
Naval Research Laboratory
Washington, DC 20375-5320

NRL/FR/5591--07-10,156

Session Initiation Protocol Network Encryption
Device Plain Text Domain Discovery Service

December 7, 2007

Approved for public release; distribution is unlimited.

Christopher L. robson

Center for Computational Science

Information Technology Division

i

 REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Session Initiation Protocol Network Encryption Device Plain Text Domain Discovery
Service

Christopher L. Robson

Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375-5320

NRL/FR/5591--07-10,156

Approved for public release; distribution is unlimited.

Unclassified Unclassified Unclassified
UL 29

Christopher Robson

(202) 404-3138

This report provides a method for cryptographic isolated domains to discover other cryptographic isolated domains by using the IETF Session
Initiation Protocol (SIP). This method, called the SIP Network Encryption Device Plain Text Domain Discovery Service (SIP-DS), will not
require a new IETF standard or any modification to existing IETF standards, nor are any specifically configured infrastructure or network devices
required. This discovery method allows any encryption device, be it typical U.S. government Type 1 encryption devices such as TACLANE,
HAIPE, or FASTLANE, or any non-government cryptographic devices implementing this technology, to find and exchange plain text domain
(PTD) information. Additionally, SIP-DS will allow one encryption device to proxy PTD information for other encryption devices unable to
implement this method.

07-12-2007 Formal Report

Session Initiation Protocol network encryption device plain text domain discovery, exchange, and proxy information service

August 30 to November 30, 2007

Steve Sligar, JCTD Program Manager
National Geospatial-Intelligence Agency, Reston
12310 Sunrise Valley Drive, Reston, VA 20191-3449

NGA

55-9118-B-7

0603648D8Z

Record and Disclosure of Invention Part II Disclosure of Invention

 iii

CONTENTS

1. INTRODUCTION.. 1
2. PURPOSE .. 1
3. SCOPE ... 1
4. WHAT IS THE SESSION INITIATION PROTOCOL? ... 1
5. WHY SIP AS A PTD DISCOVERY PROTOCOL?.. 2
6. PTD ENCYPTION DEVICE DISCOVERY DESIGN REQUIREMENTS .. 3
7. HOW SIP UNIFORM RESOURCE IDENTIFIER (URI) WOULD BE USED FOR PTD

ENCRYPTION DEVICE DISCOVERY ... 3
8. OTHER BENEFITS OF SIP PROTOCOL MESSAGES .. 3
9. HOW SIP REGISTRATION WOULD BE USED FOR PTD ENCRYPTION DEVICE

REGISTRATION... 4
10. HOW SIP REGISTER WOULD CONVEY PTD.. 4
11. HOW SIP INVITE SESSION DESCRIPTION PROTOCOL WOULD CONVEY PTD 5
12. HOW SIP INVITE WOULD BE USED TO OBTAIN PTD INFORMATION 6
13. HOW SIP PRESENCE EVENT PACKAGE (PEP) PRESENCE INFORMATION DATA FORMAT

(PIDF) WOULD CONVEY PTD... 6
13.1 MESSAGE PTD Database Exchange .. 6

13.2 PUBLISH PTD Database Exchange .. 6

13.3 SUBSCRIBE PTD Database Requests... 6

13.4 NOTIFY PTD Database Exchange .. 9

14. SIP OVERCOMES SINGLE POINTS OF FAILURE... 11
15. SIP ENCRYPTION DEVICE PTD DISCOVERY SERVICE .. 11
16. SIP ENCRYPTOR PTD DISCOVERY CONCEPT OF OPERATION (CONOP) 12
17. ENCRYPTION DEVICE REGISTRATION REGISTER CONOPS .. 12
18. PLAIN TEXT DOMAIN UAC TO UAS INVITE WITH SDP CONOP .. 13
19. PLAIN TEXT DOMAIN UAS TO UAC INVITE WITH SDP CONOP .. 14
20. PLAIN TEXT DOMAIN UAC RECEIVED INVITE WITH SINGLE SDP ENTRY CONOP.......... 14
21. PLAIN TEXT DOMAIN PEP PIDF (PUBLISH, SUBSCRIBE, AND NOTIFY) CONOP 15
22. SIP MESSAGE PLAIN TEXT DOMAIN PEP PIDF CONOP ... 16

iv

23. PLAIN TEXT DOMAIN REACHABILITY TRAFFIC FLOW CONOP ... 16
24. PROTOTYPE ARCHITECTURE OF THIS SIP PTD DISCOVERY SERVICE............................... 17
25. SIP PTD DISCOVERY SERVICE PROTOTYPE ARCHITECTURE SIMULATED ENCRYPTOR

.. 18

26. SIP PTD DISCOVERY SERVICE PROTOTYPE ARCHITECTURE OPENSER
CONFIGURATION ... 19

27. IPSEC PROTECTED CONTROL CHANNEL ... 20
28. SIP ENCRYPTION DEVICE PTD DISCOVERY SERVICE WORKING PROTOTYPE 20
29. CONCLUSION .. 21
REFERENCES ... 22

BIBLIOGRAPHY... 22

APPENDIX ⎯ Prototype Code.. 25

Manuscript approved August 30, 2007.

1

SESSION INITIATION PROTOCOL NETWORK ENCRYPTION DEVICE PLAIN
TEXT DOMAIN DISCOVERY SERVICE

1. INTRODUCTION

Several proposals have been suggested on how to solve the High Assurance Internet Protocol
Encryptor (HAIPE) discovery problem. Existing encryption devices, such as the TACLANE, have
developed unique discovery methods to establish Plain Text Domain (PTD) Security Associations (SA).
All of these techniques require some change to either existing standards such as Internet Engineering
Task Force (IETF) routing standards or network service standards as in the case of using a modified
Domain Name Service (DNS). All of these suggestions result in government uniquely tailored protocols.
For example, one proposal for the HAIPE problem suggests using a modified version of Border Gateway
Protocol (BGP), while another promotes using a special DNS configuration. In the case of TACLANEs,
using a BGP design would require a redesign of the TACLANE IP protocol support. Further, DNS
presents several challenges if the PTD supports more than one network/mask or host/mask address. What
is needed is a common solution that does not require making changes to existing standards or uniquely
network configured architectures and provides a common technology solution for all encryption devices.

2. PURPOSE

This report suggests a new approach to solving the PTD SA discovery problem using an existing
IETF standard “as is.” This report proposes a mechanism for any encryption device, be it TACLANE or
HAIPE, to find and establish SAs for associated PTDs.

3. SCOPE

This report focuses on a conceptual idea, presents a design, provides a concept of operation example
of how the architecture will function, and finally proposes a prototype implementation.

4. WHAT IS THE SESSION INITIATION PROTOCOL?

The Session Initiation Protocol1 (SIP) is a signaling protocol used to determine a participant’s
location, availability and capabilities, and assist in the setup process and session management. SIP, itself,
doesn’t provide services but provides several methods (or primitives) for clients or servers to find and use
services. One common method a SIP participant uses to advertise to other participants is by registering to
the SIP Registrar so that each client’s information can be distributed within the SIP domain and end-to-
end calls can be established. A common SIP element is the proxy server. Typically, the SIP proxy will
route SIP connection requests and traffic between registered participants. The proxy also reports a
member’s location, authenticates and authorizes the member for services, implements provider call-

1 It is not within the scope of this specification to detail or even provide a brief overview of the SIP protocol, how it
works, or what are the SIP components. It is assumed the reader is familiar with SIP or will have done the necessary
background SIP research (read at least Refs. 1, 2, and 3) to understand how this architecture is exploiting SIP.

