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ABSTRACT 

The Free Electron Laser (FEL) has been discussed and studied in the United 

States Navy’s directed energy weapon efforts.  The goal of these studies is to use the FEL 

as a ship’s primary defensive weapon against incoming threats such as missiles, aircraft 

and small boats.   

This thesis is an analysis of the effects of shipboard vibration on the performance 

of an FEL.  The focus of this analysis will be on the performance degradation due to 

quadrupole magnet misalignments from ship vibrations and flexing.  

This study is aimed at improving system design efforts by determining the 

sensitivity of an FEL on magnet misalignments due to shipboard vibration and flexing. 

Simulations were conducted on the magnets placed along the electron beam path between 

the end of the accelerator and the beginning of the undulator.  Simulations within this 

study were conducted using the 3D FEL simulator designed and programmed at the Navy 

Postgraduate School and FELSIM designed and managed by Advanced Energy Systems. 
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I. INTRODUCTION 

The Free Electron Laser (FEL) has long been discussed and studied in the United 

States Navy’s directed energy weapon efforts.  The goal of these studies is to use the FEL 

as a ship’s defensive weapon against incoming threats such as missiles, aircraft and small 

boats.  This weapon also has many offensive possibilities.  The laser’s high power 

availability and wavelength tunability make this an extremely desirable weapon, with a 

great advantage over the limited attributes of conventional lasers. 

The FEL utilizes a beam of relativistic electrons co-propagating with an optical 

beam through a periodic magnetic field.  This magnetic field causes the free electrons to 

oscillate and therefore transfer energy to an optical beam through coherent oscillation.   

There have been many studies done on the effects of optical mirror misalignments 

on the FEL’s operation and performance.  However, little work has been done on the 

effects of components outside of the optical cavity.  This is the first study that examines 

the effect of quadrupole magnet misalignments on the electron beam path and the overall 

performance degradation of the laser.  This study is aimed at improving system design 

efforts by determining the sensitivity of an FEL to magnet misalignments due to possible 

shipboard vibrations.  The next two chapters will briefly describe the FEL physics and 

components.  Then the tolerance of an oscillator to electron beam shifts and tilts will be 

established and finally the quadrupole magnets will be misaligned to determine the 

effects and limits of these disturbances. 

Simulations for this study were conducted using the 3D FEL simulation designed 

and programmed at the Navy Postgraduate School and FELSIM designed and managed 

by Advanced Energy Systems. 
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II. FREE ELECTRON LASER COMPONENTS 

The Jefferson Lab Free Electron Laser is an excellent example of the layout of 

components necessary for a FEL to operate and as a model of the proposed laser to be 

installed on a Naval vessel.  This layout is illustrated in Figure 1. 

 
Figure 1.   Jefferson Lab Free Electron Laser Layout.  From [1] 

 

The FEL operates by using a photocathode electron beam injector to send a 

pulsed electron beam into a superconducting linear accelerator.  The electron beam’s 

energy is increased substantially through the accelerator and directed to the wiggler 

(undulator) using quadrupole magnets to focus the beam and dipole magnets to deflect 

the path of the beam.  Bending the beam path reduces the system’s footprint, and is also 

used to condition the beam for entry into the wiggler.  The electron beam enters the 

undulator and interacts with an optical field, leading to coherent emission as discussed in 

the next chapter.  The electrons are then re-circulated back through the linear accelerator 

to recover a majority of the remaining beam energy.  This increases the system’s overall 
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efficiency, reduces the required size of the beam dump, and minimizes the need for 

radiation shielding.  Finally the electron beam enters the beam dump. 

A. AUXILIARY SYSTEMS 

1. Photoinjector 

The Photoinjector consists of a drive laser, photocathode and a radio frequency 

(RF) injector.  Photoinjectors are used because of their ability to provide a high peak and 

average current with excellent beam quality.  Photoinjectors also have the ability to be 

cycled on and off in picoseconds.   

The drive laser is a solid-state, mode-locked laser, such as a Nd:YLF (yttrium 

lithium fluoride) laser, that produces an electron beam by use of a photocathode.  This 

small, pulsed laser operates at about 700MHz.  The electrons excited from the 

photocathode enter the synchronized RF injector that increases the electron beam energy 

to about 2 to 7 million electron volts (MeV).  This voltage depends on the overall system 

design and is still being optimized.  

2. Superconducting Accelerator 

The superconducting linear accelerator (SLINAC) is the main energy input to the 

electron beam.  This accelerator consists of several cavities in series that are used to 

increase the electron beam energy to about 100MeV using RF power.  The RF is 

generated by a klystron and operates at the same frequency as the electron beam injector, 

about 700MHz.  The alternating RF fields accelerate the electron bunches as they pass 

through each cavity.  The bunches also become more compact as the slower electrons in 

the bunch are accelerated slightly more than the faster electrons. 

These cavities are made of pure niobium due to the material’s superconducting 

properties at temperatures below 2K.  Figure 2 is a picture of a typical accelerator cavity.   
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Figure 2.   Superconducting Accelerator. From [1] 

 

These cavities are cooled to below 2K using liquid helium (LHe) and a liquid 

nitrogen (N2) blanket.  At this temperature, the resistance in the accelerator cavity walls is 

on the order of nano-ohms due to impurities and defects at the material’s surface. 

3. Quadrupole Magnets 

Quadrupole magnets are used throughout the beam path to focus and contain the 

beam.  These magnets are placed before and after both the accelerator and undulator to 

focus the beam throughout the system.  There are two types of quadrupole arrangements 

called “F” and “D”.  The “F” quadrupole focuses the beam in the horizontal direction 

while defocusing it vertically.  The “D" quadrupole focuses the beam in the vertical 

direction while defocusing it horizontally.  These two types are used conjunctively to 

focus the beam in both directions.  They are installed in the beam path alternating 

between “F” and “D” types with ample separation, approximately 350mm, to prevent 

interference between the opposing fields.  The physics of this type of magnet will be 

further discussed in the following chapter. 
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Figure 3.   Quadrupole Magnet. From [2] 

 

4. Turning Magnets 

Turning, or bending, magnets are used to recirculate the electron beam back 

through the accelerator to reclaim its energy.  They are also referred to as dipole magnets.  

This recirculating design also allows for a smaller system footprint.   These bending 

magnets are designed to ensure minimal effect to the beam’s energy spread.  Smaller 

bending magnets, commonly called steering correctors, are used to fine-tune the path of 

the beam through the accelerator. 

5. Undulator 

The undulator, also called a wiggler, uses alternating dipole magnets, permanent 

or electromagnets, to oscillate the electron beam within its magnetic fields in the 

transverse direction. This motion causes the electrons to radiate light and amplify the 

optical beam within the optical cavity. The spacing or period, and strength of these 

alternating magnets affects the wavelength at which the FEL operates.  A typical magnet 

used in an undulator has a magnetic field strength of about 1 Tesla (T).  The length of the 

oscillator will vary based on the type of optical cavity design utilized.  This will be 

discussed in the optical cavity section.  Figure 4 is a schematic of the fields and resulting 

periodic motion of the electron beam in a planar undulator.  A more complex undulator, 

known as a helical undulator, imparts a corkscrew-like helical trajectory to the beam. 
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Figure 4.   FEL Undulator. From [3] 

 

6. Beam Dump 

The beam dump is used to absorb the remaining energy of the electron beam once 

it is recirculated back through the accelerator.  The electron beam reenters the accelerator 

roughly 180o  out of phase from its original transit, returning most of its energy to the 

accelerator and subsequently losing the remaining 5MeV of energy it still possesses by 

absorption in the beam dump.  Beam dumps can be constructed of aluminum, copper or 

tungsten.  This metal is externally water cooled to remove the resulting thermal energy.  

One large benefit of the electron beam recirculation design is the reduced beam energy 

being absorbed.  By maintaining the discharged beam’s energy below 10MeV, no fast or 

thermal neutrons are created, and therefore the amount of shielding required is greatly 

reduced.   

B. OPTICAL CAVITY 

There are two main types of Free Electron Lasers based on the optical cavity 

configuration: amplifiers and oscillators.  

