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Introduction

Small sample test has gained increasing interest to researchers in the thin film area
for their change of mechanical behaviors in the micron or nano-scale tests. Unlike
regular tensile test, due to its miniature size small sample test usually requires a special
test apparatus. Haque et al [1] performed the micro-tensile tests inside the SEM chamber
on the 200nm thick, 23.5um wide and 185um long sputter deposited aluminum samples
The load was applied by a piezo-actuator and strain measurement was done by measuring
the amount of strain of the force sensor beam which directly connected to the aluminum
specimen. Greek et al [2] tested the polysilicon films with different thickness of 10 pm
and 2 pm thick, 10 pm wide and 1000um long under the SEM. The load was applied and
measured by the piezoelectric actuator and load sensor. Ruud and Josell [3] tested the Cu,
Ag and Ni thin films of 1 cm long, 3.3 um wide and 1.9-2.6pum thick in gauge area with
the motor driven micrometer and load cell. Several other thin film tests were done on the
different test apparatus [4-6]. These thin film researchers gave us many insights of
material properties under the micron- scales and some interesting phenomenon were
uncovered. The mechanical properties of the thin films usually differ from the bulk
materials [1,2,6,10]. Yield strength of 33 times compared to the bulk material in the thin
film aluminum was reported by Haque et al[1] and yield strength one tenth of the bulk
value was found in the polysilicon thin film by Greek et al [2]. These deviations in
mechanical properties from the bulk materials were believed to be caused by one or more

of the following factors:



-thin film texture effect:
Strong texture was usually built when the thin film was deposited on the substrate and

the orientation of the texture often time affected the measured strength value [4,10].

-grain size effect:

The grain size of the thin film usually can’t exceed film’s thickness and thus it’s very
dependant on the thickness of the film. d* related Hall-Petch effect was well followed
down to a certain range of the grain size[14-16]. However, the Hall-petch relation can’t
hold when the grain size reaches very small scale in nano-scaled thin films, the

breakdown of the Hall-Petch effect were reported by several researchers [9-12].

-intrinsic stress
The deposited thin films often exhibit high intrinsic stress [13] and by which affected

the strength value of the thin films.

-dislocation impingement of the thin film surface.
The surface of the film is considered obstacle for the advancing of the dislocations due
to oxidation layer and/or rigid adjacent substrate. The dislocation impinged at the surface

may cause the dislocation pile-ups and further increase the strength of the material.

-surface wrinkle/taut/slack/roughness of the thin film.



Wrinkles/slack/roughness usually found in the thin films, especially the free standing
samples may be caused by inappropriate gripping and sometimes could impose errors in

strain measurement [2, 3, 4].

Strengthening/softening of the materials in micron-level thin film tests is governed by
more than one of the above mechanisms and hence it is not easy to determine the
magnitude of the individual mechanism which attributed to the total change of the
property of the micron-scale material. In this study we studied a new approach to
investigate the micron-level material properties; Tensile test of micron-level small
samples by using in-situ computer controlled test apparatus. Micron-scale small tensile
samples were directly machined from the bulk material and hence we can rule out
-grain size effect that is inherent in deposited thin films

All the samples were from the same bulk so no change in grain sizes
-pre-formed texture

no texture was developed in the polycrystalline bulk material
-intrinsic stress

Little or no residual stress was built during the machining of the small samples.
-surface wrinkle/taut/slack

No bending/wrinkle/slack was found on the small samples prior to the test.

so that we can focus on the remaining strengthening/softening factors such as dislocation

strengthening, surface strength and grain boundary effects.



Experiment

A 0.1mm thick Ti-1100 sheet was used in annealed condition as the base material for all
the tensile samples that were tested in this study. The chemical composition of the Ti

sheet is tabulated in Table 1.

Large sample test

The tensile test was first conducted on a large sample machined from the Ti-1100 sheet
with 15mm long and 3mm wide in gauge section. A 4505 Instron frame was employed
for the test and the strain rate was set at 0.5Smm/min. Fig 1 shows a comparison between
tested sample and untested sample and their stress-strain curve of the test is shown in Fig
2. The stress at failure of the large sample was measured by dividing the load before
failure by the final cross-section area of the sample. The original sample failed at an
overall strain of 0.1 represented by the dotted line in Fig 2. This is not the true strain at
fracture. True strain at fracture was measured within the non-uniform strained region in
the necked area. An extrapolation of the stress-strain was made which connected the
original stress-strain curve to the fracture point. Some strain softening was seen in the
extrapolation. The tensile strength of the large sample is around 1000MPa and the tensile

elongation (engineering strain) measured from the gauge section is about 9.3%.

