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Chapter 1

Introduction

1.1 Digital computing

The architecture of modern digital computers was born in government projects of the United

States and Great Britian during the Second World War. There were two analytically in-

tractable problems whose timely solutions were crucial for victory: code-breaking and ballis-

tic aerodynamics. The Department of Communications in Great Britain and the precursor

to the United States National Security Agency were compelled to decipher German naval

communications encrypted on the “unbreakable” Enigma machine. With the guidance of

the computer scientist Alan Turing at Bletchley Park, the world’s first digital calculator,

the Colossus, was constructed first in Britain and subsequently in the United States after

British resources dwindled. It used an optical paper tape reader streaming at sixty miles

per hour and used gas-filled triodes called thyratrons to store bits. Contemporaneously,

the United States War Department, computed extensive ballistic trajectory tables using the

world’s second large-scale digital calculator, the Electronic Numerical Integrator And Com-

puter (ENIAC), that outperformed and obsoleted the hundreds of human “computers” at

the Army’s Ballistic Research Laboratory. It had an unwieldy eighteen thousand vacuum

tubes, another historic milestone launching the information revolution.

To overcome the limitations of the hard-wired and switch-programmed Colossus and

ENIAC computers, a smaller and more programmable digital computer was commissioned

by the US Army’s Ballistic Research Laboratory, called the Electronic Discrete Variable

Automatic Calculator (EDVAC) using mercury acoustic delay memory. Here a single bit of

information was temporarily embodied as an acoustic shock wave traveling down a column

of mercury. The American pioneer of the first general-purpose programmable computer was

John von Neumann, whose instruction-based programmable architecture has remained the

standard up until today in all modern general-purpose computers.

Over a half century later, both decryption and aerodynamics remain analytically in-
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Figure 1.1: Moore’s law: Exponential growth law for integrated circuits, the well-known as Moore’s law,
has remained a steady trend over the years.

1.2 Exponential growth

In 1965 Gordon Moore, the director of the Research and Development Laboratories of

Fairchild Semiconductor, made some astonishingly accurate predictions about the future

of integrated electronics. He predicted the home computer, the palm-top computer, cruise

control for automobiles, the electronic wrist-watch, adaptive phased-array radars, and inte-

grated radio and microwave frequency amplifiers and receivers using gallium arsenide based

integrated circuits for communications [Moore, 1965]–which is the basic technology used for

cell phones today nearly a half century later. He also foresaw silicon oxide as the primary

substrate for integrated circuits. Of all these remarkable predictions, the most famous one

was his observation and prediction of the continued exponential growth in the number of

components per integrated function versus time by plotting five data points obtained over

the years 1959 to 1965.

Figure 1.1 shows the continued manifestation of Moore’s law for the popular models of

central processing units sold over the last three decades by Intel Corporation. This log-linear

plot shows the trend for the number of transistors in a single integrated circuit for the popular

models of the Intel central processing units. The best-fit regression line indicates a doubling

of the transistor count occurring every two years. The latest data point is for the newest

Intel processor architecture, the 64-bit Itanium chip, with 325 million transistors. Although

the data point for the Itanium chip lies far above the best-fit regression line, actually only 25

million of its transistors are dedicated to information processing. The remaining 300 million

of them are dedicated to merely information storage, a large and fast on-chip cache of static

random access memory.

What Moore didn’t realize is that this exponential growth law applied not only to in-

tegrated circuits, but to all types of computing devices in the distant past long before the
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Figure 1.2: General exponential growth law manifested by the shrinking areal bit size spanning a variety
of classical computing device technologies. The gray area is the sub-nanometer regime.

invention of integrated circuits, as shown in Figure 1.2. I believe this exponential growth

law, with a fixed doubling time, will continue to apply long into the far distant future when

integrated circuit technology based on the principles of classical electrical circuit theory will

be obsolete–the historical trend of the exponential growth law for areal bit size has remained

a steady trend over the past fifty years. Figure 1.2 shows the size of a classical bit measured

in square microns on a log-linear plot over the years for a variety of technologies. The best-fit

regression line plotted here as the dashed red line was first determined by our group at the

Air Force Research Laboratory in 1994 by Norman Margolus and this has remained a faithful

prediction over the past nine years. The slope of this line indicates that the areal bit size

halves about every 2.16 years. This corresponds to the feature size of a bit halving every

17.65 months. The shaded gray rectangular region below the nanometer scale represents a

regime where device physics is purely quantum mechanical. The transition point between

the classical regime and this quantum regime occurs in the summer of the year 2021. This is

the time after which any commercial grade high-performance computers cannot be designed

using classical physics, and hence demarcates a quantum barrier.
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Figure 1.3: Circuit diagram for the common NAND gate comprising four complementary metal oxide
transistors (CMOS) and a scanning electron micrograph of a CMOS transistor produced by Intel’s 90-nm
process [Geppert, 2002].
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1.3 Logical gates

All computation is decomposable into a sequence of logical gate operations that either act

on two input bits at a time to produce a single output bit, such as the AND gate which

multiplies the two input bits together to produce its output bit, or act on a single input bit

to produce a single output bit, such as the NOT gate which inverts, or negates, the input bit.

Connecting these two gates together so that the output bit of the AND gate is negated by

the action of a NOT gate, one obtains the universal NAND gate which is the most common

gate used to make most logical functions in chip fabrication today, usually implemented with

four transistors as shown in Figure 1.3.

What is the reason behind Moore’s first law? The answer to this question is quite simple.

Despite the abstract simplicity of logic gates, so far in the history of computing all physical

implementations of these fundamental logical gates have been extremely inefficient ones and

have been realized at very coarse spatial and temporal scales.

In contrast, nature processes information efficiently at very small spatial and temporal

scales characterized by the dynamics and interactions of the fundamental particles. So

far in the history of computing all of our physical implementations of logical gates rely on

governing principles that are deterministic in nature and intuitive using common sense. Such

governing principles are within the realm of classical physics which deals with the behavior

of tangible objects that are extremely large compared to the size of the fundamental particles

in nature. Yet the true governing principles at the very bottom of things are not intuitive

nor commonsensical at all. The true governing principles that describe the behavior and

interactions of the fundamental particles, collectively called quantum mechanics, involves

two exotic characteristics of our universe, entanglement and wave function collapse. To

quote Richard Feynman at a lecture he gave the American Physical Society in 1959, so

long as there is sufficient “room at the bottom,” our inefficient physical implementations of

logical gates can continually be improved upon [Feynman, 1960]. We quantify the rate of

improvement by the time it takes to reduce by a factor of two the size of the fundamental

building blocks of logic gates and logical bits. According to Figure 1.2 this folding time has

remained constant over the history of computing.

1.4 Expensive reduction

The data for the Intel processors plotted in Figure 1.1 is consistent with a total transistor

count doubling approximately every two years. This is a good trend. But there is a flip-

side to Moore’s law, called Moore’s second law, which states that the cost of building new
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foundries continually doubles as well and this is a bad trend. In 1970 it cost Intel under five

million dollars to build a large fabrication facility for integrated circuits. Today, the cost for

the newest generation fabrication facility has exceeded five billion dollars, and these costs

are growing faster than the growth of revenues from the sale of complex semiconductors.

This has pushed the semiconductor industry to fabricate small chips in large quantity, such

as those found in cellular telephones or hand-held computing devices like personal data

assistants.

What is the reason behind Moore’s second law? The answer to this question is more

difficult. Since classical physics is usually a very good approximation of quantum mechanical

physics so long as the spatial, temporal, and energy scales one is dealing with are sufficiently

large compared to the small scales corresponding the individual fundamental particles, it has

been practical to engineer the behavior of fundamental computing devices using the language

of classical physics. This is certainly the case for the earliest types of computing devices,

the abacus, rotary cogs, mechanical relays, electromechanical switches, vacuum tubes, point

contact transistor, and the field-effect transistor. Actually, the field-effect transistor, as

shown in Figure 1.3, the staple in our present-day computing diet, requires at least semi-

classical physics to describe its behavior, that is, a description of processes part way between

classical and quantum mechanical physics. As the size of logic gates approach atomic scales, it

necessarily becomes ever more expensive to implement those gates using engineering practices

based on classical physics.

To use a characteristic New England example, this is very much the same as it would

be more difficult, and hence more expensive, to build a two foot high hand-packed rock

wall at the boundary line of your back yard using individual pebbles than it would be using

large field stones. Just image trying to build the same rock wall using individual grains

of sand instead of pebbles. To be even more absurd, imagine using individual silicon dust

flecks instead of sand grains to build the wall. The same reasoning may apply to building

integrated circuits with ever smaller feature sizes. It remains an open issue whether Moore’s

second law can be overcome by the invention of new quantum mechanical technologies.

1.5 Computer metamorphosis

By looking at historical trends in computing, one is driven to consider the prospect that,

within our lifetime, the technologies driving the information revolution may undergo a radical

metamorphosis and consequently we may face an awesome technological barrier, what I have

called the quantum barrier, where all classical computing technologies saturate and become

incapable of sustaining the information revolution. What is at stake is the economic welfare,
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both nationally and internationally, of the pervasive computer industry. Furthermore, the

stakes could be much higher, at least to the extent that growth in the newly globalized

economies of our world is dependent upon the rapid expansion afforded by the information

revolution and consequent high-technology advancements driven by the continued doubling

of information processing cutting across all manufacturing and service sectors.

1.6 Quantum processes

In this section I give give a description of quantum entanglement and wave function collapse

for the layman.

1.6.1 Entanglement and collapse

Quantum objects can exist in multiple states simultaneously, such as being located at two

or more places in space at the same time. This is called quantum superposition. Observing a

quantum object that is in a superposition of states necessarily causes that object to randomly

jump into only one of those states. This is called wave function collapse and it occurs

stochastically. Quantum mechanics does not predict which state will be selected during

wave function collapse. Instead it predicts with remarkable accuracy the probability with

which any of the possible states are selected. This interpretation of quantum mechanics

is called the Copenhagen interpretation. There are other interpretations, but they are not

needed for our purposes.

Quantum entanglement is a characteristic property of two or more quantum objects,

which occurs when each of them is existing in a superposition of states, and where the quan-

tum objects are strongly correlated in such a way that an observation causing one of the

participating quantum objects to collapse into a particular state causes the other partici-

pating quantum object to simultaneously, and deterministically, collapse into an associated

“correlated” state.

The manipulation of two entangled quantum objects is sufficient to represent all logical

functions that one may need in any computation [Barenco et al., 1995]. Naturally occurring

physical processes may couple these two quantum objects causing them to become entan-

gled. For example, one nucleus inside an atom of some molecule can be be entangled with the

nucleus of another atom within that molecule because the two atoms are chemically bonded

together and intermediary electrons within the molecule become correlated with both nuclei.

This process of quantum entanglement can be controlled experimentally using nuclear mag-

netic resonance spectroscopy, and therefore can serve as the basis of quantum logical gates

[Cory et al., 1998]. There are a myriad of ways to control entanglement and more and more
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quantum computing and quantum information research groups around the world are now

racing toward achieving experimental results in this area.

Just as the output bit of the classical AND gate conditionally depends on the states of the

two input bits, the collapsed state of two previously input quantum objects conditionally

depends on their entanglement. Engineering entanglement is therefore a way to perform

logical gate operations.

I would like to begin with a concrete example using a quantum mechanical system called

a quantum spin system to illustrate the physical properties of quantum entanglement and

wave function collapse. Yet the subject of quantum spin systems is esoteric, so I will first

attempt to explain what this is. As a prerequisite, I will begin by discussing its baby sister

the classical spin system.

1.6.2 Simplest spin system

We shall consider a system of spins that reside on the nodes of a regular lattice. The lattice

is an array of points (which is also referred to as sites or nodes), arranged in a regular

crystallographic fashion, and the lattice appears exactly the same from whichever of the

points the array is viewed. This kind of lattice is called a Bravais lattice. At any particular

moment in time, every spin has two intrinsic properties: it has a spatial location, which

coincides with one of the lattice nodes, and it has an internal orientation. At any particular

node reside either zero, one, or two spins. If a lattice node has no resident spins, it is referred

to as an empty node. And if a node has all its resident spins present, it is called a full node.

In classical spin systems, the spin’s orientation is specified by a vector on the unit sphere.

In the simplest case, the spin vector is either up or down, which may be encoded on a

computer using one bit of information. These internal spin states are called the spin-up

and spin-down states. The particular node where that bit is located on the lattice specifies

the spin’s spatial location. A well known classical spin system is the Ising lattice-gas model

of ferromagnetism (or anti-ferromagnetism). This spin system is the simplest model of a

magnet, where the spin system is constrained to have only one binary spin per node and

each spin is fixed at one node of the lattice. Corresponding to a system with only nearest

neighbor bonds, the computational algorithm that governs the behavior of the spin system

is usually applied using a local stencil that includes the neighbors of a central node. A

bond is defined between two spins and is called ferromagnetic if the spins are aligned or

called anti-ferromagnetic if the spins are anti-aligned. The spin at the central node is flipped

to reduce the total bond energy which is computed using an energy function, called the

Ising Hamiltonian, that counts one unit of energy for each bond. Usually, the microscopic

evolution is based either on on-site-single-spin-flip Glauber dynamics [Glauber, 1963] or two-
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field theory. It is in this sense that an engineered microscopic quantum mechanical system

can numerically solve a particular “macroscopic” partial differential equation.

One can try to model how a physical system, initially in a non-equilibrium configura-

tion, approaches equilibrium–how the system changes over time as it dynamically moves

towards its thermodynamic equilibrium configuration. In kinetic spin models, in addition to

Glauber or Kawasaki dynamics, each spin can move or “hop” from lattice site to lattice site.

For example, it is possible to merge the Ising spin model with a simple lattice gas model

[Frisch et al., 1986], as had been done by Chen et al. in 1989 [Chen et al., 1989], which is

described by macroscopic equations for the long wavelength modes related to the collective

motions of the spins as well as a macroscopic fluidic equation of motion.

Regardless of these particularities, in all spatially discrete models, time remains a con-

tinuous quantity. Yet successive configurations of the system may be sampled at discrete

time intervals. That is, at every time step interval, there exists a particular configuration of

spins. At the next time step interval, there exists a different configuration of spins. Each

configuration at each and every time step is unique and derivable by applying the set of

deterministic rules to the configuration of the previous time step. The deterministic rules

underlying the dynamics of the system are subject to the following four constraints: locality,

conservation, detailed-balance or invertibility, and invariance.

t = 0

t = 1

t = 2

t = 3

t = 4

  1      2      3      4      5      6      7

Figure 1.4: Simple noninteracting spin system on a one-dimensional lattice with seven nodes. The spin-up
hops to the right while the spin-down hops to the left.

As a simple example, let us consider a one-dimensional system where initially at the

zeroth time step a spin-up is located at node 3 and is moving to the right (hopping one

lattice cell length at every time step) and a spin-down is located at node 5 moving to the

left at the same speed, as depicted in Figure 1.4. This simple classical spin system has no

interactions. The spins are seen to pass through each other just after the first time step.

We can add a simple rule to effectively induce an “elastic collision” into the dynamics

of the model, as illustrated in Figure 1.5. The local interaction rule is this: whenever two

11



t = 0

t = 1

t = 2

t = 3

t = 4

  1      2      3      4      5      6      7

Figure 1.5: Simple interacting spin system again with a system of two spins. Initially, the spin-up hops to
the right, then collides with a spin-down that was hopping to the left. As a result of a local spin-exchange
interaction, one can describe the dynamics as possessing a kinetic bounce-back collision where the spins
reverse the direction of their original motion.

spins arrive at the same node, they swap their spin orientations. With the addition of

this interaction rule, the resulting dynamics can be interpreted as a momentum-conserving

elastic collision causing the two “particles” to bounce off of each other at node 4. This second

interpretation implies that a kinematic scattering event can be modeled by local spin-spin

interactions. It is in this sense we think of using spins to encode kinetic particle dynamics.

1.6.3 Quantum spins

Like classical spins, quantum spins also possess two intrinsic properties: a spatial location

and an internal spin orientation. Again, we shall consider quantum spins whose spatial

locations coincide with the nodes of a lattice. Upon measurement we can only observe one

of two internal spin states: spin-up and spin-down-states; they are orthogonal states, even

though the usage of the words “up” and “down” does not connote this fact. Perhaps a better

notation is to think of the spin-up state as physically related to a quantum object rotating

clockwise, whereas the spin-down state represents it rotating counter-clockwise. In any case,

a quantum spin’s internal orientation is specified using two complex numbers, instead of a

single bit sufficient to specify the orientation of a classical spin. These complex numbers are

called amplitudes, and have a magnitude and phase which are both real numbers. The square

of an amplitude’s magnitude is a probability. The magnitude squared of one amplitude gives

the probability that the quantum spin is up and similarly the magnitude squared of the

other amplitude gives the probability that the quantum spin is down. The sum of these two

probabilities equals one.

In a quantum spin system, a spin may simultaneously exist in both its up and down states

at any particular time. This is fundamentally different from the way classical spins behave

since occupancy of the up or down state is mutually exclusive there. Quantum superposition
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is a striking property of quantum spins, yet superposition is quite commonly experienced in

everyday life, although people usually do not link the cause of these experiences to quantum

superposition.

1.6.4 Interference

The best example of this phenomenon is the superposition of light waves, which can be either

constructive or destructive. For example, soap bubbles have color even though the soapy

liquid in the membrane might generally be colorless. The reason is that visible light entering

our eyes from a soap bubble reflects off of the front and back surface of the film membrane.

Depending on the thickness of the film, some wavelengths in the visible spectrum will con-

structively interfere during their superposition while other wavelengths will destructively

interfere. Hence, the bubble will take on the hue of the constructively interfering light.

Diffraction is also commonly seen, for example the diffraction of sun light by water

droplets in the atmosphere following a rainstorm as the drops act like an array of small

prisms collectively causing a large rainbow that beautifully illustrates to the naked eye that

the visible light coming from the sun, which usually looks white, is really a superposition of

red, yellow, green, blue, and violet colored light. Advancing his view that light consisted of

small particles or corpuscles, Sir Isaac Newton, in the mid 1660’s, confirmed the diffraction

effect by splitting a narrow beam of sunlight into its spectral components employing a thin

glass prism and then re-superposed the spectral components back into a white sunlight beam

using a second glass prism.

Furthermore, Newton discovered an amazing interference pattern caused by superposing

a beam of monochromatic light as it reflects off of the top flat surface of a hemisphere while

simultaneously reflecting off of the bottom curved surface to the same hemisphere. The

resulting interference pattern caused by concentric regions of destructive and constructive

superposition are called Newton’s rings.

These few examples help bring the notion of superposition to mind. All these examples,

and many others that could also be mentioned, do not necessarily prove that light is indeed

made of particles, nor that any one photon in a beam of light may actually exist in two or

more states simultaneously. To the contrary, these examples of superposition could involve

different photons in superposition (that is two or more photons simultaneously occupying

the same location in space such as red, yellow, green, blue, and violet photons in a beam

of white light). To prove that a single photon can indeed exist in superposition, one must

leap forward in time from the seventeenth century to the dawn of the twentieth when it first

became possible to perform experiments with weak beams of light made up of a stream of

single photons.
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In 1909 Geoffrey Ingram Taylor conducted a historic two-slit interference experiment

using a extremely weak light source like that from “a candle burning at a distance slightly

exceeding a mile” so that very few photons where present at one time. He collected a

resulting image over several months of exposure on a photographic plate and discovered the

same interference fringes that occur using an intense light source. This led Paul Dirac, the

discoverer of the relativistic quantum mechanical wave equation, to believe that “each photon

then interferes only with itself.” It is a most remarkable feature of the quantum mechanical

nature of light (and matter) that identical interference patterns emerge from either intense

beams or extremely weak beams made of a timed sequence of individual particles.

1.6.5 Wave function collapse

Although I have argued that we should not be surprised with the quantum mechanical

principle of superposition, any rational person should certainly be alarmed by the quantum

mechanical principle of wave function collapse. If a quantum object exists in a superposition

of states, for example a quantum spin’s internal state being equally balanced in both the

up and down states, then as one measures the state of a quantum object, the outcome is

a classical result. Upon measurement, the internal spin will be either up or down, and

not a combination. This elusive process of “losing” all phase information is called wave

function collapse. A quantum object in a superposition of states collapses into one classical

state upon observation as one complex amplitude vanishes and the other amplitude becomes

unity. Therefore, the most information we can extract from a quantum spin is a binary

value, one bit of information.

To see why wave function collapse is so disturbing, let us consider a situation when

two quantum spins are both in superposition, where they are highly correlated, so that a

measurement of one spin causes a collapse of the entire pair. We shall consider an example of

the well known paradox discovered by Albert Einstein, Boris Podolsky, and Nathan Rosen,

first posited in 1935 to bring to light a troubling consequence of entanglement and wave

function collapse in the theory of quantum mechanics [Einstein et al., 1935]. As the measured

quantum spin collapses into a classical state, without directly touching the second spin and

regardless of where it is located, either nearby or far away, the second spin of the pair also

collapses into an associated classical state. When quantum spins are correlated in this way

they are said to be entangled.