2 Christopher Robson

routing policies, and provides features to SIP participants. Another method used for SIP call
establishment is to send a SIP INVITE message to a peer system. The INVITE is used as a function of a
call setup and used sometimes in a peer-to-peer (P2P) session establishment or via the SIP proxy. SIP is a
request/response protocol (designed similarly to HTTP) and contains a set of response codes. These
responses include the ACK, CANCEL, BYE, and options messages. Additionally, SIP has a suite of
interoperable services collectively known as instant messaging and presence (IMP) described in Request
for Comment (RFC) 2779 and in the Common Presence and Instant Messaging (CPIM) specification.
These services are commonly referred to as SIP for Instant Messaging and Presence Leveraging
Extension (SIMPLE). It is SIMPLE that this proposed architecture will exploit and that this report
describes.

5. WHY SIP AS A PTD DISCOVERY PROTOCOL?

SIP is a signaling protocol used for establishing sessions in an IP network. SIP does not know about
the details of a session nor is it in the path of the data; it just initiates, terminates, and modifies sessions.
This simplicity means that SIP scales, is flexible, and sits comfortably in different architectures and
deployment scenarios such as providing a vehicle for encryption devices to discover each other while not
interfering with, being part of, or adding complexity to, the encryption function. This design focuses on
several key SIP characteristics:

a. Reusing Existing Protocols ⎯ SIP is designed to specifically reuse as many existing protocols
and protocol design concepts as possible. For example, SIP is modeled after Hypertext Transfer
Protocol (HTTP), using Uniform Resource Locators (URL) for addressing and Session
Description Protocol (SDP) to convey session information. SDP can be easily exploited to
support various encryptor discovery requirements yet not require any SIP or associated protocols
to be modified.

b. Maximizing Interoperability ⎯ SIP is also designed so that it would be easy to bind SIP
functions to existing protocols and applications, such as e-mail and Web browsers. SIP does this
by limiting itself to a modular philosophy ⎯ just like many other Internet protocols ⎯ and
focusing on a specific set of functions. This will allow any encryptor architecture to use this
protocol to exchange state and discovery peering points.

c. SIP REGISTER, INVITE, and event notification messages, which include MESSAGE,
PUBLISH, SUBSCRIBE, and NOTIFY, are ideal for conveying Plain Text Domain information.
Each has existing message fields that can be used to exchange PTD information. For example,
the event notification “Presence Event Package” message can contain Presence Information Data
Format (PIDF) documents containing detailed PTD information, which can include network and
host Internet Protocol (IP) addresses, Information System Security Office (ISSO) point of contact
information and PTD status information. The PIDF could provide Security Association key data.
Further, SIP Common Profile for Presence (CPP) semantics and data formats can be exploited to
facilitate the exchange of PIDF contained PTD information.

SIP was designed to work with a broad spectrum of existing and future IP protocols. To this end, SIP
provides four basic functions. SIP allows for the advertising of user location, in this architecture this
translates to the network address of the encryption device. Therefore, SIP provides a way for encryption
devices to determine peers. SIP provides for feature negotiation so that all of the participants in a session
can agree on the features to be supported among them. This same mechanism can be used to determine
the networks or hosts the encryption device protects within its PTD. Thus the PTD information can be
exchanged between Plain Text Domains via SIP. Therefore, the encryption device can establish Security
Associations. SIP is a mechanism for call management ⎯ for example adding, dropping, or transferring
participants ⎯ so the encryption device will not only be able to use existing standards as a solution for

 SIP NED Plain Text Domain Discovery Service 3

peering but can extend this standard on how future SAs will be negotiated or renegotiated. Finally, SIP
allows for changing features of a session while it is in progress. This ability to renegotiate sessions might
be exploited for key management such as SA rekeying.

6. PTD ENCYPTION DEVICE DISCOVERY DESIGN REQUIREMENTS

Today’s encryption device specifications are good examples of encryption device requirements for
reachability and discovery. Generally, these requirements are common for almost all network encryptors.
These requirements typically specify the following:

a. The protocol shall have a Registration function for encryption devices to advertise local
Reachability Information.

b. The protocol shall have a Solicitation function for encryption devices to query and respond for
remote prefix Reachability Information.

c. The protocol shall be bandwidth efficient.
d. Encryption devices shall send registration messages upon startup and every time a change is

detected in the Local Enclave Prefix Table.
e. The encryption device shall include a lifetime associated with the Prefixes it registers.

7. HOW SIP UNIFORM RESOURCE IDENTIFIER (URI) WOULD BE USED FOR PTD
ENCRYPTION DEVICE DISCOVERY

A SIP URI identifies a communications resource. In the case of Encryptor Discovery, the URI would
be used to identify a unique encryption device with the SIP IA services database, thus providing the
information for advertising reachability information. The URI contains sufficient information to initiate
and maintain a communication session within the encryptor discovery process.

8. OTHER BENEFITS OF SIP PROTOCOL MESSAGES

Because SIP has well-defined messages, these can be exploited transparently without change for
encryption device discovery and communications control services. SIP messages can be used by the
encryptor for request or response messages in the PTD discovery process. Because there is no change to
the existing SIP standard, existing client and server software can be reused. For example, SIP message
types and options would take on the following meanings without modifying the existing SIP protocol.

 a. Request Methods
i. INVITE can be used to initiate an encryption device pair discovery and could also be used to

change SA parameters once a session has been established. This can be thought of as a re-
INVITE. The INVITE message coupled with Session Description Protocol will provide the
method to update the User Agent Server (UAS) with Plain Text Domain Security
Associations.

ii. SUBSCRIBE is a request from a User Agent Client (UAC) (Presence User Agent or PUA) to
establish a SA with another UAC through the UAS (Presence Agent or PA).

iii. MESSAGE is used to carry PTD information message from the UAC (PUA) to a peering
PUA.

iv. PUBLISH is used to carry PTD information message from the UAC (PUA) to a UAS
(Presence Server or PS) or directly to a P2P UAC.

v. NOTIFY informs the UAC (PUA) that there is SA information available for a subscriber.
vi. ACK would be an acknowledgment and confirmation response to an encryption device

discovery invite.

4 Christopher Robson

vii. BYE would terminate a SA in progress.
viii. CANCEL would terminate the encryption device discovery invite and stops all searches and

devices that are in the discovery or SA establishment process.
ix. OPTIONS would be used to query the capabilities of an encryption device.
x. REGISTER would register an encryption device’s location with a server.

xi. INFO could be used to send information during a session without modifying the session
state.

 b. Response Message Types
xii. 1xx provisional, searching, ringing, or queuing an encryption device discovery

xiii. 2xx successfully discover an encryption device
xiv. 3xx redirection, forwarding of an encryption device discovery invite
xv. 4xx request failure (client)

xvi. 5xx server failure
xvii. 6xx global failure (busy, refusal, not available anywhere)

9. HOW SIP REGISTRATION WOULD BE USED FOR PTD ENCRYPTION DEVICE
REGISTRATION

The encryptor, by definition, hides networks and systems within the encryptor’s PTD; therefore, a
caller doesn't know the address of the callee’s fronted encryption device. That is, it doesn’t know the
encryption device-to-PTD binding. The SIP proxy servers for the PTD, also referred to as User Agent
Servers or UAS, would perform the job of finding out the exact location of the end recipient and the
associated encryptor. What actually would happen is that each encryption device, like a typical SIP
client, would register its current location to a SIP REGISTRAR server. The encryptor will send a
message called REGISTER, like a typical SIP client, informing the server of its present location. The
Registrar stores this binding (between the encryption device and its present address) in a location server
that is then used by other proxies or encryptors to locate the targeted encryptor that is servicing a
particular PTD.

