ARMY REeseArcH LABORATORY

Mstack: A Lightweight Cross-Platform Benchmark for
Evaluating Co-processing Technologies

by Mark Pellegrini and Daniel M. Pressel

]
ARL-MR-0683 December 2007

Approved for public release; distribution is unlimited.

NOTICES
Disclaimers

The findingsin this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-MR-0683 December 2007

Mstack: A Lightweight Cross-Platform Benchmark for
Evaluating Co-processing Technologies

Mark Pellegrini and Daniel M. Pressel
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution isunlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
December 2007 Final June 2006-August 2006

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Mstack: A Lightweight Cross-Platform Benchmark for Evaluating Co-processing

Technologies 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Mark Pellegrini and Daniel M. Pressel 8UH3CC

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

U.S. Army Research Laboratory REPORT NUMBER

ATTN: AMSRD-ARL-CI-HC ARL-MR-0683

Aberdeen Proving Ground, MD 21005-5067

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Co-processing technologies are currently increasing in performance at a rate superior to Moore's law, making porting
applications to them desirable. However, with so many different competing co-processing technologies, the need for asimple,
lightweight cross-platform benchmark has become apparent. To fill this need, we have devised Mstack, a lightweight
benchmark designed to be run on a number of different classes of co-processors.

We have implemented or are in the process of implementing Mstack on avariety of different co-processor architectures: on
field programmable gate arrays (FPGAS) using Mitrion-C and Dime C, graphical processing units (GPUs) using Compute
Unified Device Architecture (CUDA), and Cyclopst4.

15. SUBJECT TERMS
FPGA, field programmable gate array, high performance computing, HPC, GPGPU, benchmark, GPU

17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF: OF ABSTRACT OF PAGES Daniel M. Pressdl
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
UNCLASSIFIED | UNCLASSIFIED | UNCLASSIFIED UL 48 410-278-9151

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Contents

List of Figures

List of Tables

Acknowledgments
1. Introduction
2. Background
3. TheMstack Benchmark
3.1 Design ConSiderations.........ccccceeveeviesieeseeiieseesreeseesee e seesree e eeesreeeas
3.2 Mstack Implementation............ccoeiererieierese e
3.3 Table of Mstack Bubblesort Variations...........cccceccvveereeceseeseeieeseene,
4. Reconfigurable Computing and the Mitrion-C Language
4.1 Reconfigurable COMPULINGcooveierierenierienese e
4.2 The Mitrion-C LangUage..........ccccvevereeieeieeiee e eee s ene e nee s
5. Results
5.1 BaSaliNE RESUITSccceceeciieie e
5.2 MitHON-C RESUILS.....ccueiiiie ettt et
6. Conclusions
7. FutureWork
8. References

Appendix A. Mstack C Reference | mplementation

Appendix B. Mstack FORTRAN Reference Implementation

Appendix C. Other Target Co-processor Classes

Distribution List

.......................... 6

16

16

18

21

27

31

37

List of Figures

Figure 1. Comparison of CPU and FPGA single precision floating point multiplication
performance (UNderwood, 2004).c.eoiereeieerienieseesie e siesee e e see e ssesse e ssesessseessesneens 2

Figure 2. A logical view of the Mitrion-C host/FPGA interaction. The host communicates to
the FPGA using (1) vendor-supplied libraries (shown with pink arrows), or (2) Mithal, a
Mitrionics-supplied library that runs on top of the system vendor’s FPGA communication
libraries (shown with green arrows). (By allowing the program to avoid system-specific
[or vendor-specific] communication libraries, Mithal allows Mitrion programsto be

Cross-platform COMPALIDIE.)ooveeie e e 10
Figure 3. Mitrion-C's SDK includes FPGA simulation capabilities, allowing developers to

test Mitrion-C programs on systems that are not FPGA equipped.ccoevvveevveieveesennns 12
Figure C-1. Comparison of GPU and CPU floating point performance...........ccccccevvecvereeieennnne. 31
Figure C-2. The Cell BE consists of one power PC core and eight SPES.ccccceveeevvccieeneene 33

Figure C-3. A logical view of the Cyclops64 chip. (The cross-bar switch separates the dual-
core processors from the SRAM memory. The memory is partitioned into global
interleaved memory (GM) and processor-specific scratch-pad memory (SM). The “back

door” busis shown With @dashed [INE.).......cccuviieiieii e 34
List of Tables
Table 1. Bubblesort implementations for the various versions of Mstack.cccocevevveevieenennnne 6

Table 2. Relative performance of various versions of Mstack on three ARL MSRC clusters.....13

Acknowledgments

We would like to gratefully acknowledge the following people and groups for their assistance.
Without their help, this work would not have been possible:

Mitrionics and their staff, and Jace Mogill and James Maltby in particular.
* TheU.S. Navy Research Laboratory, Washington, DC.

» The Department of Defense High Performance Computing M odernization Program
(HPCMP) office.

» The Computer Architecture and Parallel Systems Laboratory (CAPSL) at the University of
Delaware.

INTENTIONALLY LEFT BLANK.

Vi

1. Introduction

Co-processing technologies are currently increasing in performance at arate superior to Moore's
law,” making porting applications to them desirable. However, with so many different
competing co-processing technologies, the need for a simple, lightweight cross-platform
benchmark has become apparent. To fill this need, we have devised Mstack, alightweight
benchmark designed to be run on a number of different classes of co-processors.

The Mstack benchmark is based on the concept of a median stack. This concept isused in the oil
industry for processing particularly noisy seismic data (e.g., drag datafrom swampy terrain).
The primary nature of this processisto perform a sort on asmall data set (for our purposes,
5-128 elements in size), so that the median value of the data set may be found. While this would
not appear to be a particularly challenging problem, there would normally be a nearly infinite
number of such data setsto process. For simplicity, we have truncated thisto roughly 1-million
data sets. So that we could be certain we were measuring the performance of the central
processing unit (CPU)/co-processor, memory system, and associated interconnections, we used
three very simple dummy test cases created “on the fly” at run time (this avoids the significant
amount of time associated with random number generators and/or disk/tape input/output [1/0]).

We have implemented or are in the process of implementing Mstack on avariety of different
co-processor architectures: on field programmable gate arrays (FPGAS) with Mitrion-C and
DIME-C, NVIDIA’s" newer graphical processing units (GPUs) which use Compute Unified
Device Architecture (CUDA), and the Cyclops64* architecture. For our target FPGA platforms,
we have intentionally selected a number of high level C-to-RTL (register transfer level)
languages, which are compiled to VHSIC (very high speed integrated circuits) hardware
description language (VHDL) before being mapped on to the FPGA. Cyclops64 is amassively
multicore architecture being developed by IBM. The economics of the video gaming industry
have made GPUs a feasible high performance computing platform. We believe our benchmark
is an appropriate tool for evaluating all these technologies, as well as anumber of other co-
processing platforms.

In section 2, we describe the trend toward parallelism and co-processing technologies; in section
3, we discuss the design considerations and implementation choices we have made in devising
Mstack; in section 4, we review the state of reconfigurable computing, i.e., computers that use
FPGAS as co-processor technologies, and an array of new high-level methods of programming

"“Moore'slaw isthe empirical observation made in 1965 that the number of transistors on an integrated circuit for minimum
component cost doubles every 24 months. It is attributed to Gordon E. Moore, a co-founder of Intel.” —Wikipedia, Moore’ s Law.

NV DIA, which is not an acronym, is aregistered trademark of NVIDIA Corporation.
iCycl ops64 is atrademark of International Business Machines (IBM) Corp.

them; in section 5, we report our results; in section 6, we analyze our results and draw
conclusions; in section 7, we describe our planned future work in this area; appendix A contains
the Mstack C reference implementation; appendix B contains the Mstack FORTRAN" reference
implementation; appendix C contains technical discussions of co-processing platforms we plan to
port Mstack to in the near future (in furtherance of the future work described in section 7).

2. Background

A co-processor is adevice that does computation in place of the CPU. Co-processing
technologies are particularly “hot” right now because their performance is increasing faster than
CPU performance (see figures 1 and C-1). Thistrend makes porting applications to co-
processors particularly desirable. Porting the application to a co-processor resultsin
performance gains from hardware upgrades that outstrip even Moore's law.

' ' FPGA Multiglication Perfarmance ——
FPGA Multiplication Perf. Extrapolation ---3¢--
3 CPU Multiplication Performance ---3#---
1e406 | CPU Multiplication Perf. Extrapolation —E3- X
L "/', s
g 100000 F » L B
z - - e
3 10000 | - 4
f =
o
E
=]
=
E 1000]
100 E
1{] 1 1 1 1 1 1
1998 2000 2002 2004 2006 2008

Year

Figure 1. Comparison of CPU and FPGA single precision floating point multiplication
performance (Underwood, 2004).

However, at the same time, there has been a great diversification in co-processor technology.
Presently, many different kinds of co-processing technologies are vying for dominance:

» GPGPU - General purpose computation on graphical processing units,

* Reconfigurable computing — The use of application-specific logic run on FPGA co-
processors,

* Formula Tranglator.