Figure 1.6 shows a simple one-dimensional quantum spin system that illustrates both

entanglement and wave function collapse. The situation is a generalization of the classical

spin systems presented above and shown in Figures 1.4 and 1.5. In the quantum case, the

local interaction rule is the following: whenever two spins arrive at the node, they
√

swap
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their spin orientations. This rule is very similar to the collision rule for the interacting

classical spin system which swapped the orientations whenever spins meet at a common

node. The difference here of course is that I have placed a square root symbol over the swap

operation.

t = 0

t = 1

t = 2

  1      2      3      4      5      6      7

a

b

t = 3

a

b

t = 4

a

b

Figure 1.6: A simple quantum spin system example. The collision process causes the pair of spins to
become entangled. The spins are simultaneously swapped and left intact. The resulting two alternatives, a
and b, are shown.

The
√

swap operation is defined as the operation which when it is applied twice in se-

quence, results in the overall effect that is identical to the original swap operation. So the
√

swap is like the swap operation but it only goes “half way” so to speak. The result of the
√

swap operation is that the two states of the interacting quantum spins are left both intact

and swapped, as illustrated in Figure 1.6. The outcome of the
√

swap operation is that the

spins are left in an entangled superposition of states.

1.6.6 Square Roots

The first person to have attempted to compute a square root was probably an ancient

Egyptian perhaps around 3400BC in the classic problem of squaring the circle, which is

equivalent to finding the square with area matching that of a circle. After 500BC, the square

root took on its modern definition given by the “divine” Greek mathematician Pythagoras.

Today, most people normally think of the square root operation as it applies to a positive

number.

Yet over time, the square root has been generalized in all sorts of ways. In 1777, Leonhard

Euler introduced the imaginary number
√
−1, which is denoted by the symbol i. Euler’s

work ushered in the sweeping new field of complex analysis and this was by no means the
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greatest of his achievements. For example he pioneered a mathematical field called calculus

of variations, which centuries later is considered pivotal to modern quantum physics, as

he attempted to prove the age old isoperimetric theorem of geometry. It may be loosely

stated as, a circle is the optimal closed curve, because of the set of all closed curves with

a fixed perimeter, a circle encloses the greatest area. Likewise a sphere is an isoperimetric

surface because, of the set of all closed and bounded surfaces with fixed area, it encloses the

greatest volume. Soap bubbles are again illustrative here because they employ a “calculus

of variations.” For a fixed amount of liquid, spread over a thin membrane film, a bubble

“wants” to enclose the greatest volume so as to reduce its curvature as it strives to equalize

the pressure of the air inside the bubble to the ambient outside air pressure. In this way,

it also minimizes its surface tensions (the energy arising from bonds in the membrane with

the air at the film’s interface), to achieve an optimal and stable equilibrium configuration.

In Section 4, we review a form of calculus of variations called a path integral as we describe

how one uses a system of spins to model the kinematic dynamics of relativistic quantum

particles.

A square root example related to idempotent Hamiltonians and their associated unitary oper-

ators of Section 2 on conservative quantum logic gates: If δ is a boolean number with value

either 0 or 1, then √
1− 2δ = 1 + (i− 1)δ,

which is the positive root. Using the Taylor expansion

ezδ = 1 + zδ +
1

2!
(zδ)2 +

1

3!
(zδ)3 + · · · (1.1)

= 1 + (ez − 1)δ, (1.2)

it follows that eiπδ = 1− 2δ, and in turn the positive root of this is

ei
π
2
δ =
√

1− 2δ = 1 + (i− 1)δ. (1.3)

The negative root is a bit more tricky.

It is also possible to take a square root of a matrix, an array of numbers ordered with

an equal number of rows and columns. One first derives an associated matrix, called the

matrix of eigenvectors, from the original matrix and subsequently uses this second matrix to

diagonalize the original matrix. Diagonalizing a matrix entails tranforming it so as to render

all of the components of the matrix to be zero except that new components are left along

the central diagonal slice of the matrix. The remaining new components along the diagonal
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are called the eigenvalues of the matrix. This processes of diagonalizing a matrix using the

matrix of eigenvectors is technically called a similarity transformation.

We can take the square root of a diagonal matrix: the result is simply another diagonal

matrix whose components are the square roots of the original eigenvalues. Therefore, to take

the square root of any non-diagonal matrix first one diagonalizes it with the appropriate

similarity transformation, then one takes the square root of the associated diagonal matrix

of eigenvalues, and finally one applies the inverse of the similarity transformation. In this

way, one obtains a matrix that when multiplied times itself yields the original matrix.

Here is a simple example of an off-diagonal matrix, which is called the Pauli σx matrix

(1-qubit NOT gate), expressed in terms of its square root:(
0 1
1 0

)
=

(
1
2
− i

2
1
2

+ i
2

1
2

+ i
2

1
2
− i

2

)
·
(

1
2
− i

2
1
2

+ i
2

1
2

+ i
2

1
2
− i

2

)
.

It is possible to express the 2-qubit swap operation in matrix form

swap =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 .

Then taking the square root of this, we have the
√

swap operation in a matrix form repre-

sentation

√
swap =


1 0 0 0
0 1

2
− i

2
1
2

+ i
2

0
0 1

2
+ i

2
1
2
− i

2
0

0 0 0 i

 .

Here is another example of an off-diagonal matrix, which is the imaginary number i times

the Pauli σy matrix, expressed in terms of its square root:(
0 −1
1 0

)
=

(
1√
2
− 1√

2
1√
2

1√
2

)
·

(
1√
2
− 1√

2
1√
2

1√
2

)
.

This matrix and its square root are antisymmetric because the off-diagonal components are

the negative of each other. It is possible to express a 2-qubit antisymmetric swap operation

as a matrix:

antisymmetric swap =


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 −1

 .

Then taking the square root of this, we have the antisymmetric
√

swap operation in a matrix
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form representation

√
antisymmetric swap =


1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 i

 .

Almost all the quantum algorithms that we know of today for modeling physical systems are

decomposable into “quantum circuits” made up of swap and symmetric and antisymmetric
√

swap quantum gates.

1.6.7 Measurement of entangled states

Referring to Figure 1.6, suppose initially at t = 0 we prepare two quantum spins in a well

defined classical state, just as we did in our previous two examples of a classical spin system.

If we attempt to measure whether a quantum spin exists at node 1 say, we will find nothing

there initially at t = 0 nor at the later times t = 1, t = 2 and t = 3. Our attempt to measure

the state of a spin would have no bearing whatsoever on the quantum spin system. Of course

we are presuming that our quantum measurement apparatus is a delicate one that affects

a tiny region no bigger than size of a single node itself and that when we run our detector

at that particular node it only interacts with spins on that node and the measurement does

not in any way “leak” into neighboring nodes, next nearest neighboring nodes, and so forth.

So we suppose we have a perfect detector. (One advantage of taking a theorist’s viewpoint

in this review is that we do not have to describe an actual detector. In the next part of this

review where we include all the experimental details, we do not have this luxury.)

However, if we apply our detector at node 1 at time step t = 4, we will indeed discover a

spin there. Either we will find the that it is spin down or up. If the first alternative presents

itself, then we know that we are sampling the state of the system that corresponds to the

case when the two spins passed each other at time t = 1 and did not interact (alternative a).

Because of this we know that if we then attempt to observe the other spin, we must find it

definitely in a spin up state. Conversely, if the alternative b presents itself instead, then we

know we sampled the state of the system corresponding to the case where the spins interacted

at node 4 and exchanged their spins at time t = 1. Consequently, if we attempt to observe

the other spin we would definitely find it in a spin down state. This is a manifestation of

entanglement. It is rather straightforward to comprehend.

What is unnerving is that entanglement does not depend on how big the lattice might

be nor how far apart the quantum spins might be at the moment of our observation. This

appears to violate our notions of locality in physics because whether we perform our mea-
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surement at time step 4 or time step one trillion, still only a type a or type b alternative

materializes.

A result from Section 2: The following number operators, called entanglement operators,

count units of entanglement between qubits |qα〉 and |qβ〉 as if the entanglement were a phys-

ical resource:
1

2

(
â†α ± â

†
β

)
(âα ± âβ) + (δ − 1)n̂αn̂β,

where â†α and âα are creation and annihilation operators for the αth qubit, where the number

operators are n̂α = â†αâα, and where δ = 0 for bosonic particles and δ = 1 for fermionic

particles.

1.6.8 Hilbert space

Only two amplitudes are ever physically pertinent in our simple example, the amplitude

for alternative a and the amplitude for alternative b. The collapse is characterized by one

amplitude jumping to unity as the other one vanishes and this can occur essentially instan-

taneously (in some sense, these two amplitudes are physically “close” to one another in the

space of amplitudes). What I am calling the “space of amplitudes” is foundational in quan-

tum mechanics and is called the Hilbert space. For each classical state of the system, which

for our spin system includes all spatial configurations of the set of spins as well as all their

internal orientations, there is an associated dimension in the Hilbert space. Consequently,

this is a very high-dimensional space. Let’s enumerate all the configurations for our simple

example.

In our previous example in Figure 1.6, we had two spins with a total zero spin along the

vertical direction, which is typically called the direction of the z-axis. The total spin along

the z-axis direction vanishes because the spin-up of the first spin cancels the spin-down of

the second spin. Some of the possible classical configurations are shown in Figures 1.4 and

1.5, but what is the total number in this case? The answer is the number of nodes squared.

With 7 nodes, the answer is 49 states with two opposite spin spins because there are 7 places

to put the first spin and independently also 7 places to put the second spin.

However, suppose both spins are spin-up say, so the total spin along the z-axis is 2 instead

of 0. Then how many configurations are there? The answer is 21, which is lower than the

number of configurations for the previous case because now we cannot include configurations

with two spins per node. Our quantum spins obey the Pauli exclusion principle, which states

that two or more them cannot reside at the same point in space in the same spin state. The
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-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 7 0 7 0 0 0 0 0 0
2 0 0 0 0 0 21 0 49 0 21 0 0 0 0 0
3 0 0 0 0 35 0 147 0 147 0 35 0 0 0 0
4 0 0 0 35 0 245 0 441 0 245 0 35 0 0 0
5 0 0 21 0 245 0 735 0 735 0 245 0 21 0 0
6 0 7 0 147 0 735 0 1225 0 735 0 147 0 7 0
7 1 0 49 0 441 0 1225 0 1225 0 441 0 49 0 1
8 0 7 0 147 0 735 0 1225 0 735 0 147 0 7 0
9 0 0 21 0 245 0 735 0 735 0 245 0 21 0 0
10 0 0 0 35 0 245 0 441 0 245 0 35 0 0 0
11 0 0 0 0 35 0 147 0 147 0 35 0 0 0 0
12 0 0 0 0 0 21 0 49 0 21 0 0 0 0 0
13 0 0 0 0 0 0 7 0 7 0 0 0 0 0 0
14 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Table 1.1: Sector of Hilbert space: Number of configurations given the number of spins (left most column)
versus the total spin along the z-axis (top most row).

way to count the number of configurations in this case is simple. With the first spin at

node 1, the second spin can be on any of the six remaining nodes, so this contributes 6

configurations. With the first spin at node 2, the second spin can be on any of the remaining

nodes except node 1 since we counted this case already. So this contributes 5 configurations.

With the first spin at node 3, the second spin can be on any of the remaining nodes except

nodes 1 and 2 since we counted these already. So this contributes 4 configurations. We can

continue this until we are left with one last configuration with the first spin on node 6 and

the second spin on node 7, whence we obtain the final result 21=7+6+5+4+3+2+1.

Table 1.1 gives the number of configurations for all the possible cases of spin number and

total spin-z component. The cases we just worked out by hand are shown in the table along

the row labeled 2.

The entries in Table 1.1 can be obtained using the generating function(
1∑
p=0

1∑
m=0

np+msp−mz

)Q
2

,

for Q = 14 and where n denotes total number of spins and sz denotes the total spin along

the z-axis (total magnetization). This simple generating function works for any number of

qubits Q = 2L, where L is the number of nodes in the lattice. See Appendix B for the

polynomial that is equivalent to Table 1.1. This way of counting the size of the Hilbert space

sectors is used in numerical simulations of the many-body quantum systems governed by the

Schroedinger equation in Section 5.

20



An important point to observe is that if we sum along the rows we can find the total

number of configurations given a specified number of spins. The result is 1,14, 91, 364, 1001,

2002, 3003, 3432, 3003, 2002, 1001, 364, 91, 14, 1 configurations for 0 up to 14 spins. This is

a binomial distribution and it is plotted in Figure 1.7. The solid bell-shaped curve plotted in
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Figure 1.7: Bell shaped distribution: Binomial distribution plotted as the black circles. The solid curve is
the normal distribution.

Figure 1.7 is a Gaussian distribution, sometimes called the normal distribution. It becomes

a better approximation of the binomial distribution as the number of nodes increases. If

we add together all the configurations, we get 16384 of them in this case. Each of these

configurations is called a basis state. This number can be written in exponential form as

16384 = 214. This is the total number of dimensions in the Hilbert space of a quantum

spin system on a lattice with 7 nodes where the spins obey the Pauli exclusion principle.

Why is the size of the Hilbert space such a simple number? Let L denote the number of

|0

|1

|00

|01

|10
|11

|000

|001

|010

|011
|100|101

|110

|111

(a) (b) (c)

Figure 1.8: Hilbert space: (a) single qubit, (b) two qubits, and (c) three qubits.

nodes. If we let Q = 2 × L, so as to account for up to two spins per node, then the size

of the Hilbert space is 2Q and this is a generally true for any lattice with L nodes. The

number Q is the total number of qubits needed to encode all the possible basis states, and

hence all possible combinations of all the classical configurations in superposition. With one

qubit, Q = 1, there are two orthogonal basis states: true |1〉 and false |0〉, as depicted in

Figure 1.8a. With two qubits, Q = 2, there are four orthogonal basis states: |00〉, |01〉, |10〉,
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and |11〉, as depicted in Figure 1.8b, although it is not possible on a flat piece of paper to

draw these four states to all appear orthogonal to one another. With three qubits, there are

eight basis states, and so on and so forth. As Q get larger, the orthogonal axes of the Hilbert

space begin to look porcupine-like. And as Q increases, the Hilbert space quickly becomes

unwieldy because adding a single qubit doubles the number of quills.
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Chapter 2

Quantum memory, conservative
quantum gates, and quantum
algorithm types

2.1 A fermionic quantum bit

A fundamental unit of information is the coherent time-dependent state |q(t)〉 of a two-

energy level quantum mechanical system, which is a fermionic qubit and is governed by the

Schroedinger wave equation

− ih̄ ∂
∂t
|q(t)〉 = H|q(t)〉, (2.1)

where the Hamiltonian is

H = Eσz = E
(

1 0
0 −1

)
, (2.2)

and where the energy eigenvalues are ±E , σz is a Pauli matrix, and energy eigenstates are

|g〉 ≡
(

0
1

)
|e〉 ≡

(
1
0

)
, (2.3)

where |g〉 is the ground state and |e〉 is the excited state of the qubit. In terms of the angular

Rabi frequency Ω ≡ E
h̄
, the time-dependent qubit is

|q(t)〉 = A(0)e−iΩt|g〉+A(1)eiΩt|e〉, (2.4)

where the complex probability amplitudes satisfy |A(0)|2 + |A(1)|2 = 1. The two-level

quantum system is realized using nuclear magnetic resonance of a spin-1
2

atomic nucleus,

optical resonance of a two-level atom, or spin state of an electron. It is also possible that

the two-level quantum system is realized by a mesoscopic-scale superconductive circuit with

Josephson junctions–there are a variety of configurations under investigation using either

charge states, flux states, or phase.
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Table 2.1: Symbols

Symbol Description
t time
B number of qubits per quantum node
L number of quantum nodes
Q total number of qubits in the quantum computer
N ensemble size

x, y, z spatial dimensions
i, j, k spatial indices (i, j, k) = (x, y, z)
A probability amplitude
n bit (0 or 1)
|n〉 number ket or bit ket (|0〉 or |1〉)
|q〉 qubit ket
α qubit index (1 ≤ α ≤ Q)
S binary encoded state index (0 ≤ S ≤ 2Q − 1)
|S〉 numbered basis state
|ψ〉 on-site ket of size 2B

|Ψ〉 total system ket of size 2Q

2.2 The quantum state in the number representation

From the previous section, a time-dependent qubit may be written

|q(t)〉 =
1∑

n=0

A(n, t)|n〉, (2.5)

where A(0, t) ≡ A(0)e−iΩt and A(1, t) ≡ A(1)eiΩt and where |0〉 ≡ |g〉 and |1〉 ≡ |e〉. We

introduce the bit numbers, denoted nα for 1 ≤ α ≤ Q, that are either zero or one (they are

commonly referred to as fermionic number variables or Grassman variables in the literature

on the second quantized representation of many-body quantum mechanics). Each tensor

product state, |n1〉 ⊗ · · · ⊗ |nQ〉, is a basis state in the number representation. The initial

quantum state |Ψ◦〉 at time t◦ is a tensor product state

|Ψ◦〉 =

Q⊗
α=1

(
1∑

nα=0

A(nα, t◦)|nα〉

)
. (2.6)

The symbol
⊗

represents the tensor product operation, which in this case is a Q-fold tensor

product. Let {n1, . . . , nQ} denote the set of size 2Q of all the combinations of the bit variables.

Hence, the initial quantum state can also be written as a superposition of all the basis states

|Ψ◦〉 =
∑

{n1,...,nQ}

(
Q∏
α=1

A(nα, t◦)

)
|n1〉 ⊗ · · · ⊗ |nQ〉. (2.7)
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(1) It loses coherence by an internal dephasing process occurring strictly within the

quantum computer itself that causes the off-diagonal elements of the density matrix to

be randomized. The dephasing time, denoted τ2, is short and occurs because the Rabi

frequencies Ω = E
h̄

of the qubits differ. This dephasing is reversible (usually by application

of a π-pulse) and gives rise to echo phenomena.

(2) Also, it relaxes to thermal equilibrium by spontaneous and dissipative coupling to its

external environment causing the density matrix to be diagonalized. The relaxation time,

denoted τ1, is longer and is an irreversible process because the off-diagonal complex numbers

CSS′(t) vanish for all S 6= S ′

CSS′(t) −→ CSS(t)δSS′ = δSS′
N∑
r=1

Pr

(
Q∏
α=1

|A(nα, t)|2
)
, (2.13)

where nα is the αth bit of the state number S. We have written the relaxation process

as rendering the density matrix as a classical average (over the ensemble) of a product of

occupation probabilities. Correlations are lost, since the 2Q diagonal components depends

only on Q quantities as the product of independent averages

CSS(t) −→
Q∏
α=1

(
N∑
r=1

Pr|A(nα)|2
)
. (2.14)

2.4 Mixed ensemble

The single-qubit number operator for “particles” (state |1〉) is n ≡ 1
2
(1 +σz) and for “holes”

(state |0〉) is n̄ ≡ 1
2
(1− σz). Note that the particle and hole number operators are comple-

mentary n = 1− n̄. The generalized number operator nα acting on the αth qubit is

nα ≡
Q⊗
β=1

[1− n̄δαβ] , (2.15)

where the Kronecker delta δαβ is 1 when α = β, and 0 otherwise. Remember, the symbol
⊗

represents the tensor product operation. A matrix representation of the generalized number

operator is given in Appendix D.

We shall define the occupation probability of the αth qubit, |qα〉, as the quantum mechan-

ical expectation value of the number operator, denoted 〈nα〉, for the system at temperature

T .

Tr (%nα) =
2Q−1∑
S=0

[
Q∏
α=1

(
N∑
r=1

Pr|A(nα)|2
)]

, (2.16)

where Tr(•) is the trace operation.
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The Hilbert space for a two-qubit system is four dimensional, and we choose the following

basis kets in the number representation:

|v〉 = |00〉 =


1
0
0
0

 , |↓〉 = |01〉 =


0
1
0
0

 ,

|↑〉 = |10〉 =


0
0
1
0

 , |↑↓〉 = |11〉 =


0
0
0
1


(2.22)

to represent fermionic states in terms of qubits. In this basis, where qubits |q1〉 and |q2〉
are ordered left to right |q1q2〉, the two number operators can be expressed in terms of the

singleton number operator n̂ =

(
0 0
0 1

)
as follows:

n̂1 = n̂⊗ 1 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , n̂2 = 1⊗ n̂ =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 . (2.23)

In this basis, the creation operators are

â†1 =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 , â†2 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

 . (2.24)

Since â†1 and â†2 have real components, the annihilation operators are the transposes of

the matrices given in (2.24), â1 = (â†1)T and â1 = (â†1)T :

â1 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , â2 =


0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

 . (2.25)

2.7 Qubit interchange operator

All permutations of qubits (here taken to be fermionic in nature) may be implemented by

successive application of an “interchange operator,” or
√

SWAP gate, which we denote by

χ̂αβ and which interchanges the αth and βth qubits. We construct an interchange operator

that correctly handles any necessary phase change due to the anti-commutation relations

(2.21) and we do so using the qubit creation and annihilation operators (2.24) and (2.25)

with only quadratic products of â and â† [Pendleton, 1991].

