
disable overly aggressive compiler optimizations. 

In order to avoid limitations on the stack size and stack frame size for many platforms, the 
largest array (roughly 500 MB in size) is static allocated onto the heap (save statement in 
FORTRAN, static qualifier in the declaration for C).  In order to maximize the similarity 
between the FORTRAN and C code, the decision was made not to use pointers in either version.  
This means that no dynamic memory allocation was used in any of the versions and that array 
syntax is used throughout the C versions of the benchmark. 

3.2 Mstack Implementation 

The benchmark incorporates a bubblesort.  However, for comparison purposes, other sorting 
algorithms can be used if it is felt that they are better suited to a particular platform.  In these 
cases, it is important to specify which sort has been used, and it is preferred that some amount of 
justification be included. 

The only input that the benchmark takes is at the beginning of the run, when it prompts the user 
for the number of channels.  The purpose of this is twofold:  it allows the user to control how 
long the benchmark runs, in effect, replicating the computation classes used in other benchmarks, 
such as the NASA Advanced Supercomputing (NAS) Parallel Benchmark Suite.  Secondly, it 
imposes a compile-time knowledge limitation on the compiler.  Thus, the compiler cannot 
optimize the sorting work at the heart of the benchmark. 

The original C and FORTRAN reference implementations are given in appendices A and B, 
respectively.  We have also produced alternate implementations of Mstack in C and FORTRAN 
which use different optimization schemes to attempt to achieve better performance on a range of 
architectures.  Mstack2 and Mstack3 differ from the reference implementation by using the 
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ternary operator instead of an “if” statement.  This may make a difference with some compilers, 
allowing them to produce more efficient assembly code using predicated instructions.  Mstackv 
is a vectorized version of the Mstack.  This vectorization allows pipelining or parallelization of 
the innermost loop.  The code for the different variations of the bubblesort is given in section 3.3. 

For each of these four versions (the original reference implementation, mstack2, mstack3, and 
mstackv), we also applied an optimization to the inner loop whereby it would sort to the length 
of the vector minus the iteration.  The reference implementation sorted through the entire vector 
on every iteration, thus performing N2 comparisons and possible swaps.  The optimized versions 
perform 1/2×N2 comparisons and possible swaps.  We consider all versions of the Mstack 
benchmark to be acceptable and equally valid for the purposes of testing hardware.  We have 
tested each of the four versions (mstack, mstack2, mstack3, and mstackv) and their optimized 
equivalents (mstacko, mstack2o, mstack3o, and mstackvo) in C and FORTRAN for 50 channels.  
Our results are given in section 5. 

3.3 Table of Mstack Bubblesort Variations  

The bubblesort functions for each of the non-optimized versions of Mstack are shown in table 1. 

Table 1.  Bubblesort implementations for the various versions of Mstack. 

/* Mstack */ 
/* Perform a bubblesort */ 
for (k1=1; k1 <= numchn; k1++) 
{ 
  for (k2=1; k2 <= numchn-1; k2++) 
  { 
    if (scratch[k2] > scratch[k2+1]) 
    { 
      temp = scratch[k2]; 
      scratch[k2]=scratch[k2+1]; 
      scratch[k2+1]=temp; 
    }; 
  }; 
}; 
/* Mstack2 */ 
/* Perform a bubblesort */ 
 
for (k1=1; k1 <= numchn; k1++) 
{ 
  for (k2=1; k2 <= numchn-1; k2++) 
  { 
    temp1 = scratch[k2]; 
    temp2 = scratch[k2+1]; 
    temp3 = temp1 > temp2? ((temp4=temp1),temp2):((temp4=temp2),temp1); 
    scratch[k2]=temp3; 
    scratch[k2+1]=temp4; 
  }; 
}; 
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Table 1.  Bubblesort implementations for the various versions of Mstack (continued). 

/* Mstack3 */ 
/* Perform a bubblesort */ 
for (k1=1; k1 <= numchn; k1++) 
{ 
  temp1 = scratch[1]; 
  for (k2=1; k2 <= numchn-1; k2++) 
  { 
    temp2 = scratch[k2+1]; 
    temp3 = temp1 > temp2? ((temp4=temp1,temp2):((temp4=temp2),temp1); 
    scratch[k2]=temp3; 
    temp1 = temp4; 
  }; 
  scratch[numchn]=temp4; 
}; 
/* Mstackv */ 
/* Perform a bubblesort */ 
for (k1=1; k1 <= numchn; k1++) 
{ 
  for (k2=1; k2 <= numchn-1; k2++) 
    for (l=1; l <= 1001 - numchn; l++) 
    { 
      temp1 = traces2[k2][l]; 
      temp2 = traces2[k2+1][l]; 
      if (temp1 > temp2) 
         { 
          traces2[k2][l]=temp2; 
          traces2[k2+1][l]=temp1; 
          }; 
       
    }; 
}; 

 
 

4. Reconfigurable Computing and the Mitrion-C Language 

4.1 Reconfigurable Computing 

One recent trend in HPC architecture is to integrate FPGAs into HPC systems as co-processors.  
These systems are known as “reconfigurable computers” because the logic on the FPGA can be 
reconfigured for each application run on the system or even for different sections of a given 
application.  In order to get an acceptable level of performance, the FPGA must have high 
bandwidth, low latency access to the system memory.  This requires a high degree of cooperation 
between the system, FPGA, and bus vendors, which did not exist until recently.  According to 
Michael D’Amour, chief executive officer of DRC* Computer Corporation, “It took 18 months 
for DRC to convince Advanced Micro Devices (AMD) to open [their Hypertransport bus] up… 

                                                 
*DRC is not an acronym. 
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When we first walked into AMD, they called us ‘the socket stealers’.  Now they call us their 
partners.”  AMD’s decision to open their Hypertransport bus protocol to third parties has made 
Hypertransport the enabling technology in reconfigurable computing (D’Amour, 2007).  
However, a large number of commercially available plug-in FGPAs use the much slower 
PCI/PCI-X/PCIe bus, and these busses are the only option for systems using non-AMD 
processors or non-Xilinx FPGAs. 