» Multicore and many-core architectures — High Performance Computing systems with many
relatively simple cores. Examplesin this classinclude the Cell Broadband Engine,” Sun
UltraSPARC T1' (Niagara), and IBM Cyclops64.

Each of these classes has its advantages and disadvantages. A number of benchmarks have been
created to test FPGAs (McCarty et al., 1993; Govindargju et al., 2005) and GPUs (Buck et al.,
2004; Kumar et a., 2000). However, these benchmarks are limited to coprocessors within a
given class. To our knowledge, no inter-class co-processor benchmark has been created.* The
goal of the Mstack benchmark is to evaluate the co-processing technologies on an apples-to-
apples basis to provide a valid comparison between very different specialized devices.
Ultimately, Mstack’s purpose is enable users to evaluate co-processors potential for novel
concepts in high performance computing—concepts that might appear as options in future high
performance computing (HPC) systems.

3. TheMstack Benchmark

We have devised a small, easy-to-compile benchmark based on determining the median valuein
an unsorted array. Determining the median requires sorting the array, and picking the valuein
the center element in the array. To sort the array we chose to use the bubblesort algorithm
because of its simplicity and that for small arraysit may be nearly optimal performance-wise.

3.1 Design Considerations

The Mstack benchmark was designed under the “keep it smple stupid” philosophy. It was
designed to be practical to run on CPUs as well as on awide variety of co-processors. Some of
the design requirements and constraints that went into developing the benchmark were

1. Therun time must be long enough that it makes sense to accelerate the application. At the
bare minimum, this means run times with a length of minutes to hours.

2. Therun time must be short enough that it is reasonable to do at least some runs with a
simulator or hardware emulator. Thiswill normally favor aruntime of 1 sor less, but a
few seconds of simulated time should be doable in less than 12 hr of simulation time.

3. It should fit in main memory but require vastly more space than is likely to be available in
the caches/dedicated local memory.

" Cell Broadband Engine is atrademark of Sony Computer Entertainment, Inc.
TUItraSPARC T1 is atrademark of Sun Microsystems.

We are neglecting all-purpose benchmarks and micro-benchmarks such as fast Fourier transform and matrix multiply which
may not be suitable for highly specialized/optimized architectures devices such as GPUs and FPGAS.

4. The amount of input/output (1/0) should be negligible. After all, we are attempting to
measure computational performance.

5. Although it might have been desirable to have an inner loop that can be parallelized and
vectorized, for many of the platforms undergoing consideration, what mattersis having
middle and/or outer loops that parallelize.

6. Anembarrassingly parallel algorithm was selected, since this minimizes the effort
associated with parallelization.

7. We needed afloating point algorithm, but for ssmplicity’ s sake, it was desirable to find as
simple an algorithm as possible. That isto say, not a complete code with 100 or more
boundary condition routines to worry about, but many simple benchmarks such as matrix
multiply and FFTs that have already been implemented and are well known in the field.

Keeping these constraints in mind and drawing on Mr. Pressel’ s earlier experience in processing
seismic datafor the oil industry, we constructed a benchmark that extracts the key components of
amedian stack. In seismic data processing, stacking is amethod of averaging several values that
nominally correspond to the same subsurface location. Ordinarily, thisis done with the arithmetic
mean. However, in situations when the data are noisy (for example, drag data recorded in swampy
locations), the presence of outliers can heavily skew the results. A commonly used alternative
for noisy datais the median stack, where the data values to be averaged are first sorted so that it
is possible to determine what the median value is. The issues involved with this process are

1. The number of valuesto be sorted is usually small (never greater than 128, and possibly
lessthan 24). Therefore, we decided to benchmark data sets where the number of channels
are5, 50, 75, and 128. The number of channels determines the number of valuesto be sorted
and is physically analogous to the number of sensors recording data after each explosion.

2. The number of data sets to be averaged would normally be nearly infinite. For purposes of
this benchmark, it was decided to use 1 million data sets, although some of them are not
processed since they would be incomplete (representing the seismic boat turning around).
When one is using 32-bit floating point data, this should comfortably fit into 1 GB of main
memory (depending on the implementation, the required amount of main memory isin the
range of 500 to 600 MB). Note that in order to be faithful to the origin of this benchmark,
it isimportant that all the data be written to main memory before the start of the processing.

3. Since we lacked ready access to actual data, three data sets were constructed for
benchmarking purposes. Thefirst sets all the values to a constant value (1.0 in this case).
The second sets the values of each channel to the channel number, so the values go from
1.0 to number_of channels (in floating point). The third data set assigns numbers to the
channelsin reverse order and is the only data set that is not already sorted. These three
data sets were selected for ssimplicity and since they are known to be inefficient for one or
more of the commonly used sorting algorithms.

4. We selected the bubblesort for use as the sorting algorithm. For smaller numbers of
channels, other sorts are unlikely to show their asymptotic performance, and the bubblesort
will likely be faster because of its simplicity. Thissimplicity will also have benefits when
the benchmark is running on single-instruction-multiple-data (SIMD) arrays of processors
with small amounts of instruction cache per processor. Similarly, bubblesort should make
it easier to implement on FPGAs. While the reference implementations do not explicitly
show the use of predicated operations, it was not difficult to produce a C implementation
that uses the conditional operator and therefore lends itself to being implemented with
predicated operations. This should improve the performance on the GPUs. Additionally,
note that the performance of the bubblesort is nearly data independent.

5. Both FORTRAN 77 and C versions of the bubblesort were implemented, including
OpenMP directives for the parallelization of the outer loop on shared memory platforms.

6. A minimal amount of output is produced. Thisis helpful for debugging purposes and to
disable overly aggressive compiler optimizations.

In order to avoid limitations on the stack size and stack frame size for many platforms, the
largest array (roughly 500 MB in size) is static allocated onto the heap (save statement in
FORTRAN, static qualifier in the declaration for C). In order to maximize the similarity
between the FORTRAN and C code, the decision was made not to use pointersin either version.
This means that no dynamic memory allocation was used in any of the versions and that array
syntax is used throughout the C versions of the benchmark.

3.2 Mstack Implementation

The benchmark incorporates a bubblesort. However, for comparison purposes, other sorting
algorithms can be used if it isfelt that they are better suited to a particular platform. In these
cases, it isimportant to specify which sort has been used, and it is preferred that some amount of
justification be included.

The only input that the benchmark takesis at the beginning of the run, when it prompts the user
for the number of channels. The purpose of thisistwofold: it allows the user to control how
long the benchmark runs, in effect, replicating the computation classes used in other benchmarks,
such asthe NASA Advanced Supercomputing (NAS) Parallel Benchmark Suite. Secondly, it
imposes a compile-time knowledge limitation on the compiler. Thus, the compiler cannot
optimize the sorting work at the heart of the benchmark.

The original C and FORTRAN reference implementations are given in appendices A and B,
respectively. We have also produced aternate implementations of Mstack in C and FORTRAN
which use different optimization schemes to attempt to achieve better performance on a range of
architectures. Mstack2 and Mstack3 differ from the reference implementation by using the

ternary operator instead of an “if” statement. This may make a difference with some compilers,
allowing them to produce more efficient assembly code using predicated instructions. Mstackv
isavectorized version of the Mstack. This vectorization allows pipelining or parallelization of
the innermost loop. The code for the different variations of the bubblesort is given in section 3.3.

For each of these four versions (the original reference implementation, mstack2, mstack3, and
mstackv), we also applied an optimization to the inner loop whereby it would sort to the length
of the vector minus the iteration. The reference implementation sorted through the entire vector
on every iteration, thus performing N? comparisons and possible swaps. The optimized versions
perform 1/2xN? comparisons and possible swaps. We consider all versions of the Mstack
benchmark to be acceptable and equally valid for the purposes of testing hardware. We have
tested each of the four versions (mstack, mstack2, mstack3, and mstackv) and their optimized
equivalents (mstacko, mstack20, mstack3o, and mstackvo) in C and FORTRAN for 50 channels.
Our results are given in section 5.

3.3 Tableof Mstack Bubblesort Variations
The bubblesort functions for each of the non-optimized versions of Mstack are shown in table 1.

Table 1. Bubblesort implementations for the various versions of Mstack.

/* Mstack */
/* Perform a bubbl esort */
for (k1=1; k1l <= nunthn; kl++)

for (k2=1; k2 <= nunthn-1; k2++)
{
if (scratch[k2] > scratch[k2+1])
{
temp = scratch[k2];
scrat ch[k2] =scrat ch[k2+1] ;
scrat ch[k2+1] =t enp;
}s

I
}.

/* Mstack2 */
/* Perform a bubbl esort */

for (k1=1; k1 <= nunthn; kl++)

for (k2=1; k2 <= nunthn-1; k2++)
{
tenpl scratch[k2];
tenmp2 scrat ch[k2+1];
tenp3 = tenmpl > tenp2? ((tenpd=tenpl),tenp2): ((tenpd=tenp2),tenpl);
scrat ch[k2] =t enp3;
scrat ch[k2+1] =t enp4;

Table 1. Bubblesort implementations for the various versions of Mstack (continued).