We require that χ̂ be:
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1. unitary (χ̂αβχ̂
†
αβ = 1);

2. conserve number density ([χ̂αβ, n̂α + n̂β] = 0); and

3. maintain the vacuum state (χ̂αβ|v〉 = |v〉).

Let us assume we have a “one-particle” state |γ〉 = â†γ|v〉, where γ = α or β. A first guess

at the form of the interchange operator between sites is

χ̂αβ = â†αâβ + â†βâα. (2.26)

This acts correctly on |γ〉. The problem with (2.26) is its application on the vacuum state |v〉
causing it to vanish into oblivion and therefore violating our last requirement that χ̂|v〉 = |v〉.
This is remedied easily enough by slightly modifying our first guess

χ̂αβ = â†αâβ + â†βâα + 1. (2.27)

Although (2.27) repairs the vacuum problem, now its application onto |γ〉 interchanges qubits

but incorrectly gives back the interchanged state along with the original state |γ〉. To

administer a remedy, we must include two more terms that subtract off the original state.

The interchange operator then takes the final form:

χ̂αβ = â†αâβ + â†βâα + 1− â†αâα − â
†
βâβ. (2.28)

Although we have constructed (2.28) by considering only “one-particle” states, (2.28) works

on any arbitrary state.

Let us test the properties of χ̂ further. We rewrite (2.28) by factoring the creation

operators,

χ̂αβ = 1 + â†β (âα − âβ)− â†α (âβ − âα) , (2.29)

which leads to

χ̂αβ = 1−
(
â†α − â

†
β

)
(âα − âβ) . (2.30)

Now of course, one is motivated to define the following “two-point” creation, annihilation,

and number operators

âαβ ≡
1√
2

(âα − âβ) (2.31a)

â†αβ ≡
1√
2

(
â†α − â

†
β

)
(2.31b)

n̂αβ− ≡ â†αβâαβ (2.31c)
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so that (2.30) may be written as

χ̂αβ = 1− 2n̂αβ−. (2.32)

Our two-point operators form superposition states

â†αβ|v〉 =
1√
2

(| α〉− | β〉) . (2.33)

The two-point number operator is idempotent (n̂2
αβ = n̂αβ) and hermitian (n̂†αβ = n̂αβ). In

turn the interchange operator is hermitian (χ̂†αβ = χ̂αβ) and consequently we have

χ̂2
αβ = (1− 2n̂αβ−)2 = 1− 4n̂αβ− + 4(n̂αβ−)2 = 1, (2.34)

satisfying the unitarity requirement of involution. The interchange operator can be written

in exponential form

χ̂αβ = ezn̂αβ− = 1 + zn̂αβ− +
z2

2!
(n̂αβ−)2 + · · · = 1 +

(
z +

z2

2!
+ · · ·

)
n̂αβ− (2.35)

or

χ̂αβ = 1 +
(
1− e−z

)
n̂αβ−. (2.36)

Comparing (2.32) with (2.36), allows us to choose z = iπ, so we have a manifestly unitary

interchanger,

χ̂αβ = eiπn̂αβ− = −1n̂αβ− , (2.37)

appearing as a rotation by 180◦. To add a measure of concreteness, it is useful to show χ̂αβ

in its matrix representation. For a two qubit system, we have

χ̂12 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 = exp

iπ


0 0 0 0
0 1

2
−1

2
0

0 −1
2

1
2

0
0 0 0 1


 . (2.38)

2.8 General two-qubit conservative quantum logic gate

The quantum gates that we deal with in our quantum algorithms for computational physics

are called conservative quantum gates in the sense that they do not alter the total “particle

count” in the number representation of the qubit system (i.e. the total spin magnetization

of a spin-1
2

system). When conservative quantum gates serve as the basic operators of

a quantum algorithm, then the macroscopic scale dynamics of the quantum system are

ultimately constrained by a continuity equation. Since we are interested in modeling various

types of hydrodynamic fluids, it is essential that the macroscopic scale dynamics of the
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quantum system obey the continuity equation. Therefore, conservative quantum gates are

the type of quantum logic gates suited for our computational physics agenda.

The interchange operator χ̂ treated in the previous section is the simplest example of

a conservative gate. In the most general situation, it is sufficient to consider only a block

diagonal matrix that has a 2× 2 sub-block, which causes entanglement and is a member of

the special unitary group SU(2). We can neglect the overall phase factor because this does

not affect the quantum dynamics and therefore our sub-block need not be a member of the

more general unitary group U(2). If Û is a member of SU(2), it can be parameterized using

three real numbers, ξ, ζ, and θ, as follows

Û ≡
(

eiξ cos θ −eiζ sin θ
−e−iζ sin θ −e−iξ cos θ

)
. (2.39)

We can represent a general conservative quantum logical gate by the 4×4 unitary matrix

Υ̂ =


1 0 0 0
0 A B 0
0 C D 0
0 0 0 E

 . (2.40)

We choose this form for Υ̂ because we want to entangle only two of the basis states, |01〉 with

|10〉, so as to conserve particle number, and that is why we call Υ̂ a conservative quantum

gate. The component in the top-left corner is set to unity because we do not want Υ̂ to alter

the vacuum state |00〉 in any way. However, we must allow the component in the bottom-

right corner to be arbitrary. We will see that the value of this component will depend on

the particle statistics, reflecting whether the particles are bosons or fermions.

Consider the following five operators:

â†1â2 =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 â†2â1 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 (2.41)

along with the compound number operators

n̂1(1− n̂2) =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 (1− n̂1)n̂2 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


n̂1n̂2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .

(2.42)
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As a generalization of (2.28), the quantum gate (2.40) can be expressed in terms of the

operators (2.41) and (2.42) given above:

Υ̂ = 1 + (A− 1)(1− n̂1)n̂2 +Bâ†2â1 + Câ†1â2 + (D − 1)n̂1(1− n̂2) + (E − 1)n̂1n̂2

= 1 + (A− 1)n̂2 +Bâ†2â1 + Câ†1â2 + (D − 1)n̂1 − (A+D − E − 1)n̂1n̂2. (2.43)

We would like to find the Hamiltonian, denoted Ĥ, associated with Υ̂. Letting z denote a

complex number, we begin by parametrizing (2.43) in terms of z

Υ̂(z) = ezĤ , (2.44)

and then we solve for Ĥ. To do this, we series expand in the parameter z:

Υ̂(z) = 1 + zĤ +
z2

2
Ĥ2 + · · · . (2.45)

There are two cases of interest. In the first case, when the Hamiltonian is idempotent,

Ĥ2 = Ĥ, then (2.45) reduces to

Υ̂(z) = 1 + (ez − 1)Ĥ. (2.46)

In the second case, when Ĥ3 = Ĥ and Ĥ4 = Ĥ2, then (2.45) reduces to

Υ̂(z) = 1 + sinh z Ĥ + (cosh z − 1)Ĥ2. (2.47)

These two cases are treated in Appendix A. The most general conservative quantum logic

gate Υ̂(z) = ezĤδ(ξ) has the form

ezĤδ(ξ) =


1 0 0 0
0 1

2
(ez + 1) −1

2
(ez − 1)e−iξ 0

0 −1
2
(ez − 1)eiξ 1

2
(ez + 1) 0

0 0 0 1 + (ez − 1)δ

 (2.48a)

= 1 + (ez − 1)

[
1

2

(
â†1 − e−iξâ

†
2

) (
â1 − eiξâ2

)
+ (δ − 1)n̂1n̂2

]
.

(2.48b)

where δ is a boolean number with value either 0 or 1, and where the Hamiltonian is the

idempotent (Ĥ2 = Ĥ) matrix

Ĥδ(ξ) =


0 0 0 0
0 1

2
−1

2
e−iξ 0

0 −1
2
eiξ 1

2
0

0 0 0 δ

 (2.49a)

=
1

2

(
n̂1 + n̂2 − â†1â2e

iξ − â†2â1e
−iξ
)

+ (δ − 1)n̂1n̂2.

(2.49b)
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This is demonstrated in Appendix A. (2.49) parametrizes a class of quantum logic gates using

a complex number ξ for a given binary value of δ, where δ = 1 for the case of Fermi-Dirac

statistics and δ = 0 otherwise.

2.9 Entanglement operators

Without loss of generality, let us consider two qubits: |qα〉 and |qβ〉. Following the form of

(2.31), let us define the following generalized creation and annihilation operators

â†αβ(ξ) ≡ 1√
2

(
â†α − e−iξâ

†
β

)
âαβ(ξ) ≡ 1√

2
(âα − eiξâβ). (2.50)

The corresponding generalized number operator is

n̂αβ(ξ) ≡ â†αβ(ξ)âαβ(ξ) (2.51)

=
1

2

(
â†α − e−iξâ

†
β

) (
âα − eiξâβ

)
(2.52)

=
1

2

(
n̂α + n̂β − eiξâ†αâβ − e−iξâ

†
βâα

)
(2.53)

With the generalized number operator, the idempotent Hamiltonian (2.49b) takes the simple

form:

Ĥαβ(ξ) = n̂αβ(ξ) + (δ − 1)n̂αn̂β. (2.54)

For some state | . . . α . . . β . . . 〉, with two qubits of interest located at α and at β, we will use

a short-hand notation for this state and write it as if it were only a two-qubit state |αβ〉.
Remember, the operators written below can apply to any pair of qubits, regarless of their

location. We have the “singlet” state 1√
2
(|01〉− |10〉) and the “triplet” states 1√

2
(|01〉+ |10〉)

and 1√
2
(|11〉 ± |00〉). The action of Ĥαβ(ξ) on these entangled states is the following:

Ĥαβ(ξ) (|01〉 ± |10〉) =
1

2
(1∓ e−iξ)|01〉 − 1

2

(
1± eiξ

)
|10〉

(2.55a)

Ĥαβ(ξ)(|11〉 ± |00〉) = δ|11〉. (2.55b)

We are concerned with two special cases, ξ = π and ξ = 0, which we denote as follows

(+ = π for the singlet and − = 0 for the triplet):

êαβ± = n̂αβ± + (δ − 1)n̂αn̂β, (2.56)

where

n̂αβ+ ≡ 1

2

(
â†α + â†β

)
(âα + âβ) (2.57)

n̂αβ− ≡
1

2

(
â†α − â

†
β

)
(âα − âβ) . (2.58)
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The hermitian operator (2.56) counts one bit of the pairwise entanglement, so it is called

an e-bit number operator. The sum of the e-bit operators reduces to the standard number

operators:

êαβ+ + êαβ− = n̂α + n̂β + 2(δ − 1)n̂αn̂β. (2.59)

The e-bit number operator ê− has an eigenvalue of 1 for the singlet state:

ê−(|01〉 − |10〉) = |01〉 − |10〉 (2.60a)

ê−(|01〉+ |10〉) = 0 (2.60b)

ê−(|11〉 ± |00〉) = δ|11〉. (2.60c)

For fermionic particles (δ = 1), the doubly occupied site |↑↓〉 = |11〉 is an eigenvector of ê−

with unity eigenvalue. Conversely, the e-bit number operator ê+ has an eigenvalue of 0 for

the singlet state:

ê+(|01〉 − |10〉) = 0 (2.61a)

ê+(|01〉+ |10〉) = |01〉+ |10〉 (2.61b)

ê+(|11〉 ± |00〉) = δ|11〉, (2.61c)

and |11〉 is an eigenvector of ê+ with unity eigenvalue as well when δ = 1.

Defining the pairwise entangled states with qubits of interest at locations α and β as

ψ+ ≡ | . . . 0 . . . 1 . . . 〉+ | . . . 1 . . . 0 . . . 〉 (2.62)

ψ− ≡ | . . . 0 . . . 1 . . . 〉 − | . . . 1 . . . 0 . . . 〉, (2.63)

then these entangled states are eigenvectors of the e-bit number operators (with unity eigen-

value):

êαβ±ψ± = ψ±. (2.64)

2.10 The site-dependent total-spin operator and the

Heisenberg Hamiltonian operator

We shall denote the spin creation and spin annihilation operators by â†iµ and âiµ, respectfully,

which act on the spin state located at spatial position i with spin orientation µ =↑ or µ =↓,
for 1 ≤ i ≤ L, where L is the number of nodes in the lattice. In turn, the site-specific

total-spin operator ~Si is compactly written in terms of the spin creation and annihilation

operators and the Pauli spin matrices as

~Si =
1

2
â†iµ~σµν âiν , (2.65)
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where ~σ = (σx, σy, σz), and

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (2.66)

Normally, the spin operators are in units of Planck’s constant, but here we take h̄ = 1. The

components of (2.65) are then

Ŝix = 1
2
â†iµσ

x
µν âiν =

1

2
(â†i ↑âi↓ + â†i ↓âi↑) (2.67)

Ŝiy = i
2
â†iµσ

y
µν âiν =

1

2
(â†i ↓âi↑ − â

†
i ↑âi↓) (2.68)

Ŝiz = 1
2
â†iµσ

z
µν âiν =

1

2
(â†i ↑âi↑ − â

†
i ↓âi↓). (2.69)

where the total-spin operator is the vector

~Si =
(
Ŝix, Ŝiy, Ŝiz

)
. (2.70)

We can implement quantum logic gates by exploiting an isomorphism between the qubit

creation and annihilation operators, â†α and âα for the αth qubit, and the site-specific spin

creation and annihilation operators, â†iµ and âiµ for the spin component (say along the z-

axis) of value µ at the ith lattice node. Two qubits are required to encode one site-specific

quantum spin, both having four basis states as given in (2.22). The isomorphism between

these two sets of operators are mapped as follows (i = 1, . . . , L):

spin ↔ qubit

â†i↑ ↔ â†2i−1 (2.71a)

âi↑ ↔ â2i−1 (2.71b)

â†i↓ ↔ â†2i (2.71c)

âi↓ ↔ â2i, (2.71d)

and in turn we have

Ŝix =
1

2

(
â†i↑âi↓ + â†i↓âi↑

)
=

1

2

(
â†2i−1â2i + â†2iâ2i−1

)
(2.72a)

Ŝiy =
1

2

(
â†i↓âi↑ − â

†
i↑âi↓

)
=

1

2

(
â†2iâ2i−1 − â†2i−1â2i

)
(2.72b)

Ŝiz =
1

2

(
â†i↑âi↑ − â

†
i↓âi↓

)
=

1

2

(
â†2i−1â2i−1 − â†2iâ2i

)
.

(2.72c)
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Notice in (2.22), and likewise in (2.71), there is a particular ordering with spin up encoded

by the left qubit and spin down encoded by the right qubit. This ordering has a physical

manifestation as explained in Section 3 on type-I quantum algorithms, particularly in the

context of the quantum algorithm for the Dirac equation.

2.11 Spin interchange operator

The spin interchange operator that exchanges the σth spin between the ith node and the

jth node of the lattice can be written in the same form as (2.30):

χ̂ijµ = 1−
(
â†iµ − â

†
jµ

)
(âiµ − âjµ) , (2.73)

where µ =↑ or ↓. In terms of the qubit operators, it is the following:

χ̂ijσ =

1−
(
â†2i−1 − â

†
2j−1

)
(â2i−1 − â2j−1) , σ =↑

1−
(
â†2i − â

†
2j

)
(â2i − â2j) , σ =↓ .

(2.74)

We make use of the spin interchange operator (2.74) to perform essential symmetry opera-

tions, as explained in Section G.

2.12
√
SWAP gate

2.12.1 Symmetric gate

Using (2.70), the Heisenberg Hamiltonian operator is readily constructed

Ĥ =
∑
〈ij〉

Jij ~Si · ~Sj, (2.75)

where 〈ij〉 indicates a sum over all the bonds of the lattice with coupling constants Jij for

each of the respective bonds. Let us consider a Heisenberg spin system with two coupled

spins according to (2.75):

Ĥ = J ~S1 · ~S2. (2.76)

We can work out the the matrix representation of Ĥ by applying it to each ket in the number

basis. We use the following rules: the operator Ŝnx flips the nth spin, the operator Ŝnz flips

the phase of the state (multiplies the amplitude by -1) if the nth spin is down and does

nothing otherwise, whereas the operator Ŝny both flips the nth spin and flips the phase of

the state if the nth spin is down and also multiplies the amplitude by i since Ŝny = iŜnzŜnx.

The action of these spin operators on the basis states is tabulated in Appendix C. So in the
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number basis, we compute the matrix representation of the 2-spin Heisenberg Hamiltonian

(2.76) by finding its matrix elements

H = J


1
2

0 0 0
0 −1

2
1 0

0 1 −1
2

0
0 0 0 1

2

 . (2.77)

The eigenvalues of (2.77) are

λ1 = −3J

2
λ2 =

J

2
λ3 =

J

2
λ4 =

J

2
(2.78)

and the respective eigenvectors of (2.77) are

|1〉 = 1√
2
(| ↑↓〉 − | ↓↑〉) |2〉 = | ↑↑〉

|3〉 = 1√
2
(| ↑↓〉+ | ↓↑〉) |4〉 = | ↓↓〉 (2.79)

Now the evolution operator Û = e−iĤτ/h̄ can be expressed in matrix form using these eigen-

values and eigenvectors as follows

U =


〈1|
〈2|
〈3|
〈4|



e−iλ1τ/h̄ 0 0 0

0 e−iλ2τ/h̄ 0 0
0 0 e−iλ3τ/h̄ 0
0 0 0 e−iλ4τ/h̄

(|1〉 |2〉 |3〉 |4〉) , (2.80)

where
(
|1〉 |2〉 |3〉 |4〉

)
is the 4 × 4 matrix with columns that are the eigenvectors of U .

The result for the evolution matrix is

U = e−i
Jτ
2h̄


1 0 0 0

0 1
2

+ e2iJτ/h̄

2
1
2
− e2iJτ/h̄

2
0

0 1
2
− e2iJτ/h̄

2
1
2

+ e2iJτ/h̄

2
0

0 0 0 1

 . (2.81)

Hence, the Heisenberg Hamiltonian (2.76) can be used to model the conservative quantum

logic gate (2.48a) for the bosonic case (δ = 0). Now if we allow the two-spin system to evolve

for the duration of τ = π
4
h̄
J

, which we may refer to as a quarter π-evolution, then U becomes

the
√

swap gate used to model the microscopic particle-particle collisional dynamics in the

context of a quantum lattice-gas system

U = e−i
π
8


1 0 0 0
0 1

2
+ i

2
1
2
− i

2
0

0 1
2
− i

2
1
2

+ i
2

0
0 0 0 1

 . (2.82)

For example, this is used in quantum algorithm for the Schroedinger equation in Section 5

and the quantum algorithm for the diffusion equation in Section 8. The only underlying
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difference in the modeled sub-scale dynamics between the quantum mechanical Schrodinger

wave equation case and the classical diffusion equation case is that in the latter case there

is a loss of phase coherence due to periodic state reduction (e.g. wave function collapse by

measurement) of all the qubits.

2.12.2 Antisymmetric gate

Another important gate that conserves spin is the following gate:

U =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 . (2.83)

We can build this gate using the following Hamiltonian

Ĥ = J(Ŝ2xŜ1y − Ŝ1xŜ2y). (2.84)

The matrix representation of this Hamiltonian in the number basis is

H = J


0 0 0 0
0 0 i

2
0

0 − i
2

0 0
0 0 0 0

 . (2.85)

The eigenvalues of (2.85) are

λ1 = 0 λ2 = 0 λ3 = −J
2

λ4 = J
2

(2.86)

and the respective eigenvectors of (2.85) are

|1〉 = | ↓↓〉 |2〉 = | ↑↑〉
|3〉 = 1√

2
(| ↑↓〉 − i| ↓↑〉) |4〉 = 1√

2
(| ↑↓〉+ | ↓↑〉) (2.87)

Using (2.80) but now with these new eigenvalues and eigenvectors, the result for the evolution

matrix is the matrix

U =


1 0 0 0
0 cos Jτ

2h̄
− sin Jτ

2h̄
0

0 sin Jτ
2h̄

cos Jτ
2h̄

0
0 0 0 1

 . (2.88)

Now if we allow this two-spin system to evolve for the duration of τ = π
2
h̄
J

, then U becomes

the gate for modeling the Burgers equation in the context of a quantum lattice-gas method

[Yepez, 2002c]

U =


1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1

 , (2.89)
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and is used in the type-II quantum algorithms for the Burgers equation in Section 9 and the

magnetohydrodynamics equations in Section 10.

2.13 Hilbert space sectors

Because of conservation of number density (number of spins over the lattice) and the spin-z

component (net magnetization sz), as well as other possible conserved quantities (such as

symmetries of the quantum state arising from the finite-point group associated with a two or

three dimensional spatial lattice), the number of quantum states that can become occupied

(through superposition) is much less than the total number of basis states of the entire

Hilbert space. Since ŝz commutes with any Hamiltonian built out of conservative quantum

logic gates, it is convenient to work with a set of basis states in the number representation

having a given fixed magnetization sz because by inspection one can immediately determine

sz for any such state. Given a lattice of size L with n particles, we can determine the Hilbert

space sectors using a generating function(
1∑
p=0

1∑
m=0

np+msp−mz

)Q
2

, (2.90)

where the number of qubits is Q = 2L for a system with 2 qubits/node, as mentioned in the

introduction. In the summation (2.90), p denotes spin-up and m denotes spin-down. In our

case example above in Table 1.1, the largest sector of the total Hilbert space is 1225 and

occurs if there are six spins or eight spins with sz = 0, and also occurs at half-filling with 7

spins when sz = ±1.