10. HOW SIP REGISTER WOULD CONVEY PTD

The encryptor can exploit the SIP REGISTER message Path header field, defined in Request for
Comment (RFC) 3327, to establish the initial PTD database. An advantage to using the REGISTER Path
header field is quick updating of the UAS PTD database from the onset of an encryption device
registration process. As defined in RFC 3327, the Path header field structure will not change in format.
That is, the field will still be represented as <sip:Uniform Resource Identifier (URI)>. However, the Path
header field will now represent an ordered list of route elements that are used to build a Contact field
route list. It will be used to represent a list of PTD addresses with the URI field elements in the form:
URI = <PTD@host encryptor>. Within this context, the PTD field is defined as: PTD = <IP
address/network mask>. For example, for the PTD with network IP address 192.168.1.0 that is protected
by an encryptor with the IP address of 10.1.1.1, the REGISTER Path header field would be represented as
“sip:192.168.1.0/24@10.1.1.1.” As with any REGISTER message containing Path header fields, multiple
Path header entries may be defined. For example, the REGISTER message with a Path header element
would be as follows:

REGISTER sip:FQDN SIP/2.0
Via: SIP/2.0/UDP [IP address]:5060;branch=[information]
To: User Agent <sip:URI>
From: User Agent <sip:URI>;tag=[number]

 SIP NED Plain Text Domain Discovery Service 5

Call-ID: URI
CSeq: [number] REGISTER
Contact: <sip:URI>
Supported: path
Path: <sip:URI>
. . .

Because the Path header function is to convey PTD information between the UAC and the UAS to
which it is bound, the UAC REGISTER message does not traverse through any SIP proxies. Otherwise,
traversed proxies may assume, correctly, that the message is a typical REGISTER message and attempt to
modify the Path header field. If any proxy modifies the SIP Path header, this new, non-PTD information
would be processed by the target UAS into PTD database information, thus corrupting the PTD database
with incorrect information. Because using the Path header field does introduce some complexity in the
PTD database update process, it is assumed this method will not be used as the default method for
updating the UAS PTD database.

However, the use of a REGISTER message with a Path header might be used by a tactical UAC that
is at the end of a limited bandwidth satellite communication link in order to reduce SIP message traffic
overhead. This method would reduce the tactical UAC PTD information database initialization by at least
four strings of variable data overhead required within the preferred IETF presence event package PIDF
method discussed in Section 13.

11. HOW SIP INVITE SESSION DESCRIPTION PROTOCOL WOULD CONVEY PTD

The encryptor will exploit the SIP invite message, INVITE, to establish an information database from
which clients can request information about peering networks and establish SA communication sessions
between PTD clients or networks. The UAC will update the UAS with its PTD reachability information
using the INVITE SDP. In this way, the encryptor does not have to maintain a database of client-to-client
or even client-to-server table entries. However, where the UAC is not registering with a UAS, the client
will maintain a P2P database similar to the UAS, therefore establishing reachability using SIP P2P.
Using the same UAC to UAS dialogue defined within the SIP SDP standard, the encryptor will direct a
PTD connection request to the SIP server (or UAC in the case of P2P SIP) using the INVITE SDP
dialogue exchange. The SDP format of <type> = <value> will be maintained within the information data.
Specifically, the IETF RFC 2327 field “c=” will be used to convey the encryptor PTD information. The
SDP fields used will contain the following information:

V = protocol version
O = session identifier
S = session name
I = session information
U = URI in the form name@network address.
E = ISSO email address
P = ISSO phone number
C = PTD network/mask and/or system/mask
. . .

6 Christopher Robson

12. HOW SIP INVITE WOULD BE USED TO OBTAIN PTD INFORMATION

The UAS will use the requesting encryptor’s (UAC) SIP INVITE message “To” and “Contact”
information fields to extract UAS PTD database entries. This INVITE message will not contain any SDP
information because it is not to be used as a PTD initialization or update message.

13. HOW SIP PRESENCE EVENT PACKAGE (PEP) PRESENCE INFORMATION DATA
FORMAT (PIDF) WOULD CONVEY PTD

Presence Event Package PIDF documents will provide the most flexible, verbose information content
SIP messages for use in encryption device discovery. Therefore, it is the preferred method for
exchanging PTD information. The PTD PEP PIDF document will adhere to the World Wide Web
Consortium (W3C) EXtensible Markup Language (XML) standard, and the message packet format will
adhere to the IETF standards RFC 3265 and RFC 3856. As the IETF standard defines, the subscribing or
subscribed encryptor(s) will act as the PUA and the SIP server(s) would function as the Presence Server
(PS) or Agent (PA). The PUA and PS will use SIP MESSAGE, PUBLISH, SUBSCRIBE, and NOTIFY
messages to convey PTD information, acknowledgments, and presences.

13.1 MESSAGE PTD Database Exchange

The PUA will use a SIP MESSAGE to convey to a peering PUA its PTD information when
authentication is not required or a PS is not available. SIP MESSAGE communications functions
similarly to User Datagram Protocol (UDP) connectionless information exchange. A key benefit to using
this SIP method is in low bandwidth situations such as tactical radio environments where reduced data
and control plane traffic are required. Figure 1 illustrates the information contained in the MESSAGE
information packet (note: “value” represents a variable runtime field). As with any SIP PEP PIDF
message, the PTD information is contained within the MESSAGE “Message Body” field.

13.2 PUBLISH PTD Database Exchange

The PUA will use a PUBLISH message to convey to a PS its PTD information. Figure 2 illustrates
the information contained in the PUBLISH message (note: “value” represents a variable runtime field).
As with any SIP PEP PIDF message, the PTD information is contained within the PUBLISH “Message
Body” field.

13.3 SUBSCRIBE PTD Database Requests

The SUBSCRIBE message is used by an encryptor to discover from the PS the association between
the PTD end system and its encryptor. The “Request-Line” field contains the URI of the target end
system in the form [end system IP address]@[PTD]. This URI would consist of the target end system
IP address prefixed with the PTD SIP domain. For example, if a subscribing encryptor received traffic
from one of its PTD hosts with the IP of “10.1.1.1” and the PS SIP domain is “PTDSIPDOMAIN,” the
Request-Line URI would read “10.1.1.1@PTDSIPDOMAIN.” Used slightly differently than a typical
SIP SIMPLE message exchange, the “To” field will contain the IP address of the PS. This is because the
SUBCRIBE message is really addressed to the PS, asking the PS for PTD information. The SUBSCRIBE
message may or may not contain a PEP PIDF document. If the PIDF is present in the SUBSCRIBE
message, it is used to convey additional information pertinent to the SUBSCRIBE message. Therefore,
the PIDF “encryptor” value field is set to “0.0.0.0” and the “PTD_IP_address” field must be set to the end
system’s IP address. The format and content of the SUBSCRIBE message are described in Fig. 3.