1. Amplifier Design 

The amplifier design is a high gain, single-pass design.  This configuration uses a 

seed laser to inject an optical beam into the undulator.  The electron beam is then used to 
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amplify this low power optical beam, approximately 100W average power, over one pass 

through the undulator.  The precise timing between the electron beam injection and seed 

laser beam is crucial for the electron pulse to overlap the optical pulse for optimal 

amplification.  Other designs that have been recently developed do not require a seed 

laser.  These designs are called Self Amplification of Spontaneous Emission (SASE).  

However, due to relatively poor optical beam quality, this design is probably not suitable 

for military applications.  The undulator in the amplifier configuration is required to be 

longer than the oscillator design, about 5m in length with about 100 to 200 periods.    

 
Figure 5.   Amplifier Design. From [4] 

 

2. Oscillator Design 

The oscillator design uses an undulator that is placed between two mirrors, one 

reflective and one partially transparent (about 50% for the weapon system).  This is a 

lower gain design that utilizes multiple optical beam passes to reach saturation.  The 

optical beam is trapped within the optical cavity and is coupled to the electron beam in 

order to achieve high optical intensity through interactions with successive electron 

bunches.  

 
Figure 6.   Oscillator Design. From [4] 
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The undulator can be shorter than the amplifier design, about 0.5m with about 10 

to 20 periods; however the mirrors used to create the optical cavity are required to be 

spaced about 20m to allow for diffraction of the optical beam to reduce the intensity on 

the mirrors.  These mirrors must also be spaced to ensure exact timing of the reflected 

light pulses to meet the incoming electron pulses for maximum amplification. 
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III. FREE ELECTRON LASER PHYSICS 

A. UNDULATOR FIELDS AND RESONANCE 

The electron beam experiences three fields in the undulator: the magnetic field 

from the permanent magnets, the magnetic field of the optical beam and the electric field 

of the optical beam. The helical undulator’s magnetic field due to its permanent magnets 

is  

0 0(cos( ),sin( ),0)MB B k z k z=
G

,                                         (3.1) 

where the undulator wave number is k0 = 2π λ0 .  The undulator’s period or wavelength 

is  λ0  and  B  is the magnetic field strength.  The optical beam also creates magnetic and 

electric fields 

(sin ,cos ,0)OB E ψ ψ=
G

,   (3.2)  

(cos , sin ,0)OE E ψ ψ= −
G

,  (3.3) 

where the optical phase is kz tψ ω φ= − + , ω  is the optical frequency, φ is the optical 

phase and  E  is the electric field strength.  The optical wave number is   k = 2π λ  and 

λ is the wavelength of the optical beam. These three fields are illustrated in Figure 7; the 

optical field is blue.  The red line indicates the electron’s path due to the magnetic field 

(green). 

The effect that these forces have on the electron beam can be determined using 

the relativistic Lorentz force equations [5] 

( ) ( )d e E B
dt mc
γβ β= − + ×
G GG G

,       (3.4) 

d e E
dt mc
γ β= − ⋅

G G
,         (3.5) 
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γ = 1− β 2( )−1 2

,     (3.6) 

where ev cβ =
G G  and evG  is the electron’s velocity vector.  

 
Figure 7.   Undulator and Optical Fields. From [6, a] 

 

The “resonance condition” is the required relationship between the electron beam 

and the optical and undulator fields for optimal energy exchange and amplification of the 

optical beam.  This condition occurs when the optical wave travels a distance of  λ0 + λ  

along the undulator during the time it takes the electron beam to travel one period (λ0 ) 

along the undulator.  The electrons are traveling along the z-axis slightly slower than the 

optical beam, which travels at the speed of light.  Thus, the resonance condition allows 

one wavelength of light to pass the electron over a single undulator period.   Figure 8 

illustrates this relationship.  The blue line indicates the optical wavelength and the green 

indicates the undulator wavelength with the red dot symbolizing the electron’s position 

within an optical wavelength at five positions along the undulator period. 

 
Figure 8.   Electron in Resonance Condition. From [6, a] 
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 The optical output wavelength of the FEL can be calculated using the resonance 

condition to obtain 

  
λ ≈ λ0

(1+ K 2 )
2γ 2 ,   (3.7) 

where  K is the undulator parameter and is defined as K = eBλ0 2πmc2 .  Typical values 

of variables in equation (3.7) are K ≈ 1 and γ ≈ 200 .  Therefore, an undulator period λo  

of a few centimeters gives an optical wavelength of λ ≈ 1μm . [6, b] 

B. THE PENDULUM EQUATION AND ELECTRON MOTION 

A combination of the three fields in the undulator determines an electron’s 

motion.  Using the Lorentz force equation (3.4) and the field equations (3.1, 3.2 and 3.3) 

yields the equations for transverse motion of an electron as follows: 

[ ]0

( )
(1 )sin cos( )y

z z

d e E B k z
dt mc
γβ

β ψ β= − − − + ,    (3.8) 

[ ]0
( ) (1 )cos sin( )x

z z
d e E B k z

dt mc
γβ β ψ β= − − − ,    (3.9) 

with the electrons traveling close to the speed of light, βz ≈ 1.  Therefore (1 )zβ−  can be 

neglected as it is quite small compared to the βz B term.  Combining these two equations 

of motion and integrating gives the electron’s transverse velocity in the undulator as 

   0 0(cos( ),sin( ),0)K k z k zβ
γ⊥ = −

G
,          (3.10) 

where K  is the undulator parameter.  Using the electron/optical beam energy exchange 

equation described in equation (3.5) and the electron transverse velocity equation (3.10) 

gives the rate of change of the electron’s energy as 

  

dγ
dt

=
eKE
γ mc

cos(ζ + φ) ,               (3.11) 
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where the electron’s phase is 0( )k k z tζ ω= + − .  Using the rate of change of the 

electron’s energy this can also be expressed as 

2

2
02

d d
dt k c dt
γ γ ζ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

.       (3.12) 

Taking the derivative of the electron phase with respect to dimensionless time 

  (τ = ct L = 0→ 1)  results in the electron phase velocity 

  
ν =

dζ
dt

= L (k + k0 )βz − k⎡⎣ ⎤⎦ .                                        (3.13) 

Therefore, the change in phase velocity can be evaluated by combining the rate of change 

of the electron’s energy equations (3.11) and (3.12) giving the equation of motion for an 

electron in the undulator as 

  

dv
dt

=
d 2ζ
dt2 = 2k0

eKE
γ 2m

cos(ζ + φ) ,        (3.14) 

where  L = Nλo .  Defining 
  
a = 4πNeKLE γ 2mc2 as the dimensionless optical beam field 

amplitude, the equation of electron motion then becomes the pendulum equation  

  

dv
dt

=
d 2ζ
dt2 = a cos(ζ + φ) .      (3.15) 

This equation (3.15) is used to describe the microscopic electron motion within the 

undulator. [6, b] 

C. THE OPTICAL WAVE EQUATION 

Maxwell’s wave equation in the Coulomb gauge can be written as 

 
2

2
2 2

1 4AA J
c t c

π
⊥

∂
∇ − = −

∂

GGG G
,       [3.16] 

where J⊥

G
is the transverse current density and [ ]( / ) cos , sin ,0A E k ψ ψ= −

G
 is the vector 

potential of the optical field [5].  The field amplitude and phase vary slowly over an 
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optical period.  Using the inhomogeneous wave equation (equation (3.16)) and the slow 

varying amplitude and phase approximation, it is found that 

 2( )i ieKecEe e
t

φ ζπ ρ
γ

−∂
= −

∂
,     [3.17] 

where  ρe  is the electron density and ... represents an average over all the electrons.  

Applying the dimensionless field amplitude, a(τ ) = 4πNeKLE γ 2mc2  and 

dimensionless time, the wave equation can be written as follows 

 
 
∂a
∂τ

= − j e− iζ ,       [3.18] 

where   j = 8π 2 Ne2K 2L2ρe γ 3mc2  defines the dimensionless current density. [6, b] 

D. GAIN AND PHASE SPACE PLOTS 

1. Gain 

The fractional increase of optical beam energy is defined by the optical beam gain  

2 2
0

2
0

( ( ) )a a
G

a
τ −

= ,       [3.19] 

where   a0 is the initial optical field.  At resonance the optical beam gain will be zero due 

to the equal energy gained and lost by the electron beam, therefore it is imperative that 

the electrons enter the undulator off resonance.  With weak optical fields, 
  
a(τ ) < π , 

there is small bunching of the electrons and therefore a finite gain is achievable.  With 

strong optical fields, 
  
a(τ ) > π , there is substantial bunching and therefore the gain 

becomes saturated and reduced. [6, b] 
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2. Phase Space Plots 

Phase space plots [Figure 9] provide a profile of the motion of the electrons as 

they interact with the optical field over the length of the undulator. 