Another relevant issue is the finite-point group symmetry of the spatial lattice. Let us

denote an sz-basis state by the symbol φn. It is possible to determine a representation of

the finite point group operators in the {φn} basis. This is accomplished by successively

employing a site-interchange operator, here denoted X̂ . Using (2.74), we can interchange all

the spins at the ith node of the lattice with the spin at the jth node of the lattiice:

X̂ij ≡ χ̂ij↑χ̂ij↓. (2.91)

Let us denote the various finite-point group operations by the generic symbol R and let us

denote their ith irreducible representations by ΓRi . Using (2.91) we can rotate or reflect any

particular state by implementing any desired group operation R in terms of X (a couple of

examples are given in Appendix G).

Given that we have constructed a reducible matrix representation, denoted {MR
mn}, of

the symmetry group in our {φn} basis, we may then construct projection operators, de-

noted P Γi
mn, for each of the irreducible representations of the group [Reich and Falicov, 1988,
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Chen et al., 1988, Freericks et al., 1991, Freericks and Falicov, 1991, Falicov, 1966]. This is

done as follows

P Γi
mn =

∑
R

Tr(ΓRi )MR
mn, (2.92)

where Tr(ΓRi ) is the character or trace listed in the ith row and Rth column of the character

tables. We can also determine the number of times the ΓRi irreducible representation occurs

in MR
mn by knowing the character, Tr(MR

mn) [Cotton, 1964]. In practice the useful quantity

bi is determined by

bi =
∑
R

Tr(ΓRi )Tr(MR
mn), (2.93)

giving the size of the ith block of the resulting block-diagonalized Hamiltonian matrix of

elements.

The third step is to apply P Γi
mn onto the {φn} basis to find linear combinations that

possess a definite symmetry

ψΓi
m =

∑
n

P Γi
mnφn. (2.94)

We shall denote the symmetry basis set by {ψΓi
n }.

The fourth step is to try to block diagonalize the Hamiltonian still further by calculating

the matrix of elements of the total-spin-squared operator, Ŝ2, in each {ψΓi
m } sub-basis and

diagonalizing this matrix to determine linear combinations of the ψΓi
m states that have a

definite total-spin, that is, we find eigenvectors of Ŝ2. Let us denote these eigenvectors of Ŝ2

as ϕΓi,S
m . These define a total-spin sub-basis ϕΓi,S

m . Since Ŝ2 commutes with the Hamiltonian

we thereby partition each symmetry block into smaller blocks, each having a definite total-

spin.

For small lattices, as a final step we analytically find the eigenvalues and eigenvectors of

each resulting spin-and-symmetry block and thereby determine the solution by calculating the

Hamiltonian matrix elements in the {ϕΓi,S
m } symmetry and total-spin sub-basis. However, for

arbitrarily large lattices the only possible solution is a numerical one achieved on a quantum

computer. The quantum computation is carried out in a particular ϕΓi,S
m sub-basis.

2.14 Efficiency

In the Hilbert space of a system with Q
2

nodes, whatever sector is chosen, only Q qubits are

needed here and this is the crux of efficient quantum mechanical encoding. Furthermore,

wave functions spanning multiple sectors of the Hilbert space may still be encoded using only

these Q qubits because of the principle of quantum mechanical superposition, yet because of

conservation of number of spins and the spin-z component, total spin, and state symmetries,
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these are unphysical superpositions. Each basis state is a member of only one of the sectors

of the full Hilbert space, and its probability of outcome depends only on its entanglement

with the other basis states in that particular sector.

The initial state of every quantum computer has no entanglement, which is a quantifiable

physical resource that must be “input” into the quantum computer to cause the qubits

to become quantum mechanically correlated. The Hamiltonian (2.49) for the conserative

quantum gate is the generator of entanglement. Think of the programmer (e.g. experimental

physicist) having access to a “high entanglement” reservoir and think of a quantum computer

as an engine driven by entanglement transfer.

At the final stage of the computation, an output register (a subset of the qubits) contains

the desired answer to a difficult problem. This answer can be reliably extracted because

each qubit of the output register is put into a classical binary state, |0〉 or |1〉, as all the

entanglement is transferred onto the remaining qubits. By measuring the register, the desired

binary information (one bit for each qubit in the register) is obtained. This is accomplished

without any wave function collapse since this register is in a purely classical state. However,

during this final measurement stage, all the remaining entangled qubits in the system undergo

decoherence whereby all the residual entanglement escapes to a “low entanglement” reservoir,

the external environment. Quantum mechanics, a theory to accurately and deterministically

predict the evolution of probability amplitudes, is turned on its head and used as an engine

for computational work as entanglement is transferred from a source reservoir to a sink

reservoir. This is reminiscent of the thermodynamic heat engine but at the microscpic

scale where computational work (e.g. rotating a nuclear spin) takes the place of work and

transference of entanglement (e.g. correlating and de-correlating pairs of spins) takes the

place of the transference of heat between reserviors.

As an alternative to the quantum computing engine described above, it is possible to use

all the qubits as the output register. The quantum computer is driven by the transference of

entanglement from a source to a sink, but information is now extracted by employing wave

function collapse through measurement. This alternative may be classified as analog quantum

computing since the physical microscopic system embodied in the quantum computer may

be efficiently used to model a different physical system. A further sub-classification emerges

because there are two ways to use entanglement in analog quantum computers: (1) in a

global long-range and long-lived way (requiring quantum error correction in its experimental

implementation); or (2) in localized short-range and short-lived way (mitigating the need for

quantum error correction). This distinction leads to two types of analog quantum computers,

here labeled type-I and type-II, and respectively introduced in Section 3 and Section 6.
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2.15 Quantum algorithmic paradigm

Developing analog quantum algorithms amounts to unfolding the quantum mechanical evolu-

tion operator into an ordered sequence of 2-qubit quantum gate operations. Let Ĝ denote an

arbitrary 2-qubit quantum gate and let Ĥeff denote the effective Hamiltonian for a quantum

spin system embodying the quantum computer with Q qubits. The quantum mechanical

evolution operator that evolves the state of the system is:

e−iĤeffτ/h̄ = e−iĤN∆t/h̄ · · · e−iĤ1∆t/h̄e−iĤ0∆t/h̄

= ĜN · · · Ĝ1Ĝ0. (2.95)

Here each 2-qubit gate operation, Ĝn = e−iĤn∆t/h̄, is represented by a 2Q × 2Q matrix, for

0 ≤ n ≤ N with gates applied in series (τ = (N + 1)∆t) or in parallel (τ = ∆t). The

quantum mechanical evolution equation in product form is

|Ψ(t+ τ)〉 = ĜN · · · Ĝ2Ĝ1Ĝ0|Ψ(t)〉. (2.96)

In general, it is not possible to analytically express the the quantum mechanical evolution

equation in Heisenberg form

|Ψ(t+ τ)〉 = e−iĤeffτ/h̄|Ψ(t)〉 (2.97)

because Ĥeff is has an infinite number of terms due to the noncommutability of the quantum

gates ([Ĥn, Ĥm] 6= 0), as shown by the Campbell-Baker-Hausdorff theorem. Nevertheless, in

certain special cases (type-I quantum algorithms) we are able to analytically determine an

accurate approximation of Ĥeff.

Equation (2.96) can be decomposed into a set of equations, one for each gate operation,

using N intermediate states |Ψn〉, for 0 ≤ n ≤ N

|Ψ1〉 = Ĝ0|Ψ(t)〉 (2.98)

|Ψ2〉 = Ĝ1|Ψ1〉

|Ψ3〉 = Ĝ2|Ψ2〉
...

...
...

|Ψ(t+ τ)〉 = ĜN |ΨN〉.

It is customary that each intermediate state in (2.98) be depicted by a stage in a “quan-

tum circuit diagram” where qubits are drawn as “leads” and each gate Ĝn is drawn as a

transfer function usually with two input leads and two output leads. (There are also single

qubit gates that rotate the phase of the qubit). In our treatment of quantum algorithms for
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computational physics, we generally have no need for this type of diagrammatic approach,

however for pedagogical purposes I do draw some “periodic” quantum circuits in the intro-

ductory section to the type-II quantum computer in Section 6. The graphical approach can

be found in most other reviews of quantum computing, for example in the comprehensive

book by Nielsen and Chuang [Chuang and Nielsen, 2000].

Equation (2.98) expresses a quantum algorithmic approach where each gate operation

is accomplished in series, one after the other, and the final result of the computation is

obtained by measuring all Q qubits (a classical bit string of length Q). Of course this is

overly restrictive since it is possible to apply quantum gates in parallel to different and non-

overlapping pairs of qubits. Actually the other case where the maximum possible number of

quantum gates are accomplished in parallel, in an attempt to save physical time in the actual

implementation, is the most relevant to quantum algorithms for computational physics.

Hence, qubits are partitioned into small groups, called quantum nodes, and the gates are

distributively applied over the nodes. The initial state of a quantum node is an unequally

weighted superposition of states over the Hilbert space of that node, generated by tipping,

or rotating, each qubit of the quantum node independently. Such parallel cases are discussed

immediately below in Section 2.16.

Finally, any quantum algorithm that requires very many qubits to remain phase-coherent

and globally entangled over the entire course of the quantum computation, employing either

serialized or parallelized quantum gate protocols, requires the use of extra qubits to cor-

rect for bit-flip and phase errors [Shor, 1995, Knill et al., 1998]. The use of quantum error

correction codes is an intrinsic part of type-I quantum algorithms.

Analog quantum computers have the following characteristics: finegrained; systolic; based

on conservative quantum logic (2.48a); and described by a mesoscopic quantum Boltzmann

equation for f(~x, ~p, t) = 〈Ψ(t)|n̂α|Ψ(t)〉 (as presented in (7.27) in Section 7):

df(~x, ~p, t)

dt
= lim

τ→0

1

τ
〈Ψ(t)|Ĉ†n̂αĈ − n̂α|Ψ(t)〉,

where the αth qubit encodes a particle at location ~x with momentum ~p and |Ψ(t)〉 is the

quantum state of the entire quantum computer.

2.16 Formal distinction between analog quantum algo-

rithms

2.16.1 Type-I quantum algorithms

The crucial feature of a type-I quantum algorithm is its tractability in the sense that it is

possible to analytically derive an accurate approximation of Ĥeff so that (4.109) emerges as an
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effective field theory. It is possible to choose a protocol of gate operations so that the effective

field theory (4.109) becomes the relativistic Dirac equation with Heff = σz⊗~σ ·~pc+σx⊗1mc2,

with momentum ~p = (px, py, pz) and the Pauli spin matrices ~σ = (σx, σy, σz), or the effective

field theory for the non-relativistic Schroedinger equation with Heff = p2

2m
.
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Figure 2.1: Soliton collisions: The propagation of an initial (t0 = 0) exact 2-soliton vector solution to the
Manakov system for polarization modes: |Q1| (on left) and |Q2| (on right). (a) The solitons propagate toward
each other t1 = 25Kτ and undergo their first collision at t1 = 50Kτ . (b) The post-collision polarization
modes with the soliton parameters chosen so there is no left-propagating soliton for mode Q1 (t2+ = 51Kτ ,
t3 = 75Kτ , and t4 = 100Kτ). The intensity of each mode

∫
dx|Qi(x, t)|2 = const. is preserved to better than

one part in 10−17. Within each mode, there is a redistribution of the intensity in the outgoing asymptotic
1-soliton states. These simulations were carried out by collaborators George and Linda Vahala.

Furthermore, we can add a scalar potential into Ĥeff. When this potential depends

on the wave function itself, we can model nonlinear soliton dynamics governed by the

nonlinear Schroedinger equation and the Korteweg de Vries equation [Vahala et al., 2003b,

Vahala et al., 2003a], and very recently dark solitons [Vahala et al., 2004b] and elastic soli-

ton collision of optical pulses in birefringent optical telecom fibers governed by the Manakov

equations [Vahala et al., 2004a], see Figure 2.1.

The discrete amplitude field dynamically changes over time through a process of “local

collisions” at each lattice node and “local translations” between neighboring lattice nodes:
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1. A local collision at a lattice node is defined by the action of a unitary operator on

the amplitudes at that lattice node. This unitary operator is uniformly and spatially

homogeneously applied to the lattice-based amplitude field.

2. A local translation is defined by that action of another unitary operator that exchanges

two particles between nearest neighboring lattice nodes. Again, this unitary operator

is uniformly and spatially homogeneously applied to the lattice-based amplitude field

between all lattice node pairs in a prescribed fashion that depends on whether the model

is a non-relativistic or relativistic one and also depends on the spatial dimension of the

modeled quantum mechanical system; either one, two, or three dimensional.

Therefore, for a quantum lattice gas the quantum algorithm can be expressed in a form like

(2.98), with an intermediate state |Ψ′〉:

|Ψ′〉 = Ĉ|Ψ(~x1, . . . , ~xL; t)〉 (2.99a)

|Ψ(~x1, . . . , ~xL; t+ τ)〉 = Ŝ|Ψ′〉, (2.99b)

where |Ψ〉 is explicitly notated to make it clear that the qubits are partitioned into a lattice

arrangement with L quantum nodes labeled by the spatial vectors ~x1, ~x2, . . . , ~xL. These

vectors point to the centroid of each respective quantum node. Each qubit is also associated

with a particular lattice vector, v̂, or displacement vector. Furthermore, according to (2.5),

the occupancy probability of finding a “particle” at time t at a location ~x hopping with unit

speed along direction v̂ is defined to be probability |A(1, t)|2 for the particular qubit at that

quantum node which is associated with that displacement direction.

The unitary operator Ĉ changes the occupancy probabilities on each node independently.

It causes local collisional scattering of particles at each node in the system independently,

and therefore, can be written as a L-fold tensor product over the lattice nodes

Ĉ =
L⊗
x=1

Û , (2.100)

where Û is a “local” unitary transformation constructed using a sequence of one or more

conservative quantum gates

Û = ΥN · · ·Υ2Υ1. (2.101)

With B qubits per node, Û is represented by a 2B × 2B size matrix. All the gate operations

needed to implement Ĉ are homogeneously applied on a node-by-node basis causing local

superposition and entanglement within each node.

In general Û is represented by a block diagonal matrix, where each block mixes local

on-site configuration that have the same additive conserved quantities. For the simplest
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one dimensional quantum lattice-gas models presented Section 8 and Section 9, each Û

is implemented by a single quantum gate operation. For more complex models, Û would

be implemented by a sequence of quantum gates and is block diagonal over the sectors of

the Hilbert space as in the three-dimensional quantum lattice-gas fluid model presented in

Section 11.

In our investigation of a suitable local unitary collision operator we have found that

one quantum gate in particular, the
√

swap gate, is especially useful for modeling the

Schroedinger wave equation because there exists a local equilibrium configuration that is

an eigenket of this gate and has unity eigenvalue. This local equilibrium is defined in Sec-

tion 5.2.1. Therefore, we have selected the
√

swap gate as our model quantum gate. It

holds the same status for analog quantum computers that the classical NAND gate holds

for our present day digital-electronics-based computers. When used in the appropriate fash-

ion, this quantum gate leads to quantum algorithms with an overall modeling error that is

second-order in the temporal discretization and fourth-order in the spatial discretization.

The unitary operator Ŝ shifts the occupancy probabilities between nodes, but otherwise

does not change them. The streaming operator Ŝ is constructed using a sequence of inter-

change operators of the form (2.37). It causes “particle” movement and is represented by an

orthogonal permutation matrix; it would otherwise cause strictly classical data movement if

there were not superposed or entangled on-site qubits. In a type-I quantum algorithm, the

application of the streaming operator Ŝ spreads quantum correlations across the lattice.

A detailed treatment of a globally phase-coherent quantum lattice has shown that quan-

tum correlations can significantly alter the macroscopic scale transport properties of the

system [Yepez, 2001a].

2.16.2 Type-II quantum algorithms

A type-II quantum computer is a new type of quantum computing device with a variety

of computational physics applications now in the literature. The qubits within a type-II

quantum computer are partitioned into quantum nodes just as in the type-I case. In general,

all qubits can be initialized with independent tipping angles |qα〉 = cosϕα|1〉+ sinϕα|0〉, for

α = 1, 2, . . . , Q, where Q is the number of qubits. The crucial features of a type-II quantum

algorithm are the following:

1. its periodically repeated measurement of the qubits; and

2. its tractability in the sense that it is possible to analytically derive a classical effective

field theory, a partial differential equation that includes dissipative terms.
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The main difference between the type-I and type-II quantum algorithms is that for the

second case no effective Hamiltonian description, Ĥeff, exists because of the non-unitary

action of the measurement process. Nevertheless, an emergent Hamiltonian-based effective

field theory does exist but it is classical and dissipative in nature. The effective field theory

is represented by a partial differential equation description.

The collision function on the R.H.S. of quantum lattice Boltzmann equation (7.27) is

simplified in the type-II case because of short-range and short-lived entanglement. Conse-

quently, there exists a unique entropy function:

H = −
B∑
a=1

[fa ln(γafa) + (1− fa) ln(1− fa)] , (2.102)

where γa depends on gate protocol using successive applications of conservative quantum

logic gates of the form (2.48a). As an extremum of (2.102) subject to the constraint of con-

servation of Ea (the qubit energy eigenvalues), ∂H
∂fa

= 0, we find the Fermi-Dirac equilibrium

occupation probability:

f eq

a =
1

1
γa
eβEa + 1

=
1

eβ(Ea+∆Ea) + 1
. (2.103)

Traditional computational physics models obey the first law of thermodynamics (conser-

vation law) and neglect the second law. We have pioneered algorithms that also obey

the second law of thermodynamics by using an entropy function [Boghosian et al., 2003,

Boghosian et al., 2004b]. For type-II quantum algorithms, the mesoscopic H function is

determined by averaging the microscopic dynamics.

A simple unitary transformation Ĉ, applied homogeneously to all the quantum nodes,

causes short-range entanglement that is relatively short-lived. The transformation is close to

the naturally occurring one that couples the quantum objects embodying the qubits in the

quantum computer, for example generated by an nuclear magnetic resonance Hamiltonian
1
2

∑B
i=1

∑B
j=1 Jijσ̂ziσ̂zj, where Jij is the energy of the spin-spin coupling between the ith and

jth spins, and B is the number of qubits per quantum node. For this reason, the unitary

transformation obeys all physical conservation laws, conserving the total spin for example.

The engineering needed to employ such a unitary transformation is manageable and is limited

only by the number of J-coupling resonances that are experimentally accessible.

In the type-II quantum algorithmic procedure, entanglement once generated is promptly

destroyed by measurement. At the node-level, we exploit the inherent nonlinearity that

naturally occurs during wave function collapse and map this nonlinearity onto some nonlinear

function to perform beneficial computational work. Following the measurement step, all the

qubits are in a classical state. The resulting measurements can be accumulated, either by

coarse-grain averaging or ensemble averaging over a sample. Probabilities are estimated
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by frequency of occurrence: counting the number of 1’s in the sample and dividing by the

sample size.

The spin system’s quantum state is always factored into a tensor product state over the

nodes of the lattice

|Ψ(~x1, . . . , ~xL; t)〉 = |ψ(~x1, t)〉 ⊗ |ψ(~x2, t)〉 ⊗ · · · ⊗ |ψ(~xL, t)〉. (2.104)

With B qubits per lattice node, the on-site ket |ψ(~x, t)〉 resides in a Hilbert space of size

2B×2B. The outcome of a computation is determined by measuring the probability of qubit

occupancies on all nodes of the array using either an ensemble or coarse-grain averaging

technique. That is, the probability of occupancy of a qubit |q〉 located at coordinate ~x and

corresponding to lattice vector ~v is determined by computing the following trace

f(~x,~v, t) = Tr [|Ψ(~x1, . . . , ~xL; t)〉〈Ψ(~x1, . . . , ~xL; t)|n̂q] , (2.105)

where n̂q is the number operator associated with qubit |q〉 at position ~x encoding a particle

moving with velocity ~v.