 SIP NED Plain Text Domain Discovery Service 7

Fig. 1 − MESSAGE message format and content

Request-Line: MESSAGE sip:[subscribing PUA IP address]@[PTD] SIP/2.0
 Method: MESSAGE
 [Resent Packet: False]
 Message Header
 Via: SIP/2.0/TCP [PS IP address]:5060;branch=[value]
 From: <sip:[subscribing PUA]@[PTD]>;tag=[value];epid=[value]
 To: <sip:[PS IP address]@[PTD]>
 Max-Forwards: 10
 CSeq: 3 MESSAGE
 User-Agent: EncryptorDiscovery/v1.0
 Call-ID: [value]
 Expires: [seconds]
 Event: presence
 Content-Type: application/pidf+xml
 Content-Length: [value]
 Message body
 eXtensible Markup Language

 "<?xml version='1.0' encoding='UTF-8'?>\n"
 "<Plain_Text_Domain>\n"
 "<encryptor>\n"
 "<encryptor_address>AAA.BBB.CCC.DDD</encryptor_address>\n"
 "<encryptor_mask>host or network</encryptor_mask>\n"
 "<encryptor_ttl>in seconds</encryptor_ttl>\n"
 "<database>\n"
 "<address>\n"
 "<ip>AAA.BBB.CCC.DDD</ip>\n"
 "<mask>host or network</mask>\n"
 "<type>host/router/server</type>\n"
 "<action> insert/delete/enable/disabled</action>\n"
 "<status> startup/ringing/idle/crashed/active</status>\n"
 "</address>\n"
 "</database>\n"
 "<POC>\n"
 "<name>ISSO</name>\n"
 "<phone>telephone number</phone>\n"
 "</POC>\n"
 "<SA>\n"
 "<key>123456789</key>\n"
 "<mode>tactical/strategic</mode>\n"
 "</SA>\n"
 "</encryptor>\n"
 "<checksum>SHA</checksum>\n"
 "</Plain_Text_Domain>\n"

8 Christopher Robson

Fig. 2 − PUBLISH message format and content

Request-Line: PUBLISH sip:[subscribing PUA IP address]@[PTD] SIP/2.0
 Method: PUBLISH
 [Resent Packet: False]
 Message Header
 Via: SIP/2.0/TCP [PS IP address]:5060;branch=[value]
 From: <sip:[subscribing PUA]@[PTD]>;tag=[value];epid=[value]
 To: <sip:[PS IP address]@[PTD]>
 Max-Forwards: 10
 CSeq: 3 PUBLISH
 User-Agent: EncryptorDiscovery/v1.0
 Call-ID: [value]
 Expires: [seconds]
 Event: presence
 Content-Type: application/pidf+xml
 Content-Length: [value]
 Message body
 eXtensible Markup Language

 "<?xml version='1.0' encoding='UTF-8'?>\n"
 "<Plain_Text_Domain>\n"
 "<encryptor>\n"
 "<encryptor_address>AAA.BBB.CCC.DDD</encryptor_address>\n"
 "<encryptor_mask>host or network</encryptor_mask>\n"
 "<encryptor_ttl>in seconds</encryptor_ttl>\n"
 "<database>\n"
 "<address>\n"
 "<ip>AAA.BBB.CCC.DDD</ip>\n"
 "<mask>host or network</mask>\n"
 "<type>host/router/server</type>\n"
 "<action> insert/delete/enable/disabled</action>\n"
 "<status> startup/ringing/idle/crashed/active</status>\n"
 "</address>\n"
 "</database>\n"
 "<POC>\n"
 "<name>ISSO</name>\n"
 "<phone>telephone number</phone>\n"
 "</POC>\n"
 "<SA>\n"
 "<key>123456789</key>\n"
 "<mode>tactical/strategic</mode>\n"
 "</SA>\n"
 "</encryptor>\n"
 "<checksum>SHA</checksum>\n"
 "</Plain_Text_Domain>\n"

 SIP NED Plain Text Domain Discovery Service 9

Request-Line: SUBSCRIBE sip:[target end system IP address]@[PTD] SIP/2.0
 Method: SUBSCRIBE
 [Resent Packet: False]
 Message Header
 Via: SIP/2.0/TCP [PS IP address]:5060;branch=[value]
 From: <sip:[subscribing PUA IP address]@[PTD]>;tag=[value];epid=[value]
 To: <sip:[PS]@[PTD]>
 Max-Forwards: 10
 CSeq: 5 SUBSCRIBE
 User-Agent: EncryptorDiscovery/v1.0
 Call-ID: [value]
 Expires: 1200
 Accept: application/pidf+xml, application/xpidf+xml
 Event: presence
 Contact: <sip:[subscribing PUA IP address]@[PTD]:5060;transport=tcp>;methods="MESSAGE,
SUBSCRIBE, NOTIFY"
 Content-Length: 0

Message body
 eXtensible Markup Language
 "<?xml version='1.0' encoding='UTF-8'?>\n"
 "<Plain_Text_Domain>\n"
 "<encryptor>\n"
 "<encryptor_address>AAA.BBB.CCC.DDD</encryptor_address>\n"
 "<encryptor_mask>host or network</encryptor_mask>\n"
 "<encryptor_ttl>in seconds</encryptor_ttl>\n"
 "<database>\n"
 "<address>\n"
 "<ip>AAA.BBB.CCC.DDD</ip>\n"
 "<mask>host or network</mask>\n"
 "<type>host/router/server</type>\n"
 "<action> insert/delete/enable/disabled</action>\n"
 "<status> startup/ringing/idle/crashed/active</status>\n"
 "</address>\n"
 "</database>\n"
 "<POC>\n"
 "<name>ISSO</name>\n"
 "<phone>telephone number</phone>\n"
 "</POC>\n"
 "<SA>\n"
 "<key>123456789</key>\n"
 "<mode>tactical/strategic</mode>\n"
 "</SA>\n"
 "</encryptor>\n"
 "<checksum>SHA</checksum>\n"
 "</Plain_Text_Domain>\n"

Fig. 3 − SUBSCRIBE message format and content

13.4 NOTIFY PTD Database Exchange

Figure 4 details the content of a typical PTD PIDF document. Table 1 defines the PTD PIDF
document XML field names. This information may be contained in any or all of the PUBLISH,
SUBCRIBE, or NOTIFY messages. Specifically, the first PUBLISH message sent by the encryptor will
contain the encryptor’s PTD database. The PS will use the NOTIFY message with an attached PEP PIDF

10 Christopher Robson

document to inform both a subscribing and subscribed PUA about the PTD database information
pertaining to the subscription request. The NOTIFY “Request-Line” field contains the target end
system’s IP address and is used to match an end system IP to a PS PTD encryptor database element. The
“To” field contains either the subscribing or subscribed encryptor IP address. The “From” and “Contact”
fields will contain the PS IP address.

Fig. 4 − NOTIFY PTD PIDF XML fields

Request-Line: NOTIFY sip:[target end system IP address]@[PTD] SIP/2.0
 Method: NOTIFY
 [Resent Packet: False]
 Message Header
 Via: SIP/2.0/TCP [PS IP address]:5060;branch=[value]
 From: <sip:[PS IP address]@[PTD]>;tag=[value];epid=[value]
 To: <sip:[subscribing or subscribed PUA IP address]@[PTD]>
 Max-Forwards: 10
 CSeq: 5 NOTIFY
 User-Agent: EncryptorDiscovery/v1.0
 Call-ID: [value]
 Expires: 1200
 Accept: application/pidf+xml, application/xpidf+xml
 Event: presence
 Contact: <sip:[PS IP address]@[PTD]:5060;transport=tcp>;methods="MESSAGE, SUBSCRIBE, NOTIFY"
 Content-Length: 0

Message body
 eXtensible Markup Language
 "<?xml version='1.0' encoding='UTF-8'?>\n"
 "<Plain_Text_Domain>\n"
 "<encryptor>\n"
 "<encryptor_address>AAA.BBB.CCC.DDD</encryptor_address>\n"
 "<encryptor_mask>host or network</encryptor_mask>\n"
 "<encryptor_ttl>in seconds</encryptor_ttl>\n"
 "<database>\n"
 "<address>\n"
 "<ip>AAA.BBB.CCC.DDD</ip>\n"
 "<mask>host or network</mask>\n"
 "<type>host/router/server</type>\n"
 "<action> insert/delete/enable/disabled</action>\n"
 "<status> startup/ringing/idle/crashed/active</status>\n"
 "</address>\n"
 "</database>\n"
 "<POC>\n"
 "<name>ISSO</name>\n"
 "<phone>telephone number</phone>\n"
 "</POC>\n"
 "<SA>\n"
 "<key>123456789</key>\n"
 "<mode>tactical/strategic</mode>\n"
 "</SA>\n"
 "</encryptor>\n"
 "<checksum>SHA</checksum>\n"
 "</Plain_Text_Domain>\n"