 
Figure 9.   Sample Phase Space Plot 

 
These plots display the relationship between the electron phase velocity (vertical axis) 

and the electron phase (horizontal axis) as the electrons evolve throughout the undulator.  

Also included in this figure are graphs of the optical gain and phase over the length of the 

undulator as measured in dimensionless time, τ , from 0 to 1. 

 This sample phase space plot was constructed using a 1-D simulation.  One 

thousand electrons are initially equally distributed along the horizontal axis as they 

evolve through the undulator.   In this simulation, the electrons begin at an initial phase 

velocity νo = 3  in yellow, while their final position is indicated in blue.  This plot 

indicates bunching at approximately ζ ≈ π  with a phase shift of 0.3π .  The phase space 

plot shows a greater number of electrons losing energy to the optical beam, thus 

achieving high gain as shown in the upper right of Figure 9. [6, a]  
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IV. QUADRUPOLE MAGNET PHYSICS 

In this chapter the physics that describe the effect a shift of a quadrupole magnet 

has on the electron beam of an FEL system will be explained.  This section will use MKS 

units to coincide with FELSIM’s input and output data. 

A. DISPLACED QUADRUPOLE EQUATIONS 

The magnetic field force components on an electron traveling through an “F” 

quadrupole (focusing in the horizontal x direction) are defined in the x and y directions as 

( )Mx z
BeF x x v
a

= − + Δ ⋅   and              (4.1) 

( )My z
BeF y y v
a

= + Δ ⋅ ,     (4.2) 

where  and x yΔ Δ  are the quadrupole shift in the and x y  directions respectively, e e=  

is the electron charge magnitude, and zv  is the velocity of the electron in the z direction, 

B  is the magnetic field at the pole face and a  is the semi-aperture as seen on Figure 10.  

When the quadrupole is aligned on axis ( )0x yΔ = Δ = , an electron in the center of the 

quadrupole at 0x y= =  experiences no force.  When the electron is not in the center of 

the quadrupole the relativistic force felt in the x and y directions result in an acceleration 

( )
2

2x z
d x eBF m v x x
dt a

γ= = − + Δ  and       (4.3) 

( )
2

2y z
d y eBF m v y y
dt a

γ= = + Δ ,  (4.4) 

Where m  is the electron mass, and the Lorentz Factor γ = 1 1− v2 c2  is constant since 

the static magnetic field cannot change the electron’s kinetic energy.  Assuming zv c≈ , γ  

is constant, and x yv v c� , substituting  2 2 2 2 2d dt c d dz= ⋅  and solving (4.3) and (4.4) 

for the equations of motion gives 
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( )
2

2

d x eB x x
dz macγ

= − + Δ      and       (4.5) 

( )
2

2

d y eB y y
dz macγ

= + Δ ,  (4.6) 

Substituting the magnetic force (4.1) into (4.5) and (4.2) into (4.6) results in the 

simplified equations of motion for an electron within an “F” quadrupole as 

 ( )
2

2

d x x x
dz

κ= − + Δ  and     (4.7) 

 ( )
2

2

d y y y
dz

κ= + Δ , (4.8)   

where 0Be macκ γ= > is the normalized linear field gradient. and zv  is approximately  

constant since γ  is constant and and x yv v c� .  Substituting ,  ,u x x v y y= + Δ = + Δ  

 and u u v vκ κ′′ ′′= − =  and solving (4.7) and (4.8) gives the position and velocity as 

 ( ) ( ) ( )1cos sino ou u z u zκ κ
κ

′= + ,  (4.9) 

 ( ) ( ) ( )1cosh sinho ov v z v zκ κ
κ

′= + ,       (4.10) 

 ( ) ( ) ( )sin coso o
duu u z u z
dz

κ κ κ′ ′= = + ,  and     (4.11)

 ( ) ( ) ( )sinh cosho o
dyy v z v z
dz

κ κ κ′ ′= = + ,     (4.12) 

where at 0z = , , , , ando o o ou u v v u u v v′ ′ ′ ′= = = =  are the initial positions and angles of an 

electron entering the quadrupole.  Substituting , , ,o o o o o ox x u y y v x u′ ′+ Δ = + Δ = =  

and o oy v′ ′=  gives 

 ( ) ( ) ( ) ( )1cos sino ox x x x z x zκ κ
κ

′= −Δ + + Δ + ,      (4.13) 
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 ( ) ( ) ( ) ( )1cosh sinho oy y y y z y zκ κ
κ

′= −Δ + + Δ + ,      (4.14) 

 ( ) ( ) ( ) ( )sin coso o
dxx x x z x z
dz

κ κ κ′ ′= = − + Δ + ,  and     (4.15) 

 ( ) ( ) ( ) ( )sinh cosho o
dyy y y z y z
dz

κ κ κ′ ′= = + Δ + ,     (4.16) 

where ( ), , 0o o ox y x dx dz′ =  and ( )0oy dy dz′ =  are the initial positions and angles of an 

electron entering the quadrupole. 

A thin lens approximation can be used if the particle does not significantly change 

its transverse position within the lens.  The thin-lens approximation states κ z << 1 .  

Therefore this approximation simplifies the position and velocity equations to  

 o ox x x z′= + ,         (4.17) 

 o oy y y z′= + ,        (4.18) 

 ( )o ox x x x zκ′ ′= − + Δ , and                  (4.19) 

 ( )o oy y y y zκ′ ′= + + Δ .      (4.20) 

The focal length of the thin quadrupole lens is 

   1

Q

f
Lκ

= ,          (4.21) 

where Qz L=  is the length that the electrons travel through the quadrupole.   

 The thin lens approximation assumes that the transverse positions ( ),x y  of the 

electron does not change as it is going through the lens, only the transverse angles 

( ),x y′ ′  changes.  Taking ox z′  in equation (4.17) and oy z′  in equation (4.18) to be small 

due to the negligible change in transverse position, equations (4.17) through (4.20) 

become 
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 ox x= ,          (4.22) 

 oy y= ,        (4.23) 

 ( )o ox x x x zκ′ ′= − + Δ , and                  (4.24) 

 ( )o oy y y y zκ′ ′= + + Δ .      (4.25) 

To simplify beam transport calculations these equations are placed in matrix 

formalization as  

    
1 0
1 1 0

o

o

xx x
xx

f

⎛ ⎞ ⎡ ⎤Δ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ′−′⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ ⎟ ⎣ ⎦⎝ ⎠

 and     (4.26) 

    
1 0
1 1 0

o

o

yy y
yy

f

⎛ ⎞ ⎡ ⎤Δ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ′′⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ ⎟ ⎣ ⎦⎝ ⎠

,     (4.27) 

where the matrix operator changes the electron’s angle ( ),x y′ ′  in proportion to the 

electron’s position ( ),o ox y  entering the quadrupole.  This derivation has ignored the 

fringe field’s effects, using a square edge approximation.  This, however, is a good 

approximation for this application.  With a magnetic field gradient of 6T mB a = , the 

focus strength is accurate to within 10% of the full thick lens result. [7] 
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Figure 10.   Quadrupole Magnet Schematic (F Type) with Electron Velocity Towards 

Viewer 

B. DRIFT EQUATIONS 

The drift space between each magnet or between a magnet and another FEL 

system component can be defined using the same method as with the quadrupole 

equations.  The position and velocity equations of an electron traveling through a drift 

space are  

 o ox x x z′= + ,        (4.28) 

 o oy y y z′= + ,        (4.29) 

 ox x′ ′= , and                    (4.30) 

 oy y′ ′= .        (4.31) 

 By setting z d= , where d is the length an electron travels on the z axis through 

the drift space gives the applicable position and velocity 

 o ox x x d′= + ,        (4.32) 

 o oy y y d′= + ,        (4.33) 
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 ox x′ ′= , and                    (4.34) 

 oy y′ ′= .        (4.35) 

Placing these equations in matrix formalization results in  

    
1
0 1

o

o

xx d
xx

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟ ′′⎝ ⎠ ⎝ ⎠⎝ ⎠

 and      (4.36) 

    
1
0 1

o

o

yy d
yy

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟ ′′⎝ ⎠ ⎝ ⎠⎝ ⎠

.       (4.37) 

C. MAGNET MISALIGNMENT CALCULATION 

Using the matrix formalization to calculate the effect of a quadrupole shift, it is 

first necessary to calculate the focal length f .  Using equation (4.21), the focal length can 

be calculated by using the quadrupole and electron beam parameters.   