In a factorized quantum lattice gas, the quantum algorithm is also expressed in a form

like (2.98), but with two intermediate states |Ψ′〉 and |Ψ′′〉

|Ψ′〉 = Ĉ|Ψ(~x1, . . . , ~xL; t)〉 (2.106a)

|Ψ′′〉 = Γ̂|Ψ′〉 (2.106b)

|Ψ(~x1, . . . , ~xL; t+ τ)〉 = Ŝ|Ψ′′〉. (2.106c)

The additional operation, denoted by Γ̂, is required to control the system wave function

so that it remains a tensor product over the on-site submanifolds after application of the

streaming operator Ŝ. The operator Γ̂ is a projection operator and is applied homogeneously

across the nodes of the lattice and acts on all the qubits at each node. Therefore, it can be

expressed as a tensor product, Γ̂ =
⊗L

x=1 Γ̂x. That is, Γ̂x acts on the on-site ket |ψ′(~x, t)〉
independently. It corresponds to state reduction, such as a measurement of the occupancy

probabilities of each qubit as specified in (2.105), and causes a collapse of the system wave

function and hence is non-unitary

|ψ′′(~x, t)〉 = Γ̂x|ψ′(~x, t)〉 =
B⊗
a=1

|qa〉. (2.107)

The state reduction or measurement procedure specified by the application of Γ̂ keeps all

the occupancy probabilities conserved, keeps each on-site ket (and in turn, the system wave
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function) unit normal, and in the context of the lattice-gas method obeys the principle of

detailed-balance. That is, after the application of Γ̂, we require that

f ′′(~x,~v, t) = f ′(~x,~v, t), (2.108)

for all ~x and ~v. The mesoscopic description in Section 7 of a locally phase-coherent quantum

lattice has a nontrivial projection operator consistent with (2.105) that both satisfies the

requirement given by (2.108) and the requirement of the principle of detailed-balance.

The repeated state reduction or measurement procedure specified by the application of

the projection operator Γ̂ during each time step evolution of the quantum computer wave

function is a distinguishing characteristic of a type-II quantum computer. This step prevents

uncontrolled bit-flip and phase errors for all the qubits in the system.
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Chapter 3

Introduction to Type I analog
quantum computing

A type I analog quantum computer is used to model one or more quantum particles gov-

erned by a quantum mechanical wave equation, such as the Schroedinger equation, Weyl

equation, or Dirac equation. We say the quantum computer preforms analog computation

because it relies on one physical quantum mechanical system (a quantum spin system with

an inherent physical interaction Hamiltonian) to model another physical quantum mechani-

cal system (a quantum system with a modeled many-body interaction Hamiltonian). Each

qubit contained within the quantum computer is embodied by a fermionic spin-1
2

particle,

or some other mathematically equivalent two-level quantum system. Every logical opera-

tion between qubit pairs is embodied by an interaction Hamiltonian describing the spin-spin

coupling. For example, in nuclear magnetic resonance there exists a direct vector dipolar

coupling of the magnetic dipoles associated with the two spins that averages to zero because

of the molecular free rotation, and there also exists an indirect scalar coupling mediated

by correlated electrons binding the molecule together between the measurable components

of the two spins. Quantum logical operations are embodied in the scalar coupling mecha-

nism, or some other mathematically equivalent two-qubit coupling mechanism appropriate

to the particular experimental realization. The form of the scalar coupling Hamiltonian

can be effectively altered by applying appropriately timed spin rotations using externally

applied electromagnetic pulses, whose frequency, strength, polarization, and pulse duration

depend on the particular experimental realization, so that the natural coupling along with

the program of externally applied pulses together cause the desired quantum logic operation

between qubit-pairs.

Since the quantum spin system is lattice based, its representation is naturally spatially

discrete. In contrast, the modeled quantum particle system’s wave function may be spatially

continuous. Therefore, the quantum spins can only be used to approximately describe the
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modeled quantum particle’s wave function and I provide an overview of how this is done.

3.1 Reversible quantum lattice gas algorithms

A characteristic feature of all quantum algorithms used to model the dynamical behavior of a

system of either relativistic or non-relativistic quantum particles is that a spatially continuous

wave function must be approximated using a numerical grid with finite resolution. From

the point-of-view of the modeler, there exists a small numerical “sub-scale” where unitary

dynamical rules are locally applied in a discretized fashion and time advances forward in

incremental units in a “programmed” way. Furthermore, this sub-scale is below the physical

microscopic scale of the modeled quantum mechanical system.

Let me first describe how a one-body quantum particle governed by either the Schroedinger

equation or Dirac equation is modeled. The basic approach is to use a customized quantum

spin system (an externally controlled array of qubits as described above) to encode the quan-

tum wave function of the modeled quantum system as well as its time-dependent behavior.

At the small sub-scale (characterized by the lattice cell size) one imagines a sub-system of

fermionic spins, each one of which encodes the possible presence of the modeled quantum

particle at the location of that spin. That is, each of the fermionic spins encodes the local

spatial occupancy, with a certain probability amplitude, of the modeled quantum particle at

a specific lattice node where the spin is located.

The probability of finding the modeled quantum particle at the location of the spin is

set equal to the probability that the spin is in its excited state, say spin-up. All the possible

locations of the actual physical quantum particle are effectively modeled by the interfering

set of probability amplitudes associated with this sub-system of fermionic spins. All these

probability amplitudes, considered as an ordered finite set of complex numbers, constitute

a discrete amplitude field. We use a discrete two-component amplitude field to model a

wave function governed by the Schroedinger equation and we use a discrete four-component

amplitude field to model a wave function governed by the Dirac equation. That is, on a type

I analog quantum computer, two qubits are used per lattice node to model the Schroedinger

equation and four qubits are used per lattice node to model the Dirac equation.

Perhaps the most remarkable characteristic of the quantum algorithm to model a many-

body system of quantum particles governed by a set of coupled quantum wave equations is

that we use the same protocol for local collisions and local translations that we use in the

quantum algorithm to model the dynamical behavior of the one-body problem governed by

either the Schrodinger equation or Dirac equation. Therefore, the computational overhead

associated with the action of the unitary operators is fixed for both the one-body and many-
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body cases. What differs is the number of configurations of the respective sub-system of

fermionic spins that must be dealt with in the numerical simulation.

Through the combined actions of the unitary collision and translation operators, all the

quantum mechanical pathways of the possible motions of the modeled quantum particles are

numerically treated in simultaneous fashion. The numerical model can be viewed as a kind

of kinetic system of locally interacting spins on the small sub-scale. There also exists a large

“super-scale,” which corresponds to the long wavelength limit of the dynamical modes in the

discrete spin system. This numerical super-scale is equivalent to the physical microscopic

scale where the many-body wave function of the modeled quantum mechanical system in

question is well defined. Its continuous wave function is accurately approximated as one

approaches the continuum limit where the grid resolution of the spatial lattice becomes

infinite (the lattice cell size approaches zero). At this super-scale, the dynamical amplitude

field is both continuous and differentiable in space and time 1.

At this super-scale, one can characterize the behavior of the quantum algorithm by

an emergent effective field theory, cast as a partial differential equation of infinite order,

for the dynamical amplitude field. Only the low-order time and space partial derivatives

are numerically relevant and all the higher order partial derivatives are considered error

terms. The lower order terms are equivalent to either the Schroedinger equation or the

Dirac equation, depending on the construction. The physical wave function of the modeled

quantum mechanical system and its dynamical behavior accurately obeys the appropriate

physical quantum mechanical equations of motion in this sense. The quantum algorithm

must have a sufficiently high degree of numerical convergence. To be a practical and useful

algorithm, it must have at least second-order convergence which means that decreasing the

grid cell size by a factor of two causes the numerical error inherent in the algorithm to

decrease by a factor of four.

In summary, we model the evolution of the physical wave function by the collective

motion of an engineered kinetic system of quantum spins. We expect that there exists a

local equilibrium configuration of spins at each node of the numerical lattice. We require

that this configuration be an eigenket, with unity eigenvalue, of the local unitary collision

operator.

For classical many-body kinetic systems, there exists a global thermodynamic equilib-

rium which is a maximal entropy configuration. Classical kinetic systems relax towards

this thermodynamic equilibrium through dissipative processes where observable information

1 Another point regarding the
√

swap gate is that when measurements are periodically made of the state
of qubits in the system (this is done in the type II quantum algorithms described in Section 6), which destroys
quantum superpositions and entanglements in the system, the super-scale behavior of the quantum lattice
gas system is governed by the classical diffusion equation [Yepez, 2001b].
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embodied within spatial correlations is transferred through spin-spin interaction into non-

observable information embodied within spin-spin correlations. In the present case of our

numerical quantum many-body kinetic spin system, our quantum lattice gas system, more

than one global thermodynamic equilibrium exists, and this is to be expected because of

its unitary evolution. The global configuration of quantum spins does not relax to a single

steady-state equilibrium. Instead, there are many “steady-state configurations” that can

exist in superposition. Each one of these configurations corresponds to an energy eigenstate

of the modeled quantum mechanical equation of motion at the super-scale. If the quantum

lattice gas system is initialized in a configuration corresponding to any one of the energy

eigenstates, the super-scale spatial configuration of the system will remain fixed in time.

Given a finite size lattice used for modeling purposes, the quantum state of each sub-scale

configuration oscillates in time with a sinusoidal phase eiEt/h̄, where the energy eigenvalue

of the super-scale configuration is E.

The quantum lattice gas method is equivalent to the Feynman path integral method. This

is demonstrated in Section 4. The path integral is accurately recast as a kinetic dynamical

process and efficiently computed in parallel on a space-time lattice arrangement of quantum

bits in the idealized analog quantum computer.

3.2 Difficulty of type I quantum computing

In principle, a quantum computer can efficiently simulate, with fixed computational over-

head, the behavior of another many-body quantum mechanical system where the number of

modeled quantum particles ranges from one to half the number of qubits in the quantum

computer. Of course, we have to qualify our claim for the efficiency of the quantum algorithm

by saying that this is the case only “in principle.” This may not be the case in practice; effi-

cient quantum computation to-date has not yet been experimentally realized and may never

be. Although quantum computers have a vast Hilbert space, individually controlling all

the amplitudes in this Hilbert space, which requires substantially mitigating an equally vast

array of uncontrolled sources of decoherences, may prove to be experimentally impractical

after all is said and done.

Yet, this review of the quantum lattice gas method is not meant to cover the experimental

details of implementing quantum computers or the experimental difficulty of achieving viable

quantum error correction. My goal is merely to explain the method in the simplest terms

I know of. I use well-known notions such as those regarding numerical finite-difference

schemes, the statistical behavior of many-body kinetic systems, and the Feynman path

integral representation of quantum mechanics.
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3.3 The historical development of type I quantum lattice-

gas algorithms

The inventor the quantum logic gate was the famous American physicist Richard Feynman

[Feynman, 1982, Feynman, 1985, Hey and Allen, 1996], who won the Nobel prize in 1965 for

his elegant quantum theory of light and matter called quantum electrodynamics.

The path integral representation of non-relativistic quantum particle dynamics was in-

troduced by Feynman in the mid 1940’s. In 1958, Riazanov extended the Feynman path

integral formulation to handle the relativistic quantum particle dynamics described by the

Dirac equation [Riazanov, 1958]. Although he did not state it in these terms, Riazanov

was the first to discover a quantum algorithm to represent quantum particle dynamics on

a discrete space-time grid, which is a crucial step in the formulation of a methodology

suited for our numerical implementation. As it turns out, the efficiency of the numeri-

cal implementation depends on the existence of a type I analog quantum computer, not

proposed until 1982 by Feynman himself, when Feynman conceived of the idea of using

a many-body quantum mechanical spin system, a new type of computer which he called a

quantum computer, to efficiently simulate general quantum mechanical many-body dynamics

[Feynman, 1982, Feynman, 1985, Hey and Allen, 1996].

For quite some time Feynman had been aware of Riazanov’s result, a form of which

Feynman published in 1965, although at that time he did not refer to it as a quantum

algorithm as such. It appears in the second chapter of his book on path integrals published

with Hibbs [Feynman and Hibbs, 1965], where the problem is given to prove that the one-

dimensional (1D) Dirac equation can be modeled by summing over all the possible zigzag

paths of a single-speed particle traveling at the speed of light in a discrete two-dimensional

space-time hopping from lattice site to lattice site, turning left or right. The amplitude a

particular path contributes to the kernel is proportional to the number of its turns or bends,

where each bend contributes a multiplicative factor of iεm to the probability amplitude

associated with the path, where ε is the grid size of the space-time lattice and m the mass

of the modeled quantum particle. In this way, the time evolution of the 2-spinor field

of a single quantum particle is modeled by a summation over paths on a discrete space-

time. A continuous effective field theory, the 1D Dirac equation, emerges in the limit of the

infinite lattice resolution. A solution to Feynman’s relativistic 1D problem was published in

1984 by Jacobson and Schulman [Jacobson and Schulman, 1984] which shows a remarkable

correspondence between the formulation of the discrete path integral representation and the

statistical mechanics formulation of an Ising spin system. Jacobson and Schulman were close

to discovering the connection between the discrete path integral and the type of quantum
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the mesoscopic kinetic Boltzmann equation through the Chapman-Enskog expansion.

Succi published a series of papers on this subject emphasing the analogy between quan-

tum mechanics and fluid mechanics: the connection between the Dirac equation and the

Schroedinger equation to that between the kinetic Boltzmann equation and the Navier-

Stokes equation of hydrodynamics [Succi and Benzi, 1993, Succi, 1996, Succi, 1998]. Succi’s

quantum lattice gas model on a cubic lattice for the 3D Dirac equation has, at the “ki-

netic” level, the particles undergoing mixing during free propagation and is again similar

to Bialynicki-Birula’s model. Succi discusses the many-body case, but his algorithm runs

into an “exponential complexity wall” [Succi, 2002] because it is implemented as a one-body

system at the middle-scale.

Boghosian and Taylor followed an approach along the lines of Meyer’s approach in that

their model is developed as a generalization of the classical lattice gas method. A quantum

spin system, now formuated directly at the “sub-scale,” again leds to the Schroedinger

wave equation at the “super-scale” in the continuum limit. The Boghosian and Taylor

quantum lattice gas model focuses on solving the many-body Schroedinger wave equation

with an arbitrary scalar potential in an arbitrary number of spatial dimensions. They argue

that an exponential numerical speedup arises from simulation in the many-body sector of

the full Hilbert space carried out simultaneously using quantum superposition of states.

The Boghosian and Taylor version of the quantum algorithm is cast explicitly for direct

implementation using an array of quantum bits [Boghosian and IV, 1998b].

Polley has presented an argument for inserting both an external scalar and vector po-

tential into a quantum lattice-gas model by analytically demonstrating the discrete model’s

invariance with respect to a general local gauge transformation [Polley, 2000].

Zalka proposed an efficient quantum algorithm to model the Schroedinger wave equation

with an external scalar potential [Zalka, 1996]. A periodic wave function is mapped onto the

numbered basis states of the full Hilbert space of the quantum computer. The numerous

Hilbert space dimensions are mapped onto the many coordinates of a quantum system of one

spatial dimension. A deficiency of Zalka’s approach is that it does not offer a way to measure

the time-dependent behavior of the modeled quantum system, because upon observation of

the l-bit quantum register, the 2l number of amplitudes associated with the modeled wave

function’s values at each spatial coordinate collapse into only l classical bits.

The quantum algorithm in Section 4.4 for the relativistic Dirac equation is suited to direct

implementation on a quantum computer using only two-qubit quantum gates and efficiently

handles the many-body problem. To encode the relativistic wave function, which is a spinor

field, four qubits per spatial coordinate are required. For pedagoical purposes, one can con-

sider the simplest quantum lattice-gas algorithm on a cubic lattice. There exists an improved
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version that remedies two difficiencies: the checkerboard problem of non-interacting sublat-

tices and the low-order convergence. The non-relativistic case for modeling the Schroedinger

equation is presented in Section 5.

The quantum algorithm can handle the many-body case in a second-quantized repre-

sentation without any additional computational overhead. Therefore, this is an efficient

quantum algorithm for the many-body three-dimensional Dirac equation. Its computational

complexity is dominantly linear in the number of qubits used to spatially resolve the 4-spinor

wave function. With Q-number of qubits, the number of quantum gate operations needed

to model a one-body quantum system is ∼ αQ, where α is a fixed constant. The efficiency

of type I analog computing derives from the fact that exactly same the number of quantum

gate operations are needed to model a many-body quantum system, for up to 2Q particles.

We can “upgrade” the quantum lattice-gas algorithm for the Schroedinger equation us-

ing the external scalar potential as a modeling device: one considers the scalar potential

to be a time-dependent dynamical quantity where the spatial dependence of this scalar po-

tential is determined by the value of the modeled wave function. With this scheme, the

resulting effective field theory accurately approximates the nonlinear Schroedinger equa-

tion [Vahala et al., 2003b]. The “external” scalar potential is an intrinsically determined

spacetime-dependent quantity, proportional to the probability of particle occupation, the

modulus squared of the wave function. The numerical solution to the nonlinear Schroedinger

equation has the form of a hyperbolic secant function, which agrees with the analytical so-

lution of the integrable equation of motion.

It is possible to go further and model soliton behavior governed by the Kortweg de

Vries equation [Vahala et al., 2003b]. Here the “convective” term ψ∂xψ is modeled using a

scalar potential that depends on the spatial gradient of the wave function, which causes the

governing effective field theory be a nonlinear one yet again. In the Kortweg de Vies, there

is no second-order spatial derivative; instead, there is a third-order spatial derivative. This

allows for time-reversibility and is therefore amenable to modeling with a unitary quantum

algorithm. By cleverly modifying the particle streaming protocol, it is possible to model a

cubic spatial term instead of the usual quadratic term.

We have generalized the quantum algorithm approach to handle vector solitons. We can

accurately model the collisional dynamics of the solitons, where the effective field theory

of the system is a coupled set of nonlinear Schroedinger equations, known as the Manakov

equations and is in general nonintegrable [Vahala et al., 2003a]. Two Schroedinger equations

can be straightforwardly coupled in a nonlinear way by having the scalar potential of one

wave equation depend not only on the value of its own wave function but also on the value

of the wave function of the other wave equation, and vice versa. This coupling scheme can
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accurately capture the behavior and interaction of two distinct optical pulses, orthogonally

polarized to one and another for example, traveling in a birefringent optical fiber. This

approach allows us to handle the case of the Manakov system with inelastic soliton collisions

[Vahala et al., 2004a].
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Chapter 4

The Dirac equation

4.1 Introduction

Finding a simple rule to represent the spacetime quantum mechanical dynamics of a system

of Dirac particles in 1+1 dimensions as a discrete path integral, or more accurately as a

path summation, is known as the Feynman chessboard problem [Feynman and Hibbs, 1965].

In Feynman’s notes we see that he first solved this problem in 1946 [Feynman, 1946]. A

proof by Jacobson and Schulman of Feynman’s solution to this chessboard problem relies

on a deep isomorphism between the discrete path integral and the partition function in

statistical mechanics of an Ising spin system with nearest-neighbor spin-spin interaction

[Jacobson and Schulman, 1984]. The 1+1 dimensional chessboard is a square spacetime lat-

tice with grid sizes ∆z and ∆t. Feynman’s solution is the following: the probability ampli-

tude for a free massive Dirac particle to go from one lattice site to another is represented by

summing over all the possible zigzag pathways a particle may travel with velocity ±∆z/∆t,

hopping ±∆z from lattice site to lattice site, continuing forward or reversing direction at

each time step ∆t. The probability amplitude a particular path contributes to the kernel

depends on the number of reversals, or bends, where each bend contributes a multiplicative

factor of imc
2∆t
h̄

to the overall probability amplitude associated with the path and where m

is the particle mass.

Employing just this rule, the relativistic quantum mechanical evolution is correctly em-

ulated. The Dirac Hamiltonian in 1+1 dimensions is recovered in the continuum limit as

the grid resolution becomes infinite: ∆z → 0 and ∆t→ 0 where the limit is taken such that

the ratio ∆z/∆t remains constant, which is interpreted as the speed of light c. The Dirac

equation of motion in 1+1 dimensions for a 2-spinor field emerges as the effective field theory

in the long wavelength limit. A solution to the chessboard problem is given in Section 4.2,

employing the isomorphism between the path summation and the partition function, but

also employing the stream and collide paradigm used in quantum lattice gases to further
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simplify matters.

Feynman attempted to find a simple solution to the chessboard problem in 3+1 di-

mensions, but had no success. Jacobson presented a solution, but his model is unsettling,

if not unphysical, because the Dirac particle locally moves faster than the speed of light

[Jacobson, 1984]. Furthermore, Jacobson’s solution is complicated because it is implemented

on a kind of random spacetime lattice and, hence, is neither useful for numerical simulation

purposes nor quantum computation. Here we consider a simple solution for 3+1 dimensions

where the Dirac particle locally moves at the speed of light and where the solution is directly

suited for numerical simulation and quantum computation.

The full problem, checkered in four dimensions instead of on the plane, is the following:

Using a spatial body-centered cubic Bravais lattice, show that the probability amplitude for

a free massive Dirac particle to go from one lattice site to another, by moving independently

and simultaneously along the orthogonal cubic lattice directions with velocity ±∆x/∆t,

±∆y/∆t, and ±∆z/∆t, is equal to the sum of all possible pathways between those sites,

where the probability amplitude a particular path contributes to the kernel depends on the

number of reversals of motion, or bends, counted by projecting along the orthogonal x̂, ŷ,

and ẑ axes, where each bend contributes a multiplicative factor of imc
2∆t
Dh̄

to the overall

probability amplitude associated with the path, and where m is the particle mass and D = 3

is the number of spatial dimensions.