/* Mstack3 */

/* Perform a bubbl esort */

for (k1=1; k1 <= nunthn; kl1l++)

{
templ = scratch[1];
for (k2=1; k2 <= nunthn-1; k2++)
{

tenp2 scrat ch[k2+1];
tenp3 = tenpl > tenp2? ((tenpd=tenpl,tenp2): ((tenpd=tenp2),tenpl);
scrat ch[k2] =t enp3;
tenpl = tenp4;
b
scr at ch[nunthn] =t enp4;
b
/* Mstackv */
/* Perform a bubbl esort */
for (k1=1; k1 <= nunthn; kl++)

for (k2=1; k2 <= nunthn-1; k2++)
for (1=1; I <= 1001 - nunchn; | ++)

tenpl traces2[k2][1];
tenp2 traces2[k2+1][1];
if (tenpl > tenp2)
{
traces2[k2] [I]=tenp2;
traces2[k2+1][1] =t enp1l;
b

4. Reconfigurable Computing and the Mitrion-C Language

4.1 Reconfigurable Computing

One recent trend in HPC architecture is to integrate FPGAs into HPC systems as co-processors.
These systems are known as “ reconfigurable computers’ because the logic on the FPGA can be
reconfigured for each application run on the system or even for different sections of agiven
application. Inorder to get an acceptable level of performance, the FPGA must have high
bandwidth, low latency access to the system memory. This requires a high degree of cooperation
between the system, FPGA, and bus vendors, which did not exist until recently. According to
Michagl D’ Amour, chief executive officer of DRC™ Computer Corporation, “ 1t took 18 months
for DRC to convince Advanced Micro Devices (AMD) to open [their Hypertransport bus] up...

"DRC isnot an acronym.

When we first walked into AMD, they called us ‘the socket stealers’. Now they call ustheir
partners.” AMD’s decision to open their Hypertransport bus protocol to third parties has made
Hypertransport the enabling technology in reconfigurable computing (D’ Amour, 2007).
However, alarge number of commercially available plug-in FGPAS use the much slower
PCI/PCI-X/PCle bus, and these busses are the only option for systems using non-AMD
processors or non-Xilinx FPGASs.

Previous work in this areaindicates that migrating certain classes of applications to FPGAs has
the potential for tremendous acceleration. (Pressel, 2007; Zhang et al., 2007). However,
recognizing that hardware description languages (HDLS) such as VHDL and Verilog™ are
difficult and time consuming to program (akin to programming a CPU in assembly language), a
number of “C-to” (alternatively, “C-to-RTL”) languages have been developed. These are C-like
languages that are compiled to HDL and then compiled again to an FPGA bit mapping. These
C-like languages include

» Mitrion™-C — commercially available for SGI* RC100 and Cray XD1
* DIME-C —alanguage for Nallatech FPGAs only

» Handel$-C —“Basically asmall subset of C extended using afew constructs for configuring
the hardware device” (Peter, 2007)

e Impulse™-C—Commerical. Supports several FPGAs (Altera Cyclone, Altera Stratix,
Xilinx Spartan, Xilinx Virtex) on many platforms

The C programming language is, by its very nature, targeted for CPU architectures. This means
that C programs generally do not map to hardware easily or efficiently. To give one very
common example, consider the following line of C code:

a=x[y]; (1)

wherey isnot known at compile time. On a CPU system, this operation istrivial to implement.
However, because y is not known at compile time, the hardware compiler is unable to optimize
thisinstruction. Thus, implementing thisin hardware requiresthat x is stored in itsentirety in a
programmable logic array (PLA). If x islarge, this can consume an enormous number of
transistors. Accordingly, the Mitrion-C manual describes vectors (Mitrion’s equivalent to arrays
in C) by saying, “Y ou will soon notice that using even moderately large vectors can use al the
available resources. A vector may be indexed but preferably only by compile-time constant
values. Accessing data-dependent indicesis very costly on silicon surface and should be

*Verilog isatrademark of Cadence Design System, Inc.
TMitrion is atrademark of Mitrionics AB.

iSGI isatrademark of Silicon Graphics, Inc.

§Handel is atrademark of Celoxia, Inc.

M mpulseis atrademark of Impulse Accelerated.

avoided. If data-dependent access to avector’'s elementsis required, you should consider if an
internal RAM-memory would not be more suitable” (Mohl).

Different “C-t0” languages take different approaches to programmability and efficiency. DIME-C
and Impulse-C are subsets of the C-language, making them particularly easy to program and debug
but at the cost of being inefficient to map to an FPGA. In contrast, Mitrion-C resembles C only
superficialy. It uses much of the same syntax, but conceptually, it isvastly different. Asa
result, Mitrion-C is more difficult to program but has the potential to map to the FPGA very
efficiently.

4.2 TheMitrion-C Language

Mitrion-C’s resemblance to C isonly skin deep. Beyond some basic syntactical similarities, itis
atotaly different language.

Mitrion-C isasingle assignment, fully implicitly parallel language. This preventsthe
programmer from creating false dependencies and allows the compiler to create a data flow
model of the program in hardware. This, in turn, exposes all the thread-level parallelismin the
program, allowing the compiler to generate an efficient parallelized hardware implementation.
Mitrion’s software devel opment kit (SDK) includes a visual debugging feature that allows the
developer to see values flowing through a data flow representation of the program.

Explicit datatyping is, in most cases, optional. However, all declarations must specify abit
width. Mitrion-C is capable of handling arbitrarily large integers and floating point variables.
Floating point declarations must specify both the mantissa and exponent bit widths. An Institute
of Electrical & Electronics Engineers (IEEE) 754 single precision floating point variableis
declared as

fl oat:24.8 foo;

An |EEE 754 double precision floating point valuesis declared as
float:53.11 bar;

Mitrion-C includes three looping constructs: for, foreach, and while. The foreach loop is used to
signify that the number of iterations the loop will execute is known at compile time and that
there are no loop-carried dependencies. The for loop indicates that the number of iterationsis
known at compile time and that there are loop-carried dependencies. The whileloop is used to
indicate that the number of iterationsis not known at compile time. However, the language
requires the program to make a guess.

Mitrion-C has four collective data types:

* List—An unindexed array whose length is known at compiletime. Element-wise
operations occur sequentially.

* Vector — Anindexed array whose length is known at compile time. Element-wise
operations occur in parallel.

e Stream — An unindexed array whose length is not known at compile time. Element-wise
operations occur sequentially.

» Tuple—A “bag” of various data types analogous to the tuple found in many programming
languages (Python, etc.).

Lists are analogous to elements traveling through a hardware pipeline. Lists, even very large
ones, tend to use very few FPGA resources beyond the logic already specified by the program.
Vectors are buffered memory allocations anal ogous to programmable logic arrays. Vectors are
easy to program with but very costly in silicon.

Everything in Mitrion returns a value (functions, loops, if/else statements, etc.). Given that
Mitrion-C will be instantiated in hardware, thisis entirely sensible. Itisillogical to instantiate
hardware that does not contribute to the computation of the program.

A proper Mitrion-C program includes a Mitrion-C file (that uses the .mitc extension) and aC
program that runs on the host. The Mitrion-C file is compiled by the mitrion compiler into a
VHDL program. ThisVHDL program s, in turn, compiled into a bit mapping that is loaded
onto the FPGA at run time.

Host-FPGA communication can be done in one of two ways with the use of vendor-supplied
communication libraries or Mithal. Mithal is a Mitrioncs-supplied communication library that
acts as awrapper for anumber of vendor-supplied host-FPGA communication libraries. Mithal
includes the features common to all those libraries. This alows Mitrion-C programsto be
portable to any architecture whose host-FPGA communication libraries are supported by Mithal.
On the host side, the communication isinstantiated asa DMA. The host-FPGA interaction is
shown in figure 2.

Host program.c Mithal Mitrion

logic.mitc

A

\ 4

» Vendor libs <

Figure 2. A logical view of the Mitrion-C host/FPGA interaction. The host communicates to the FPGA using
(2) vendor-supplied libraries (shown with pink arrows), or (2) Mithal, a Mitrionics-supplied library
that runs on top of the system vendor’s FPGA communication libraries (shown with green arrows).
(By allowing the program to avoid system-specific [or vendor-specific] communication libraries,
Mithal allows Mitrion programs to be cross-platform compatible.)

10

Consider the following code from the host-side C file:

printf("Allocating FPGA... ");

ny_fpga = mtrion_fpga_allocate("");

i f(nmy_fpga == NULL) {
fprintf(stderr, "Couldn't find the FPGAI\n");
return 22

}
printf("Done\n");

printf("Create processor... ");

my_proc = mtrion_processor_create(argv|[l1]);

i f(my_proc == NULL) {
fprintf(stderr, "Couldn't create the MWP'\n");
return 23;

printf(" Done\n");

mema = mtrion_processor_reg_buffer(my_proc, "mema", NULL,
si zeof (int),
V\RI TE_DATA) ;

printf("Invoking asynchronous run...\n");
mtrion_processor_run(m_proc);

printf("Wiiting for processor...\n");
mtrion_processor_wait(ny_proc);
printf("Done\n");

The code just given declares the FPGA, the Mitrion virtual processor (MVP), and mem_a, the
direct memory access (DMA) memory array. It then invokes an asynchronous run, letting the
processor begin to run the bit mapping of the Mitrion-C file. Meanwhile, the host side waits for
the FPGA to finish.