Given zBe mavκ γ= , with γ = 200 , 83 10zv m s c= × ≈ , magnetic field gradient 

6T mB a =  for all quadrupoles used in this sample calculation, and 150mmQL =  gives 

19

31 8

1 1 0.36m
T6.0 1.6 10 C
m 0.15mm200 9.1 10 kg 3 10

s

Q

f
Lκ −

−

= = =
⎛ ⎞⋅ ×⎜ ⎟

⋅⎜ ⎟
⎜ ⎟⋅ × ⋅ ×
⎝ ⎠

               (4.38) 

as the focal length of the quadrupole.  This gives a matrix operator for an F type 

quadrupole as 

  -1

1 0
1 0

1 1 2.75m 1
f

⎛ ⎞
⎛ ⎞⎜ ⎟ = ⎜ ⎟⎜ ⎟− −⎝ ⎠⎜ ⎟

⎝ ⎠

.        (4.39) 

 Each drift between the quadrupoles will be set at 350mmd = .  The matrix 

operator for this drift will be 
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1 1 0.35m
0 1 0 1

d⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
.        (4.40) 

To calculate the resulting electron beam’s transverse and angular displacement, 

matrix multiplication is used to find a resultant transport matrix between the quadrupole 

in question and the final position in z, or in this case, the start of the undulator.  For 

purposes of a sample calculation take a set up such as:  drift – quadrupole (D type) – drift 

– quadrupole (F type) – undulator.  This transport matrix would then be 

-1 -1 -1

-0.89       1.04m1 0 1 0.35m 1 0 1 0.35m
2.75m 1 0 1 2.75m 1 0 1 -2.65m   1.96

        F type            drift              D type           drift

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠     (4.41) 

This gives the matrix elements of the entire section as a whole.  Assume that directly 

before this section of the beam path an F type quadrupole was shifted 1mm in the 

horizontal direction.  The impact of the quadrupole’s displacement is calculated by 

translating the magnet’s origin so that the electron beam is offset calculating the effect on 

the beam in that frame and then translating back to the original reference frame.  This 

gives 

1

1 0m 0.001m 0.001m 0.0m
2.75m 1 0 0 0.0028rads

x
x −

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ − −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

;      (4.42) 

note that the initial shift of a quadrupole only changes the angle of the electron beam.  It 

is not until the electron beam travels through a following drift that there is a change in 

transverse position. 

 To calculate the final position, multiply the transport matrix (4.41) by the 

resulting change in beam trajectory from the 1mm quadrupole shift (4.42) to obtain 

-1 0.0m 0.0029m-0.89      1.04m   
0.0028rads 0.0055rads-2.65m   1.96 

x
x

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

.   (4.43) 

Therefore, the resulting shift and tilt of the electron beam prior to entering the undulator 

is 2.9mm and -5.5mrads.  
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 Due to the large number of quadrupoles used in the beam line of an FEL and the 

extensive calculations required to calculate the individual transport matrices for each 

quadrupole, a simulator (FELSIM) will be used to calculate the effects of quadrupole 

magnet misalignments on the electron beam’s trajectory. [8] 
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V. FEL OSCILLATOR SIMULATIONS 

A. 3D FEL OSCILLATOR MODELING PARAMETERS 

It is necessary to first understand the tolerance of a 1MW FEL to an electron 

beam shift and/or tilt before analyzing the effects of quadrupole magnet displacements on 

the FEL’s performance.  These tolerances will be examined using the NPS Apple Xserve 

cluster with 128 processors.  The 3D FEL Oscillator Simulator will be used to record the 

FEL’s response to electron beam shifts and tilts and the corresponding gain and 

extraction for each shift will be recorded.  

The properties of the electron beam entering the undulator are listed in Table 1.  

These values are the same values that will be used in all future simulations including 

FELSIM runs for the quadrupole magnet manipulations.  2.1x1014 

Eb Beam energy (MeV) 97.8
qbunch Bunch charge (nC) 0.613
rbx Beam radius, x rms (mm) 0.10
rby Beam radius, y rms (mm) 0.10
tb Pulse duration, FWHM (ps) 1.0
prf Pulse rep frequency (MHz) 748.5
lb Pulse length, FWHM (cm) 0.030
gamma Lorentz factor 192
Ipeak Peak current (A) 613
Iavg Average current (mA) 459
emitx Normalized rms x emittance (mm mrad) 2.6
emity Normalized rms y emittance (mm mrad) 2.2
emitl Longitudinal emittance (keV ps) 34
dgog Beam energy spread (%) 0.08
dthetax Beam angular spread, x rms (mrad) 0.14
dthetay Beam angular spread, y rms (mrad) 0.11
rho Beam density (1/cm^3)  2.1x1014

Pb Beam average power (MW) 45

ELECTRON BEAM PARAMETERS

 
Table 1.   1MW Electron Beam Parameters 

 

The beam energy used is 97.8MeV.  This is the energy of the electron beam exiting the 

SLINAC and traveling through the quadrupoles to the undulator.  The electron pulses will 

be 0.03cm long with a repetition of 748.5MHz. 
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 Table 2 gives the parameters for the undulator.  The undulator length, 59cm, is 

typical for an oscillator configuration.  The length of the undulator period is 2.95cm with 

a total number of periods (N) of 20.  

 

lambda0 Undulator period (cm) 2.95
N Number of periods 20
gap Undulator gap (cm) 1
Bpeak Undulator peak magnetic field (T) 0.88
Brms Undulator magnetic field, rms (T) 0.62
K Undulator parameter, rms 1.72
L Undulator length (cm) 59

UNDULATOR PARAMETERS

 
Table 2.   1MW Oscillator Undulator Parameters 

 

 The optical cavity parameters are listed in Table 3.  With the oscillator design, a 

long cavity length of 20m is required.  This is the distance from the reflective mirror to 

the semi-transparent mirror within the cavity.  The optical wavelength is 1.6μm , a 

desired wavelength for minimal atmospheric attenuation of a megawatt-class laser.  The 

semi-transparent mirror has a quality factor of 2.0, corresponding to a transmission of 

50% of the optical energy in the cavity on each pass. 

S Cavity length (m) 20
Z0 Rayleigh length (cm) 6
loss Mirror losses per pass (%) 50
lambda Optical wavelength (microns) 1.6
W0 Mode waist radius, 1/e (mm) 0.17
Wmir Mode radius at mirrors, 1/e (cm) 2.9
Qn Quality factor 2.0
eta Predicted extraction (%) 2.5
Pout Predicted output power (MW) 1.1
Imir Optical intensity at mirrors (kW/cm^2) 86

OPTICAL CAVITY PARAMETERS

 
Table 3.   1MW Oscillator Optical Cavity Parameters 

 

 Dimensionless parameters are required for the FEL simulations.  These 

parameters are the direct inputs into the simulation and are calculated using the design 

parameters in Tables 1, 2 and 3.  These dimensionless parameters are listed in Table 4. 
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jhel Normalized current density, helical undulator 135
jlin Normalized current density, linear undulator 83
jlinF Current density with filling factor 11.7
Gwf,lg Predicted weak-field low gain (%) 158
Ghg Predicted high gain (%) 252
sx Normalized beam radius 0.18
sy Normalized beam radius 0.18
stx Normalized beam angular spread 0.15
sty Normalized beam angular spread 0.12
sve Phase velocity spread due to emittance 0.09
svg Phase velocity spread due to energy spread 0.21
sigz Normalized pulse length 9.5
z0 Normalized Rayleigh length 0.10
w0 Normalized mode waist radius 0.32
wmir Normalized mode radius at mirrors 53
F Filling factor 0.14
tmir Normalized mirror separation 34
wbeta Betatron oscillation frequency 1.1
xi Bessel function argument 0.37
JJ Bessel function factor 0.78

DIMENSIONLESS PARAMETERS

 
Table 4.   Dimensionless Parameters 

 

B. ELECTRON BEAM SHIFT IN THE VERTICAL (y) DIRECTION 

The gain and extraction of this 1MW FEL was recorded for different values of 

electron beam shift in the vertical direction.  Simulations were conducted to discover the 

FEL’s tolerance of magnet shifts.  It is only necessary to measure this parameter in one 

direction (positive) due to the symmetry of the undulator. 