Small sample preparation
Compared to the tensile test conducted on the large sample, several small samples were

made for the micro-scale tensile test. The small samples were prepared by cutting a 30



mm X 10 mm x 0.lmm rectangular piece from the Ti-1100 sheet and machined by
abrasive micro-saw to create a multi-finger dumbbell configuration piece with three
0.150 mm x S mm x 0.lmm fingers in the middle and two 0.5 mm x 5 mm x 0.lmm
supportive arms on each side. A photo of the small sample is shown in Fig 3. The
supportive arms serve as a safety mechanism to protect the flimsy test fingers while
samples are transported. The supportive arms would be cut open before starting the
tensile test. To create a test gauge section, a combination of chemical etching method and
Focused lon Beam (FIB) etching was used. HF solution (10ml HF, 90ml ethyl alcohol)
was used to locally etch the fingers of the machined samples to reduce the width down to
100um. A subsequent sanding on the fingers would further bring down the thickness of
the fingers from 100um to around 30um. Mechanical polishing on the top and bottom
surfaces of the fingers would later be performed by using the 6um colloidal silica.
Although the top and bottom faces of the fingers could be mechanical polished, the
vertical edges between the fingers still remained rough after previous mechanical
machining and chemical etching, and might cause crack initiation or force concentration
which could seriously affect the test results. To resolve this problem, as shown in Fig 4a,
a 100 um x 30 pm rectangular block on each side of the fingers were removed by focused
ion beam(FIB) using the QUANTA 3D SEM . Four square grids were also etched on the
surface of the finger to measure the strain during the pulling of test sample. As can be
seen in Fig 4b, the FIB trimmed edge is clean and smooth compared to the untrimmed
area, which allows measurement of test cross-section and to perform a more accurate

micro-tensile test.



Mechanical system

A tensile test apparatus was specially designed to test the small samples. The design of
this equipment was made by a fellow graduate student, Bilal Mansoor. Fig 5 shows the
apparatus used for the micro tensile test. A computer controlled open-loop New Scale
Technology Squiggle linear actuator (H) was used to apply constant crosshead speed to
the loading section (G) of the test apparatus, and the load was transmitted through the
slide stage (E) and mobile crosshead (B) to the small sample(C). The loads registered on
the small sample were sensed by a Futek Slbs load cell (D). The voltage output from load
cell was originally calibrated and then recorded by a computer via a DAQ board and later
translated back to the corresponding load values. The whole sets of the micro tensile
apparatus were vacuum proved so that it can be set up inside the SEM chamber, which

allowed the test process to be monitored by the SEM.

Tensile tests

Two preliminary tensile tests were conducted on one four-finger sample (sample 1) and
one three-finger small sample (sample 2) outside the SEM chamber. Fig 6 showed the
SEM picture of sample 1 before and after the test. The load-time value of the test is
shown in Fig 7. The supportive arms of the small samples were cut open with a diamond
saw before loading onto the test apparatus. The crosshead speed of the test apparatus was
controlled by the open loop Squiggle linear actuator with resolution of 1um/s. Load cell
was calibrated before each test and load-time data was stored in the computer for the later

use.



The samples were pulled all the way to failure with crosshead speed of 4um/s. SEM
photos of the before/after tests were taken on the samples for the strain measurement.

Another In-situ tensile test was conducted on a three-finger small sample (sample 3)
inside the Quanta 200 3D FIB/SEM chamber, the test fingers of the sample was shown in
Fig 8. The test was sectioned into 5 steps and the load-time values of each step was
recorded and showed in Fig 9. The actuator stopped at the end of each step and a SEM
photo was taken on the fingers before the next step begins. The initial crosshead speed
was lum/s.In step 2 the actuator was reversed till the load dropped to zero and a higher
crosshead speed of 4um/s was applied. In step 5 the actuator was reversed again. The
load dropped to 0.4N before a higher crosshead speed of 11um/s was applied. The SEM

photos taken at the end of each step were compared in Fig 10.

Test result and discussion

In the Fig 6 (b), we could see that after sample failed, three fingers (finger A,B,C) were
further away from their counter parts than the fourth finger(finger D) which indicated that
three fingers failed before the fourth one. The two load peaks on the load-time curve
shown in Fig 7 also suggested the two-steps failure of the sample. Based on these
investigations, we can assume that three fingers (finger A, B, C) broke at the first peak
(peak 1) and followed by the breaking of finger D at the second peak (peak2). Before the
first breaking (peakl), all four fingers were sharing the load. The final cross-sections of
each finger were measure by the SEM photo taken at the fracture surface as shown in Fig

11. The stress at peakl was calculated by dividing the load (9.4N) by the final cross-



sections of all four fingers (8601um®) and the strain was calculated by the following

equation:
Ao
€= In( Af )

where Ay is the original cross-section and Aris the final cross-section of the fingers.