Previous work in this area indicates that migrating certain classes of applications to FPGAs has 
the potential for tremendous acceleration.  (Pressel, 2007; Zhang et al., 2007).  However, 
recognizing that hardware description languages (HDLs) such as VHDL and Verilog* are 
difficult and time consuming to program (akin to programming a CPU in assembly language), a 
number of “C-to” (alternatively, “C-to-RTL”) languages have been developed.  These are C-like 
languages that are compiled to HDL and then compiled again to an FPGA bit mapping.  These 
C-like languages include   

• Mitrion†-C – commercially available for SGI‡ RC100 and Cray XD1  

• DIME-C – a language for Nallatech FPGAs only  

• Handel§-C – “Basically a small subset of C extended using a few constructs for configuring 
the hardware device” (Peter, 2007) 

• Impulse**-C – Commerical.  Supports several FPGAs (Altera Cyclone, Altera Stratix, 
Xilinx Spartan, Xilinx Virtex) on many platforms  

The C programming language is, by its very nature, targeted for CPU architectures.  This means 
that C programs generally do not map to hardware easily or efficiently.  To give one very 
common example, consider the following line of C code: 

  (1) a = x[y];

where y is not known at compile time.  On a CPU system, this operation is trivial to implement.  
However, because y is not known at compile time, the hardware compiler is unable to optimize 
this instruction.  Thus, implementing this in hardware requires that x is stored in its entirety in a 
programmable logic array (PLA).  If x is large, this can consume an enormous number of 
transistors.  Accordingly, the Mitrion-C manual describes vectors (Mitrion’s equivalent to arrays 
in C) by saying, “You will soon notice that using even moderately large vectors can use all the 
available resources.  A vector may be indexed but preferably only by compile-time constant 
values.  Accessing data-dependent indices is very costly on silicon surface and should be 

                                                 
*Verilog is a trademark of Cadence Design System, Inc. 
†Mitrion is a trademark of Mitrionics AB. 
‡SGI is a trademark of Silicon Graphics, Inc. 
§Handel is a trademark of Celoxia, Inc. 
**Impulse is a trademark of Impulse Accelerated. 
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avoided.  If data-dependent access to a vector’s elements is required, you should consider if an 
internal RAM-memory would not be more suitable” (Möhl). 

Different “C-to” languages take different approaches to programmability and efficiency.  DIME-C 
and Impulse-C are subsets of the C-language, making them particularly easy to program and debug 
but at the cost of being inefficient to map to an FPGA.  In contrast, Mitrion-C resembles C only 
superficially.  It uses much of the same syntax, but conceptually, it is vastly different.  As a 
result, Mitrion-C is more difficult to program but has the potential to map to the FPGA very 
efficiently. 

4.2 The Mitrion-C Language 

Mitrion-C’s resemblance to C is only skin deep.  Beyond some basic syntactical similarities, it is 
a totally different language. 

Mitrion-C is a single assignment, fully implicitly parallel language.  This prevents the 
programmer from creating false dependencies and allows the compiler to create a data flow 
model of the program in hardware.  This, in turn, exposes all the thread-level parallelism in the 
program, allowing the compiler to generate an efficient parallelized hardware implementation.  
Mitrion’s software development kit (SDK) includes a visual debugging feature that allows the 
developer to see values flowing through a data flow representation of the program. 

Explicit data typing is, in most cases, optional.  However, all declarations must specify a bit 
width.  Mitrion-C is capable of handling arbitrarily large integers and floating point variables.  
Floating point declarations must specify both the mantissa and exponent bit widths.  An Institute 
of Electrical & Electronics Engineers (IEEE) 754 single precision floating point variable is 
declared as   

 float:24.8 foo;  
 
An IEEE 754 double precision floating point values is declared as 

float:53.11 bar;  
 
Mitrion-C includes three looping constructs:  for, foreach, and while.  The foreach loop is used to 
signify that the number of iterations the loop will execute is known at compile time and that 
there are no loop-carried dependencies.  The for loop indicates that the number of iterations is 
known at compile time and that there are loop-carried dependencies.  The while loop is used to 
indicate that the number of iterations is not known at compile time.  However, the language 
requires the program to make a guess. 

Mitrion-C has four collective data types: 

• List – An unindexed array whose length is known at compile time.  Element-wise 
operations occur sequentially.
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• Vector – An indexed array whose length is known at compile time.  Element-wise 
operations occur in parallel. 

• Stream – An unindexed array whose length is not known at compile time.  Element-wise 
operations occur sequentially. 

• Tuple – A “bag” of various data types analogous to the tuple found in many programming 
languages (Python, etc.). 

Lists are analogous to elements traveling through a hardware pipeline.  Lists, even very large 
ones, tend to use very few FPGA resources beyond the logic already specified by the program.  
Vectors are buffered memory allocations analogous to programmable logic arrays.  Vectors are 
easy to program with but very costly in silicon. 

Everything in Mitrion returns a value (functions, loops, if/else statements, etc.).  Given that 
Mitrion-C will be instantiated in hardware, this is entirely sensible.  It is illogical to instantiate 
hardware that does not contribute to the computation of the program. 

A proper Mitrion-C program includes a Mitrion-C file (that uses the .mitc extension) and a C 
program that runs on the host.  The Mitrion-C file is compiled by the mitrion compiler into a 
VHDL program.  This VHDL program is, in turn, compiled into a bit mapping that is loaded 
onto the FPGA at run time. 

Host-FPGA communication can be done in one of two ways with the use of vendor-supplied 
communication libraries or Mithal. Mithal is a Mitrioncs-supplied communication library that 
acts as a wrapper for a number of vendor-supplied host-FPGA communication libraries.  Mithal 
includes the features common to all those libraries.  This allows Mitrion-C programs to be 
portable to any architecture whose host-FPGA communication libraries are supported by Mithal.  
On the host side, the communication is instantiated as a DMA.  The host-FPGA interaction is 
shown in figure 2. 

  

Host program.c Mitrion 
logic.mitc 

Mithal

Vendor libs 

 
Figure 2.  A logical view of the Mitrion-C host/FPGA interaction.  The host communicates to the FPGA using 

(1) vendor-supplied libraries (shown with pink arrows), or (2) Mithal, a Mitrionics-supplied library 
that runs on top of the system vendor’s FPGA communication libraries (shown with green arrows).  
(By allowing the program to avoid system-specific [or vendor-specific] communication libraries, 
Mithal allows Mitrion programs to be cross-platform compatible.) 
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Consider the following code from the host-side C file:  

 
printf("Allocating FPGA... "); 
my_fpga = mitrion_fpga_allocate(""); 
if(my_fpga == NULL) { 
   fprintf(stderr, "Couldn't find the FPGA!\n"); 
   return 22; 
} 
printf("Done\n"); 
 
printf("Create processor... "); 
my_proc = mitrion_processor_create(argv[1]); 
if(my_proc == NULL) { 
  fprintf(stderr, "Couldn't create the MVP!\n"); 
  return 23; 
} 
printf(" Done\n"); 
 
mem_a = mitrion_processor_reg_buffer(my_proc, "mem_a", NULL, 
                                               sizeof(int), 
                                               WRITE_DATA); 
 
printf("Invoking asynchronous run...\n"); 
mitrion_processor_run(my_proc); 
 
printf("Waiting for processor...\n"); 
mitrion_processor_wait(my_proc); 
printf("Done\n"); 

 
 
The code just given declares the FPGA, the Mitrion virtual processor (MVP), and mem_a, the 
direct memory access (DMA) memory array.  It then invokes an asynchronous run, letting the 
processor begin to run the bit mapping of the Mitrion-C file.  Meanwhile, the host side waits for 
the FPGA to finish. 