1. Gain 

Figure 11 is a graph of gain versus vertical electron beam shift.  This graph 

indicates a maximum gain of 186% with the electron beam aligned on its reference 

trajectory (undulator axis).  However, with a shift of the electron beam in the vertical 

direction, the gain is dramatically reduced.  In order for the FEL to sustain operations, the 

gain must remain above 100%.  At about 1.5mm of beam shift, the gain drops below 

100% indicating the FEL no longer is functional.  
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Figure 11.   Gain vs. Vertical Electron Beam Shift 

2. Extraction 

Another useful indicator of FEL performance is the system’s extraction.  Figure 

12 is a plot of extraction as a function of vertical electron beam shift.  With no shift of the 

electron beam the extraction is 2.78%.   With a beam average power of 45MW, as 

indicated on Table 1, this extraction will produce an optical power of 1.25MW.   

Achieving a 1MW laser weapon requires an extraction of at least 2.2%.  At about 

a vertical shift of 0.6mm, the extraction decreases to 2.2%.  It can also be seen that there 

is no extraction at approximately 1.5mm of vertical shift indicating that the FEL is no 

longer functional.  This is as predicted from the previous gain plot that indicated failure at 

1.5% when gain fell to less than 100%. 
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Figure 12.   Extraction vs. Vertical Electron Beam Shift 

 

The simulations of both gain and extraction for this 1MW oscillator configuration 

indicate that the FEL will cease to function with an electron beam shift in the vertical (y) 

direction of 1.5mm.  However to maintain a megawatt laser the extraction must remain 

above 2.2%.  Therefore a quadrupole magnet displacement resulting in a 0.6mm electron 

beam displacement in the vertical (y) direction will be the maximum allowable magnet 

shift. 

C. ELECTRON BEAM SHIFT IN THE HORIZONTAL (x) DIRECTION 

The gain and extraction were also analyzed for shifts in the horizontal direction.  

It is also only necessary to consider horizontal shifts in one direction (positive) due to the 

symmetry of the undulator. 
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1. Gain 

Figure 13 is a graph of gain versus horizontal electron beam shift.  This graph 

shows that a horizontal shift of the electron beam has a very similar effect on the gain of 

the system.  Again, at about 1.5mm of horizontal beam shift, the gain drops below 100% 

indicating the FEL is no longer functional.  
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Figure 13.   Gain vs. Horizontal Electron Beam Shift 

 

 This similar reaction in the horizontal shift as the vertical shift is due to the 

slightly concaved pole faces of the undulator magnets.  This small curvature is designed 

to create a similar focusing effect of the electron beam in the horizontal and vertical 

planes. 

2. Extraction 

Figure 14 is a plot of extraction as a function of horizontal electron beam shift.  

At a horizontal beam shift of approximately 0.6mm, the extraction decreases to 2.2%.  
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Again, both the gain and extraction curve show agreement in FEL failure at 

approximately 1.5mm.  
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Figure 14.   Extraction vs. Horizontal Electron Beam Shift 

 

Both these results of gain and extraction were extremely close to the previous 

results due to a vertical electron beam shift.  These results indicate the electron beam shift 

must remain less than 0.6mm in both directions to ensure the extraction remains above 

2.2% to maintain 1MW or greater of power.  

D. ELECTRON BEAM TILT IN THE VERTICAL (y) DIRECTION 

As shown in Section IV, a displaced magnet will result in both a shift and tilt of 

the electron beam.  Therefore, it is also important to analyze the FEL’s tolerance to an 

electron beam tilt.  The goals of greater than 100% gain for operation and 2.2% 

extraction to maintain power above 1MW still apply.  It is only necessary to measure the 

tilt in one direction (positive) due to the symmetry of the undulator. 
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1. Gain 

Figure 15 is a graph of gain versus vertical electron beam tilt.  This graph 

indicates a maximum gain of 217% at an electron beam tilt of 4.65mrad.  After 4.65mrad 

the gain reduces rapidly.  An electron beam tilt in the vertical direction of about 8.1mrads 

will drop the gain below 100% indicating the FEL no longer is functional.  
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Figure 15.   Gain vs. Vertical Electron Beam Tilt 

 

2. Extraction 

The extraction versus vertical electron beam tilt is shown in Figure 16.  At a 

vertical beam tilt of 6.5mrad, the extraction decreases to 2.2%.  The gain graph (Figure 

15) and the extraction graph (Figure 16) show agreement in FEL failure at approximately 

8.1mrads.  
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Figure 16.   Extraction vs. Vertical Electron Beam Tilt 

 

E. ELECTRON BEAM TILT IN THE HORIZONTAL (x) DIRECTION 

Finally, the gain and extraction was also studied for electron beam tilts in the 

horizontal direction.  It is only necessary to measure this parameter in one direction 

(positive) due to the symmetry of the undulator. 

1. Gain 

Figure 17 is a graph of gain versus horizontal electron beam tilt.  This graph 

indicates that a horizontal tilt of the electron beam has an effect on the gain of the system 

very similar to that of the vertical tilt.  Similarly, at about 8.1mrads of horizontal beam 

tilt results in the gain dropping below 100% indicating the FEL no longer is functional.  
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Figure 17.   Gain vs. Horizontal Electron Beam Tilt 

2. Extraction 

Figure 18 is a plot of extraction as a function of horizontal electron beam tilt.  At 

a horizontal beam tilt of approximately 6.5mrads, the extraction decreases to 2.2%.  

Again, both the gain and extraction curve show agreement in FEL failure at 

approximately 8.1mrads.  
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Figure 18.   Extraction vs. Horizontal Electron Beam Tilt 

 

Both the results of gain and extraction for horizontal beam tilt are extremely close 

to the previous results with regard to a vertical electron beam tilt.  These results indicate 

the electron beam tilt must remain less than 6.5mrads in both the horizontal and vertical 

direction to ensure the extraction remains above 2.2% and therefore achieve 1MW or 

greater of laser power.  

F. EFFECT OF ELECTON BEAM SHIFT WITH TILT COMBINATION 

It has been shown that a quadrupole magnet shift will create both a shift and tilt of 

the electron beam when it is off reference trajectory.  Therefore the effect of the 

combination of both displacements (both angular and transverse) must be accounted for 

in FEL performance.   
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It has also been shown in this section that the effects in the horizontal and vertical 

planes are extremely similar.  Therefore, the following simulations and graphs have only 

been done in the vertical direction with the knowledge that the horizontal case would 

produce very similar results. 

Figure 19 is a three-dimensional representation of the resultant extraction due to a 

shifted electron beam with a tilt entering the undulator.  The vertical axis is the resultant 

extraction in 0.2% increments.  The horizontal axis is the electron beam shift in 

millimeters and the final axis is the electron beam shift in milliradians.  Aside from the 

small increase in gain at small tilt angles, the graph depicts a smooth decrease in 

extraction with an increase in beam shift and tilt combination, as expected. 
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Figure 19.   Extraction due to Electron Beam Shift with Tilt (3D View) 
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It is an interesting result that the highest extraction is not found with the beam on 

axis, but at no shift with a slight tilt.  This is not an effect that will be explored as an 

optimized result because the increase in gain is so small. 

With the ultimate objective of determining the maximum combined shift and tilt 

allowable while continuing to maintain 1MW of average power, Figure 20 clearly 

indicates the acceptable combinations that result in an extraction greater than 2.2%.  

These combinations are indicated in the red shaded area. 
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Figure 20.   Extraction due to Electron Beam Shift with Tilt (Top View) 

 

Additionally, Table 5 lists the extraction values for each combination simulated.  

Each simulation followed over 1000 passes of the optical beam through the undulator.  

This large number of passes was used to ensure saturation. 