The mitrion_fpga allocate, mitrion_processor_create, mitrion_processor_reg_buffer,
mitrion_processor_run, and mitrion_processor_wait functions form the core of the Mithal
application program interface (API). The mitrion_processor_reg_buffer is the function that
actually allocatesthe DMA memory—the mem_aarray.

The Mitrion-C SDK includes an FPGA simulator for Mitrion-C files. Given the long Mitrion-to-
VHDL-to-bit mapping compilation time (about 15 minutes on our target platform for the most
trivial Mitrion-C program), the utility of thistool for code development, testing, and debugging
cannot be overstated. Figure 3 contains a diagram of this feature.

11

Host

Host program.c

Mithal

Simulated FPGA
Co-processor

Mitrion
logic.mitc

Figure 3. Mitrion-C’'s SDK includes FPGA simulation
capabilities, allowing developersto test Mitrion-C
programs on systems that are not FPGA equipped.

Memory accesses in Mitrion are done with instance tokens. An instance token is both a pointer
to a particular memory location and a representation of the state of that memory at a given point
in program execution. Each memory operation consumes a memory token and returns a new one
to be used in the next memory operation. Thus, a name_number naming scheme is prudent.

This pattern isillustrated in the following code segment:

1. float:53.11 tnp;

2. p0O = nmencreate (nmemfloat:53.11 [100] p_l ast);
3. p1l = _menmwmite(pO, 3, 1.7);

4. p2 = _memmite(pl, 5, 9.4);

5. (tnp, p_last) = _nenread(p2, 9);

Line 1 declares atemporary double precision floating point variable to be used later. Line 2
allocates a block random access memory (RAM) segment of 100 double-precision elements;
p_last, which is declared here, indicates to the compiler the last memory token that can be
expected to access this memory. When the program reaches the point at which p_last is
assigned, the block RAM can be de-allocated. Line 3 writes 1.7 to the third element of the array,
and line 4 writes 9.4 to the fifth element in the array. Line 5 reads the values stored in the ninth
element in the array, and stores it into tmp (which was declared on line 1). Notice that each
memory operation consumes the previous instance token and returns a new one. The compiler
uses this to enforce sequential consistency in memory operations; the memory operation on line
4 will not occur until after line 3 has compiled, line 5 will not occur until after line 4 has
completed, etc.

12

5. Reaults

5.1 Basdine Results

For our baseline testing, we used three ARL Magjor Shared Resource Center (M SRC) unclassified
clusters: VN, MIM," and Powell. Their various hardware characteristics are presented in (ARL
MSRC System Overviews, 2007).

For each of the 16 versions, we tested them with 50 channels. Our results are shown in table 2.

Table 2. Relative performance of various versions of Mstack on three ARL MSRC clusters.

Version Powell JVN MJIM
Mstack.f 1 1 1
Mstack2.f 0.743 0.768 1.349
Mstack3.f 0.870 0.890 0.756
Mstackv.f 0.960 0.840 1.298
Mstacko.f 1.728 1.693 2.037
Mstack20.f 1.382 1.325 2.146
Mstack3o.f 1.653 1.475 1.431
Mstackvo.f 1.732 1.544 2.810
Mstack.c 1.133 0.809 0.997
Mstack2.c 0.775 0.894 0.851
Mstack3.c 0.926 1.131 0.909
Mstackv.c 1.090 1.647 1.309
Mstacko.c 1.995 1.831 2.009
Mstack2o.c 1.281 1.368 1.385
Mstack3o.c 1.563 1.562 1.392
Mstackvo.c 1.854 2.027 1.764

The values for each of the different systems are the acceleration relative to the run time of the
FORTRAN reference implementation on that given system. The run times of these referenced
FORTRAN implementations are 60.162 s for Powell, 50.686 sfor VN, and 29.49 sfor MJM.

There does not appear to be aclear pattern as to which language produces faster code. Depending on
the version, the system, and the compiler, sometimes one was faster and sometimes the other was
faster. In many cases, the differences between the C and FORTRAN versions were insignificant.
The optimized versions, which run half as many computations, outperformed the non-optimized
versionsin every case. Unfortunately, this optimization might be difficult to use on some of the
novel platforms that we plan to investigate. 1n both FORTRAN and C, the mstack2 and mstack3
implementations generally did worse than the reference implementation. There was no clear
pattern between the performance of mstackv when compared to the reference implementation;
however, in many cases, the differences in performance were negligible.

" VN and MIM are not acronyms.

13

It is expected that mstack2.c, mstack3.c, or their optimized counterparts will make the best
coding base when one is porting to NVIDIA GPUsvia CUDA (NVIDIA, Inc., August 2007).
For future work with FPGAS, it appears as though mstackv.c or mstackvo.c will make the best
coding base.

5.2 Mitrion-C Results

For our Mitrion-C FPGA testing, we used Kamala, the U.S. Navy Research Laboratory’s Cray”
XD1. The Cray XD1 system architecture is described in detail in S.2429.131, the Cray XD1
System Overview. The Cray XD1 base system (a single chassis) consists of 31 total processors:
12 64-bit x86 AMD Opteron processors, 6 or 12 RapidArray processors, zero or six FPGAs to
act as co-processors for the Opterons, and one management processor to run monitoring and
control the chassis health. Multiple chassis can be connected in customizable topologies. The
12 Opteron processors per chassis are connected as two six-way or three four-way symmetric
multiprocessors. Each SMP runs an instance of a Cray-customized version of Linux based on
SUSE." Eachinstance of Linux (along with al the hardware that it controls) isreferred to asa
node. The RapidArray processors provide access to the RapidArray interconnection through
which interprocessor communication within a chassis occurs. The RapidArray interconnection is
“a 48-GB-per-second nonblocking embedded switch fabric, with optional expansion fabric for
96-GB-per-second capability” (Cray, Inc., 2006). The FGPA models used vary from system to
system. Kamala uses the Xilinx Virtex 1l Pro XC2VP50. The XC2V P50 has 53,136 logic cells
and 4.07 megabytes of block RAM (Xilinx, Inc., 2007).

The XD1 has four 64-bit buses for data transfer between the host program and the FPGA, but
Mstack is a 32-hit (e.g., single-precision) benchmark. Rather than double-stuffing pairs of 32-bit
elements into each bus transfer, we instead pad the transfer and throw away the pad. We do this
because of the difficulty in unpacking double-stuffed elements using Mitrion-C. However, this
does make for a slower data transfer.

Our Mitrion-C bubblesort function was vector based:

/ / mst ack-speci fic decl arations
#define WORD fl oat: 24.8
#def i ne MAXFLOAT 0b01111111100000000000000000000000

#define MAXP1 51
#def i ne MAX 50
#defi ne MAXML 49

WORD [MAX] bubbl esort (WORD [MAX] scratch)
{
/linitial definition of vec
WORD [MAXP1] vec = foreach (i in [0 ..
WORD v = if (i < MAX) (scratch[i]) else (MAXFLQAT);

*Cray and RapidArray are trademarks of Cray, Inc.
TSUSE isnot an acronym.

14

}ovs

WORD [MAX] vec2 = scratch; //arbitrary initial definition
WORD [MAX] ret = for (k1 in <0 .. 2*MAXP1>) //replace 1 with MAXP1

{
WORD grtr = vec[O0];

WORD | ssr 999; //arbitrary initial definition
vec2 = for (k2 in[1 .. MAX])
{
(grtr, Issr) = if (vec[k2] > grtr) (vec[k2], grtr) else (grtr, vec[k2]);
} >< Issr;
vec = foreach (i in [0 .. MAX]){
WORD v = if (i < MAX) vec2[i] el se MAXFLOAT;
}ovs
} vec2;
} ret;

Note that the number of elementsto be sorted is hard coded (e.g., #define MAXP1, MAX, and
MAXM1). Thisrequiresthat we (a) hard code this value to 128, regardless of the number of
channelsto be sorted, or (b) recompile the Mitrion-C program any time we need to simulate a
number of channels greater than what the compiled version was coded for.

As previoudly stated, vectors (especially data-indexed vectors) consume alarge amount of
silicon. When the code just given is compiled, the Mitrion-C compiler complainsthat it istoo
large:

***ERROR Error: Your Mtrion programuses a lot of Flip Flops
and will not be able to successfully synthesize for the target
FPGA. Try to reduce your Mtrion programto use approxinately 50%
of the available Flip Flops.

Reducing the number of elements that the FPGA has to sort (by changing #define MAXPL,
MAX, and MAXM1) reduces the silicon footprint. The vector-based version compiled
successfully for, at the largest, a vector of 19 elements. Any larger than that would cause (a) a
segfault in the Xilinx VHDL compiler for vectors of roughly 20 to 40 elements; (b) atoo-large
error from the Mitrion compiler, as shown before, for vectors of roughly 40 to 50 elements; or
(c) ajavaout-of-memory error in the Mitrion compiler for vectors of roughly 60 elements or
larger.