The mitrion_fpga_allocate, mitrion_processor_create, mitrion_processor_reg_buffer, 
mitrion_processor_run, and mitrion_processor_wait functions form the core of the Mithal 
application program interface (API).  The mitrion_processor_reg_buffer is the function that 
actually allocates the DMA memory—the mem_a array.  

The Mitrion-C SDK includes an FPGA simulator for Mitrion-C files.  Given the long Mitrion-to-
VHDL-to-bit mapping compilation time (about 15 minutes on our target platform for the most 
trivial Mitrion-C program), the utility of this tool for code development, testing, and debugging 
cannot be overstated.  Figure 3 contains a diagram of this feature.
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Host program.c

Mithal

Simulated FPGA 
Co-processor

Mitrion
logic.mitc

Host
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Mithal
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Co-processor

Mitrion
logic.mitc

 

Figure 3.  Mitrion-C’s SDK includes FPGA simulation 
capabilities, allowing developers to test Mitrion-C 
programs on systems that are not FPGA equipped. 

Memory accesses in Mitrion are done with instance tokens.  An instance token is both a pointer 
to a particular memory location and a representation of the state of that memory at a given point 
in program execution.  Each memory operation consumes a memory token and returns a new one 
to be used in the next memory operation.  Thus, a name_number naming scheme is prudent.  
This pattern is illustrated in the following code segment:  

1. float:53.11 tmp; 
2. p0 = _memcreate (mem float:53.11 [100] p_last); 
3. p1 = _memwrite(p0, 3, 1.7); 
4. p2 = _memwrite(p1, 5, 9.4); 
5. (tmp, p_last) = _memread(p2, 9); 
 
Line 1 declares a temporary double precision floating point variable to be used later.  Line 2 
allocates a block random access memory (RAM) segment of 100 double-precision elements; 
p_last, which is declared here, indicates to the compiler the last memory token that can be 
expected to access this memory.  When the program reaches the point at which p_last is 
assigned, the block RAM can be de-allocated.  Line 3 writes 1.7 to the third element of the array, 
and line 4 writes 9.4 to the fifth element in the array.  Line 5 reads the values stored in the ninth 
element in the array, and stores it into tmp (which was declared on line 1).  Notice that each 
memory operation consumes the previous instance token and returns a new one.  The compiler 
uses this to enforce sequential consistency in memory operations; the memory operation on line 
4 will not occur until after line 3 has compiled, line 5 will not occur until after line 4 has 
completed, etc.
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5. Results 

5.1 Baseline Results 

For our baseline testing, we used three ARL Major Shared Resource Center (MSRC) unclassified 
clusters:  JVN, MJM,* and Powell.  Their various hardware characteristics are presented in (ARL 
MSRC System Overviews, 2007). 

For each of the 16 versions, we tested them with 50 channels.  Our results are shown in table 2. 

Table 2.  Relative performance of various versions of Mstack on three ARL MSRC clusters. 

Version Powell JVN MJM 
Mstack.f 1 1 1 
Mstack2.f 0.743 0.768 1.349 
Mstack3.f 0.870 0.890 0.756 
Mstackv.f 0.960 0.840 1.298 
Mstacko.f 1.728 1.693 2.037 

Mstack2o.f 1.382 1.325 2.146 
Mstack3o.f 1.653 1.475 1.431 
Mstackvo.f 1.732 1.544 2.810 
Mstack.c 1.133 0.809 0.997 

Mstack2.c 0.775 0.894 0.851 
Mstack3.c 0.926 1.131 0.909 
Mstackv.c 1.090 1.647 1.309 
Mstacko.c 1.995 1.831 2.009 
Mstack2o.c 1.281 1.368 1.385 
Mstack3o.c 1.563 1.562 1.392 
Mstackvo.c 1.854 2.027 1.764 

 
The values for each of the different systems are the acceleration relative to the run time of the 
FORTRAN reference implementation on that given system.  The run times of these referenced 
FORTRAN implementations are 60.162 s for Powell, 50.686 s for JVN, and 29.49 s for MJM. 

There does not appear to be a clear pattern as to which language produces faster code.  Depending on 
the version, the system, and the compiler, sometimes one was faster and sometimes the other was 
faster.  In many cases, the differences between the C and FORTRAN versions were insignificant.  
The optimized versions, which run half as many computations, outperformed the non-optimized 
versions in every case.  Unfortunately, this optimization might be difficult to use on some of the 
novel platforms that we plan to investigate.  In both FORTRAN and C, the mstack2 and mstack3 
implementations generally did worse than the reference implementation.  There was no clear 
pattern between the performance of mstackv when compared to the reference implementation; 
however, in many cases, the differences in performance were negligible.

                                                 
*JVN and MJM are not acronyms. 

13 



It is expected that mstack2.c, mstack3.c, or their optimized counterparts will make the best 
coding base when one is porting to NVIDIA GPUs via CUDA (NVIDIA, Inc., August 2007).  
For future work with FPGAs, it appears as though mstackv.c or mstackvo.c will make the best 
coding base. 

5.2 Mitrion-C Results 

For our Mitrion-C FPGA testing, we used Kamala, the U.S. Navy Research Laboratory’s Cray* 
XD1.  The Cray XD1 system architecture is described in detail in S.2429.131, the Cray XD1 
System Overview.  The Cray XD1 base system (a single chassis) consists of 31 total processors:  
12 64-bit x86 AMD Opteron processors, 6 or 12 RapidArray* processors, zero or six FPGAs to 
act as co-processors for the Opterons, and one management processor to run monitoring and 
control the chassis health.  Multiple chassis can be connected in customizable topologies.  The 
12 Opteron processors per chassis are connected as two six-way or three four-way symmetric 
multiprocessors.  Each SMP runs an instance of a Cray-customized version of Linux based on 
SUSE.†  Each instance of Linux (along with all the hardware that it controls) is referred to as a 
node.  The RapidArray processors provide access to the RapidArray interconnection through 
which interprocessor communication within a chassis occurs.  The RapidArray interconnection is 
“a 48-GB-per-second nonblocking embedded switch fabric, with optional expansion fabric for 
96-GB-per-second capability” (Cray, Inc., 2006).  The FGPA models used vary from system to 
system.  Kamala uses the Xilinx Virtex II Pro XC2VP50.  The XC2VP50 has 53,136 logic cells 
and 4.07 megabytes of block RAM (Xilinx, Inc., 2007). 