It can be seen in both Figure 20 and Table 5 that the largest shift allowable, with 

no tilt is approximately 0.55mm with a resultant extraction of 2.24%; this agrees with the 
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earlier simulations.  These results will be used in the next section to determine the 

maximum allowable shift for each quadrupole magnet within the FEL beam path. 

 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
0.00 0.93 1.86 2.79 3.72 4.65 5.57 6.50 7.43 8.36
mrads mrads mrads mrads mrads mrads mrads mrads mrads mrads

0 0.00 mm 2.78% 2.79% 2.89% 3.00% 3.06% 2.99% 2.76% 2.20% 1.24% 1.10%
0.2 0.11 mm 2.76% 2.75% 2.86% 2.95% 3.04% 2.98% 2.73% 2.33% 1.74% 0.92%
0.4 0.22 mm 2.68% 2.69% 2.76% 2.85% 2.93% 2.85% 2.61% 2.15% 1.50% 0.60%
0.6 0.33 mm 2.58% 2.57% 2.61% 2.67% 2.72% 2.62% 2.34% 1.84% 1.08% 0.00%
0.8 0.44 mm 2.44% 2.40% 2.40% 2.42% 2.39% 2.26% 1.90% 1.27% 0.35% 0.00%
1 0.55 mm 2.24% 2.18% 2.13% 2.05% 2.00% 1.74% 1.22% 0.33% 0.00% 0.00%

1.2 0.66 mm 2.01% 1.91% 1.83% 1.68% 1.50% 1.08% 0.27% 0.00% 0.00% 0.00%
1.4 0.77 mm 1.74% 1.64% 1.50% 1.30% 0.97% 0.34% 0.00% 0.00% 0.00% 0.00%
1.6 0.88 mm 1.47% 1.35% 1.16% 0.87% 0.44% 0.00% 0.00% 0.00% 0.00% 0.00%
1.8 0.99 mm 1.19% 1.06% 0.82% 0.48% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
2 1.10 mm 0.91% 0.78% 0.50% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2.2 1.21 mm 0.64% 0.50% 0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
2.4 1.32 mm 0.38% 0.24% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
2.6 1.43 mm 0.12% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Dimensionless
TiltShift

Actual

 

Table 5.   Extraction due to Electron Beam Shift with Tilt Data 
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VI. FELSIM SIMULATIONS 

A. FELSIM AND TRACE 3D OVERVIEW 

FELSIM is a computer simulation tool developed in 2002 that incorporates many 

different modules from individual collaborators into one functional program. 

Collaborators that have contributed modules to this program include Advanced Energy 

Systems (AES), SAIC, Los Alamos National Laboratory (LANL), and Naval 

Postgraduate School (NPS).   

This program is a systems code that utilizes an empirical approach to model 

different FEL designs.  FELSIM can be run as a single program via AES’s graphical user 

interface (GUI), or an individual module can be used for a more focused analysis.  

FELSIM is capable of optimizing an FEL to determine the system’s efficiency, 

performance envelope and operational requirements.  This program can also output 

approximate dimensions and weights of the FEL’s components.  Figure 21 is a typical 

FEL oscillator configuration used in FELSIM. [9]   
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Figure 21.   FELSIM 1MW Laser Layout. From [7] 
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Trace3D is one of the modules used in the FELSIM program.  Trace3D was 

developed by LANL and is used in FELSIM to examine the evolution of the electron 

beam throughout the accelerator both before and after the wiggler (undulator).   This is a 

beam-dynamics program that propagates the envelopes of bunched beams through a 

system.  Trace3D will be extensively used in this study to analyze the resulting electron 

beam path due to quadrupole manipulations. [10] 

In AES’s September 2007 Monthly Report, funded by the Naval Surface Warfare 

Center, AES confirms the validity of using the Trace 3D module to simulate the 

displacement of a quadrupole magnet on the beam centroid.  Therefore using Trace 3D to 

simulate linear quadrupole displacements is an acceptable method. [11]  

B. FELSIM SET-UP FOR 1 MW DESIGN 

The 1MW FEL design used for this study was generated by AES using FELSIM.  

The system was optimized based on beam dynamics for an electron beam on the 

reference trajectory.  This design incorporates all components of an FEL previously 

discussed in Chapter 2 and displayed in Figure 21.   However, for this study only a 

truncated section of the FEL design (from the end of the SLINAC to the beginning of the 

undulator) is used.  This section is depicted in Figure 22. 

 

 
Figure 22.   FELSIM Concatenated Section 
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 This model contains a total of twelve quadrupole magnets, four before the turning 

magnets and eight between the bending magnet and the undulator.  Each quadrupole is 

150mm long; however, the magnetic gradient of each has been optimized using FELSIM 

based on an electron beam on a reference trajectory. 

 Table 6 indicates the length and placement of each component along the beam 

path starting at the exit of the SLINAC and ending at a distance of 10950mm at the 

beginning of the undulator.  These values are important when calculating the matrix 

elements for the transport system, and identify the locations of the quadrupoles along the 

beam path. 

Componet Z Placement Componet Z Placement
(mm) (mm)

SLINAC 0 Magnet 6 5991
drift 175 drift 6341
drift 411 Magnet 7 6491
drift 586 drift 6841

Magnet 1 736 Magnet 8 6991
drift 1086 drift 7844

Magnet 2 1236 drift 8697
drift 1586 Magnet 9 8847

Magnet 3 1736 drift 9197
drift 2086 Magnet 10 9347

Magnet 4 2236 drift 9697
drift 2411 Magnet 11 9847

Bending Magnet 2411 drift 10200
drift 5341 Magnet 12 10350

Magnet 5 5491 drift 10650
drift 5841 Oscillator 10950  

Table 6.   1MW Component Start Position on Z-Axis 

 

 Table 7 shows the input data used in FELSIM for all simulations.  The electron 

beam parameters are the same as those used in the 3D undulator simulations described in 

the previous chapter.  Using the same data in both simulations will allow for a greater 

accuracy in quadrupole magnet disturbance tolerances.  
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RF frequency 748.5 MHz 
Average current 458 mA 
Initial Energy (out of Superconducting LINAC) 97.8 MeV 
Initial Beam Radius 0.382 mm 
Initial x emittance (unnormalized) 0.068 mm mrad 
Initial y emittance (unnormalized) 0.056 mm mrad 

Table 7.   Initial Trace Input Data 

1. Displacement of Magnet 1 through 4 

Magnets 1 through 4 are positioned after the SLINAC and before the bending 

magnet.  The gradients and following beam pipe are listed in Table 8.  Magnets 1, 2, and 

3 all have comparable gradients and Magnet 4 is much weaker, about a third the strength 

of the other three. 

As discussed in Chapter II, there are two types of quadrupoles, “F” and “D”, 

depending on their horizontal focusing.  In this set of magnets, Magnets 1, 3, and 4 are all 

F type quadrupoles and therefore focus in the horizontal (x) direction.  Magnet 2 is a D 

type and therefore focuses in the vertical (y) direction. 

 Magnet 1 Magnet 2 Magnet 3 Magnet 4 
Gradient (T/m) -6.19 6.97 -6.16 -1.89 
Beam Pipe Length After (mm) 350 350 350 175 

Table 8.   Magnet 1 through 4 Gradients and Beam Pipe 

 

Figure 23 shows the results of quadrupole manipulation for the first four magnets 

(1-4) in the horizontal (x) direction.  These graphs show the resulting horizontal electron 

beam shift and tilt (plotted on the vertical axis) at the beginning of the undulator as a 

function of the horizontal displacement of Magnets 1 through 4 (on the horizontal axis), 

where the magnet shift is in the positive horizontal direction.  

Magnet 3 has the greatest impact on electron beam trajectory.  Magnet 3 is limited 

to a horizontal shift of approximately 0.15mm that results in an electron beam shift of 

approximately 0.46mm and a tilt of 1.87mrads at the undulator assuming no other 

magnets are displaced.  This corresponds to an extraction of about 2.40% from Figure 19. 

This greater response is due to the large gradient of Magnet 3 and the fact that it is an F 
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type quadrupole, therefore focusing in the direction of disturbance.  Another factor is 

Magnet 3 placement in the beam line.  This is the last horizontal focusing magnet before 

the bending magnet that has very weak horizontal focusing.    

Magnet 4 has the least effect on electron beam shift.  This magnet is limited to a 

horizontal displacement of 0.8mm, again assuming no other magnet is out of position.  