For five channels (the only size of the benchmark that the Mitrion-C version can run), overhead
from initializing the FPGA and transferring datato it and back tends to dominate over
computation. Asaresult, the host-only C reference significantly outperformed the FPGA
implementation. The C reference version processed five channelsin 3.06 s; the FPGA
implementation was slower by roughly a factor of 30.

15

6. Conclusions

We believe Mstack has the potential to be an effective co-processor benchmark. Itsrelative
simplicity was expected to make porting Mstack to other co-processing platforms relatively easy.
Unfortunately, our experiences with Mitrion-C have shown thisto be overly optimistic. Its
dense, predictable memory access pattern gives co-processors the opportunity to demonstrate the
suitability of their memory architecture.

Based on our experiences, we believe the Mitrion-C language is currently far too difficult to
program to make it an effective option for most software development projects for high
performance computing. We found it extremely difficult to develop a bubblesort function in
Mitrion-C, owing primarily to the fact that (a) the language is based on the rarely used data flow
(single assignment) programming model, and (b) arrays must be assigned in their entirety (e.g.,
you cannot assign to individual elements within the array; you have to assign the entire array).
These two language characteristics make implementing any sorting algorithm inordinately
difficult. It took roughly 3 weeks to devise and implement the vector-based bubblesort function
shown in section 5.2. Asdescribed in section 7, we are currently working on a new
implementation that eliminates vectors and uses block RAM instead, which isbelieved to be a
more appropriate fit to this problem. However, we found it to be curious that the language does
not come with library routines for any of the commonly used sorting algorithms. Virtually every
major programming environment now comes with such utilities. However, we could not find
any evidence that Mitrion-C includes these routines in their distribution, at |east for the Cray
XD1.

During initial attempts to create the simplest Mitrion-C test program possible (a program that
transfers data into the FPGA and then back out again), an issue with the SDK’s FPGA simulator
was encountered whereby floating point values passed into the simulated FPGA are zeroed.
Mitrionics staffers confirmed that thisis a known simulator bug. Other than this case for that test
program, the SDK’s FPGA simulator performed superbly and significantly accelerated the
development process by eliminating long VHDL-to-bit-mapping compilation times from the
testing process.

7. FutureWork

Work to develop Mstack for other co-processing platformsis on-going. We are partnering with
the University of Delaware’ s Computer Architecture and Parallel Systems Laboratory (CAPSL)
to develop Mstack on a number of other co-processing platforms. Appendix C containsa

16

description of some of the target platforms we are in the process of porting Mstack to. These
architectures are IBM’s Cyclops64, NVIDIA GPUs doing general purpose computation (also
known as GPGPU) using the CUDA API, and onto FPGASs using the DIME-C language.

Other platforms to which we are considering porting Mstack include the Cray MTA2, the Cray
XMT (also known asthe MTA-3, or “Eldorado”), the ClearSpeed” custom processor, the Cell
Broadband Engine, and to FPGAs using the Impulse-C language.

Work has started on a second Mitrion-C implementation of bubblesort that is not vector based
but stores datainto block RAM on the FPGA. The limited amount of block RAM makes storing
all the host data on the FPGA impossible; however, the vectorized version of Mstack may be
able to take advantage of this, further reducing overhead from initializing the FPGA and doing
datatransfer. The small size of the block RAM isthe limiting factor asto how many inner loop
iterations can be rolled together.

Recently, Song Park of ARL began efforts to port Mstack to DIME-C. Sincethiswork isin its
infancy, it is premature to report results for this part of this project.

*ClearSpeed isatrademark of ClearSpeed Technology Plc.

17

8. References

ARL MSRC Computer System Overviews. MJIM - http://www.arl.hpc.mil/Systems/mjm.html;
JVN - http://www.arl.hpc.mil/Systems/jvn.html; Powell http://www.arl.hpc.mil/
Systems/powell.html (accessed August 2007).

Buck, |.; Fatahalian, K.; Hanrahan, P. GPUBench: Evaluating GPU Performance for Numerical
and Scientific Applications. In Proceedings of the 2004 ACM Workshop on General-
Purpose Computing on Graphics Processors, 2004.

Cray, Inc. Cray XD1 Supercomputer. http://www.cray.com/products/xdl/ (accessed 2006).

D’Amour, M. R. Standardized Reconfigurable Computing. Presentation at the University of
Delaware, 28 February 2007.

Govindargju, N. K.; Raghuvanshi, N.; Henson, M.; Tuft, D.; Manocha, D. A Cache-Efficient
Sorting Algorithm for Database and Data Mining Computations Using Graphics Processors;
UNC technical report, 2005.

Kumar, S.; Pires, L.; Ponnuswamy, S.; Nanavati, C.; Golusky, J.; Vojta, M.; Wadi, S.; Pandalai,
D.; Spaanenberg, H. A Benchmark Suite for Evaluating Configurable Computing Systems -
Status, Reflections, and Future Directions. Proceedings of the 2000 ACM/S GDA Eighth
International Symposium on Field Programmable Gate Arrays, 2000.

McCarty, D.; Faria, D.; Alfke, P. PREP benchmarks for programmable logic devices. Custom
Integrated Circuits Conference, 1993, Proceedings of the |EEE, 1993.

NVIDIA, Inc. CUDA Programming Guide. http://developer.download.NVIDIA.com
/compute/cuda/l_O/NVIDIA_CUDA_Programming_Guide _1.0.pdf (accessed August 2007).

Peter, C. Overview: Hardware Compilation and the Handel-C language, Oxford University
Computing Laboratory, UK. http://web.comlab.ox.ac.uk/oucl/work/christian.peter
/overview_handelc.html (accessed November 2007).

Pressel, D. M. FPGAs and HPC; ARL-SR-147; U.S. Army Research Laboratory: Aberdeen
Proving Ground, MD, January 2007.

Mohl, S. The Mitrion-C Programming Language. Version 1.2.0-001.

Underwood, K. FPGAsvs. CPUs: Trendsin Peak Floating-Point Performance. Proceedings of
the 2004 ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays,
2004.

18

Xilinx, Inc. Virtex-11 Pro and Virtex-11 Pro X Platform FPGAs. Complete data sheet; DS083
(v4.6), 5 March 2007.

Zhang, P.; Tan, G.; Gao, G. R. Implementation of the Smith-Waterman Algorithm on a
Reconfigurable Supercomputing Platform. CAPSL Technical Memo 78, 16 April 2007.

19

INTENTIONALLY LEFT BLANK.

20

Appendix A. Mstack C Reference | mplementation

21

/**/

/* */
/* A simulated programfor performng a Median Stack on Drag Seismc Data.*/
/* */
/* This programwi |l assune that there are a | arge nunber of data traces, */

/* with a constant nunber (M channels per data trace. Wile Mcan be any*/
/* positive integer, in general it is expected that 10 <= M <= 128, and */
/* that the nunber of data traces and the nunber of neasurenments per trace*/

/* are both >> M For sinplicity, the first M1, and last M1 */
/* measurenents per trace will be thrown away since | ess than M val ues */
/* exist to be stacked at those points. */
[* */
/* The medi an stack inherently involves performng a | arge nunber of sorts*/
/* on an alnost infinite nunber of relatively small data sets (the set */
/* size here will be N). Therefore it does not nmake sense to use a */
/* sophisticated sorting algorithm Instead, we will keep it sinple by */
/* using a bubblesort. However, we will use CpenMP to allow nultiple */
/* sorts to be perforned at once. */
/* */
/* Ordinarily the data would be read in froma file containing partially */
/* processed data fromthe field. For our purposes, the programwil | */
/* populate a large two dinensional matrix (32 bit val ues since */
/* nmeasurenents have |limted precision, and drag data is especially */
/* noisy) with dummy values). In order to mninze extraneous effects, */

/* three different dunmy data sets will be created, and the programwll */
/* cycle through the three sets twice. The sets are: */
/* */
/* 1) Al values will be 1.0 */
[* */
/* 2) The values within a single channel will be the channel */
/* nunber (1 to M where 2 <= M <= 128). */
/* */
/* 3) The values within a single channel will be */
[* float (M - channel nunber). */
[* */

/* For sinplicity, we will always use 1000 for the nunber of neasurenents */
/* per trace, and 1000 data traces. These val ues were chosen so that they*/

/* will confortably fit in 1 GB of nmenory, with roomleft over. */
[* */
/* NOTE: This program does not use dynam c nenory allocation. Therefore */
/* it is possible that if the nunber of channels is significantly |ess */
/* than 128 that one could increase the nunber of data traces. */
/* */
/* A small nunber of values will be output for each data set in an effort */
/* to prevent an optim zing conpiler fromoptimzing away all of the work.*/
/* */
/* Witten by Daniel M Pressel at ARL in July of 2007. */
/* */
/* Purpose is to provide a sinple reference benchmark for testing out */
/* the ability of attached processors (e.g., FPGAs, GPGPUs, the SPEs in */
/* the Cell processor, or Clear Speed) to accelerate floating point */
/* applications. This application was chosen for its sinplicity. Wile */