 SIP NED Plain Text Domain Discovery Service 11

Table 1 − PTD PIDF XML Field Names

Field Entry Required/Optional Definition
Plain_Text_Domain Required PTD common name
Encryptor Required Encryptor IP address
Ttl Required Time-to-live in seconds
Database Required PTD database section
Address Required PTD device IP address
Mask Required PTD device IP mask
Type Required PTD device type
Action Optional Default: enable
Status Optional Device state information
POC Optional ISSO Point-of-contact section
Name Optional ISSO name
phone Optional ISSO Phone number
SA Optional SA section
Key Optional SA public key
Mode Optional Tactical = hop-by-hop or

Strategic = host-by-host
Checksum Required Secure Hash Algorithm

14. SIP OVERCOMES SINGLE POINTS OF FAILURE

Through the use of the SIP proxy server, single points of failure can be avoided because the UAS can
forward requests to other UASs until it hits its destination. If it is a re-direct server, then it returns the
direct address of a target encryption device UAC. Another method to overcome single points of failure,
and the preferred method used by this design specification, is the SIP P2P implementation using
Distributed Hash Table (DHT) architecture. (Note: the initial proof-of-concept prototype will not include
a P2P configuration.)

15. SIP ENCRYPTION DEVICE PTD DISCOVERY SERVICE

Typical encryption device specifications state PTD discovery services. For example, the following is
an extraction from an encryption device requirements specification:

a. The Generic Discovery Client Extension will describe the requirements on an encryptor to

support Peer Discovery independently of the server specific approach. The protocols used by the
Generic Discovery Client allow the encryptor to request and provide information about the
reachability of PTD networks. The functionalities should work regardless of the network
architecture and independent of whether a Multicast or Client/Server discovery mechanism is
being used.

All the benefits associated with the SIP security architecture can be exploited by the SIP Encryption

Device PTD Discovery Service. As just one example, DoS attacks can be avoided through coupling of
SIP P2P with peering UASs and further exploiting protected channels such as IPSec or Secure Socket
Layer Virtual Private Network (SSL VPN) services. SIP Certificate Authentication can provide first level
attack protection. Further, existing IP security (IPSec) and SSL VPN architectures can easily be
integrated into this SIP Encryption Device PTD Discovery design to provide additional security.

12 Christopher Robson

16. SIP ENCRYPTOR PTD DISCOVERY CONCEPT OF OPERATION (CONOP)

The following encryption device specification extractions are used to scope the CONOP for this
design.

a. In a Client/Server architecture, the encryption device would be configured with a list of Plain
Text (PT) and Cypher Text (CT) addresses of Servers to which it will register its prefixes. The
encryption device would send a Registration Message containing a list of the Prefixes the
encryptor has in its Local Enclave Prefix Table to all of the servers in the list. This Registration
will also contain the lifetime that the encryptor anticipates the prefixes will be valid. If any
changes occur to the Local Enclave Prefix Table (e.g., removing or adding a prefix) a new
Registration Message would be sent. The encryptor would send Registration messages (to the
Servers it is configured with) until receiving an Acknowledgment message.

b. The encryption device will also be configured with the PT and CT address of the Server(s) to
which it will send Queries. (Note: this will often be the server it sends Registration information
to, but it does not necessarily have to be the same.) These Queries contain the PT addresses or
prefixes that the encryptor is attempting to reach.

When an encryption device is first activated within a network, like other SIP aware devices, it acts as

a SIP User Agent Client (UAC) programmed to begin establishing an association with a SIP User Agent
Server (UAS). In other words, the encryptor will “register” its URI with the network UAS. In so doing,
it will inform other encryptors of its presence through the UAS. Querying encryptors will discover other
encryption devices through the use of the SIP INVITE SDP message or PEP PIDF messages to either the
UAS or UAC in the case of a P2P association.

17. ENCRYPTION DEVICE REGISTRATION REGISTER CONOPS

The encryptor uses its IP as its current location and registers the IP with the server in the form
name@IP. This information is stored by the server (or in the case of P2P the target peer) and later
recalled when another encryptor needs to establish a SA with this registering encryptor. This REGISTER
information is also used to initialize the Plain Text Domain reachability database, which will be populated
by either the sourcing encryptor’s INVITE SDP information or REGISTER Path field information.
Furthermore, this REGISTER dialogue will help with mobile encryption devices. Say there is to be a
tactical deployment of an encryptor. After the encryptor is deployed and first turned on, it will register
with a preselected UAS using its tactical IP. The INVITE “Expire” field reflects the duration for which
this registration will be valid. So, as long as the encryptor is deployed at its current location, it will
refresh its registration from time to time. When the encryptor moves from its current location to a new IP
domain, it will re-register with the UAS, thus updating its location information. Figure 5 illustrates this
registration process.

 SIP NED Plain Text Domain Discovery Service 13

Fig. 5 − SIP registration

18. PLAIN TEXT DOMAIN UAC TO UAS INVITE WITH SDP CONOP

After an encryptor (the UAC) registers with the UAS, it will initiate an INVITE message dialogue
with the UAS (or P2P UAC) containing PTD information data. The UAC will construct the INVITE SDP
message with its PTD Reachability information. The UAS will extract the PTD information from the
INVITE SDP message, inserting or update the data into the UAS PTD Reachability database. As with
typical SIP INVITE SDP dialogue sequences, the UAS (or P2P UAC) will respond to the initial UAC
INVITE with a 180 - Ringing message to indicate the received message is in process. Once the PTD
information has been successfully updated within the UAS PTD database, the UAS will send a 200 - OK
response message, thus informing the UAC that it is ready to forward SA information associated to the
UAC. Figure 6 shows the message exchange process.

Fig. 6 − Encryptor INVITE UAC to UAS SDP dialogue

14 Christopher Robson

19. PLAIN TEXT DOMAIN UAS TO UAC INVITE WITH SDP CONOP

When a front ending encryptor receives a request from the encryptor’s PTD client for a network or
host SA, it will generate a SIP INVITE message to the UAS using the network or host IP of the PTD
client as the SIP “To” information. Using the SIP “To” name@IP information, the UAS will query its
database, and if a matching PTD network or host is found, it will build a INVITE SDP message with a
single “c=[network/mask or host/mask]” entry with the target encryptor’s PTD information found in the
UAS PTD database. Then the UAS will query the PTD database using the requester’s INVITE “Contact”
field information for a matching PTD Reachability entry for the sourcing encryptor. The UAS then builds
an INVITE SDP message to be sent to the target encryptor, populating a single SDP “c=[network/mask or
host/mask]” entry with the sourcing encryptor’s PTD Reachability information. Prior to querying its data
base, the UAS will respond to the requesting encryptor with a 180 - Ringing SIP message. Then after the
two INVITE messages, one for the requesting encryptor and one for the target encryptor, are successfully
generated, the UAS forwards these INVITE SDP messages to each encryptor as illustrated by Fig. 7.

If at any time the UAS cannot successfully generate and forward these INVITE SDP messages, the

UAS will forward an SDP 5XX server failure message to the requesting encryptor terminating the SA
sequence.