This corresponds to an electron beam shift of 0.41mm and a tilt of 1.89mrads at the 

undulator leading to an extraction of about 2.4%.  This is mostly due to the lower 

gradient of the magnet. 
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Figure 23.   Beam Shift and Tilt due to Displacements in x 
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 The results of quadrupole manipulation in the vertical (y) direction can be seen in 

Figure 24.  This graph shows the resulting electron beam shift and tilt on the vertical axis 

resulting at the beginning of the undulator as a function of the vertical displacement, in 

millimeters on the horizontal axis, of Magnets 1 through 4 where the magnet shift is in 

the positive vertical direction. 

 It can be seen that the system has a greater sensitivity to a vertical shift of Magnet 

2.  Magnet 2 is limited to a vertical shift of approximately 0.03mm that results in an 

electron beam shift of 0.41mm and a tilt of 0.267mrads at the undulator.  This 

corresponds to an extraction of approximately 2.44%.  This greater response is due to the 

large gradient of Magnet 2 and the fact that it is a D type quadrupole, therefore focusing 

in the direction of disturbance.   

Magnet 4 has the least effect on electron beam trajectory.  This magnet is limited 

to a vertical displacement of 0.25mm, giving an extraction of approximately 2.24%.  This 

is mostly due to the lower gradient and the fact that it is an F type quadrupole.  It is 

important to note that the electron beam shift is a more limiting effect of these magnet 

displacements than is the beam tilt. 
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Figure 24.   Beam Shift and Tilt due to Displacements in y 

 

2. Displacement of Magnet 5 through 8 

Magnets 5 through 8 are positioned directly after the bending magnet.  The 

gradients and following beam pipe are listed in Table 9.  Magnet 5 is much stronger than 

the other three magnets; in fact, its gradient is the most powerful in this concatenated 

section.  Magnet 7 is about average compared to the next four magnets, while magnets 6 

and 8 have very small gradients.  While these values may not seem logical, they are the 
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result of the optimization process of the entire system done using FELSIM prior to these 

simulations.  Magnets 8 would be considered an installed “tweaker” to a system.  These 

quadrupoles would provide flexibility to the FEL and allow for future tuning.   

In this set of magnets, Magnets 5 and 7 are F type quadrupoles and Magnets 6 and 

8 are D type.  Using the same analysis as previously discussed for Magnets 1 through 4 of 

this group, the system is most sensitive to disturbances of Magnet 5.  Unlike the previous 

magnets, Magnet 5 is limited due to the large tilt created at the beginning of the 

undulator, not the horizontal shift, as can be seen in Figure 25.  Magnet 5 is limited to 

approximately 0.15mm horizontal shift resulting in an electron beam shift of 0.2mm and 

a tilt of 5.94mrads at the undulator.  This corresponds to an extraction of about 2.61%. 

 

 Magnet 5 Magnet 6 Magnet 7 Magnet 8 
Gradient (T/m) -11.7 0.208 -4.37 .0004 
Beam Pipe Length After (mm) 350 350 350 1706 

Table 9.   Magnet 5 through 8 Gradients and Beam Pipe 
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Figure 25.   Beam Shift and Tilt due to Displacements in x 

 

In the vertical direction, Magnet 5 is also the most sensitive.  However, it is the 

resulting electron beam shift that is more limiting.  Magnet 5 is limited to about 0.06mm 

of vertical displacement, resulting in an extraction of about 2.2%. 
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Figure 26.   Beam Shift and Tilt due to Displacements in y 

 

3. Displacement of Magnet 9 through 12 

Magnets 9 through 12 are positioned just upstream of the undulator.  The 

gradients and following beam pipes are listed in Table 10.  Magnets 9, 10, and 11 all have 

comparable gradients and Magnet 12 is slightly larger.  In this set of magnets, Magnets 

10 and 12 are F type quadrupoles and Magnets 9 and 11 are D type. 
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 Magnet 9 Magnet 10 Magnet 11 Magnet 12 
Gradient (T/m) 2.24 -2.63 3.85 -7.95 
Beam Pipe Length After (mm) 350 350 350 300 

Table 10.   Magnet 9 through 12 Gradients and Beam Pipe 

Figure 27 is the result of quadrupole manipulation in the horizontal (x) direction 

of these last four magnets.  It can be seen that Magnet 12 has the greatest impact on 

electron beam trajectory.  Magnet 12 is limited to a horizontal shift of approximately 

0.4mm resulting in an extraction of about 2.40%.  This greater response is due to the 

large gradient of Magnet 12 and the fact that it is an F type quadrupole. 
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Figure 27.   Beam Shift and Tilt due to Displacements in x 
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 It can be seen on Figure 28 that the system has a greater sensitivity to a vertical 

shift of Magnet 11, a D type magnet.  Magnet 11 is limited to a vertical shift of 

approximately 0.15mm that results in an electron beam shift of 0.41mm and a tilt of 

0.75mrads at the undulator.  This corresponds to an extraction of approximately 2.4%. 
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Figure 28.   Beam Shift and Tilt due to Displacements in y 
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4. Electron Beam Evolution 

While the FEL performance is only affected by the final shift of the electron 

beam, it is also important to analyze the intermediate steps through the transport system.  

Figure 29 and Figure 30 show the evolution of beam centroid offset from the end of the 

SLINAC to the beginning of the undulator within the concatenated section due to a 

disturbance of Magnet 1.  On these two graphs the vertical axis represents the 

displacement, in millimeters, of the electron beam centroid from its reference trajectory 

and the horizontal axis represents the distance traveled along the beam line. 

Figure 29 is a plot of the horizontal displacement of the electron beam throughout 

the concatenated section due to a 1mm horizontal shift of Magnet 1. This graph indicates 

what could be a significant problem.  A typical beam pipe radius is approximately 15mm.  

This graph indicates that the electron beam will have a maximum displacement of 

17.3mm.  This beam shift is greater than the allowable clearance within the beam pipe 

and system components resulting in loss of beam and possible damage to the beam pipe 

and FEL system. 

This maximum displacement occurs at Magnet 7.  It can be seen that there is a 

large correction made to the electron beam trajectory at this point.  This is due to the fact 

that Magnet 7 is an F type quadrupole and the separation between the beam and pole face 

is such that the electron beam experiences a large correctional force allowing the beam to 

move closer to centerline. 
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Figure 29.   Beam Displacement for a 1mm Horizontal Displacement of Magnet 1 

 

Figure 30 is a plot of the vertical displacement of the electron beam throughout 

the concatenated section due to a 0.2mm vertical shift of Magnet 1. This graph shows a 

less dramatic evolution (note the scale difference) with a maximum displacement of 

4.47mm following Magnet 10.  

A large correction is made to the electron beam’s trajectory at z = 8847mm.  This 

is the location of Magnet 9 as seen on Table 5.  Because Magnet 9 is a D type 

quadrupole, therefore focusing in the vertical (y) direction and the distance between the 

beam and pole face is dramatically reduced; the electron beam experiences a large 

correctional force allowing the beam to move closer to centerline. 
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Figure 30.   Beam Displacement for a 0.2mm Vertical Displacement of Magnet 1 

 

C. SYSTEM DESIGN CRITERIA 

To evaluate the system as a whole and establish system design tolerances, first it 

is important to establish criteria  to set the limits of electron beam shift and tilt in order to 

maintain above 2.2% extraction.  This equation will be that of an ellipse, within which all 

allowable combinations will fall.  These equations will approximately fit the data found 

in Figure 5 and Table 20.  The equations are 

2 2

1
0.6mm 6.45mrad

x x′Δ Δ⎛ ⎞ ⎛ ⎞+ ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 and                                     (6.1) 

2 2

1
0.6mm 6.45mrad

y y′Δ Δ⎛ ⎞ ⎛ ⎞+ ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                           (6.2) 

with Δx  and yΔ  as the electron beam shifts and Δ ′x  and Δ ′y  as the tilts. 

Table 11 is a list of all the slopes of the electron beam’s response to magnets 

shifts found in Figures 23 to 28.  Magnet displacements are labeled as xδ , yδ , whereas 
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the resulting responses of the electron beam at the undulator entrance are labeled as xΔ , 

yΔ , x′Δ , and y′Δ .  It can be seen that the most sensitive magnets have the greatest slopes 

and therefore the greatest effect on electron beam trajectory.  