The XD1 has four 64-bit buses for data transfer between the host program and the FPGA, but 
Mstack is a 32-bit (e.g., single-precision) benchmark.  Rather than double-stuffing pairs of 32-bit 
elements into each bus transfer, we instead pad the transfer and throw away the pad.  We do this 
because of the difficulty in unpacking double-stuffed elements using Mitrion-C.  However, this 
does make for a slower data transfer. 

Our Mitrion-C bubblesort function was vector based:   

 
//mstack-specific declarations 
#define WORD float:24.8 
#define MAXFLOAT 0b01111111100000000000000000000000 
 
#define MAXP1 51 
#define MAX 50 
#define MAXM1 49 
 
WORD [MAX] bubblesort (WORD [MAX] scratch) 
{ 
  //initial definition of vec 
  WORD [MAXP1] vec = foreach (i in [0 .. MAX]){ 
    WORD v = if (i < MAX) (scratch[i]) else (MAXFLOAT);

                                                 
*Cray and RapidArray are trademarks of Cray, Inc. 
†SUSE is not an acronym. 
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  } v; 
 
  WORD [MAX] vec2 = scratch; //arbitrary initial definition 
  WORD [MAX] ret = for (k1 in <0 .. 2*MAXP1>) //replace 1 with MAXP1 
  { 
    WORD grtr = vec[0]; 
 
    WORD lssr = 999; //arbitrary initial definition 
    vec2 = for (k2 in [1 .. MAX]) 
    { 
      (grtr, lssr) = if (vec[k2] > grtr) (vec[k2], grtr) else (grtr, vec[k2]); 
    } >< lssr; 
    vec = foreach (i in [0 .. MAX]){ 
      WORD v = if (i < MAX) vec2[i] else MAXFLOAT; 
    } v; 
  } vec2; 
} ret; 

 
Note that the number of elements to be sorted is hard coded (e.g., #define MAXP1, MAX, and 
MAXM1).  This requires that we (a) hard code this value to 128, regardless of the number of 
channels to be sorted, or (b) recompile the Mitrion-C program any time we need to simulate a 
number of channels greater than what the compiled version was coded for. 

As previously stated, vectors (especially data-indexed vectors) consume a large amount of 
silicon.  When the code just given is compiled, the Mitrion-C compiler complains that it is too 
large:   

***ERROR: Error: Your Mitrion program uses a lot of Flip Flops 
and will not be able to successfully synthesize for the target 
FPGA. Try to reduce your Mitrion program to use approximately 50% 
of the available Flip Flops. 

 
Reducing the number of elements that the FPGA has to sort (by changing #define MAXP1, 
MAX, and MAXM1) reduces the silicon footprint.  The vector-based version compiled 
successfully for, at the largest, a vector of 19 elements.  Any larger than that would cause (a) a 
segfault in the Xilinx VHDL compiler for vectors of roughly 20 to 40 elements; (b) a too-large 
error from the Mitrion compiler, as shown before, for vectors of roughly 40 to 50 elements; or 
(c) a java out-of-memory error in the Mitrion compiler for vectors of roughly 60 elements or 
larger. 

For five channels (the only size of the benchmark that the Mitrion-C version can run), overhead 
from initializing the FPGA and transferring data to it and back tends to dominate over 
computation.  As a result, the host-only C reference significantly outperformed the FPGA 
implementation.  The C reference version processed five channels in 3.06 s; the FPGA 
implementation was slower by roughly a factor of 30. 
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6. Conclusions 

We believe Mstack has the potential to be an effective co-processor benchmark.  Its relative 
simplicity was expected to make porting Mstack to other co-processing platforms relatively easy.  
Unfortunately, our experiences with Mitrion-C have shown this to be overly optimistic.  Its 
dense, predictable memory access pattern gives co-processors the opportunity to demonstrate the 
suitability of their memory architecture. 

Based on our experiences, we believe the Mitrion-C language is currently far too difficult to 
program to make it an effective option for most software development projects for high 
performance computing.  We found it extremely difficult to develop a bubblesort function in 
Mitrion-C, owing primarily to the fact that (a) the language is based on the rarely used data flow 
(single assignment) programming model, and (b) arrays must be assigned in their entirety (e.g., 
you cannot assign to individual elements within the array; you have to assign the entire array).  
These two language characteristics make implementing any sorting algorithm inordinately 
difficult.  It took roughly 3 weeks to devise and implement the vector-based bubblesort function 
shown in section 5.2.  As described in section 7, we are currently working on a new 
implementation that eliminates vectors and uses block RAM instead, which is believed to be a 
more appropriate fit to this problem.  However, we found it to be curious that the language does 
not come with library routines for any of the commonly used sorting algorithms.  Virtually every 
major programming environment now comes with such utilities.  However, we could not find 
any evidence that Mitrion-C includes these routines in their distribution, at least for the Cray 
XD1. 

During initial attempts to create the simplest Mitrion-C test program possible (a program that 
transfers data into the FPGA and then back out again), an issue with the SDK’s FPGA simulator 
was encountered whereby floating point values passed into the simulated FPGA are zeroed.  
Mitrionics staffers confirmed that this is a known simulator bug.  Other than this case for that test 
program, the SDK’s FPGA simulator performed superbly and significantly accelerated the 
development process by eliminating long VHDL-to-bit-mapping compilation times from the 
testing process. 

 

7. Future Work 

Work to develop Mstack for other co-processing platforms is on-going.  We are partnering with 
the University of Delaware’s Computer Architecture and Parallel Systems Laboratory (CAPSL) 
to develop Mstack on a number of other co-processing platforms.  Appendix C contains a 
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description of some of the target platforms we are in the process of porting Mstack to.  These 
architectures are IBM’s Cyclops64, NVIDIA GPUs doing general purpose computation (also 
known as GPGPU) using the CUDA API, and onto FPGAs using the DIME-C language. 

Other platforms to which we are considering porting Mstack include the Cray MTA2, the Cray 
XMT (also known as the MTA-3, or “Eldorado”), the ClearSpeed* custom processor, the Cell 
Broadband Engine, and to FPGAs using the Impulse-C language. 