Fig. 7 − UAS INVITE SDP message traffic

20. PLAIN TEXT DOMAIN UAC RECEIVED INVITE WITH SINGLE SDP ENTRY CONOP

When an encryptor receives an UAS INVITE message with a single SDP entry and it is not in a P2P
relationship with the sourcing UAS, it will use the SDP “c=[network/mask or host/mask]” field to
establish a SA with the encryptor whose location is specified in the INVITE SDP “Contact” field. If the
encryptor is a P2P peer to the sourcing UAS, then this information will be used to update the local PTD
Reachability database and used as SDP information to establish a SA with the peer.

 SIP NED Plain Text Domain Discovery Service 15

21. PLAIN TEXT DOMAIN PEP PIDF (PUBLISH, SUBSCRIBE, AND NOTIFY) CONOP

The PEP PIDF message is considered the preferred method for exchanging PTD database
information. This method begins after the encryptor has registered with the UAS (PS). Acting as a PUA,
the encryptor will construct a PUBLISH message containing a PEP PIDF document populated with
encryptor’s PTD database and forward the PUBLISH PEP PIDF document to the PS (see Fig. 8).

Fig. 8 − PUBLISH PEP PIDF message PTD database update traffic

This PIDF document contains PTD information in the format previously defined. The PIDF also

includes a time-to-live (ttl) field that is used to assure that the PTD information is current. The ttl field is
GMT stamped at the time the PEP PIDF message is first forwarded to the PS (or peering P2P UAC). The
ttl field is used as part of a PTD heartbeat message. This heartbeat message may or may not coincide
with normal SIP SUBSCRIBE expiration subscription messages. The ttl expiration value is set according
to ISSO policy, therefore, the ttl is an arbitrary value based on the PTD security policy. After the
encryptor is acknowledged for the PUBLISH PEP PIDF message, it can begin issuing SUBSCRIBE
messages for any target end system. The SUBSCRIBE message is used by the subscribing encyrptor to
request from the PS the IP address of the encryptor that is protecting the target end system. In response to
the subscription message, the PS will issue NOTIFY messages to the subscribing encryptor containing
PTD database information pertaining to the target end system. The PS will learn the target end system’s
fronting encryptor IP address by comparing the end system IP address extracted from the SUBSCRIBE
“Request-Line” with the PS PTD database. The PS extracts from the PTD database the associated PTD
information that matches the end system’s IP address and inserts this information into a NOTIFY
message’s PEP PIDF document. The PS then forwards the message to the subscribing encyrptor. The
subscribing encryptor learns the target end system’s encryptor IP address by searching for
“PTD_IP_address” entries in the received NOTIFY PIDF document. Once a match is found, it extracts
from the PIDF document the corresponding encyptor IP address. It then uses this IP address to establish
the security association between PTDs. The PS will also forward the same NOTIFY message to the
subscribed encryptor. The subscribed encryptor will also look for and extract the subscribing encryptor’s
IP address. When a match is found, it will establish a security association with the subscribing encryptor.
At this point, protected traffic between PTD end systems can be conducted. This process is illustrated in
Fig. 9.

16 Christopher Robson

Fig. 9 − PUBLISH PEP PIDF message traffic flow

22. SIP MESSAGE PLAIN TEXT DOMAIN PEP PIDF CONOP

The SIP MESSAGE PEP PIDF message is considered the preferred method for low bandwidth PTD
database information traffic exchanges. This method does not require an encryptor to register with the
UAS (PS). Used for tactical traffic, MESSAGE traffic is secure using other methods such as encrypted
Virtual Private Network overlays, typically using IPSec “tactical” tunnels. Acting as a PUA, the
encryptor will construct a MESSAGE packet containing a PEP PIDF document populated with the
encryptor’s PTD database and forward the MESSAGE PEP PIDF document to a peering PUA (see Fig.
10).

23. PLAIN TEXT DOMAIN REACHABILITY TRAFFIC FLOW CONOP

Traffic flow from a PTD client to another PTD client consists of the sourcing client traffic first
triggering an SA between PTD fronting encryptors as detailed in the paragraphs above that outline the
INVITE CONOP message traffic flow. Once the fronting encryptors have established peering Security
Associations, the PTD clients can begin exchanging traffic as illustrated in Fig. 11.

 SIP NED Plain Text Domain Discovery Service 17

Fig. 10 − MESSAGE PEP PIDF message traffic flow

Fig. 11 − UAC traffic flow sequence

24. PROTOTYPE ARCHITECTURE OF THIS SIP PTD DISCOVERY SERVICE

To validate this architecture, a prototype demonstration configuration will be implemented. This
prototype will use existing Global Information Grid Evaluation Facilities (GIG-EF) Routing over Quality
of Service Infrastructure (RoQI) Linux Open Source Routers (RoQILOSR) as network components and
RoQI test hosts as PTD clients. To simulate SIP PTD Discovery Service encryption devices, an
additional RoQILOSR, called the Open Source Linux Simulated Encryptor (OSLSE), will be inserted

18 Christopher Robson

between the RoQILOSR Customer-Edge (CE) router and the RoQILOSR Provider-Edge (PE) router, as
illustrated in Fig. 12. An OpenSER (Open SIP Express Router running a Fedora Core 6 Operating
System) server will be implemented as the SIP Server PTD Reachability Database. With these
components, it is envisioned the prototype architecture will successfully exchange PTD control and data
traffic. To simulate the encrypted SA path, the OSLSE will exploit IPSec network-to-network protocol to
simulate protected PTD enclave interconnected paths to prove the feasibility of the SIP PTD Discovery
Service.

Fig. 12 − SIP PTD Discovery Service GIG-EF RoQILOSR prototype architecture

25. SIP PTD DISCOVERY SERVICE PROTOTYPE ARCHITECTURE SIMULATED
ENCRYPTOR

The system architecture components of the simulated encryptor just discussed include Fedora Core 6
(FC6) as the Operating System, QUAGGA as the IP routing stack, and the FC6 implementation of IPSec
as the encryption engine. To prototype the SIP UAC component, the Sofia-SIP2 stack will be exploited.
Figure 13 illustrates the various components and how these components relate.

2 Sofia-SIP is an open-source SIP User-Agent library, compliant with the IETF RFC3261 specification.

 SIP NED Plain Text Domain Discovery Service 19

Fig. 13 − Prototype SIP PTD architecture simulated encryption device

26. SIP PTD DISCOVERY SERVICE PROTOTYPE ARCHITECTURE OPENSER
CONFIGURATION

The architecture components of the OpenSER PTD Database just discussed include Fedora Core 6 as
the OS, QUAGGA as the IP routing stack, and Open SIP Express Router (OpenSER). To prototype the
SIP UAS database component, a modification of the OpenSER MySQL database will be exploited.
Figure 14 illustrates the various components and how these components relate.

Fig. 14 − Prototype SIP PTD reachability database architecture

20 Christopher Robson

27. IPSEC PROTECTED CONTROL CHANNEL

To demonstrate a possible solution for protecting the SIP Control Plane control channels, an out-of-
band IPSec control channel will be deployed within this prototype. It should be noted that out-of-band
within this specification does not necessarily mean a completely separate physical communication
medium. For example, the protected channel may be either a separate Virtual Local Area Network
(VLAN) or MultiProtocol Label Switching (MPLS) Label Switched Path. For this specification, out-of-
band will refer to a channel that does not carry user data traffic. This control channel will be
implemented as a host-to-host single hop channel. Specifically, it will be a configured channel between
peering network components. For example, two peering layer three routers with adjacent interfaces will
communicate over their adjacent interfaces through an IPSec protected channel. Figure 15 illustrates this
implemented configuration. Similar to how existing FASTLANE network management is implemented,
the SIP Control Plane Discovery Service will be installed behind a protecting encryption device.
Therefore, client encryptors will have a statically preconfigured security association to the SIP Control
Plane Discovery Service server’s protecting encryptor.