Presented in Section 4.3 is a solution that is a straightforward generalization of the 1+1

dimensional solution given in Section 4.2. The key is to designate the quantum mechanical

velocity vector of the Dirac particle in terms of the spin components sx = ±1, sy = ±1, and

sz = ±1 as follows:
c√
3

(sxx̂+ syŷ + sz ẑ). (4.1)

Locally there are only eight possible spin combinations, hence the choice of the body-centered

cubic lattice. All the spacetime translational degrees of freedom are specified in terms of the

spin variables. The relativistically invariant Dirac system is recovered in the continuum limit

as the grid resolution becomes infinite: ∆r → 0 and ∆t→ 0 where ∆r = ∆x = ∆y = ∆z and

where the limit is taken such that the ratio ∆r/∆t remains constant, which is interpreted as

the speed of light c. The Dirac Hamiltonian generating the unitary evolution for the 4-spinor

field of a relativistic particle emerges as the effective field theory in the long wavelength.

4.1.1 Relativistic path integral as a type-I quantum algorithm

The basic approach is to use an externally controlled array of qubits to encode the quantum

wave function of the modeled quantum system of Dirac particles and to use an engineered
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local Hamiltonian to emulate the Dirac Hamiltonian so as to approximate the subsequent

time-dependent behavior of the wave function on a spacetime lattice. Two qubits are used

per lattice node to model the Dirac equation in 1+1 and 2+1 dimensions and four qubits are

used per lattice node to model the Dirac equation in 3+1 dimensions. The 3 dimensional

spatial lattice is a body-centered cubic (bcc) lattice. The 3+1 dimensional spacetime lattice

is a hyper-bcc lattice.

The final result of the computation is obtained by measuring all Q qubits. To recover

the moduli squared of the modeled wave function, an ensemble measurement or repeated

measurement is required. The frequency of occurrence is associated with the moduli squared

of the wave function. Upon measurement, the probability of finding a “particle” at time t

at a lattice node at location ~x is equals the sum of the moduli squared of the excited-energy

eigenstate probability amplitudes of the qubits at that quantum node. This probability is

called an occupation probability.

The local Hamiltonian that emulates the Dirac Hamiltonian has a kinetic energy part

related to the motion of qubits and an on-site qubit-qubit interaction part. Both generate the

time-dependent dynamics of a discrete amplitude field. The local Hamiltonian is spatially

homogeneously applied to the lattice-based amplitude field independently on all the lattice

nodes. Each part of the Hamiltonian generates unitary evolution operators:

1. The on-site interaction, represented by a unitary operator C called the collision oper-

ator, emulates particle-particle “collisions.”

2. Site-to-site exchange, represented by a unitary operator S called the stream operator,

emulates local “translation” of particles between neighboring lattice sites.

The quantum mechanical local evolution equation is:

|ψ(~x, t+ ∆t)〉 = C S |ψ(~x, t)〉, (4.2)

where |ψ〉 is local value of the probability amplitude field and where S causes quantum

mechanical streaming. (4.2) is called a quantum lattice gas equation of motion and is derived

in Section 4.2.4 for the 1+1 dimensional case and in Section 4.3.4 for the 3+1 dimensional

case.

In the one particle case, (4.2) can rewritten as follows:

|ψ(~x, t+ ∆t)〉 = C
∑
~c∈ bcc

MS|ψ(~x− ~c, t)〉, (4.3)

where MS is a matrix that represents S on a local stencil of the body-centered cubic (bcc)

lattice and the sum is over the eight diagonal neighbors. Then with C represented by a

unitary matrix, (4.3) becomes a finite-difference representation of the Dirac equation.
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The first-order numerically convergent version of the quantum algorithm can be expressed

as a quantum lattice-gas evolution equation (4.2). In 3+1 dimensions, S moves each quan-

tum particle located at the lattice site ~x to 8 neighboring sites on the body-centered cubic

lattice, which on R.H.S. of (4.3) is notated ~x − ~c 1. S is quantum mechanical because a

particle moves to multiple locations at each time unit ∆t.

In Section 4.4, the unitary matrix representation of the stream and collide quantum

mechanical operators are given to specify quantum algorithms for numerically modeling a

system of relativistic Dirac particles. The quantum algorithms are distinguished by whether

they may handle one or many particles and by their numerical convergence properties. Sev-

eral quantum algorithms are presented in Section 4.4: one particle algorithms in Section 4.4.1

in the form of (4.3) and many particle algorithms in Section 4.4.2 in the form of (4.2) in

the second quantized representation using ladder operators. The structure of S depends on

the number of spatial dimensions of the modeled quantum mechanical system and it can be

altered to improve the numerical convergence properties of the quantum algorithm.

The quantum mechanical stream operator is rewritten in terms of a classical stream

operator, denoted S = SxSySz (not to be confused with the action). Each product component

operator of S moves a particle along an orthogonal cubic lattice direction. The following

identity relating the quantum stream operator to the classical stream operator is proved in

Section 4.4.1:

S = ei
π
4
σ

(2)
y Sxe

−iπ
4

(σ
(2)
y +σ

(2)
x )Sye

iπ
4
σ

(2)
x Sz. (4.4)

As a starting point, in Section 4.4.1, the simplest quantum lattice-gas algorithm on a bcc

lattice is treated. This quantum algorithm is a direct transcription of the path summation

in Section 4.3. However, this algorithm suffers two difficiencies: the checkboard problem of

non-interacting sublattices and only first-order numerical convergence. Therefore, next in

Section 4.4.1, an improved version of the quantum algorithm that remedies these deficiencies

is presented.

The simulation of many Dirac particles is treated in Section 4.4.2. This quantum algo-

rithm is naturally suited to implementation on a quantum computer using conservative quan-

tum gates. If implemented on this hypothethical quantum computer, it efficiently predicts

time-dependendent solutions of the four spinor Dirac field associated with the many-body

relativistic system in 3+1 dimensions.

As already mentioned in the overview Chapter 3, the quantum algorithm can handle

the many-body Dirac system in a second-quantized representation without any additional

computational overhead. The efficiency of the quantum algorithm for the many-body system

1Say the net motion is along ẑ-axis. Then a positive energy particle starting at (0, 0, 0) moves to the 4
sites (±∆x,±∆y,∆z) whereas a negative energy particle moves to (±∆x,±∆y,−∆z).
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of Dirac particles in 3+1 dimensions is discussed again in Section 4.1. The kind of exponential

speedup is just like that previously shown to occur in quantum lattice-gas algorithms for

modeling a many-body system of non-relativistic particles [Boghosian and IV, 1998a].

4.2 1+1 dimensions

4.2.1 Feynman path integral representation of non-relativistic quan-
tum mechanics

The probability amplitude that a quantum particle at position za at time ta will transfer to

a new position zb and time tb is given by the following path integral:

K(zata; zbtb) =

∫
D[z(t)]ei

S[z(t)]
h̄ , (4.5)

where
∫
D[z(t)] denotes integration over all trajectories z(t) for which z(ta) = za and z(tb) =

zb, and where the increase of the action

S =

∫ tb

ta

dtL[ż(t), z(t)], (4.6)

along a trajectory z(t) is determined using the classical Lagrangian L.

4.2.2 Path summation representation of relativistic quantum me-
chanics

- zza zb

6

t

ta

tb

r��r r@@@ rr��
�r r r r@@ rr��
�
��

r r r r r r r

Figure 4.1: Example trajectory of a massive relativistic particle starting at location za at time ta and
ending at zb at time tb. The total number of steps is N = 17, so the elapsed time is t = 17∆t. The number
of steps to the right minus the number to the left is M = 7, so the net distance traversed is z = 7∆z. The
relativistic particle moves at the speed of light c ≡ ∆z/∆t. The number of bends is R = 4.
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Feynman [Feynman and Hibbs, 1965] found a discrete representation of the Feynman

path integral principle on a square spacetime lattice to compute (4.5) for a relativistic quan-

tum particle:

Kαβ(zata; zbtb) = lim
N→∞

∑
R≥0

Φαβ(R)

(
i∆t

mc2

h̄

)R
, (4.7)

where ∆t ≡ tb−ta
N

, where α and β are the ± components of the spinor amplitude field (spin-up

or spin-down), Φαβ(R) is the number of paths with N steps and R bends, where the length

of each step is ∆z ≡ zb−za
M
≡ c∆t, where c is the speed of light, and where m is the mass of

the quantum particle. An example relativistic trajectory with 4 bends along ẑ is depicted

in Figure 4.1.

Figure 4.2: Example problem in 1+1 dimensions with N = 8 and M = 2. (Top) Allowable rectangular
region of the square lattice within the light cone, with sides of length Q = dN+M

2 e = 5 and P = bN−M2 c = 3.
(Bottom) Enumeration of all possible paths, the 56 permutations of the set (1, 1, 1, 1, 1,−1,−1,−1).

The allowable region of the lattice is bounded by the intersection of two light cones, with

boundaries z = ±c(t− ta) + za and z = ±c(t− tb) + zb for ta ≤ t ≤ tb and za ≤ z ≤ zb. One

light cone originates at the spacetime point (za, ta) and an inverted light zone terminates at

(zb, tb), see Figure 4.2. With zb − za = M∆z and tb − ta = N∆t, the edges of the allowable

rectangular region are given by P ≡ bN−M
2
c and Q ≡ dN+M

2
e, for N ≥ M ≥ 0. Hence, the
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paths are the permutations of the set with N = P +Q members ±1:

( 1, 1, . . . , 1︸ ︷︷ ︸
Q number of 1’s

−1,−1, · · · ,−1︸ ︷︷ ︸
P number of -1’s

). (4.8)

The number of permutations is the binomial coefficient:

number of paths =

(
P +Q
P

)
=

(
P +Q
Q

)
. (4.9)

4.2.3 Spin system representation
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Figure 4.3: (a) Spin representation of the trajectory of a massive relativistic particle starting at time ta
and ending at time tb for N = 7 and M = 17. (b) Quantum lattice-gas representation of the same trajectory
where the particle is stream-plus (or “spin-up”) as it moves to the right and stream-minus (or “spin-down”)
as it moves to the left. Pre-collision spin orientations are shown.

Because the summation (4.7) occurs on a discrete spacetime lattice, in 1+1 dimensions

it is possible to enumerate all the paths originating at point a and ending at point b using

N + 1 spin variables si, for i = 0, 1, 2, . . . , N . This is depicted in Figure 4.3a for the example

relativistic trajectory. Identifying α with s0 and β with sN , the summation (4.7) is equivalent

to:

Ks0sN (zata; zbtb) =
∑

{s1,...,sN−1}|M

(
i∆t

mc2

h̄

)R
, (4.10)

where the set {s0, . . . , sN} specifies a discrete trajectory with a path length constrained by

the condition
N∑
i=0

si =
zb − za

∆z
. (4.11)
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Since the starting and ending points s0 andsN are fixed, they do not appear in the sum on

the R.H.S. of (4.10), and the condition (4.11) is equivalent to fixing the spin magnetization

M =
∑

i si of a system of N + 1 spins.

At the ith step, the particle continues to move straight when si = si+1, and it changes

direction when si = −si+1. As the particle moves (or streams) to the right its spin orientation

is “spin-up” and as it moves to the left it is “spin-down,” as shown in Figure 4.3b. Therefore,

the following binary value counts the occurrence of a bend at the ith step:

1

2
(1− sisi+1) =

{
0, no bend
1, bend.

(4.12)

Hence, the following sum counts the total number of bends in a path:

R =
1

2

N−1∑
i=0

(1− sisi+1). (4.13)

With a change of variables

ν ≡ −1

2
log

(
i∆t

mc2

h̄

)
, (4.14)

(4.10) can be written as the partition function of an ensemble of spins with nearest neighbor

coupling and with fixed total magnetization

Ks0sN =
∑

{s1,...,sN−1}

δ

(
M,
∑
i

si

)
e−ν

PN−1
i=0 (1−sisi+1), (4.15)

where the Kronecker delta δ(a, b) = 1 for a = b and δ(a, b) = 0 for a 6= b. We may write the

Kronecker delta as follows:

δ

(
M,

N∑
i=0

si

)
=

1

2N

N−1∑
n=−N

ei
2πn
N (M−

P
i si), (4.16)

since M and
∑N

i=0 si are integers. Then inserting (4.16) into (4.15) gives

Ks0sN =
1

2N

N−1∑
n=−N

ei(
2πn
N )M

∑
{s1,...,sN−1}

e−i(
2πn
N )

PN
i=0 si−ν

PN−1
i=0 (1−sisi+1). (4.17)

Now since
∑N

i=0 si = 1
2
(s0 + sN) + 1

2

∑N−1
i=0 (si + si+1), we pull down the summation in the

argument of the exponential to form the following product:

Ks0sN =
1

2N

N−1∑
n=−N

ei(
2πn
N )Me−iπ(

n
N )(s0+sN )

∑
{s1,...,sN−1}

N−1∏
i=0

e−iπ(
n
N )(si+si+1)−ν(1−sisi+1). (4.18)
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The components of a unitary transfer matrix U are defined as

Usi,si+1
≡ e−ν(1−sisi+1)−iπ( nN )(si+si+1), (4.19)

so that (4.18) becomes

Ks0sN =
1

2N

N−1∑
n=−N

ei(
2πn
N )Me−iπ(

n
N )(s0+sN )Zs0sN , (4.20)

where we have defined

Zs0sN ≡
∑
s1=±1

· · ·
∑

sN−1=±1

Us0,s1Us1,s2 · · ·UsN−1,sN . (4.21)

The matrix form of (4.19) is

U =

(
U1,1 U−1,1

U1,−1 U−1,−1

)
=

(
e−i2πn/N e−2ν

e−2ν ei2πn/N

)
(4.22)

and so (4.21) becomes simply an N − 1 fold matrix multiplication of U :

Z =

(
Z1,1 Z−1,1

Z1,−1 Z−1,−1

)
=

(
e−i2πn/N e−2ν

e−2ν ei2πn/N

)N
. (4.23)

4.2.4 Quantum lattice gas representation

To simplify (4.20), we acknowledge the discrete nature of the spacetime lattice by using the

following variable transformations:

2πn

N
=
pn∆z

h̄
z = zb − za = ∆zM t = tb − ta = ∆tN, (4.24)

where pn is the discrete momentum. From (4.14), the off-diagonal components of (4.22) are

e−2ν = i∆t mc
2

h̄
, and the transfer matrix (4.22) becomes

U =

(
1− ipn∆z

h̄
+O(∆z2) i∆t mc

2

h̄

i∆t mc
2

h̄
1 + ipn∆z

h̄
+O(∆z2)

)
. (4.25)

Our basic approach to formulate the space-time translation degrees of freedom in terms of

the spin variables is to partition (4.25) into a product of a temporal matrix and a spatial

matrix

U = C S , (4.26)
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where the temporal matrix is called the collision matrix

C = eiσx
mc2∆t
h̄ (4.27a)

=

 cos
(
mc2∆t
h̄

)
i sin

(
mc2∆t
h̄

)
i sin

(
mc2∆t
h̄

)
cos
(
mc2∆t
h̄

) (4.27b)

=

(
1 i∆t mc

2

h̄

i∆t mc
2

h̄
1

)
+O(∆t2) (4.27c)

and the spatial matrix is called the stream matrix

S = e−iσz
pn∆z
h̄ (4.28a)

=

(
e−i

pn∆z
h̄ 0

0 ei
pn∆z
h̄

)
(4.28b)

=

(
1− ipn∆z

h̄
0

0 1 + ipn∆z
h̄

)
+O(∆z2). (4.28c)

The decomposition of U given in (4.26) is a quantum lattice gas representation of the transfer

matrix. In this construction with ∆z = c∆t where the particles stream through space at a

fixed unit velocity equal to the speed of light, (4.23) becomes

Z = (C S )N (4.29a)

= ei(σxmc
2−σzpnc)N∆t/h̄ +O(∆t2). (4.29b)

Inserting (4.29b) into (4.20), the quantum lattice-gas kernel becomes

Ks0sN =
1

2N

N−1∑
n=−N

ei
pnz
h̄ e−

ipn∆z
2h̄

(s0+sN )
[
ei(σxmc

2−σzpnc)N∆t/h̄
]
s0sN

. (4.30)

As N approaches infinity in the continuum limit, we can neglect ∆z = c∆t compared with

t = N∆t (that is, N � c), so we have

Ks0sN =
1

2N

N−1∑
n=−N

ei
pnz
h̄

[
ei(σxmc

2−σzpnc)N∆t/h̄
]
s0sN

. (4.31)

In the continuum limit, the summation goes over to an integral ( 1
N

∑
n →

dz
h

∫
dp) and so

we have

Kαβ(z, t) ≡ lim
N→∞

Ks0sN (4.32a)

=
dz

2h

∫ ∞
−∞

dp ei
pz
h̄

[
ei(σxmc

2−σzpc)t/h̄
]
αβ
. (4.32b)

Our result (4.32) is equivalent to the result found by Jacobson and Schulman [Jacobson and Schulman, 1984],

which is rederived in Appendix Section E. Our derivation, based on the quantum lattice gas

representation (4.26), is simpler. Furthermore, the quantum lattice gas representation allows

us to generalize the derivation to obtain the Dirac equation in 3+1 dimensions.
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4.3 3+1 dimensions

4.3.1 Feynman path integral representation of non-relativistic quan-
tum mechanics

The probability amplitude that a quantum particle at position ~ra = (xa, ya, za) at time ta will

transfer to a new position ~rb = (xb, yb, zb) at time tb is given by the following path integral:

K(~rata;~rbtb) =

∫
D[~r(t)]ei

S[~r(t)]
h̄ (4.33)

where
∫
D[~r(t)] denotes integration over all trajectories ~r(t) for which ~r(ta) = ~ra and ~r(tb) =

~rb, and where the increase of the action

S =

∫ tb

ta

dt L[~̇r(t), ~r(t)], (4.34)

along a trajectory ~r(t) is determined using the classical Lagrangian L. Equation (4.33) is a

solution of the quantum mechanical wave equation [Feynman, 1948].

4.3.2 Path summation representation of relativistic quantum me-
chanics

We introduce a discrete representation of the Feynman path integral principle on a body-

centered cubic spatial lattice with discrete time steps to compute (4.33) for a relativistic

quantum particle:

K~α~β(~rata;~rbtb) = lim
N→∞

D∏
w=1

∑
Rw≥0

Φ~α~β(Rw)

(
i
mc2∆t

Dh̄

)Rw
, (4.35)

where ∆t ≡ tb−ta
N

, where ~α and ~β represented by initial and final spin vectors of the form

(sx, sy, sz) =(±1, ±1, ±1), where K~α~β is the kernel of a 4-spinor amplitude field, where the

length of each step is ∆r ≡ c∆t, where c is the speed of light, where m is the mass of the

quantum particle, where Rw is the number of bends in a path counted by projecting the path

along the ŵ axis, and where Φ~α~β(Rw) is the number of allowable paths with Rw bends and

N steps along the ŵ axis, and where D is the number of spatial dimensions. The separation

distance between the starting and ending points is:

~rb − ~ra = r̂
√

(xb − xa)2 + (yb − ya)2 + (zb − za)2. (4.36)

An example three dimensional relativistic trajectory with 3 bends along x̂ and ŷ, and 2 bends

along ẑ is depicted in Figure 4.4 where a bend occurs when the particle changes its direction

of motion along any axis. Equation (4.35) reduces to the Feynman chessboard formula (4.7)

when D = 1.

69



-2

-1

0

1

-1 0
1

2
3

0

2

4

6

8

-2

-1

0

1

0
1

2
3

0

2

4

( -1, 1, 1)
( -1, 1, 1)

( 1, 1, 1)
( 1, -1, 1)

( 1, -1, 1)
( -1, -1, 1)

( -1, -1, -1)
( -1, 1, 1)

( 1, 1, 1)
( 1, 1, 1)

( 1, -1, 1)

0

1

2 3

4

5

6
7

8
9

10

t=0 t=1t=2 t=3 t=4 t=5
t=6 t=7

t=8
t=9 t=10

(a)

(b)

y

z

x

Figure 4.4: (a) Spin representation of the trajectory of a massive relativistic particle. The components of
each spin vector are shown. (b) Quantum lattice-gas representation of an example trajectory of a relativistic
particle (solid lines). The coordinate system is chosen so that the final displacement (dashed line) is along the
ẑ-axis direction: the particle starts at location ~ra = ~0 at time ta = 0 (labeled “0”) and ends at ~rb = (8∆z)ẑ
at time tb = 10∆t (labeled “10”). The total number of steps is N = 10. There are 3 bends along x̂ at t = 2,
t = 5, and t = 8; 3 bends along ŷ at t = 3, t = 7, and t = 10; and 2 bends along ẑ at t = 6∆t and t = 7∆t.
The particle moves at the speed of light c = ∆r/∆t along three cubic lattice directions simultaneously. The
spin at each step specifies the direction of motion for that step. Post-collision spin orientations are shown.
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4.3.3 Spin system representation

(1,1,1)
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(1,-1,-1)

y

x

z

(0,0,0)

Figure 4.5: Lattice diagonal directions for a body-centered cubic spatial lattice for a quantum particle
starting at the origin ~ra = (0, 0, 0).