/* it may have little relevance to the military, it comes fromthe */
/* problem domai n of seisnmic prospecting for oil, which has al ways been an*/
/* HP/*application. */
/* */

/**/

22

#i ncl ude <stdio. h>
mai n (argc, argv)
int argc;
char **argv;
{
static float traces[1001][1001][130];
float scratch[129], tenp;
int nunchn, k1, k2, k, i, j, I, m
int valid_ val ue;

valid value = 0;
while (! valid_val ue)
{
printf ("How many channels (2-128)? ");
scanf ("%", &unthn);

if (nunmchn < 2 || nunthn > 128)
printf ("lnvalid Response, please try again\n");
el se
val id_val ue = 1;
1
for (i=1; i <= 2; i++4)
{

printf ("%l pass\n",i);
for (j=1; j<=3; j++)

printf ("Processing the %d th data set.\n", j);

/*Initialize the array traces. */

switch (j) {
case 1:
#pragma onp parallel for private(m |, k) shared (traces) schedule (static)
for (mel; m <= 1000; mt+)
{
for (1=1; | <= 1000; | ++)
{

for (k=1; k <= nunthn; k++)

traces[mM[I][k] = 1.0;

1
s
1
br eak;
case 2:
#pragna onp parallel for private(m |, k) shared (traces) schedule (static)
for (n¥l; m <= 1000; mt+)
{
for (1=1; | <= 1000; | ++)
{

23

for (k=1; k <= nunthn; k++)

traces[mM[I][k] =k

1
i
1
br eak;
defaul t:
#pragma onp parallel for private(m |, k) shared (traces) schedule (static)
for (mel; m <= 1000; mt+)
{
for (1=1; | <= 1000; | ++4)
for (k=1; k <= nunthn; k++)
traces[mM[1][k] = nunchn + 1 - k
1
1
1

b
/*Cal cul ate the nedians */
#pragma onmp parallel for private(m |, k, k1, k2, scratch, tenp)
shared(traces) schedul e(static)

for (mel; m <= 1000 ; mH+)
{
for (I=1; | <= 1001-nunthn; | ++)
{

/*Col |l ect the values to be stacked */

for (k=1; k <= nunthn ; k++)

scrat ch[K] traces [mM[I-1+k][Kk];

/* Performa bubbl esort */
for (kl1=1; k1l <= nunthn; ki1l++)
for (k2=1; k2 <= nunthn-1; k2++)

if (scratch[k2] > scratch[k2+1])
{
tenp = scratch[k2];
scrat ch[k2] =scrat ch[k2+1] ;
scrat ch[k2+1] =t enp;
b
b

24

/* Find the nedian value and store it back into the 129th channel in traces
*/

k1 (nunthn +1)/2;
k2 nunchn - ((nunchn - 1)/2);
traces [M[1][129] = 0.5 * (scratch[kl] + scratch[k2]);

1
printf ("traces[1][1][129] %\n", traces[1][1][129]);

printf ("traces[1][800][129] % \n", traces[1][800][129]);
printf ("traces[1000][1][129] % \n", traces[1000][1][129]);

b
b

printf ("Hello World\n");
b

25

INTENTIONALLY LEFT BLANK.

26

Appendix B. Mstack FORTRAN Reference I mplementation

27

C
Cc
Cc
Cc
Cc
Cc
C
Cc
Cc
Cc
Cc
C
c
c
Cc
Cc
C
Cc
Cc
Cc
Cc
Cc
c
c
Cc
Cc
c
Cc
Cc
Cc
C
Cc
Cc
Cc
Cc
C
c
Cc
Cc
Cc
Cc
c
Cc
Cc
C
Cc
c
Cc
Cc
Cc
Cc
Cc
Cc
C
C
c
C

A simul ated program for performng a Median Stack on Drag Seism c Data.

This programwi |l assune that there are a | arge nunber of data traces,
with a constant nunber (M channels per data trace. Wile Mcan be any
positive integer, in general it is expected that 10 <= M <= 128, and
that the nunber of data traces and the nunber of measurenents per trace
are both > M For sinplicity, the first M1, and last M1
nmeasurenents per trace will be thrown away since | ess than M val ues
exi st to be stacked at those points.

The nedi an stack inherently involves performng a | arge nunber of sorts
on an alnost infinite number of relatively small data sets (the set
size here will be N). Therefore it does not nake sense to use a

sophi sticated sorting algorithm Instead, we will keep it sinple by
usi ng a bubbl esort. However, we will use QpenMP to allow multiple
sorts to be performed at once.

Odinarily the data would be read in froma file containing partially
processed data fromthe field. For our purposes, the programwl |
popul ate a |large two dinensional matrix (32 bit val ues since
neasurenents have linted precision, and drag data is especially

noi sy) with dummy values). 1In order to mininmze extraneous effects,
three different dummy data sets will be created, and the programwill
cycle through the three sets twice. The sets are:

1) Al values will be 1.0

2) The values within a single channel will be the channel
nunber (1 to M where 2 <= M <= 128).

3) The values within a single channel will be
float (M - channel nunber).

For simplicity, we will always use 1000 for the nunmber of measurenents
per trace, and 1000 data traces. These values were chosen so that they
will confortably fit in 1 GB of menmory, with roomleft over.

NOTE: This program does not use dynam c nenory allocation. Therefore
it is possible that if the nunmber of channels is significantly Iess
than 128 that one could increase the nunber of data traces.

A snal |l nunber of values will be output for each data set in an effort
to prevent an optim zing conpiler fromoptimzing away all of the work.

Witten by Daniel M Pressel at ARL in July of 2007.

Purpose is to provide a sinple reference benchmark for testing out
the ability of attached processors (e.g., FPGAs, GPGPUs, the SPEs in
the Cell processor, or Clear Speed) to accelerate floating point
applications. This application was chosen for its sinplicity. Wile C
it my have little relevance to the mlitary, it comes fromthe

probl em domai n of seismic prospecting for oil, which has always been an
HPC appl i cati on.

OO.

.OOOO

REAL*4 traces(129, 1000, 1000)
SAVE traces
REAL*4 scrat ch(128)

10 CONTI NUE
PRI NT *,' How nmany channels (2-128)?'
READ (5,*) nunthn

IF (nunchn . LT. 2 .OR nunchn . GI. 128) THEN
PRINT *,"Invalid Response, please try again'
GOorO 10

ENDI F

DO 1010 1=1,2
PRINT *,1," Pass'
DO 1000 J=1, 3
PRI NT *," Processing the ',J,'th data set’

Clnitialize the array traces.

IF (J .EQ 1) THEN
I $OVP PARALLEL DO PRI VATE(M L, K) SHARED (traces)
I $OVP+ SCHEDULE (static)
DO 120 M1, 1000
DO 110 L=1, 1000
DO 100 K=1, nuncthn
traces(K L, M=1.0

100 CONTI NUE
110 CONTI NUE
120 CONTI NUE

I $OVP END PARALLEL DO
ELSEIF (J .EQ 2) THEN
| $OMP PARALLEL DO PRI VATE(M L, K) SHARED (traces)
| $OVP+ SCHEDULE (static)
DO 220 M1, 1000
DO 210 L=1, 1000
DO 200 K=1, nunchn
traces(K, L, M=K

200 CONTI NUE
210 CONTI NUE
220 CONTI NUE
' $OMP END PARALLEL DO
ELSE

I $OVP PARALLEL DO PRI VATE(M L, K) SHARED (traces)
I $OVP+ SCHEDULE (static)
DO 320 M1, 1000
DO 310 L=1, 1000
DO 300 K=1, nunchn
traces(K,L, M =nunthn + 1 - K

300 CONTI NUE
310 CONTI NUE
320 CONTI NUE
' $OVP END PARALLEL DO
ENDI F

C Cal cul ate the nedi ans

29

I $OVP PARALLEL DO PRI VATE(M L, K, K1, K2, scratch, temp)
I $OVP+ SHARED (traces)
I $OVP+ SCHEDULE (static)
DO 920 M=1, 1000
DO 910 L=1, 1001- nunthn

C Col l ect the values to be stacked

DO 400 K=1, nunchn
scratch(K)=traces(K, L-1+K M
400 CONTI NUE

C Perform a bubbl esort

DO 510 K1=1, nuncthn
DO 500 K2=1, nunthn-1
| F (scratch(K2) .GI. scratch(K2+1)) THEN
tenp = scratch(K2)
scrat ch(K2) =scrat ch(K2+1)
scrat ch(K2+1) =t enp

ENDI F
500 CONTI NUE
510 CONTI NUE

C Find the nmedian value and store it back into the 129th channel in traces

Kl=(nunchn + 1)/2
K2=nunchn - ((nunthn - 1)/2)
traces(129,L,M=0.5 * (scratch(Kl) + scratch(K2))

910 CONTI NUE
920 CONTI NUE
' $OVP END PARALLEL DO

PRI NT *,"traces(129,1,1)=",traces(129,1,1)
PRI NT *,"traces(129, 800, 1)=",traces(129, 800, 1)
PRI NT *,"traces(129, 1,1000)=",traces(129, 1, 1000)

1000 CONTI NUE

1010 CONTI NUE
PRINT *, 'Hello Wrld
END

30

Appendix C. Other Target Co-processor Classes

C.1 GPGPU

GPUs are co-processors designed specifically for processing four-dimensional floating point
instructionsin paralel. Thefour dimensions are the Red-Green-Blue-Alpha channels used in
graphic texture data (see figure C-1).