Fig. 15 − IPSec control channel implementation

28. SIP ENCRYPTION DEVICE PTD DISCOVERY SERVICE WORKING PROTOTYPE

To demonstrate the feasibility of this architecture, an initial working prototype was developed
consisting of two components, an “Initiator” and a “Responder.” The Initiator’s function is to create a
PTD database MESSAGE packet and forward the message to a peering PUA’s Responder. The
Responder is responsible for ingesting the incoming SIP message, extracting the PTD PEP PIDF XML
data from the MESSAGE message body. The Appendix contains the Initiator and Responder code.
Figure 16 is an example of the Responder output of the PTD PEP PIDF XML received from the Initiator.

 SIP NED Plain Text Domain Discovery Service 21

Fig. 16 − PTD PEP PIDF XML Responder output as received from the Initiator

29. CONCLUSION

SIP makes an ideal encryption device PTD discovery solution. Further, using SIP, it becomes a
simple implementation effort. No modification to the SIP standard is required to support any encryption

Incoming SIP Message XML document - From: sip:127.0.0.1:15062
Subject: Plain Text Domain Database Update
Plain Text Domain Database is being updated

<?xml version='1.0' encoding='UTF-8'?>
<Plain_Text_Domain>
<encryptor>
<encryptor_address>10.1.1.1</encryptor_address>
<encryptor_mask>255.255.255.0</encryptor_mask>
<encryptor_ttl>120</encryptor_ttl>
<database>
<address>
<ip>192.168.1.0</ip>
<mask>255.255.255.0</mask>
<type>network</type>
<action>insert</action>
<status>active</status>
</address>
<address>
<ip>192.168.2.1</ip>
<mask>255.255.255.225</mask>
<type>host</type>
<action>insert</action>
<status>active</status>
</address>
<address>
<ip>10.1.1.2</ip>
<mask>255.255.255.255</mask>
<type>router</type>
<action>insert</action>
<status>active</status>
</address>
</database>
<POC>
<name>NRL</name>
<phone>111-111-1111</phone>
</POC>
<SA>
<key>123456789</key>
<mode>tactical</mode>
</SA>
</encryptor>
<checksum>SHA-123456789</checksum>
</Plain_Text_Domain>

Plain Text Domain Database has been updated

22 Christopher Robson

device discovery or to any implementation of the standard. This would further allow IA implementations
to remain viable because of SIP’s modular design that allows for expansion and enhancements while still
supporting existing implementations. Also, by building an integrated UAC to UAS association coupled
with a SIP P2P DHT, IPSec, and SSL VPN architecture, it will be feasible to completely overcome any
single point of failure secure encryption device discovery process.

The working prototype also demonstrated how the Initiator and Responder can be enhanced to
provide a complete IP control plane using the architecture developed in this specification. For example,
the Responder is being modified to reside in servers, clients as well as encryptors, to manage various IP
traffic situations such as Quality-of-Service negotiations, Network Management Systems (NMS) status
information updates, and Advanced Question Answer dialogues, and it is envisioned that key
management can exploit this architecture. These are as just a few possible examples of how this
architecture will help manage IP traffic, particularly in tactical networks.

REFERENCES

1. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and E.
Schooler, SIP: Session Initiation Protocol, RFC 3261, pp. 1-269, June 2002.

2. R. Sparks, The Session Initiation Protocol (SIP) Refer Method, RFC 3515, pp. 1-23, April 2003.

3. A.B. Roach, SIP-Specific Event Notification, RFC 3265, pp. 1-32, June 2002.

BIBLIOGRAPHY

1. M. Handley and V. Jacobson, SDP: Session Description Protocol, RFC 2327, pp. 1-42, April 1998.

2. S. Kent and R. Atkinson, Security Architecture for the Internet Protocol, RFC 2401, pp. 1-66,
November 1998.

3. J. Rosenberg and H. Schulzrinne, An Offer/Answer Model with the Session Description Protocol
(SDP), RFC 3264, pp. 1-25, June 2002.

4. B. Campbell and R. Sparks, Control of Service Context using SIP Request-URI, RFC 3087, pp. 1-39,
April 2001.

5. F. Le Faucheur and W. Lai, Requirements for Support of Differentiated Services-aware MPLS Traffic
Engineering, RFC 3564, pp. 1-22, July 2003.

6. S. Kent and R. Atkinson, Security Architecture for the Internet Protocol, RFC 2401, pp. 1-66,
November 1998.

7. J.-L. Le Roux, J.-P. Vasseur, and J. Boyle, Requirements for Inter-Area MPLS Traffic Engineering,
RFC 4105, pp. 1-22, June 2005.

8. F. Le Faucheur, (ed.), L. Wu, B. Davie, S. Davari, P. Vaananen, R. Krishnan, P. Cheval, and J.
Heinanen, Multi-Protocol Label Switching (MPLS) Support of Differentiated Services, RFC 3270, pp.
1-64, May 2002.

 SIP NED Plain Text Domain Discovery Service 23

9. M. Lasserre and V. Kompella, Virtual Private LAN Service (VPLS) Using Label Distribution
Protocol (LDP) Signaling, RFC 4762, pp. 1-31, January 2007.

10. E.C. Rosen, J. De Clercq, O. Paridaens, and Y. T'Joens, Architecture for the Use of PE-PE IPsec
Tunnels in BGP/MPLS IP VPNs, draft-ietf-l3vpn-ipsec-2547-05.txt, pp. 1-18, August 2005.

11. D. Willis and B. Hoeneisen, Session Initiation Protocol (SIP) Extension Header Field for Registering
Non-Adjacent Contacts, RFC 3327, pp. 1-17, December 2002.

12. H. Sugano, S. Fujimoto, G. Klyne, A. Bateman, W. Carr, and J. Peterson, Presence Information Data
Format (PIDF), RFC 3863, pp. 1-28, August 2004.

13. J. Rosenberg, A Presence Event Package for the Session Initiation Protocol (SIP), RFC 3856, pp. 1-
27, August 2004.

14. J. Peterson, Common Profile for Presence (CPP), RFC 3859, pp. 1-15, August 2004.

15. T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau, Extensible Markup Language
(XML) 1.0 (Fourth Edition), sections 1 through I, September 2006.

16. S. Kent, IP Encapsulating Security Payload (ESP), RFC 4303, pp. 1-44, December 2005.

17. W. Almesberger, Linux Traffic Control – Next Generation, 18 Oct 2002.

18. Sofia-SIP Sourceforge: http://sofia-sip.sourceforge.net.

19. S. Friedl Unixwiz.net Tech Tips: http://www.unixwiz.net/techtips/iguide-ipsec.html, August, 2005.

20. General Dynamics: http://www.gdc4s.com.

25

Appendix
PROTOTYPE CODE

A-1. INITIATOR

/*
 *
 * This application will send a MESSAGE with a PEP PIDF XML document
 * from <sip:localhost:5062> to <sip:localhost:5060>
 */