With three spatial dimensions, it is possible to enumerate all the paths originating at point

~a and ending at point ~b using N + 1 spin variables ~sn = (sxn, syn, szn), for n = 0, 1, 2, . . . , N ,

and where swn = ±1 for w = x, y, z. There are eight distinct spin vectors, one for each

direction along a diagonal of the body centered cubic (bcc) lattice ~sn = (±1,±1,±1). This

is depicted in Figure 4.5. Note that ~sn is a discrete 3-vector whereas the spin vector ~σ =

(σx, σy, σz) is a 3-vector of 2×2 Pauli matrices. We shall see in the following exactly how and

why ~s and ~σ are related. The result is that a Dirac particle quantum mechanically moves

along a diagonal of the bcc lattice with its spin vector ~σ “parallel” to its direction of motion

c~s, where D is the spatial dimension.

Identifying ~α with ~s0 and ~β with ~sN , the summation (4.35) is equivalent to:

K~s0~sN (~rata;~rbtb) =
∑

{~s1,...,~sN−1}| ~M

(
i
mc2∆t

Dh̄

)R
, (4.37)

where R =
∑D

w=1 Rw, where Rw is a bend along the ŵ direction, and where the set

{~s0, . . . , ~sN} specifies a discrete trajectory with a path length constrained by the condition

N∑
n=0

~sn =

(
xb − xa

∆x
,
yb − ya

∆y
,
zb − za

∆z

)
. (4.38)

Since the starting and ending points ~s0 and~sN are fixed, they do not appear in the sum on

the R.H.S. of (4.37), and the condition (4.38) is equivalent to fixing the spin magnetization
~M =

∑
n ~sn of a system of N + 1 spins.

At the nth step, the particle continues to move straight when ~sn · ~sn+1 = D, reverses

direction along on orthogonal axis when ~sn·~sn+1 = 1, reverses directions along two orthogonal
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axes when ~sn · ~sn+1 = −1, and completely reverses (flips) direction when ~sn · ~sn+1 = −D.

The following sum counts the occurrence of a bend along the ŵ axis at the nth step:

1

2
[1− swnsw(n+1)] =

{
0, no bend along ŵ
1, bend along ŵ.

(4.39)

In turn, the following sum counts the total number of bends in a path between ~ra and ~rb:

R =
1

2

D∑
w=1

N−1∑
n=0

[1− swnsw(n+1)]. (4.40)

With a simple generalizational of the change of variables (4.14) used in the one-dimensional

case

ν ≡ −1

2
log

(
i
mc2∆t

Dh̄

)
, (4.41)

(4.37) can be written as the partition function of an ensemble of spins with nearest neighbor

coupling and with fixed total magnetization ~M = (Mx,My,Mz):

K~s0~sN =
∑

{~s1,...,~sN−1}

δ

(
~M,
∑
n

~sn

)
e−ν

PN−1
n=0 [D−~sn·~sn+1], (4.42)

where the Kronecker delta is:

δ

(
~M,

N∑
n=0

~sn

)
=

D∏
w=1

δ

(
Mw,

∑
n

swn

)
= δ

(
Mx,

∑
n

sxn

)
δ

(
My,

∑
n

syn

)
δ

(
Mz,

∑
n

szn

)
,

(4.43)

where

δ

(
Mx,

∑
n

sxn

)
=

1

2N

N−1∑
nx=−N

ei
2πnx
N (Mx−

P
n sxn) (4.44a)

δ

(
My,

∑
i

syn

)
=

1

2N

N−1∑
ny=−N

ei
2πny
N (My−

P
n syn) (4.44b)

δ

(
Mz,

∑
i

szn

)
=

1

2N

N−1∑
nz=−N

ei
2πnz
N (Mz−

P
n szn). (4.44c)

The total magnetization is related to the total displacement vector as follows:

~x ≡ (Mx∆x,My∆y,Mz∆z). (4.45)

Furthermore, the wave number is defined as follows:

~k~n ≡
2π

N

(
nx
∆x

,
ny
∆y

,
nz
∆z

)
. (4.46)
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Using (4.45) and (4.46), the Kronecker delta (4.43) becomes

δ

(
~M,

N∑
n=0

~sn

)
=

1

(2N)3

∑
~n=(nx,ny ,nz)

ei
~k~n·~x−i∆r

P
n
~k~n·~sn . (4.47)

Then inserting (4.47) into (4.42) gives

K~s0~sN =
1

(2N)3

∑
~n

ei
~k~n·~x

∑
{~s1,...,~sN−1}

e−i∆r
PN
n=0

~k~n·~sn−ν
PN−1
n=0 [D−~sn·~sn+1]. (4.48)

We can proceed from (4.48) using the identity
∑N

n=0 ~sn = 1
2
(~s0 + ~sN) + 1

2

∑N−1
n=0 (~sn + ~sn+1),

which allows us to pull down the summation in the argument of the exponential to form the

following product:

K~s0~sN =
1

(2N)3

∑
~n

ei
~k~n·~xe−

i
2

∆r~k~n·(~s0+~sN )
∑

{~s1,...,~sN−1}

N−1∏
n=0

e−
i
2

∆r~k~n·(~sn+~sn+1)−ν[D−~sn·~sn+1] (4.49a)

=
1

(2N)3

∑
~n

ei
~k~n·~xe−

i
2

∆r~k~n·(~s0+~sN )

D∏
w=1

∑
{sw1,...,sw(N−1)}

N−1∏
n=0

e−
i
2

∆rknw(swn+sw(n+1))−ν(1−swnsw(n+1)).

(4.49b)

As in the one-dimensional case, here again we use a unitary transfer matrix. The components

of the transfer matrix U for the cartesian axis ŵ are defined as

Uswn,sw(n+1)
≡ e−

i
2

∆rknw(swn+sw(n+1))−ν(1−swnsw(n+1)), (4.50)

then (4.49b) becomes

K~s0~sN =
1

(2N)3

∑
~n

ei
~k~n·~xe−

i
2

∆r~k~n·(~s0+~sN )Z~s0~sN , (4.51)

where we have defined

Z~s0~sN ≡
D∏
w=1

∑
{sw1,...,sw(N−1)}

Usw0,sw1Usw1,sw2 · · ·Usw(N−1),swN . (4.52)

The generic sum over all possible spin components in (4.52) can be rewritten explicitly as

N − 1 binary sums:

Z~s0~sN =
D∏
w=1

∑
sw1=±1

· · ·
∑

sw(N−1)=±1

Usw0,sw1Usw1,sw2 · · ·Usw(N−1),swN . (4.53)

The form of (4.53) suggests that we can write the transfer matrix (4.50) for the ŵ direction

as a 2× 2 matrix where the binary sums represent matrix multiplication, just as in the 1+1
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dimensional case. However, in accordance with the product
∏

w in (4.53), the sums over

the orthogonal cartesian axes ŵ directions must be kept independent. The only alternative

when enumerating the four spin components, swn = ±1 and sw(n+1) = ±1, is to introduce

D number of new token variables, say µw, to keep the directional sums independent of each

other. The kinetic term e
i
2

∆rknw(swn+sw(n+1)) in (4.50) contributes to only the diagonal (non-

reversal) components in (4.55) when swn = sw(n+1), and contributes 0 to the non-diagonal

(reversal) components when swn = −sw(n+1). For its diagonal contribution, we take the local

translation operator

e−
i
2

∆rkwn(swn+sw(n+1)) →


e−i∆rkwnµw swn = 1

sw(n+1) = 1,
ei∆rkwnµw swn = −1

sw(n+1) = −1.

(4.54)

The mass term e−ν(1−swnsw(n+1)) in (4.50) contributes 0 to the diagonal (non-reversal) com-

ponents in (4.55) when swn = sw(n+1) and contributes e−2ν to the non-diagonal (reversal)

components when swn = −sw(n+1). Hence, (4.50) is written in 2× 2 matrix form as follows:

Uw =

(
U1,1 U−1,1

U1,−1 U−1,−1

)
=

(
e−i∆rkwnµw e−2ν

e−2ν ei∆rkwnµw

)
. (4.55)

Notice we have no need to employ a token variable that depends on w for the off-diagonal

components of (4.55) since the term e−2ν for each ŵ direction contributes equally to the mass

of the Dirac particle. That is, since bends in the x̂, ŷ, or ẑ directions equally contribute to

the particle’s mass, all the e−2ν components in (4.51) may add together. So we can omit

using another token variable for the off-diagonal terms.

With (4.55), we see that (4.53) is simply an N − 1 fold matrix multiplication of U :

Z =

(
Z1,1 Z−1,1

Z1,−1 Z−1,−1

)
=

D∏
w=1

(
e−i∆rkwnµw e−2ν

e−2ν ei∆rkwnµw

)N
. (4.56)

At this point, we have not yet determined a specific form of the object µw. This will be

determined in the next section.

4.3.4 Fourier transform of the Dirac propagator

Just as we had previously in the one-dimensional case, we can rewrite (4.51) using momentum

variables. Along with (4.45) and (4.46), we have the following variable transformations:

pwn ≡ h̄kwn t = tb − ta = ∆tN. (4.57)
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From our change of variables (4.14), the off-diagonal components of (4.55) are e−2ν = i∆t mc
2

Dh̄
,

and the transfer matrix (4.55) becomes

Uw =

(
e−i∆r

pwnµw
h̄ i∆t mc

2

Dh̄

i∆t mc
2

Dh̄
ei∆r

pwnµw
h̄

)
(4.58a)

= e−iσzµwpwn∆r/h̄ + iσx
mc2

Dh̄
∆t, (4.58b)

where σx and σz are Pauli matrices.

As in the 1+1 dimensional case, our basic approach here is to represent the spacetime

translation degrees of freedom in terms of the spin variables by writing (4.58b) as a product

of a collision matrix and a stream matrix

Uw = e−iσzµwpwn∆r/h̄eiσx
mc2

Dh̄
∆t (4.59a)

= C Sw, (4.59b)

where in the 3+1 dimensional case we now have

C ≡ eiσx
mc2

Dh̄
∆t (4.60)

and

Sw ≡ e−iσzµwpwn∆r/h̄. (4.61)

Inserting (4.59) into (4.56), we have

Z =
D∏
w=1

(C Sw)N (4.62a)

=
D∏
w=1

e
− i
h̄

“
σzµwpwnc−σx mc

2

D

”
N∆t

. (4.62b)

Now with (4.57), we have

Z (t) =
D∏
w=1

e
− i
h̄

“
σzµwpwnc−σx mc

2

D

”
t
. (4.63)

We impose a physical constraint on Z (t) in (4.63) that the quantum mechanical propagation

of a Dirac particle be factorable in time as follows:

Z (t1 + t2) = Z (t2)Z (t1). (4.64)
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Let us square the propagator by choosing t1 = t and t2 = t so by inserting (4.63) into (4.64)

we have

D∏
w=1

e
− i
h̄

“
σzµwpwnc−σx mc

2

D

”
2t

=

(
D∏
w=1

e
− i
h̄

“
σzµwpwnc−σx mc

2

D

”
t

)(
D∏
w=1

e
− i
h̄

“
σzµwpwnc−σx mc

2

D

”
t

)
(4.65)

=

(
1−

D∑
w=1

i

h̄

(
σzµwpwnc−

σxmc
2

D

)
t+ · · ·

)

×

(
1−

D∑
w′=1

i

h̄

(
σzµw′pw′nc−

σxmc
2

D

)
t+ · · ·

)
,

where in the Taylor expansions on the R.H.S we must keep all high order terms since, in the

continuum limit, t = limN→∞N∆t is not a small parameter. The only way for the L.H.S. to

equal the R.H.S. is for the all the cross-terms to vanish. Now, all the cross-terms between

the momentum and time components automatically vanish because of the anti-commutation

of the Pauli matrices σz and σx. However, for all the cross-terms between the momentum

components to vanish requires our token variables µw be anti-commuting Grassman variables:

µiµj + µjµi = 0, (4.66)

for 1 ≤ i ≤ D and 1 ≤ j ≤ D. We are free to represent the µw variables in terms of Pauli

matrices by choosing

µw → σw. (4.67)

In this representation, C and S become 4× 4 matrices. The collision operator is

C =
D∏
w=1

eiσx⊗1mc
2∆t
Dh̄ = eiσx⊗1mc

2∆t
h̄ (4.68a)

=

 cos
(

∆t mc
2

h̄

)
i sin

(
∆t mc

2

h̄

)
i sin

(
∆t mc

2

h̄

)
cos
(

∆t mc
2

h̄

)⊗ 1 (4.68b)

=

(
1 i∆t mc

2

h̄
1

i∆t mc
2

h̄
1 1

)
+O(∆t2) (4.68c)

=


1 0 i∆t mc

2

h̄
0

0 1 0 i∆t mc
2

h̄

i∆t mc
2

h̄
0 1 0

0 i∆t mc
2

h̄
0 1

 , (4.68d)
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and the stream operator is

S =
D∏
w=1

e−
i
h̄
σz⊗σwpwnc∆t = e−

i
h̄
σz⊗~σ·~p~nc∆t =

(
e−

i
h̄
σ·~p~nc∆t 0

0 e
i
h̄
~σ·~p~nc∆t

)
(4.69a)

=

(
1− i∆r

h̄
~σ · ~p~n 0

0 1 + i∆r
h̄
~σ · ~p~n

)
+O(∆r2)

(4.69b)

=


1− i∆rpzn

h̄
− i∆r(pxn−ipyn)

h̄
0 0

− i∆r(pxn+ipyn)

h̄
1 + i∆rpzn

h̄
0 0

0 0 1 + i∆rpzn
h̄

i∆r(pxn−ipyn)

h̄

0 0 i∆r(pxn+ipyn)

h̄
1− i∆rpzn

h̄

 .

(4.69c)

Equation (4.69) is not diagonal and therefore it is a quantum mechanical stream operator; a

single particle moves from one place to multiple places in one time ∆t. Even a wave function

of a massless particle will undergo dispersion. So a quantum particle does not have a single

trajectory since its position continually spreads out as it moves. This is compatible with the

Heisenberg uncertainty principle 2.

Finally, using (4.68a) and (4.69a), and neglecting terms proportional to ∆r
N
� ∆t, the

kernal (4.62b) becomes the following three dimensional discrete Fourier transform:

K~σ0~σN =
1

(2N)3

∑
~n

ei
~p~n·~x
h̄

[
e−

i
h̄(σz⊗σ·~p~nc−σx⊗1mc2)t

]
~σ0~σN

. (4.70)

In the continuum limit, we recover the kernel

K~α~β =
dx3

(2h)3

∫
dp3ei

~p·~x
h̄

[
e−

i
h̄
HDiract

]
~α~β
, (4.71)

where the Dirac Hamiltonian is

HDirac = σz ⊗ ~σ · pc− σx ⊗ 1mc2. (4.72)

2Niels Bohr objected to Feynman’s talk at the 1948 Pocono conference for the reason that the clas-
sical paths Feynman was enumerating were not consistent with the Heisenberg uncertainty principle
[Schweber, 1986]. With our 3+1 dimensional solution, we see from (4.69) that Bohr’s objective could have
been resolved by answering that the path integral formalism does accommodate the notion of path spreading,
consistent with the Heisenberg uncertainty principle. However, Feynman used the viewpoint referred to as
“calculate and shut-up” in response to Bohr (the quote now attributed to David Mermin). By that time
although Feynman had worked out relativistic QED in 3+1 dimensions, he had only worked out discrete
spacetime pictures of the particle motion for the 1+1 dimensional square lattice, where the translation is
classical.
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4.4 Quantum algorithms

4.4.1 One particle quantum simulations

Finite-difference equation in 1+1 dimensions
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Figure 4.6: Simulation of one relativistic quantum particle with m = 1, h̄ = 1, ∆z = 1 and ∆t = 1.
Plotted is the sum of the moduli squared of the spinor components, |α|2 + |β|2, using (4.77). The average
location of the quantum particle oscillates in time (white curve).

According to (4.26), a single time step of the evolution of the relativistic spinor field

ψ =

(
α
β

)
is accomplished as follows:

ψ(t+ ∆t) = C S ψ(t). (4.73)

The first step is to analyze the streaming part of (4.73). To do this, we write (4.28) as

S ψ(z, t) = e−iσz
pn∆z
h̄ ψ(z, t), (4.74)

which in matrix form is

S

(
α(z, t)
β(z, t)

)
'
(

1−∆z∂z 0
0 1 + ∆z∂z

)(
α(z, t)
β(z, t)

)
, (4.75)

where the momentum operator is taken to be pn → −ih̄∂z. (4.75) as written is exact only

in the continuum limit. It follows that a consistent definition of the streaming operator for

the discrete lattice is:

S

(
α(z, t)
β(z, t)

)
≡
(
α(z −∆z, t)
β(z + ∆z, t)

)
. (4.76)
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Taylor expanding the R.H.S. of (4.76) about z and keeping only the first-order terms, we

recover (4.75). There is a geometric interpretation of (4.76) where the α component of the

spinor field at node z streams (or hops) to the neighboring node on the “right” at node z−∆z

and the β component streams to node z + ∆z on the “left,” as depicted in Figure 4.3b.

The second step is to analyze the collision part of (4.73). Substituting (4.27) and (4.76)

into (4.73), we have

(
α(z, t+ ∆t)
β(z, t+ ∆t)

)
=

 cos
(
mc2∆t
h̄

)
i sin

(
mc2∆t
h̄

)
i sin

(
mc2∆t
h̄

)
cos
(
mc2∆t
h̄

)(α(z −∆z, t)
β(z + ∆z, t)

)
. (4.77)

An example simulation using (4.77) is shown in Figure 4.6. Simulations of this sort have been

carried out by Thaller [Thaller, 2004]. Taylor expanding the collision operator to first-order

in ∆t, we have (
α(z, t+ ∆t)
β(z, t+ ∆t)

)
=

(
1 i∆t mc

2

h̄

i∆t mc
2

h̄
1

)(
α(z −∆z, t)
β(z + ∆z, t)

)
. (4.78)

Upon multiplying out the R.H.S. and Taylor expanding about z and t, to first-order, we have

∆t∂t

(
α(z, t)
β(z, t)

)
= −σz∆z∂z

(
α(z, t)
β(z, t)

)
+ i∆t

mc2

h̄
σx

(
α(z, t)
β(z, t)

)
, (4.79)

which is the Dirac equation in one spatial dimension

ih̄∂tψ(z, t) =
(
σzpc−mc2σx

)
ψ(z, t). (4.80)

We can write (4.80) in propagator form

ψ(t) = e−iĤt/h̄ψ(0), (4.81)

where the Hamiltonian is

Ĥ = σzpc−mc2σx, (4.82)

This derivation of the Dirac Hamiltonian by the quantum lattice-gas method is consistent

with (4.32) where the Feynman path integral expressed as the following Fourier transforma-

tion:

K(z, t) =
dz

2h̄

∫ ∞
−∞

dp ei
pz
h̄ e−iĤt/h̄. (4.83)

Finite-difference equation in higher dimensions

The wave function is specified on a spacetime lattice with grid spacing

Dc2∆t2 −∆x2 −∆y2 −∆z2 = 0. (4.84)
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The local evolution equation of motion is

ψ′ = S Cψ (4.85a)

= SxSySzCψ (4.85b)

= e
P3
i=1 σz⊗σi∆r∂iei

mc2

h̄
∆tσx⊗1ψ, (4.85c)

which approximates the Dirac equation in the continuum limit and in the relativistic limit

where h̄ω ∼ mc2 and h̄k ∼ mc.

The 4× 4 matrix

σz ⊗ σz =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 , (4.86)

operating with the z spatial derivative in (4.85c) is diagonal whereas the matrices σz ⊗ σx
and σz ⊗ σy for the x and y partial derivatives, respectively, are not diagonal.

0 50 100 150 200 250
y

0

50

100

150

200

250

z

Figure 4.7: Simulation of one relativistic quantum particle with m = 1, h̄ = 1 in 2+1 dimensions (∆y = 1,
∆z = 1 and ∆t = 1). Plotted is the sum of the moduli squared of the spinor components, |α|2 + |β|2, at
time t = 128∆t. The mean value of the position of the quantum particle oscillates in time (white curve in
center and black curve in the expanded view on the right).