  Δx
δ x  ( )mrad

mm
x

xδ
′Δ Δy

δy  ( )mrad
mm

y
yδ

′Δ

1 -0.99 -7.94 5.55 -3.93 
2 -0.77 -1.61 -13.71 8.90 
3 3.17 12.46 1.94 -0.93 
4 0.51 2.36 -2.11 1.70 
5 -1.37 39.62 -8.88 7.95 
6 0.00 0.30 0.11 -0.06 
7 0.73 -27.98 -1.48 -0.08 
8 0.00 0.00 0.00 0.00 
9 -0.26 3.66 2.30 3.45 
10 0.41 -3.42 -1.85 -3.05 
11 -0.46 1.22 2.71 5.02 

M
A

G
N

E
T

 

12 1.25 3.31 -1.48 -3.97 

Table 11.   Electron Beam Trajectory Responses Δ( ) due to Magnet Displacement δ( )  

 

Using these slopes, an overall system tolerance can be established to first order by 

assuming all twelve magnets have the same range of motion but are otherwise 

uncorrelated.  The average of the squared electron beam shift and tilt in the vertical and 

horizontal direction can be found by summing the square of the slopes; these equations 

are  

 

( ) ( ) ( ) ( )22 2 2
2 2

1 2 3 12
x x x xx x x x x xδ δ δ δ δ

⎛ ⎞Δ Δ Δ ΔΔ = + + +⎜ ⎟
⎝ ⎠

… ,  (6.3) 

22 2 2
2 2

1 2 3 12

x x x xy y y y y yδ δ δ δ δ
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ Δ Δ ΔΔ = + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

… ,             (6.4) 

 

( ) ( ) ( ) ( )22 2 2
2 2

1 2 3 12
x x x xx x x x x xδ δ δ δ δ

⎛ ⎞Δ Δ Δ Δ′Δ = + + +⎜ ⎟′ ′ ′ ′⎝ ⎠
… , and  (6.5) 
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22 2 2
2 2

1 2 3 12

y x x xy y y y y yδ δ δ δ δ
⎛ ⎞Δ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ Δ Δ′Δ = + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟′ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

…      (6.6)  

Where jxδ  is the displacement of the jth magnet ( )1 12j = → . 

Using the limits found in the previous chapter of Δx and Δy = 0.6mm  shift and 

Δ ′x  and Δ ′y = 6.5mrads tilt, equations (6.3) to (6.5) can be combined with equations (6.1) 

and (6.2) to give the average allowable squared magnet displacements as 

2 2 216.3mmx xδΔ = ⋅ , 
2

2 2
2

mrad2620
mm

x xδ′ ′Δ = ⋅ , 

 2 2 2326mmy yδΔ = ⋅ ,  and 
2

2 2
2

mrad224
mm

y yδ′ ′Δ = ⋅ . 

Using (6.1) and 6.2), the overall vertical and horizontal magnet shift of the entire 

system as a whole is calculated using (6.1) and (6.2) as 

 
( )

( )
( )

( )

MAX MAX

2 2

1 0.097mm
16.3 2620

0.6mm 6.5mrad

x xδ δ≤ ⎯⎯→ ≤

+

 and 

( )
( )

( )
( )

MAX MAX

2 2

1 0.033mm
326 224

0.6mm 6.5mrad

y yδ δ≤ ⎯⎯→ ≤

+

. 

Therefore, the maximum horizontal and vertical magnet system shift tolerances are 

0.097mm and 0.033mm, respectively.  It is important to note that this approximation will 

give tolerances that would allow approximately a 50% probability of meeting the 2.2% 

extraction limit.  To improve this probability the tolerances must be reduced.  To improve 

on this first-order approximation, a Monte Carlo-type analysis is required to examine 

nonlinear effects.  This analysis will allow changes to transverse electron beam shape as 

well as position.  Additionally, this study will more precisely map out the region of in-

tolerance operation approximated by equations (6.1) and (6.2).  Other studies required are 

the exploration of simultaneous and coupled oscillations in the x and y planes. 
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VI. CONCLUSION 

This analysis has provided the beginning ground work for the study of quadrupole 

magnet misalignments in an FEL weapon system in a shipboard environment.  Using the 

3D FEL Oscillator Simulator developed at NPS, limits were established to ensure the 

FEL would operate at 1MW or greater.  These simulations revealed that for this FEL 

system a minimum extraction of 2.2% was required to achieve this power requirement.  

Following a multitude of simulations, operating limits on the electron beam shift and tilt 

were found.  The results allow tolerances to be set prior to the study of quadrupole 

magnet misalignments.  It was found that the maximum shift allowed, with no tilt is 

0.6mm and a maximum tilt allowed, with no shift is 6.5mrads.  However, because a 

typical magnet misalignment on a ship could cause both shift and tilt, the tolerance for 

both shift and tilt is evaluated in the combination.   

Using Trace3D, a module of FELSIM, each of the twelve quadrupole magnets 

was individually shifted.  Maximum allowable shifts varied in both the horizontal and 

vertical directions due to placement and field strength.  The allowed shifts were on the 

order of tenths of millimeters with the most limiting in this system at 0.06mm.  Using the 

results found in FELSIM, an overall system tolerance (if all magnets vibrated with the 

same amplitude) was found to be 0.097mm horizontal shift and 0.033mm vertical shift.   

These maximum quadrupole shifts for system vibrations are smaller than the 

typical amplitude of ship vibrations on a Naval vessel.  Therefore, both vibration 

dampening and active alignment need to be used to minimize these disturbances to less 

than the tolerances found.  This can and has been achieved in other military and scientific 

endeavors such as the Airforce’s Airborne Laser (ABL) program. [12] 

Future work should continue this study by utilizing a Monte Carlo-type analysis 

to examine nonlinear effects of quadrupole shifts.  Another related topic requiring 

research is the effect of quadrupole magnet tilts due to flexing and bending of the ship.   

 

 



 58

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 
 
 
 



 59

LIST OF REFERENCES 

[1]  Jefferson Labs.  “Thomas Jefferson National Accelerator Facility,” July 2007.  
[www.jlab.org/FEL/felspecs.html]. 

 
[2] CMS Alphatech.  “Magnets,” August 2007. 

[www.cmsalphatech.com/magnets.htm]. 
 
[3]  Neil Thomson.  “Introduction to Free-Electron Lasers,” ASTeC. July  2007. 
 
[4]   B.Williams. “Higher-order modes in free electron lasers,” Master’s thesis, Naval 

Postgraduate School, 2005. 
 
[5]   John David Jackson.  Classical Electrodynamics,  3rd Edition.  John Wiley & Sons 

Inc.  1999.  220, 586. 
 
[6]   W. B.Colson.  Naval Postgraduate School,  

a.  PH4858 Class Lecture.  NPS.  Fall 2006. 
 b. C. Pellegrini and A. Renieri. Classical Free Electron Laser Theory,  Chapter 5 

in “Free Electron Laser Handbook,” Elsevier Science Publishing Co. Inc.  
December 1990. 

 
[7]  David C. Carey.  The Optics of Charged Particle Beams,  Harwood Academic 

Publishers.  1987.  261-271. 
 
[8]   Martin Reiser.  Theory and Design of Charged Particle Beams, John Wiley & 

Sons Inc.  1994.  111-116.  
 
[9]   Advanced Energy Systems.  “FELSIM Overview: Accelerator Beam Dynamics 

using Trace 3D,”  January 2007. 
 
[10]   K.R. Crrandall and D.P. Rusthoi.  “Trace 3-D Documentation 3rd ed,” Los Alamos 

National Laboratory. 1997. 
 
[11] Alan Todd. “Technical Services to Design, Develop, Demonstrate, Test and 

Deliver Engineering Test Units in Support of the Navy Free Electron Laser 
Project,” Advance Energy Systems.  September 2007. 

 
[12]   C. Allen. “Integrating the FEL on an All-Electric Ship,” Master’s thesis, Naval 

Postgraduate School, 2007. 
 



 60

THIS PAGE INTENTIONALLY LEFT BLANK 



 61

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3.       William B. Colson 
Naval Postgraduate School 
Monterey, California 
 

4.       John W. Lewellen 
Naval Postgraduate School 
Monterey, California 
 
 