#include <stdio.h>
#include <sofia-sip/nua.h>

char Plain_Text_Domain[] = {
 "<?xml version='1.0' encoding='UTF-8'?>\n"
 "<Plain_Text_Domain>\n"
 "<encryptor>\n"
 "<encryptor_address>10.1.1.1</encryptor_address>\n"
 "<encryptor_mask>255.255.255.0</encryptor_mask>\n"
 "<encryptor_ttl>120</encryptor_ttl>\n"
 "<database>\n"
 "<address>\n"
 "<ip>192.168.1.0</ip>\n"
 "<mask>255.255.255.0</mask>\n"
 "<type>network</type>\n"
 "<action>insert</action>\n"
 "<status>active</status>\n"
 "</address>\n"
 "<address>\n"
 "<ip>192.168.2.1</ip>\n"
 "<mask>255.255.255.225</mask>\n"
 "<type>host</type>\n"
 "<action>insert</action>\n"
 "<status>active</status>\n"
 "</address>\n"
 "<address>\n"
 "<ip>10.1.1.2</ip>\n"
 "<mask>255.255.255.255</mask>\n"
 "<type>router</type>\n"
 "<action>insert</action>\n"
 "<status>active</status>\n"
 "</address>\n"
 "</database>\n"
 "<POC>\n"
 "<name>NRL</name>\n"
 "<phone>111-111-1111</phone>\n"
 "</POC>\n"
 "<SA>\n"
 "<key>123456789</key>\n"
 "<mode>tactical</mode>\n"
 "</SA>\n"
 "</encryptor>\n"
 "<checksum>SHA-123456789</checksum>\n"
 "</Plain_Text_Domain>\n\0\0"};

void send_message (nua_t *nua);

void event_callback(nua_event_t event,
 int status,
 char const *phrase,
 nua_t *nua,
 nua_magic_t *magic,
 nua_handle_t *nh,
 nua_hmagic_t *hmagic,
 sip_t const *sip,
 tagi_t tags[]);

int
main (int argc, char *argv[])
{
 su_root_t *root;
 nua_t *nua;

 /* Initialize Sofia-SIP library and create event loop */

 su_init ();
 root = su_root_create (NULL);

 /* Create a user agent instance. Caller and callee should bind to different
 * address to avoid conflicts. The stack will call the 'event_callback()'
 * callback when events such as succesful registration to network,
 * an incoming call, etc, occur.
 */
 nua = nua_create(root, /* Event loop */
 event_callback, /* Callback for processing events */
 NULL, /* Additional data to pass to callback */
 NUTAG_URL("sip:127.0.0.1:15062"), /* Address to
bind to */
 TAG_END()); /* Last tag should always finish the sequence */

 send_message (nua);

 /* Run event loop */
 su_root_run (root);

 /* Destroy allocated resources */
 nua_destroy (nua);
 su_root_destroy (root);
 su_deinit ();

 return 0;
}

/* This callback will be called by SIP stack to
 * process incoming events
 */
void event_callback(nua_event_t event,
 int status,
 char const *phrase,
 nua_t *nua,
 nua_magic_t *magic,
 nua_handle_t *nh,
 nua_hmagic_t *hmagic,
 sip_t const *sip,
 tagi_t tags[])
{
 printf("Incoming SIP Message XML acknowledgement - From: %s%s"
URL_PRINT_FORMAT "\n",
 sip->sip_from->a_display ? sip->sip_from->a_display : "",
 sip->sip_from->a_display ? " " : "",
 URL_PRINT_ARGS(sip->sip_from->a_url));

 if (sip->sip_subject) {
 printf("Subject: %s\n", sip->sip_subject->g_value);
 }
 if (sip->sip_payload) {
 fwrite(sip->sip_payload->pl_data, sip->sip_payload->pl_len, 1, stdout);
 fputs("\n", stdout);
 }
}

/* Create a communication handle, send MESSAGE PEP PIDF Plain Text Domain
XML File with it and destroy it */
void send_message (nua_t *nua)
{
 nua_handle_t *handle;
 int PTD_len = 0;

 handle = nua_handle(nua,
 NULL,
 SIPTAG_TO_STR("sip:127.0.0.1:15060"),
 TAG_END());

 PTD_len = sizeof(Plain_Text_Domain) - 1;

 nua_message(handle,
 SIPTAG_SUBJECT_STR("Plain Text Domain Database Update"),
 SIPTAG_CONTENT_TYPE_STR("text/plain"),
 SIPTAG_PAYLOAD_STR(Plain_Text_Domain),
 TAG_END());

 nua_handle_destroy (handle);
}

26 Christopher Robson

A-2. RESPONDER

/*
 *
 * This application will receive a MESSAGE PEP PIDF XML document
 * from <sip:localhost:5062> to <sip:localhost:5060>
 */

#include <stdio.h>
#include <sofia-sip/nua.h>

void event_callback(nua_event_t event,
 int status,
 char const *phrase,
 nua_t *nua,
 nua_magic_t *magic,
 nua_handle_t *nh,
 nua_hmagic_t *hmagic,
 sip_t const *sip,
 tagi_t tags[]);

void send_message (nua_t *nua);
int UpdatePTDMySQLDatabase (sip_t const *sip);
int PTD_status;

int
main (int argc, char *argv[])
{
 su_root_t *root;
 nua_t *nua;

 /* Initialize Sofia-SIP library and create event loop */

 su_init ();
 root = su_root_create (NULL);

 /* Create a user agent instance. Caller and callee should bind to different
 * address to avoid conflicts. The stack will call the 'event_callback()'
 * callback when events such as succesful registration to network,
 * an incoming call, etc, occur.
 */
 nua = nua_create(root, /* Event loop */
 event_callback, /* Callback for processing events */
 NULL, /* Additional data to pass to callback */
 NUTAG_URL("sip:127.0.0.1:15060"),
 TAG_END()); /* Last tag should always finish the sequence */

 /* Run event loop */
 su_root_run (root);

 /* Destroy allocated resources */
 nua_destroy (nua);
 su_root_destroy (root);
 su_deinit ();

 return 0;
}

/* This callback will be called by SIP stack to
 * process incoming events
 */
void event_callback(nua_event_t event,
 int status,
 char const *phrase,
 nua_t *nua,
 nua_magic_t *magic,
 nua_handle_t *nh,
 nua_hmagic_t *hmagic,
 sip_t const *sip,
 tagi_t tags[])
{
 printf("Incoming SIP Message XML document - From: %s%s"
URL_PRINT_FORMAT "\n",
 sip->sip_from->a_display ? sip->sip_from->a_display : "",
 sip->sip_from->a_display ? " " : "",
 URL_PRINT_ARGS(sip->sip_from->a_url));

 if (sip->sip_subject) {
 printf("Subject: %s\n", sip->sip_subject->g_value);
 }

// if (sip->sip_payload) {
// fwrite(sip->sip_payload->pl_data, sip->sip_payload->pl_len, 1, stdout);
// fputs("\n", stdout);
// }

 /*---
 * Extract the PTD information and update the
 * Plain Text Domain Database with the new IP info
 * which associates an Encryptor to red side
 * systems, network devices, etc.
 --/
 PTD_status = UpdatePTDMySQLDatabase (sip);

 /*--
 * Tell device PTD PEP PIDF database update received
 * and the local PTD MySQL databsse has been updated
 ---/
 send_message (nua);
}

/* Create a communication handle, send MESSAGE PEP PIDF Plain Text Domain
XML File with it and destroy it */
void send_message (nua_t *nua)
{
 nua_handle_t *handle;
 int PTD_len = 0;

 handle = nua_handle(nua,
 NULL,
 SIPTAG_TO_STR("sip:127.0.0.1:15062"),
 TAG_END());

 nua_message(handle,
 SIPTAG_SUBJECT_STR("Plain Text Domain Database Update Received"),
 SIPTAG_CONTENT_TYPE_STR("text/plain"),
 SIPTAG_PAYLOAD_STR("Plain Text Domain Database update
completed\n"),
 TAG_END());

 nua_handle_destroy (handle);
}

/*---
* Update the Plain Text Domain Database
--/
int UpdatePTDMySQLDatabase (sip_t const *sip)
{
 printf("Plain Text Domain Database is being updated\n\n");
 if (sip->sip_payload) {
 fwrite(sip->sip_payload->pl_data, sip->sip_payload->pl_len, 1, stdout);
 fputs("\n", stdout);
 }
 printf("Plain Text Domain Database has been updated\n\n");
}