150 =] =®= NVIDIA [NV30 NV35 NV40 G70]
4 =B= ATI[R300 R360 R420]

0 Intel Pentium 4
100 __ (single-core except where marked)

GFLOPS

50 =

0 =

Year

Figure C-1. Comparison of GPU and CPU floating point performance.1

GPUs have a pipeline consisting of one or more vertex processors, arasterizer, one or more
fragment processors, and a frame buffer. This basic architecture had remained constant over the
last 20 years until recently. Now, NVIDIA and ATI have started to produce GPUs with asingle
unified pool of processorsinstead of separate vertex and fragment processors. Datarelated to
pixel properties are stored in dedicated high speed graphics memory. This memory uses multi-
banking, data streaming, specialized cache designs, and other techniques to provide extremely
high bandwidth at low latency.?

The superior performance of GPUs over CPUs is aresult of the “highly data-parallel nature of
graphics computations” which “enables GPUs to use additional transistors more directly for
computation, achieving higher arithmetic intensity with the same transistor count.”*

1Owena J. D.; Luebke, D.; Govindargju, N.; Harris, M.; Kriger, J.; Lefohn, A. E.; Purcell, T. J. A Survey of General-
Purpose Computation on Graphics Hardware. In Proceedings of Eurographics, 2005.

2Boggan, S. K.; Pressel, D. M. GPUs. An Emerging Platform for General-Purpose Computation; ARL-SR-154; U.S. Army
Research Laboratory: Aberdeen Proving Ground, MD, August 2007.

31

GPU performance and economics are dictated by the video gaming industry which exerts a
constant, tremendous pressure for better graphics processing performance. The size of the
industry means that research and development costs are amortized across a huge number of retail
units. In particular, thisincludes embedded graphics processors such as those found on gaming
consoles. Every Playstation, X-box, and Wii sold includes a graphics card. In short, the
existence of the video gaming industry means that GPUs have a price/performance ratio
comparable (if not superior) to CPUs.

However, it isimportant to bear in mind the limitations of GPUs. GPUs are highly specialized
devices, optimized heavily for graphics processing. Those applications whose characteristics are
similar to graphics processing tasks (single precision floating point, highly data parallel, almost
no sequential bottlenecks, etc.) will experience good performance acceleration from being ported
to GPUs.”

We should soon have a GPU test bed system up on which to develop CUDA. To program this
platform, we will use the CUDA API. CUDA isNVIDIA’s API for programming their GPUS,
primarily for non-graphical applications. It is C based but requires a massively threaded
program in order to obtain high levels of performance. Massively threaded means at least 19,200
threads for the current generation of GPUs, with 256,000 threads recommended if the program is
to continue to work well with future generations of their GPUs. This makesit very difficult to
use for most applications, although some embarrassingly parallel applications may be able to
take advantage of one or a small number of GPUs. Asaresult, the ability to use GPUs to reach
petaflops worth of delivered performance for many applicationsis highly questionable.

C.2 Cdlular Architectures

Another trend in HPC architecture has been the push toward “ cellular architectures’ (also known
as “many-core” architectures), that is, arrays of simple, repeating tightly coupled processors or
processor cores. Individually, each processor/core is relatively slow and consumes little power,
but the architecture is designed to accommodate many of them.

The Cédll Broadband Engine (BE), designed by IBM for use in Sony’ s Playstation gaming console,
isan example of cellular architecture on asmall scale. The cell hasan IBM PowerPC asits main
processor (for sequential sections of code), with eight “synergistic processing elements’ (SPEs)
for parallel computation.” 1BM developers have ported a number of applicationsto Cell with
good performance. For example, they achieved 25.12 Gflops per SPE doing matrix-matrix
multiplication, with nearly linear parallelization. Other applicationsincluded variety of
cryptography algorithms, MPEG2 (Moving Picture Experts Group) decoding, and double

*Note that only seven of the SPEs are consumer enabled. The eighth SPE isincluded as a spare to boost manufacturing
yields. If aCell chip is manufactured with a defect in one SPE, the defective SPE can be disabled and the spare SPE enabled.
Furthermore, another SPE is used for operating system tasks, leaving six SPEs for actual parallel computation (Linklater, M.
Optimizing Cell Core, Game Developer Magazine, April 2007).

32

precision Linpack.2 However, Cell has been criticized as being very difficult to program
efficiently.* > Figure C-2 givesthe Cell BE's physical layout.

e — e = =~ —

Rambus XDR DRAM interface

LY controller

Ranibis R AC

Figure C-2. The Cell BE consists of one power PC core and eight SPEs.6

3Chen, T.; Raghavan, R.; Dale, J.; Iwata, E. Cell Broadband Engine Architecture and Its First Implementation. IBM
DevelopWorks, November 2005.

4Shankland, S. Octopiler Seeksto Arm Cell Programmers. CNet News, 22 February 2006.
SScarpazza, D. P; Villa, O.; Petrini, F. Programming the Cell Processor. Dr. Dobb’s Journal 2007.

6Kahle, J. A.; Day, M. N.; Hofstee, H. P.; Johns, C. R.; Maeurer, T. R.; Shippy, D. Introduction to the Cell Multiprocessor.
IBM Journal of Research and Development 2005, 49 (4/5).

33

Cyclops64 is an example of a cellular architecture on amuch larger scale (seefigure C-3). Itisa
“system-on-a-chip” architecture being developed by IBM. Each Cyclops64 node (chip) includes
80 processors. Each processor has two cores, each of which hasits own scratch-pad memory.
The two cores in each processor share a floating point execution unit. Cyclops64 chips can be
combined into alarger system of as many as 13,824 nodes and 13.8 terabytes of RAM.” Thus, a
full Cyclops64 system can support as many as 2,211,840 hardware threads. Cyclops64 uses the
TinyThreads thread virtual machine and threading library.2 Processors within a Cyclops64 node
communicate via a 96- x 96-way non-internally blocking cross-bar switch. The cross-bar switch
isthe critical component in the design, allowing enormous bandwidth between the processors
and the on-chip Static Random Access Memory (SRAM). Accesses across the cross-bar switch
are uniform, except for scratch pad memory accesses (which go through the “back door,” a
special bus that bypasses the cross-bar switch).

Processor 1 Processor 2 Processor 3 Processor 80

Floating
paint
Unit

Floating
point
Unit

Integer Ml Integer
- Unit Unit : s

Floating Floating
point paint
Unit Unit

Integer Ml Integer
Unit Unit

Integer |l Integer Integer M Integer
Unit Unit - -l Unit Unit :

Crossbar Swﬂch

Figure C-3. A logical view of the Cyclops64 chip. (The cross-bar switch separates the dual-core processors
from the SRAM memory. The memory is partitioned into globa interleaved memory (GM) and
processor-specific scratch-pad memory (SM). The *“back door” bus is shown with a dashed line.)

7Zhang, Y. M. P,; Jeong, T.; Chen, F.; Wu, H.; Nitzsche, R.; Gao, G. R. A Study of the On-Chip Interconnection Network for
the IBM Cyclops-64 Multi-Core Architecture. In the Proceedings of 20th International Parallel and Distributed Processing
Symposium, 2006.

8pel Cuwvillo, J.; Zhu, W.; Hu, Z.; Gao, G. R. FAST: A Functionally Accurate Simulation Toolset for the Cyclops-64
Cellular Architecture. Workshop on Modeling, Benchmarking and Simulation (MoBS), held in conjunction with the 32nd
Annual International Symposium on Computer Architecture, 2005.

34

Cyclops64 is currently in the final stages of development and should be released in late 2007 or
2008. Because the architecture does not yet physically exist, our evaluation of its performance
will be based on simulation using the Functionally Accurate Simulation Toolset (FAST) simulator.®
FAST “is an execution-driven, binary-compatible simulator of a multichip multithreaded C64
system. It accurately reproduces the functional behavior and count of hardware components
such as thread units, on-chip and off-chip memory banks, and the 3D-mesh network.”

C.3 On FPGA Using DIME-C

Another potential platform for Mstack is on FPGAs with the DIME-C “ C-to” language.
Nallatech offersthe DIME-C and DIMETak” software development tools to ease the process of
programming applications on an FPGA. DIME-C isthe high-level language used by Nallatech’s
software for VHDL trandation. An attractive feature of DIME-C isthe fact that it is a subset of
American National Standards Institute (ANSI) C with the identical syntax. A user only needs to
learn the portion of standard C language that is not supported in DIME-C. Thisallows aminimal
learning curveto start coding in DIME-C. Since the language is a subset of ANSI C, DIME-C
code can also be debugged with the use of any ANSI C compilers. Hardware optimizations
exploited through parallelism and pipelines are automatically applied by the compiler without
user intervention. When the DIME-C code is compiled, agraphical representation showing parallel
and pipdlined structure is generated.