Work has started on a second Mitrion-C implementation of bubblesort that is not vector based 
but stores data into block RAM on the FPGA.  The limited amount of block RAM makes storing 
all the host data on the FPGA impossible; however, the vectorized version of Mstack may be 
able to take advantage of this, further reducing overhead from initializing the FPGA and doing 
data transfer.  The small size of the block RAM is the limiting factor as to how many inner loop 
iterations can be rolled together. 

Recently, Song Park of ARL began efforts to port Mstack to DIME-C.  Since this work is in its 
infancy, it is premature to report results for this part of this project. 

 
*ClearSpeed is a trademark of ClearSpeed Technology Plc. 
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/**************************************************************************/ 
/*                                                                        */ 
/* A simulated program for performing a Median Stack on Drag Seismic Data.*/ 
/*                                                                        */ 
/* This program will assume that there are a large number of data traces, */ 
/* with a constant number (M) channels per data trace.  While M can be any*/ 
/* positive integer, in general it is expected that 10 <= M <= 128, and   */ 
/* that the number of data traces and the number of measurements per trace*/ 
/* are both >> M.  For simplicity, the first M-1, and last M-1            */ 
/* measurements per trace will be thrown away since less than M values    */ 
/* exist to be stacked at those points.                                   */ 
/*                                                                        */ 
/* The median stack inherently involves performing a large number of sorts*/ 
/* on an almost infinite number of relatively small data sets (the set    */ 
/* size here will be N).  Therefore it does not make sense to use a       */ 
/* sophisticated sorting algorithm.  Instead, we will keep it simple by   */ 
/* using a bubblesort.  However, we will use OpenMP to allow multiple     */ 
/* sorts to be performed at once.                                         */ 
/*                                                                        */ 
/* Ordinarily the data would be read in from a file containing partially  */ 
/* processed data from the field.  For our purposes, the program will     */ 
/* populate a large two dimensional matrix (32 bit values since           */ 
/* measurements have limited precision, and drag data is especially       */ 
/* noisy) with dummy values).  In order to minimize extraneous effects,  */ 
/* three different dummy data sets will be created, and the program will  */ 
/* cycle through the three sets twice.  The sets are:                     */ 
/*                                                                        */ 
/*      1)  All values will be 1.0                                        */ 
/*                                                                        */ 
/*      2)  The values within a single channel will be the channel        */ 
/*          number (1 to M, where 2 <= M <= 128).                         */ 
/*                                                                        */ 
/*      3)  The values within a single channel will be                    */ 
/*          float(M - channel number).                                    */ 
/*                                                                        */ 
/* For simplicity, we will always use 1000 for the number of measurements */ 
/* per trace, and 1000 data traces.  These values were chosen so that they*/ 
/* will comfortably fit in 1 GB of memory, with room left over.           */ 
/*                                                                        */ 
/* NOTE:  This program does not use dynamic memory allocation.  Therefore */ 
/* it is possible that if the number of channels is significantly less    */ 
/* than 128 that one could increase the number of data traces.            */ 
/*                                                                        */ 
/* A small number of values will be output for each data set in an effort */ 
/* to prevent an optimizing compiler from optimizing away all of the work.*/ 
/*                                                                        */ 
/* Written by Daniel M. Pressel at ARL in July of 2007.                   */ 
/*                                                                        */ 
/* Purpose is to provide a simple reference benchmark for testing out     */ 
/* the ability of attached processors (e.g., FPGAs, GPGPUs, the SPEs in   */ 
/* the Cell processor, or Clear Speed) to accelerate floating point       */ 
/* applications.  This application was chosen for its simplicity.  While */ 
/* it may have little relevance to the military, it comes from the        */ 
/* problem domain of seismic prospecting for oil, which has always been an*/ 
/* HP/*application.                                                       */ 
/*                                                                        */ 
/**************************************************************************/
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#include <stdio.h> 
main (argc,argv) 
int argc; 
char **argv; 
{ 
 static float traces[1001][1001][130]; 
 float scratch[129], temp; 
 int numchn, k1, k2, k, i, j, l, m; 
 int valid_value; 
  
 
 valid_value = 0; 
 while ( ! valid_value) 
    { 
     printf ("How many channels (2-128)? "); 
     scanf ("%d",&numchn); 
     if (numchn < 2 || numchn > 128) 
        printf ("Invalid Response, please try again\n"); 
     else 
        valid_value = 1; 
    }; 
 
 for (i=1; i <= 2; i++) 
    { 
     printf ("%d pass\n",i); 
     for (j=1; j<= 3; j++) 
        { 
         printf ("Processing the %d th data set.\n", j); 
 
/*Initialize the array traces. */ 
 
            switch (j) { 
            case 1: 
               { 
#pragma omp parallel for private(m, l, k) shared (traces) schedule (static) 
                for (m=1; m <= 1000; m++) 
                   { 
                    for (l=1; l <= 1000; l++) 
                       { 
                        for (k=1; k <= numchn; k++) 
                           { 
                            traces[m][l][k] = 1.0; 
                           }; 
                       }; 
                   }; 
               }; 
               break; 
            case 2: 
               { 
#pragma omp parallel for private(m, l, k) shared (traces) schedule (static) 
                for (m=1; m <= 1000; m++) 
                   { 
                    for (l=1; l <= 1000; l++) 
                       {
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                        for (k=1; k <= numchn; k++) 
                           { 
                            traces[m][l][k] = k; 
                           }; 
                       }; 
                   }; 
               }; 
               break; 
            default: 
               { 
#pragma omp parallel for private(m, l, k) shared (traces) schedule (static) 
                for (m=1; m <= 1000; m++) 
                   { 
                    for (l=1; l <= 1000; l++) 
                       { 
                        for (k=1; k <= numchn; k++) 
                           { 
                            traces[m][l][k] = numchn + 1 - k; 
                           }; 
                       }; 
                   }; 
               }; 
            }; 
 
/*Calculate the medians */ 
 
#pragma omp parallel for private(m, l, k, k1, k2, scratch, temp) 
shared(traces) schedule(static) 
            for (m=1; m <= 1000 ; m++) 
               { 
                for (l=1 ; l <= 1001-numchn; l++) 
                   { 
 
/*Collect the values to be stacked */ 
 
                    for (k=1; k <= numchn ; k++) 
                       { 
                        scratch[k] = traces [m][l-1+k][k]; 
                       }; 
 