The stress-strain value acquired from peakl of the sample 1 was represented by point | in
Fig 12. The stress-strain values before each failure happened on the sample 2 were also
measure by the same method and were represented by point 2, 3 and 4 in Fig 12. The
stress-strain curve of the large sample was also put into the figure as a base plot. For the
In-situ test done on sample 3, not only the stress-strain value before failure could be
measured from the post-test SEM photos, but the stress-strain values in each step of the
test could also be determined by the In-situ observation. However, by observing the grids
on the test fingers of sample 3 as shown in Fig 10, no strain was found till the sample was
pulled to step 5; the load went up to 7.8N and by the in-situ SEM observation, two
fingers (I and II) failed right after the load reaching that peak. Stress-strain value at the
peak of step5S was measured and represented by point 5 in Fig 12. The dotted lines in Fig
12 showed the extrapolation of the stress-strain curve of the small samples and point 6 is
the stress-strain value of the large sample right before the failure. Compared to the large
sample test, extensive strain-hardening was found in the small sample tests. Table 2 listed
the corresponding” average load-carrying areas “of each stress-strain points in Fig 12.
The “average load carrying areas” was defined to be the average cross-section areas of
the fingers which carried the load of the sample. It is found that with larger load carrying
areas in the test sample such as point 6, the stress it carried is smaller than the load

carried by the samples with smaller load carrying areas. The stress- area relationship in



between individual small samples was still undetermined. However, it is safe to say that
much higher stress was carried by the small samples comparing to the large sample. This
finding agrees with the test results of several previous researchers [1, 6, and 10], by
which they found tensile tests done on the aluminum thin films showed a higher stress
value than the bulk material. This may be explained by the increase in surface areas of
the small samples. The surface area is served as a barrier for the advancing of the
dislocations. As the samples become smaller, the fraction of surface area to total volume
becomes larger and the strain hardening by the dislocation pile-ups on the surface
becomes more and more prominent such that much higher stress values could be found in
small samples than the large sample. However, this hardening effect weren’t followed
well in between small samples. Some comparatively larger small samples (larger average
load carrying areas) have higher stress value and some smaller small samples (smaller
average load carrying areas) have lower stress value as can be seen on the Fig 12 and
Table 2. The hardening effect caused by the dislocation pile-ups at the surface could only
give us an overall trend of the micron-level property change of the material. Some other

deformation mechanisms of the micron-level material could exist and need to be studied.

Conclusions

Small samples around 100 pm wide, 30um thick and 100 pm were successfully made
from bulk material by series of cutting, chemical etching and focused ion beam trimming.
In-situ tensile test was conducted inside the SEM chamber and higher flow stresses of the

small samples were witnessed.



-Micron-level small samples can be machined from the bulk materials via precise
machining and chemical etching.

- In-situ tensile test of the small samples can be conducted under SEM with the special
designed test apparatus.

-Surface roughness of the small samples can be removed by the FIB machining and the
test errors can be minimized.

-Higher flow stresses and strain hardening rate of the small samples compared with the

large samples were observed. The fact that the rate of strain hardening increased indicates

that the results are not due to FIB machining but increasing interaction of slip with the
specimen surface.

-The strengthening of the small samples may be caused by the increasing in fraction of
surface area to total volume, which shows considerable interaction of slip steps with
sample surface.

-More detailed SEM or TEM study is needed to investigate and verify the deformation

mechanism of the micron-level small samples.
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Fig 1. Ti-1100 large tensile samples. The upper one is the untested sample
and the bottom one is the sample pulled at 0.5mm/min. The tensile
elongation of the tested sample is 9.3 %.
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Fig 2. True Stress-Strain curve of the room temperature Ti-1100 sample
pulled with strain rate of 0.5Smm/min.The tensile strength is around

1000MPa.
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Fig 4 a) SEM photo taken from the top of the finger of the small sample.The recesses
on each side of the finger were removed by the focused ion beam and the grids
were also etched by the FIB with depth of S5um 4b) Finger of the small sample 90
degrees from 4a, which showed a clean 100pm long FIB trimmed edge.



Fig 5. The small sample test apparatus. (A)Fixed crosshead (B) Mobile crosshead (C)
small sample (D) Futek Slbs loadcell (E) slide stage (F) Stainless steel frame (G)
Loading flange (H) New Technology squiggle linear actuator.



Fig 6. SEM photos of four-finger small sample before a) and after b) the tensile test
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Fig 7. Load-Time curve of the four-finger sample.

Fig 8. SEM photo of small sample 3 tested inside the SEM chamber.
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Fig 9. Load vs Time curve of the small sample tested inside the SEM
chamber
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Fig 10. SEM photos taken by the end of a) stepl b)step2 c)step3 d)step4 and e) step5
of the small sample tensile test (sample 3) inside the SEM chamber.
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The final cross-section of the finger is wr X t¢
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Fig 12. Extrapolated stress-strain curves of the small samples. The solid line is the
stress-strain curve of the large sample.
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Fig. 13. A schematic and a microphotograph of polycrystalline micro-tensile specimen of
titanium (25 pum x 25 pm) showing slip steps in several grains that eject on to free surfaces, front
surface and side surface, arrows A, B, C; and also penetrate across grain boundary, arrow D.

Contraction in the width direction indicate higher strain near bottom part of photo.