Currently, DIME-C and DIMETalk are supported only on aWindows' platform. Since alarge
amount of system memory is used during the synthesis process executing Xilinx software, 64-bit
Windows or Linux operating systems are recommended for software installation. The FPGA’s
internal and externa interfaces are handled by the DIMETalk software. DIMETalk divides and
represents an overall FPGA design as separate individual components with pre-defined
interconnections. For example, aclock driver, ahost interface, amemory element, and user
design modules are the minimum components required for an FPGA design. Thefollowing list
describes the minimum components of a DIMETalk network:

* Clock driver provides the clock signals for a design.

* Host interface defines the FPGA board interface to a host system allowing communication
to an FPGA.

* Memory elements can store data and are visible and accessible by a host.

e User module defines an algorithm in hardware.

%Del Cuwvillo, J.; Zhu, W.; Hu, Z.; Gao, G. R. TiNy Threads: A Thread Virtual Machine for the Cyclops-64 Cellular
Architecture. Fifth Workshop on Massively Parallel Processing (WMPP), held in conjunction with the 19th International
Parallel and Distributed Processing System, 2005.

"DIMETalk is atrademark of Nallatech.
TWindowsis a trademark of Microsoft Corporation.

35

Having the host interface component greatly simplifies the implementation of FPGA and host
communication by hiding the underlying detail s associated with PCI bus and FPGA pin
connections. Basically, DIMETalk provides awork space for placing and connecting elements
within a design, creating a network inside an FPGA.

The FUSE API functions are used for a host to communicate with an FPGA board. A standard C
code, referred as ahost C file, iswritten that includes the API functions. The host Cfileis
executed on the host side, which will load, control, and execute the hardware design on an FPGA.
A generic host Cfileis created by DIMETalk, which relieves a developer from the details of
initial FPGA setup. However, auser is expected to include 1/O data transfers between the host
system and an FPGA to the generic host C file. Because the read and write FUSE API functions
can only operate on memory elements, a processing unit within an FPGA isresponsible for
placing outcome results to these memory elements in order for the host to read the final results.

The tools offered by Nallatech attempt to ssimplify the process of hardware design by offering a
high-level language DIME-C, providing a PCI-X interface component, and generating a host C
file. Furthermore, hardware optimizations are automated by the DIME-C compiler.
Unfortunately, these user-friendly features result in alimited amount of hardware design
flexibility for exploiting parallelism. For example, the conversion from DIME-C to VHDL
creates ambiguity problems, such as with addition, which can be instantiated in hardware with a
carry-propagate adder, a carry-save adder, or a carry-look-ahead adder. Furthermore, ability to
control low level signals and architecture to achieve hardware acceleration islost. Since the
DIME-C compiler isin charge of designing hardware for an algorithm written in DIME-C,
optimizations are limited to the operations performed by the DIME-C compiler.

The DIME-C compiler derives a hardware design from a subset of standard C, whichisa
procedural language. A procedural language isintended for programming processors and is
fundamentally different from designing hardware. Although the intentions and benefits of using
DIME-C for programming FPGA s are attractive, achieving performance improvement directly
from alanguage targeted for a CPU can be alimiting factor.

36

NO. OF

COPIES ORGANIZATION

1
(PDF
ONLY)

1

DEFENSE TECHNICAL
INFORMATION CTR

DTIC OCA

8725 JOHN JKINGMAN RD
STE 0944

FORT BELVOIR VA 22060-6218

USARMY RSRCH DEV &
ENGRG CMD

SYSTEMS OF SYSTEMS
INTEGRATION

AMSRD SST

6000 6TH ST STE 100

FORT BELVOIR VA 22060-5608

DIRECTOR

USARMY RESEARCH LAB
IMNE ALCIMS

2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR

USARMY RESEARCH LAB
AMSRD ARL CI OK TL
2800 POWDER MILL RD
ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

DIR USARL

AMSRD ARL CI OK TP (BLDG 4600)

37

NO. OF

COPIES ORGANIZATION

1

PROGRAM DIRECTOR
C HENRY

1010 N GLEBE RD

STE 510

ARLINGTON VA 22201

DEPUTY PROGRAM DIRECTOR
L DAVIS

1010 N GLEBE RD

STE 510

ARLINGTON VA 22201

HPC CENTERS PROJMGR
B COMMES

1010 N GLEBE RD

STE 510

ARLINGTON VA 22201

CHIEF SCIENTIST

D POST

1010 N GLEBE RD

STE 510

ARLINGTON VA 22201

ADELPHI LAB CTR
AMSRD ARL CI
JGOWENSII

BLDG 205 RM 3A012C
ADELPHI MD 20783-1197

DIRECTOR

AMSRC ARL CI HC

M LEE

BLDG 1425 RM 805

FORT DETRICK
FREDERICK MD 21702-5000

JOSBURN

CODE 5594

BLDG A49 RM 15

4555 OVERLOOK RD
WASHINGTON DC 20375-5340

DIRECTORATE

AIR FORCE RSRCH LAB
MATRLS & MFG

R PACHTER

AFRL/MLPJ

BLDG 651 RM 189

3005 HOBSON WAY
WRIGHT-PATTERSON AFB OH
45433-7702

38

NO. OF

COPIES ORGANIZATION

1

AIR FORCE RSRCH LAB

K HILL

AFRL/SNS BLDG 254

2591 K ST
WRIGHT-PATTERSON AFB OH
45433-7602

R LINDERMAN
AFRL/IF

525 BROOKSRD
ROME NY 13441-4505

USARMY AEROFLIGHTDYNAMICS
DIRECTORATE

USARMY AFDD (RDEC)

R MEAKIN

AMES RESEARCH CTR M/S T27B-1
MOFFETT FIELD CA 94035-1000

ARMY RSRCH OFC

AMSRD ARL RO EN

A RAJENDRAN

PO BOX 12211

RESEARCH TRIANGLE PARK NC
27709-2211

NVL OCEANOGRAPHIC OFC

OFC OF THE TECH DIR

JHARDING

CODEOTT

STENNIS SPACE CENTER MS 39529

INFO TECHLGY LABS

ARMY ENGINEER RSRCH & DEV CTR
D RICHARDS

VICKSBURG MS 39810

SPAWAR SYSCTR

C PETERS

53360 HULL ST
BLDG 606 RM 318
SAN DIEGO CA 92152

ARNOLD ENGRG DEV CTR
CVINING

1099 SCHRIEVER AVE

STE E205

ARNOLD AFB TN 37389

AIR FORCE RSRCH LAB

SENSORS DIRCTRT

T WILSON

2241 AVIONICS CIR
WRIGHT-PATTERSON AFB OH 45433

NO. OF

COPIES ORGANIZATION

1

17

US ARMY RSRCH & DEV CTR
NVL CMND CTRL & OCEAN
SURVEILLANCE CTR

HPC COORDNTR & DIR

DOD DISTRIBUTED CTR
NCCOSC RDTE DIV D3603

L PARNELL

49590 LASSING RD

SAN DIEGO CA 92152-6148

UNIV OF TENNESSEE

ASSOC DIR

INNOVATIVE COMPUTING LAB
CMPTR SCI DEPT

S MOORE

1122 VOLUNTEER BLVD STE 203
KNOXVILLE TN 37996-3450

COMPUTER ARCHITECTURE &
PARALLEL SYSTEM LAB
M PELLEGRINI

G GAO

I VENETIS

J MANZANO

P ZHANG

D OROZCO

G TAN

322 DUPONT HALL
NEWARK DE 19716

ABERDEEN PROVING GROUND

DIR USARL
AMSRD ARL CIH

C NIETUBICZ
AMSRD ARL ClI

R NAMBURU
AMSRD ARL CI HC

P CHUNG

JCLARKE

S PARK

D PRESSEL

D SHIRES

R VALISETTY

C ZOLTANI
AMSRD ARL CI HM

P MATTHEWS

R PRABHAKARAN
AMSRD ARL CI HS

D BROWN

T KENDALL

K SMITH

39

NO. OF
COPIES ORGANIZATION

AMSRD ARL WM BC
K HEAVEY
JSAHU
P WEINACHT

INTENTIONALLY LEFT BLANK.

40

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	1. Introduction
	2. Background
	3. The Mstack Benchmark
	3.1 Design Considerations
	3.2 Mstack Implementation
	3.3 Table of Mstack Bubblesort Variations

	4. Reconfigurable Computing and the Mitrion-C Language
	4.1 Reconfigurable Computing
	4.2 The Mitrion-C Language

	5. Results
	5.1 Baseline Results
	5.2 Mitrion-C Results

	6. Conclusions
	7. Future Work
	8. References
	Appendix A. Mstack C Reference Implementation
	Appendix B. Mstack FORTRAN Reference Implementation
	Appendix C. Other Target Co-processor Classes