/* Perform a bubblesort */ 
 
                    for (k1=1; k1 <= numchn; k1++) 
                       { 
                        for (k2=1; k2 <= numchn-1; k2++) 
                           { 
                            if (scratch[k2] > scratch[k2+1]) 
                               { 
                                temp = scratch[k2]; 
                                scratch[k2]=scratch[k2+1]; 
                                scratch[k2+1]=temp; 
                               }; 
                           }; 
                       }; 
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/* Find the median value and store it back into the 129th channel in traces 
*/ 
 
                  k1 = (numchn +1)/2; 
                  k2 = numchn - ((numchn - 1)/2); 
                  traces [m][l][129] = 0.5 * (scratch[k1] + scratch[k2]); 
 
               }; 
            }; 
 
         printf ("traces[1][1][129] %f\n", traces[1][1][129]); 
         printf ("traces[1][800][129] %f\n", traces[1][800][129]); 
         printf ("traces[1000][1][129] %f\n", traces[1000][1][129]); 
 
        }; 
    }; 
 printf ("Hello World\n"); 
}; 
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Appendix B.  Mstack FORTRAN Reference Implementation
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C                                                                          C 
C  A simulated program for performing a Median Stack on Drag Seismic Data. C 
C                                                                          C 
C  This program will assume that there are a large number of data traces,  C 
C  with a constant number (M) channels per data trace.  While M can be any C 
C  positive integer, in general it is expected that 10 <= M <= 128, and    C 
C  that the number of data traces and the number of measurements per trace C 
C  are both >> M.  For simplicity, the first M-1, and last M-1             C 
C  measurements per trace will be thrown away since less than M values     C 
C  exist to be stacked at those points.                                    C 
C                                                                          C 
C  The median stack inherently involves performing a large number of sorts C 
C  on an almost infinite number of relatively small data sets (the set     C 
C  size here will be N).  Therefore it does not make sense to use a        C 
C  sophisticated sorting algorithm.  Instead, we will keep it simple by    C 
C  using a bubblesort.  However, we will use OpenMP to allow multiple      C 
C  sorts to be performed at once.                                          C 
C                                                                          C 
C  Ordinarily the data would be read in from a file containing partially   C 
C  processed data from the field.  For our purposes, the program will      C 
C  populate a large two dimensional matrix (32 bit values since            C 
C  measurements have limited precision, and drag data is especially        C 
C  noisy) with dummy values).  In order to minimize extraneous effects,   C 
C  three different dummy data sets will be created, and the program will   C 
C  cycle through the three sets twice.  The sets are:                      C 
C                                                                          C 
C       1)  All values will be 1.0                                         C 
C                                                                          C 
C       2)  The values within a single channel will be the channel         C 
C           number (1 to M, where 2 <= M <= 128).                          C 
C                                                                          C 
C       3)  The values within a single channel will be                     C 
C           float(M - channel number).                                     C 
C                                                                          C 
C  For simplicity, we will always use 1000 for the number of measurements  C 
C  per trace, and 1000 data traces.  These values were chosen so that they C 
C  will comfortably fit in 1 GB of memory, with room left over.            C 
C                                                                          C 
C  NOTE:  This program does not use dynamic memory allocation.  Therefore  C 
C  it is possible that if the number of channels is significantly less     C 
C  than 128 that one could increase the number of data traces.             C 
C                                                                          C 
C  A small number of values will be output for each data set in an effort  C 
C  to prevent an optimizing compiler from optimizing away all of the work. C 
C                                                                          C 
C  Written by Daniel M. Pressel at ARL in July of 2007.                    C 
C                                                                          C 
C  Purpose is to provide a simple reference benchmark for testing out      C 
C  the ability of attached processors (e.g., FPGAs, GPGPUs, the SPEs in    C 
C  the Cell processor, or Clear Speed) to accelerate floating point        C 
C  applications.  This application was chosen for its simplicity.  While  C 
C  it may have little relevance to the military, it comes from the         C 
C  problem domain of seismic prospecting for oil, which has always been an C 
C  HPC application.                                                        C 
C                                                                          C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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      REAL*4 traces(129,1000,1000) 
      SAVE traces 
      REAL*4 scratch(128) 
 
   10 CONTINUE 
      PRINT *,'How many channels (2-128)?' 
      READ (5,*) numchn 
 
      IF (numchn .LT. 2 .OR. numchn .GT. 128) THEN 
         PRINT *,'Invalid Response, please try again' 
         GOTO 10 
      ENDIF 
 
      DO 1010 I=1,2 
         PRINT *,I,' Pass' 
         DO 1000 J=1,3 
            PRINT *,'Processing the ',J,'th data set' 
 
C Initialize the array traces. 
 
            IF (J .EQ. 1) THEN 
!$OMP PARALLEL DO PRIVATE(M, L, K) SHARED (traces) 
!$OMP+ SCHEDULE (static) 
               DO 120 M=1,1000 
                  DO 110 L=1,1000 
                     DO 100 K=1,numchn 
                        traces(K,L,M)=1.0 
  100                CONTINUE 
  110             CONTINUE 
  120          CONTINUE 
!$OMP END PARALLEL DO 
            ELSEIF (J .EQ. 2) THEN 
!$OMP PARALLEL DO PRIVATE(M, L, K) SHARED (traces) 
!$OMP+ SCHEDULE (static) 
               DO 220 M=1,1000 
                  DO 210 L=1,1000 
                     DO 200 K=1,numchn 
                        traces(K,L,M)=K 
  200                CONTINUE 
  210             CONTINUE 
  220          CONTINUE 
!$OMP END PARALLEL DO 
            ELSE 
!$OMP PARALLEL DO PRIVATE(M, L, K) SHARED (traces) 
!$OMP+ SCHEDULE (static) 
               DO 320 M=1,1000 
                  DO 310 L=1,1000 
                     DO 300 K=1,numchn 
                        traces(K,L,M)=numchn + 1 - K 
  300                CONTINUE 
  310             CONTINUE 
  320          CONTINUE 
!$OMP END PARALLEL DO 
            ENDIF 
 
C Calculate the medians 
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!$OMP PARALLEL DO PRIVATE(M, L, K, K1, K2, scratch, temp) 
!$OMP+ SHARED (traces) 
!$OMP+ SCHEDULE (static) 
            DO 920 M=1,1000 
               DO 910 L=1,1001-numchn 
 
C Collect the values to be stacked 
 
                  DO 400 K=1,numchn 
                     scratch(K)=traces(K, L-1+K, M) 
  400             CONTINUE 
 
C  Perform a bubblesort 
 
                  DO 510 K1=1,numchn 
                     DO 500 K2=1,numchn-1 
                        IF (scratch(K2) .GT. scratch(K2+1)) THEN 
                           temp = scratch(K2) 
                           scratch(K2)=scratch(K2+1) 
                           scratch(K2+1)=temp 
                        ENDIF 
  500                CONTINUE 
  510             CONTINUE 
             
 
C  Find the median value and store it back into the 129th channel in traces 
 
                  K1=(numchn + 1)/2 
                  K2=numchn - ((numchn - 1)/2) 
                  traces(129,L,M)=0.5 * (scratch(K1) + scratch(K2)) 
 
  910          CONTINUE 
  920       CONTINUE 
!$OMP END PARALLEL DO 
 
            PRINT *,'traces(129,1,1)=',traces(129,1,1) 
            PRINT *,'traces(129,800,1)=',traces(129,800,1) 
            PRINT *,'traces(129,1,1000)=',traces(129,1,1000) 
 
 1000    CONTINUE 
 1010 CONTINUE 
      PRINT *,'Hello World' 
      END 
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Appendix C.  Other Target Co-processor Classes 

C.1  GPGPU 

GPUs are co-processors designed specifically for processing four-dimensional floating point 
instructions in parallel.  The four dimensions are the Red-Green-Blue-Alpha channels used in 
graphic texture data (see figure C-1). 

 

 

Figure C-1.  Comparison of GPU and CPU floating point performance.1 

GPUs have a pipeline consisting of one or more vertex processors, a rasterizer, one or more 
fragment processors, and a frame buffer.  This basic architecture had remained constant over the 
last 20 years until recently.  Now, NVIDIA and ATI have started to produce GPUs with a single 
unified pool of processors instead of separate vertex and fragment processors.  Data related to 
pixel properties are stored in dedicated high speed graphics memory.  This memory uses multi-
banking, data streaming, specialized cache designs, and other techniques to provide extremely 
high bandwidth at low latency.2 

The superior performance of GPUs over CPUs is a result of the “highly data-parallel nature of 
graphics computations” which “enables GPUs to use additional transistors more directly for 
computation, achieving higher arithmetic intensity with the same transistor count.”1 

                                                 
1Owens, J. D.; Luebke, D.; Govindaraju, N.; Harris, M.; Krüger, J.; Lefohn, A. E.; Purcell, T. J.  A Survey of General-

Purpose Computation on Graphics Hardware.  In Proceedings of Eurographics, 2005. 
2Boggan, S. K.; Pressel, D. M.  GPUs:  An Emerging Platform for General-Purpose Computation; ARL-SR-154; U.S. Army 

Research Laboratory:  Aberdeen Proving Ground, MD, August 2007. 
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GPU performance and economics are dictated by the video gaming industry which exerts a 
constant, tremendous pressure for better graphics processing performance.  The size of the 
industry means that research and development costs are amortized across a huge number of retail 
units.  In particular, this includes embedded graphics processors such as those found on gaming 
consoles.  Every Playstation, X-box, and Wii sold includes a graphics card.  In short, the 
existence of the video gaming industry means that GPUs have a price/performance ratio 
comparable (if not superior) to CPUs. 

However, it is important to bear in mind the limitations of GPUs.  GPUs are highly specialized 
devices, optimized heavily for graphics processing.  Those applications whose characteristics are 
similar to graphics processing tasks (single precision floating point, highly data parallel, almost 
no sequential bottlenecks, etc.) will experience good performance acceleration from being ported 
to GPUs.2 

We should soon have a GPU test bed system up on which to develop CUDA.  To program this 
platform, we will use the CUDA API.  CUDA is NVIDIA’s API for programming their GPUs, 
primarily for non-graphical applications.  It is C based but requires a massively threaded 
program in order to obtain high levels of performance.  Massively threaded means at least 19,200 
threads for the current generation of GPUs, with 256,000 threads recommended if the program is 
to continue to work well with future generations of their GPUs.  This makes it very difficult to 
use for most applications, although some embarrassingly parallel applications may be able to 
take advantage of one or a small number of GPUs.  As a result, the ability to use GPUs to reach 
petaflops worth of delivered performance for many applications is highly questionable. 

C.2  Cellular Architectures 

Another trend in HPC architecture has been the push toward “cellular architectures” (also known 
as “many-core” architectures), that is, arrays of simple, repeating tightly coupled processors or 
processor cores.  Individually, each processor/core is relatively slow and consumes little power, 
but the architecture is designed to accommodate many of them. 

The Cell Broadband Engine (BE), designed by IBM for use in Sony’s Playstation gaming console, 
is an example of cellular architecture on a small scale.  The cell has an IBM PowerPC as its main 
processor (for sequential sections of code), with eight “synergistic processing elements” (SPEs) 
for parallel computation.*  IBM developers have ported a number of applications to Cell with 
good performance.  For example, they achieved 25.12 Gflops per SPE doing matrix-matrix 
multiplication, with nearly linear parallelization.  Other applications included variety of 
cryptography algorithms, MPEG2 (Moving Picture Experts Group) decoding, and double 

 
*Note that only seven of the SPEs are consumer enabled.  The eighth SPE is included as a spare to boost manufacturing 

yields.  If a Cell chip is manufactured with a defect in one SPE, the defective SPE can be disabled and the spare SPE enabled.  
Furthermore, another SPE is used for operating system tasks, leaving six SPEs for actual parallel computation (Linklater, M.  
Optimizing Cell Core, Game Developer Magazine, April 2007). 



precision Linpack.3  However, Cell has been criticized as being very difficult to program 
efficiently.4, 5  Figure C-2 gives the Cell BE’s physical layout. 

 

 
Figure C-2.  The Cell BE consists of one power PC core and eight SPEs.6

                                                 
3Chen, T.; Raghavan, R.; Dale, J.; Iwata, E.  Cell Broadband Engine Architecture and Its First Implementation.  IBM 

DevelopWorks, November 2005. 
4Shankland, S.  Octopiler Seeks to Arm Cell Programmers.  CNet News, 22 February 2006. 
5Scarpazza, D. P.; Villa, O.; Petrini, F.  Programming the Cell Processor.  Dr. Dobb’s Journal 2007. 
6Kahle, J. A.; Day, M. N.; Hofstee, H. P.; Johns, C. R.; Maeurer, T. R.; Shippy, D.  Introduction to the Cell Multiprocessor.  

IBM Journal of Research and Development 2005, 49 (4/5). 
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Cyclops64 is an example of a cellular architecture on a much larger scale (see figure C-3).  It is a 
“system-on-a-chip” architecture being developed by IBM.  Each Cyclops64 node (chip) includes 
80 processors.  Each processor has two cores, each of which has its own scratch-pad memory.  
The two cores in each processor share a floating point execution unit.  Cyclops64 chips can be 
combined into a larger system of as many as 13,824 nodes and 13.8 terabytes of RAM.7  Thus, a 
full Cyclops64 system can support as many as 2,211,840 hardware threads.  Cyclops64 uses the 
TinyThreads thread virtual machine and threading library.8  Processors within a Cyclops64 node 
communicate via a 96- × 96-way non-internally blocking cross-bar switch.  The cross-bar switch 
is the critical component in the design, allowing enormous bandwidth between the processors 
and the on-chip Static Random Access Memory (SRAM).  Accesses across the cross-bar switch 
are uniform, except for scratch pad memory accesses (which go through the “back door,” a 
special bus that bypasses the cross-bar switch). 

 

 

Figure C-3.  A logical view of the Cyclops64 chip.  (The cross-bar switch separates the dual-core processors 
from the SRAM memory.  The memory is partitioned into global interleaved memory (GM) and 
processor-specific scratch-pad memory (SM).  The “back door” bus is shown with a dashed line.)

                                                 
7Zhang, Y. M. P.; Jeong, T.; Chen, F.; Wu, H.; Nitzsche, R.; Gao, G. R.  A Study of the On-Chip Interconnection Network for 

the IBM Cyclops-64 Multi-Core Architecture.  In the Proceedings of 20th International Parallel and Distributed Processing 
Symposium, 2006. 

8Del Cuvillo, J.; Zhu, W.; Hu, Z.; Gao, G. R.  FAST:  A Functionally Accurate Simulation Toolset for the Cyclops-64 
Cellular Architecture.  Workshop on Modeling, Benchmarking and Simulation (MoBS), held in conjunction with the 32nd 
Annual International Symposium on Computer Architecture, 2005. 
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Cyclops64 is currently in the final stages of development and should be released in late 2007 or 
2008.  Because the architecture does not yet physically exist, our evaluation of its performance 
will be based on simulation using the Functionally Accurate Simulation Toolset (FAST) simulator.9  
FAST “is an execution-driven, binary-compatible simulator of a multichip multithreaded C64 
system.  It accurately reproduces the functional behavior and count of hardware components 
such as thread units, on-chip and off-chip memory banks, and the 3D-mesh network.” 

C.3  On FPGA Using DIME-C 

Another potential platform for Mstack is on FPGAs with the DIME-C “C-to” language.  
Nallatech offers the DIME-C and DIMETalk* software development tools to ease the process of 
programming applications on an FPGA.  DIME-C is the high-level language used by Nallatech’s 
software for VHDL translation.  An attractive feature of DIME-C is the fact that it is a subset of 
American National Standards Institute (ANSI) C with the identical syntax.  A user only needs to 
learn the portion of standard C language that is not supported in DIME-C.  This allows a minimal 
learning curve to start coding in DIME-C.  Since the language is a subset of ANSI C, DIME-C 
code can also be debugged with the use of any ANSI C compilers.  Hardware optimizations 
exploited through parallelism and pipelines are automatically applied by the compiler without 
user intervention.  When the DIME-C code is compiled, a graphical representation showing parallel 
and pipelined structure is generated. 

Currently, DIME-C and DIMETalk are supported only on a Windows† platform.  Since a large 
amount of system memory is used during the synthesis process executing Xilinx software, 64-bit 
Windows or Linux operating systems are recommended for software installation.  The FPGA’s 
internal and external interfaces are handled by the DIMETalk software.  DIMETalk divides and 
represents an overall FPGA design as separate individual components with pre-defined 
interconnections.  For example, a clock driver, a host interface, a memory element, and user 
design modules are the minimum components required for an FPGA design.  The following list 
describes the minimum components of a DIMETalk network: 

• Clock driver provides the clock signals for a design. 

• Host interface defines the FPGA board interface to a host system allowing communication 
to an FPGA. 

• Memory elements can store data and are visible and accessible by a host. 

• User module defines an algorithm in hardware.

                                                 
9Del Cuvillo, J.; Zhu, W.; Hu, Z.; Gao, G. R.  TiNy Threads:  A Thread Virtual Machine for the Cyclops-64 Cellular 

Architecture.  Fifth Workshop on Massively Parallel Processing (WMPP), held in conjunction with the 19th International 
Parallel and Distributed Processing System, 2005. 

*DIMETalk is a trademark of Nallatech. 
†Windows is a trademark of Microsoft Corporation. 
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Having the host interface component greatly simplifies the implementation of FPGA and host 
communication by hiding the underlying details associated with PCI bus and FPGA pin 
connections.  Basically, DIMETalk provides a work space for placing and connecting elements 
within a design, creating a network inside an FPGA. 

The FUSE API functions are used for a host to communicate with an FPGA board.  A standard C 
code, referred as a host C file, is written that includes the API functions.  The host C file is 
executed on the host side, which will load, control, and execute the hardware design on an FPGA.  
A generic host C file is created by DIMETalk, which relieves a developer from the details of 
initial FPGA setup.  However, a user is expected to include I/O data transfers between the host 
system and an FPGA to the generic host C file.  Because the read and write FUSE API functions 
can only operate on memory elements, a processing unit within an FPGA is responsible for 
placing outcome results to these memory elements in order for the host to read the final results. 

The tools offered by Nallatech attempt to simplify the process of hardware design by offering a 
high-level language DIME-C, providing a PCI-X interface component, and generating a host C 
file.  Furthermore, hardware optimizations are automated by the DIME-C compiler.  
Unfortunately, these user-friendly features result in a limited amount of hardware design 
flexibility for exploiting parallelism.  For example, the conversion from DIME-C to VHDL 
creates ambiguity problems, such as with addition, which can be instantiated in hardware with a 
carry-propagate adder, a carry-save adder, or a carry-look-ahead adder.  Furthermore, ability to 
control low level signals and architecture to achieve hardware acceleration is lost.  Since the 
DIME-C compiler is in charge of designing hardware for an algorithm written in DIME-C, 
optimizations are limited to the operations performed by the DIME-C compiler. 

The DIME-C compiler derives a hardware design from a subset of standard C, which is a 
procedural language.  A procedural language is intended for programming processors and is 
fundamentally different from designing hardware.  Although the intentions and benefits of using 
DIME-C for programming FPGAs are attractive, achieving performance improvement directly 
from a language targeted for a CPU can be a limiting factor. 
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