We would like to transform S in (4.85) in such a way that all the matrices operating

with the spatial partial derivatives are diagonal (and hence correspond to shifting qubits

along the orthogonal lattice directions). To do this, we need the two identities:

e−i
π
4
σxeεσzei

π
4
σx = eεσy ei

π
4
σyeεσze−i

π
4
σy = eεσx , (4.87)
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that follow from ei
π
4
σi = 1√

2
(1 + iσi). Then, using the identity 1⊗ eiθa = eiθ1⊗a, the 2-spinor

similarity transformations (4.87) can be generalized to 4-spinor transformatons(
1⊗ e−i

π
4
σx
)
eεσz⊗σz

(
1⊗ ei

π
4
σx
)

= eεσz⊗σy (4.88a)(
1⊗ ei

π
4
σy
)
eεσz⊗σz

(
1⊗ e−i

π
4
σy
)

= eεσz⊗σx , (4.88b)

which we will use to diagonalize the x and y components of S . Using (4.88) and defining

X (1)
θ ≡ eiθσx ⊗ 1 =


cos θ 0 i sin θ 0

0 cos θ 0 i sin θ
i sin θ 0 cos θ 0

0 i sin θ 0 cos θ

 , (4.89a)

X (2)
θ ≡ 1⊗ eiθσx =


cos θ i sin θ 0 0
i sin θ cos θ 0 0

0 0 cos θ i sin θ
0 0 i sin θ cos θ

 , (4.89b)

and

Y (2)
θ ≡ 1⊗ eiθσy =


cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 cos θ sin θ
0 0 − sin θ cos θ

 , (4.89c)

and

S = SxSySz ≡ eσz⊗σz∆r∇, (4.90)

where Sw ≡ eσz⊗σz∆r∂w , the product components of S = SxSySz can be written

Sx = eσz⊗σx∆r∂x = Y (2)
π
4
SxY

(2)†
π
4

(4.91a)

Sy = eσz⊗σy∆r∂y = X (2)†
π
4

SyX
(2)
π
4

(4.91b)

Sz = eσz⊗σz∆r∂x = Sz, (4.91c)

so (4.85) can be rewritten as the following quantum algorithm:

ψ′ = Y (2)
π
4
SxY

(2)†
π
4

X (2)†
π
4

SyX
(2)
π
4
SzX

(1)
mc2∆t
h̄

ψ. (4.92)

The quantum algorithm (4.92) has local qubit-qubit interaction operators X (2)
π
4

, Y (2)
π
4

and

C = X (1)
mc2∆t
h̄

(quantum collision operators), as well as cubic lattice translation operators Sx,

Sy, and Sz (classical stream operators). It is demonstrated in 2+1 dimensions for a single

massive Dirac particle, see Figure 4.7.

For numerical purposes in the one particle case, the discrete amplitude field is:

ψ(~x, t) =


α(~x, t)
β(~x, t)
µ(~x, t)
ν(~x, t)

 , (4.93)
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where the spacetime point (~x, t) coincides with the nodes of a hypercubic lattice with grid

size ∆r. The operators Sw induce a finite displacement

Swψ(~x) = ψ (~x+ ∆r(σz ⊗ σz)wwŵ) (4.94)

of the components of the 4-spinor only along lattice directions:

Sxψ(x, y, z) =


α(x+ ∆r, y, z)
β(x−∆r, y, z)
µ(x−∆r, y, z)
ν(x+ ∆r, y, z)

 , (4.95a)

Syψ(x, y, z) =


α(x, y + ∆r, z)
β(x, y −∆r, z)
µ(x, y −∆r, z)
ν(x, y + ∆r, z)

 , (4.95b)

and

Szψ(x, y, z) =


α(x, y, z + ∆r)
β(x, y, z −∆r)
µ(x, y, z −∆r)
ν(x, y, z + ∆r)

 . (4.95c)

These streaming operators are data shifting operators causing permutations of the compo-

nents of the 4-spinor wave function across the lattice. The collision operators act indepen-

dently on each node of the lattice and cause local quantum entanglement between component

pairs of the 4-spinor. The streaming operators in turn propagate this local on-site entangle-

ment to next nearest neighbors so that eventually quantum entanglement covers the entire

lattice.

It is possible to rewrite (4.92) as a finite difference equation on a body-centered cubi-

cal lattice. The resulting set of coupled finite difference equations are similar to the fi-

nite difference representation of the 3D Dirac equation given by Bialynicki-Birula in 1994

[Bialynicki-Birula, 1994]. A drawback of expressing the algorithm as a finite-difference equa-

tion is its unsuitability for a quantum computer implementation using two-qubit quantum

gates whereas our manifestly unitary expression (4.92) is suitable.

A continuous effective field theory for ψ = (α, β, µ, ν) follows in the continuum limit of

the emergent finite-difference equations by Taylor expanding in the small grid sizes. We
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obtain

∂t


α
β
µ
ν

 =
∆r

∆t
∂x


−β
−α
ν
µ

+ i
∆r

∆t
∂y


β
−α
−ν
µ

 (4.96)

+
∆r

∆t
∂z


α
−β
−µ
ν

− imc2

h̄


µ
ν
α
β

+O(c∆r,∆t),

which is exactly the Dirac equation

∂tψ = c
∑
i

σz ⊗ σi∂iψ − iσx ⊗ 1
mc2

h̄
ψ, (4.97)

when ∆t ∼ ∆r ∼ ε are infinitesimal and when the partial derivative with respect to time is

defined as ∂tψ ≡ lim∆t→0
ψ′−ψ

∆t
. Equation (4.92) gives rise to perfectly unitary evolution of

the discrete wave function and, therefore, is an unconditionally stable numerical algorithm.

The quantum algorithm (4.92) for modeling (4.96) is less than first-order convergent; see

Fig. 5.2. For practical numerical purposes, we will need to modify (4.92) to improve the

algorithm’s convergence properties.

Improved finite-difference equation in 3+1 dimensions

Our basic approach to improving the accuracy of the quantum algorithm is to set the grid

size ∆r to be smaller than the Compton wavelength λ = h
mc

of the modeled particle

∆r ∼ ε
h

mc
, (4.98)

and to introduce a small temporal scale that is much smaller than λ
c

∆t ∼ ε2 h

mc2
. (4.99)

The diffusive ordering condition of spatial and temporal fluctuations typical of random walk

processes, ∆r2 = ν∆t, provides a context to understand the scaling behavior of the small

parameter ε. According to (4.98) and (4.99), the diffusive transport coefficient is ν = h
εm

and the unit lattice velocity is ∆r
∆t

= c
ε
, which approaches infinity as ε → 0. In this limit,

the mean velocity of the modeled quantum particle is relatively small, compared to ∆r/∆t,

hence the resulting effective field theory corresponds to the non-relativistic limit of the Dirac

equation as ε→ 0.

To diagonalize the stream operators in (4.91), we used a fixed and finite rotation angle
π
4

independent of the grid resolution. We will now diagonalize the stream operators using
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a small rotation angle proportional to ∆t. By (4.99), the rotation angle is θ = mc2∆t
h

= ε2,

which is dependent on the grid resolution. The displacement operators in the Dirac equation

can be represented by interleaving stream and collision operators on a cubical lattice as

follows:

Sx = eσz⊗σx∆r∂x → S2,4
−xY

(2)
ε
2
S2,4
x Y (2)†

ε
2

S1,3
x Y (2)

ε
2
S1,3
−xY

(2)†
ε
2

(4.100)

and

Sy = eσz⊗σy∆r∂y → S2,4
−yX

(2)†
ε
2

S2,4
y X (2)

ε
2
S1,3
y X (2)†

ε
2

S1,3
−yX

(2)
ε
2
, (4.101)

where the superscripts on the streaming operators refer to individual components of the

4-spinor. For example, the classical streaming operators in (4.95) are Sw = S2,3
−wS

1,4
w . The

quantum stream operators (4.91a) and (4.91b) are now redefined in terms of the respec-

tive component-wise classical stream operators separated by collision operators according to

(4.100) and (4.101). This kind of interleaving of streaming and collision operators removes

the spurious checkerboard effect of independent sublattice dynamics that otherwise occurs

[Yepez, 2001b, Yepez and Boghosian, 2002]. So far we treated the non-diagonal quantum

stream operators eσz⊗σx∆r∂x and eσz⊗σy∆r∂y , but not the classical operator eσz⊗σz∆r∂z because

no such improvement exists since it is diagonal. However, if instead of using the Dirac matrix

σz ⊗ σz, we use an alternative non-diagonal representation for the z-direction partial deriva-

tive, then we can again employ interleaving. Therefore, we consider the following alternate

form of the Dirac equation:

∂tψ = cσz ⊗ σx∂xψ + cσz ⊗ σy∂yψ + cσy ⊗ 1∂zψ − iσx ⊗ 1
mc2

h̄
ψ. (4.102)

Now the quantum stream operator in (4.102) for the z-direction can be re-expressed in a

fashion similar to (4.100) and (4.101) as

Sz ≡ eσy⊗1∆r∂z → S2,3
z X (1)

ε
2
S2,3
−zX

(1)†
ε
2

S1,4
z X (1)

ε
2
S1,4
−zX

(1)†
ε
2

. (4.103)

Then instead of (4.91), we use (4.100), (4.101), and (4.103) for an improved quantum algo-

rithm

ψ(t+ ∆t) = SxSySzψ(t). (4.104)

In the interleaved algorithm (4.104), the mass term in the Dirac equation is automatically

produced at order ε2.

It is possible to derive a finite-difference equation representation of the quantum lattice-

gas algorithm (4.104) by carrying out all the collision and streaming operations symbolically.

The result expressed as a finite-difference equation is no longer expressible using a stencil

including only the nearest neighbors of the body-centered cubic lattice. Nevertheless, once
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Figure 4.8: L2 norm error
√

1
L

∑L
i=1[|ψ(xi)|2 − |ψex(xi)|2] plotted versus grid resolution ∆x = 1

L for
numerical simulations of the 1D Weyl equation (Dirac equation with m = 0) with lattice sizes from L = 8 to
L = 32768. The error curve’s slope is 0.5 for the original algorithm (dashed line) and 2.5 for the improved
algorithm (solid line). This demonstrates the high numerical accuracy of the improved (symmetrized and
interleaved) quantum algorithm.

again, a continuous effective field theory, in the one-particle sector of the Hilbert space, for

ψ = (α, β, µ, ν) follows in the continuum limit as we Taylor expand in ∆r and in ∆t:

∂t


α
β
µ
ν

 =
∆r

∆t
∂x


−β
−α
ν
µ

+ i
∆r

∆t
∂y


β
−α
−ν
µ

 (4.105)

+ i
∆r

∆t
∂z


−µ
−ν
α
β

+ i
mc2

h̄


µ
ν
α
β

+O(∆r4,∆t2),

which approximates the Dirac equation (4.102) when ∆t is small. In (4.105), according to

symbolic mathematics, the mass term arises at order ε2, the spatial terms arise at order

ε3, and the error terms arise at order ε4. Yet, according to numerical simulations, the

effective field theory (4.105) is first-order convergent. With the quantum stream operator

S = SxSySz, we define the dual operator S̃ ≡ S †
−xS

†
−yS

†
−z, by taking the adjoint of the

quantum stream operators and reversing the displacement directions. Then, it is possible

use a symmetrized evolution operator [Yepez and Boghosian, 2002]

ψ(t+ ∆t) = S̃ S e−ζ∆t
2

ψ(t), (4.106)

where ζ is a constant parameter. According to numerical simulation, the interleaved and
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symmetrized algorithm (4.106) is better than second-order convergent, as demonstrated in

Fig. 5.2 for the 1+1 dimensional case.

4.4.2 Many particle quantum simulations

A useful characteristic of the quantum algorithm to model a many-body system of Dirac

particles is that it uses the same protocol for local collisions and local translations used to

model the dynamical behavior of the one-body problem governed by the Dirac equation.

Therefore, the computational overhead associated with the action of the unitary operators

is fixed for both the one-body and many-body cases. What differs is the number of quantum

states (configurations of qubits) that must be dealt with in the numerical simulation.

To model all the dynamics of many Dirac particles, we use an interfering set of probability

amplitudes defined on the lattice. All these probability amplitudes, considered as an ordered

finite set of complex numbers, constitutes a discrete amplitude field with 2Q complex com-

ponents for a quantum computer with Q qubits. With 4 qubits per node on a body-centered

cubic lattice with V = L3 nodes, the quantum state of the system is the following tensor

product:

|Ψ(t)〉 =
4⊗
q=1

L⊗
x=1

L⊗
y=1

L⊗
z=1

|q(x, y, z, t)〉. (4.107)

The quantum algorithm amounts to unfolding a quantum mechanical evolution opera-

tor into an ordered sequence on 2-qubit quantum gate operations. We have analytically

determined an accurate approximation of the local Hamiltonian, say Hn for the nth lat-

tice site, finding it to be the Dirac Hamiltonian σz ⊗ ~σ · ~pc + σx ⊗ 1mc2 with momentum

~p = (px, py, pz) and the Pauli spin matrices ~σ = (σx, σy, σz). The Dirac Hamiltonian is an ef-

fective local Hamiltonian. The total system Hamiltonian H formally generates the quantum

mechanical evolution:

U = e−iH∆t/h̄ =
N⊗
n=0

e−iHn∆t/h̄, (4.108)

represented by a 2Q × 2Q matrix. An analytical expression of H could have an infinite

number of terms due to the Campbell-Baker-Hausdorff theorem and the noncommutability

of the quantum gates ([Hn,Hm] 6= 0). Nevertheless, this is a crucial feature of the quantum

algorithm: it is possible to numerically compute an accurate approximation of H, a many-

body Dirac Hamiltonian, as a total system generator of the spacetime evolution. It is in this

sense that the quantum algorithm is isomorphic to a Feynman path summation.

In general, the quantum mechanical evolution is expressed as a Schrödinger propagation

equation as follows:

|Ψ(t+ τ)〉 = U|Ψ(t)〉. (4.109)
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Equation (4.109) has an implied operator ordering that must be retained in the quantum al-

gorithmic representation. U depends on the local unitary operator U = C S , which changes

the probability amplitudes on each node independently. So the L3-fold tensor product over

the lattice nodes is the total quantum system evolution operator:

U =
L3⊗
`=1

C S . (4.110)

Therefore, the specifying the many-particle form of the quantum algorithms (4.92) and

(4.106) entails representing S and C in (4.110) in terms of conservative and local 2-qubit

quantum gates. This is accomplished using fermionic ladder operators in a second quantized

representation.

With â†α, âα, and n̂ = â†αâα denoting the fermionic creation, annihilation, and number

operator, respectively, of the αth qubit (1 ≤ α ≤ 4L3), the collision operators (4.89) are the

following:

Xαβ(θ) = 1− i sin θ(â†αâβ + â†βâα) + (cos θ − 1)(n̂α + n̂β)

−2 cos θn̂αn̂β (4.111a)

Yαβ(θ) = 1 + sin θ(â†αâβ − â
†
βâα) + (cos θ − 1)(n̂α + n̂β)

−2 cos θn̂αn̂β, (4.111b)

where α and β index different qubits at the same site [Yepez, 2001a]. Then (4.89) are

rewritten as

X (1)
θ → X13(θ)X24(θ) (4.112a)

X (2)
θ → X12(θ)X34(θ) (4.112b)

Y (2)
θ → Y12(θ)Y34(θ). (4.112c)

2L3 applications of either Xαβ or Yαβ are required for a single collision step.

Streaming occurs by successive application of the interchange operator [Yepez, 2001a]

Ŝµν = 1 + â†µâν + â†ν âµ − n̂µ + n̂ν . (4.113)

(L − 1)3 number of applications of Ŝµν (µ refers to one qubit-component at some site and

ν to the same component at its neighboring site) are required to stream each qubit along a

cubic lattice direction.

The total evolution operator Ê is the product of collision operators X and Y and

streaming operator S corresponding to algorithm (4.92) or some variant of (4.104) depending

on the desired degree of numerical accuracy.
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With the new ket |Ψ′(t + ∆t)〉 = Ê|Ψ(t)〉, the resulting probability of finding a particle

at site ~x is

P (~x) =
4∑
i=1

〈Ψ′|n̂α+i|Ψ′〉, (4.114)

where α is the index of the first qubit at ~x.

With 4 qubits per node, the local propagator U is represented by a 16× 16 size matrix.

This appears to be larger than necessary, because there are only 4 component to a Dirac

spinor. However, for the purpose of being able to model a many-body quantum system, we

require one qubit for each component of the Dirac spinor.

One may strive to execute the maximum possible number of quantum gates in parallel to

save physical time in the actual implementation because of the experimental limitations due

to de-phasing related to spin-spin decoherence and spin relaxation. The issue of operator

ordering is handled intrinsically by the quantum algorithm in the case when quantum gates

are applied in parallel to different and non-overlapping pairs of qubits.

Algorithmic complexity

Algorithmic variant Eq. No. 2ρc ρs Total Ops.
Standard (4.92) 10 12 22

Interleaved (4.104) 24 24 48
Symmetrized interleaved (4.106) 49 48 97

Table 4.1: Summary of the number of local quantum gate operation per node.

To quantify the algorithmic complicity associated with evolving the modeled quantum

wave function by one unit time ∆t, we count the total number of required basic quantum logic

operations. We count each conservative collide operator, X and Y defined in (4.111), as

one basic quantum logic operation. So according to (4.112), the quantum mechanical collide

operators each take 2 basic quantum logic operations. Furthermore, we count the operation

(4.113) of streaming a single qubit between neighboring nodes as one basic quantum logic

operation. That is, streaming a single component of the Dirac spinor along one orthogonal

lattice direction (cubic lattice vector) counts as one quantum logic operation.

The algorithmic complexity for numerical simulations a system of Dirac particles in 3+1

dimensions for one time step scales as C = 2ρcL
3 + ρs(L − 1)3, where ρc and ρs are the

number of operations per node for collisions and streaming, respectively. This measure of

the algorithmic complexity counts the total number of quantum gate operations required

to updated the modeled wave function, whether or not those operations are performed in a

serial or parallel fashion. For the simplest algorithm (4.92), ρc = 5 and ρs = 12, and for the
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improved algorithm (4.104), ρc = 12 and ρs = 24. Both ρc and ρs double when we use a

symmetrized rule like (4.106) but are a fixed-cost overhead. With Q = 4L3 qubits, the size

of the Hilbert space is exponential 2Q, whereas the complexity C = ρc
2
Q+ ρs[Q− 3

4
(2Q)

2
3 +

3
2
(2Q)

1
3 − 1] for all the variants of our quantum algorithm is dominantly linear in Q.

4.5 Summary

A solution of Feynman’s chessboard problem in 3+1 dimensions was presented. With this

result, we have shown how to design a quantum algorithm suitable for implementation on

a quantum computer to accurately model one or more Dirac particles. In the one-body

case, the mechanical wave equation is the Dirac equation (or Weyl equation in the case

when m = 0). We say the quantum computer performs analog computation because it

relies on one physical quantum mechanical system (a system of qubits with only local qubit-

qubit interaction) to model another physical quantum mechanical system, a relativistic Dirac

system. Each qubit contained within the quantum computer is embodied by a two-level

quantum system, such as a spin-1
2

nucleus. Every quantum logic gate operation between

local qubit pairs may be embodied by a local interaction Hamiltonian, say a secular dipolar

Hamiltonian for the spin-spin coupling.

The initial state of a quantum node is an unequally weighted superposition of states

over the Hilbert space of that node, generated by tipping, or rotating, each qubit of the

quantum node independently. The quantum algorithm approximates a spatially continuous

wave function using a numerical grid with finite resolution, and that provides a natural cut-

off. From the point-of-view of the modeler, there exists a small numerical grid-level scale

below the physical microscopic scale of the modeled quantum mechanical system.

Through the combined actions of the unitary collision and translation operators, all the

quantum mechanical pathways of the possible motions of the modeled quantum particles

are numerically treated. The numerical model can be viewed as a kind of kinetic system of

locally interacting spins on the small grid-level scale. There also exists a large scale, which

corresponds to the long wavelength limit of the dynamical modes in the discrete spin system.

This numerical large scale is equivalent to the physical microscopic scale where the many-

body wave function of the modeled quantum mechanical system in question is well defined. A

continuous wave function is accurately approximated as one approaches the continuum limit

where the grid resolution of the spatial lattice become infinite (the lattice cell size approaches

zero). In the long wave length limit, the dynamical amplitude field is both continuous and

differentiable in space and time. An emergent effective field theory, such as (4.96) or (4.105),

is analytically determined by Taylor expanding a finite-difference equation representation of
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the dynamics. What is physical in the model is the finite-difference equation. That is, it is

this finite-difference equation that governs the dynamical amplitude field. The effective field

theory, such as (4.96) or (4.105), is actually a partial differential equation of infinite order.

Only the low-order time and space partial derivatives are numerically relevant during the

early stage of evolution of the wave function and all the higher order partial derivatives are

considered error terms during this early stage.

4.5.1 Final remarks

The method can be used to analytically derive the relativistic Hamiltonian for a small number

of Dirac particles. For example, the few-body Hamiltonians, and the associated coupled set

of partial differential equations of motion, will be presented in a subsequent paper. In any

case, to be a practical and useful algorithm, it must have at least second-order convergence

which means that decreasing the grid cell size by a factor of two causes the numerical error

inherent in the algorithm to decrease by a factor of four. We have demonstrated it is

possible to improve the numerical convergence of the quantum algorithmic method to meet

this requirement.

All the qubits in the quantum computer must remain phase-coherent, i.e. globally en-

tangled, over the entire course of the quantum computation. In any practical experimental

implementation, this quantum algorithm may therefore require the use of extra qubits to

correct for bit-flip and phase errors [Shor, 1995, Knill et al., 1998], significantly increasing

the number of required qubits per node.

Quantum logical operations are embodied in the spin-spin coupling mechanism, or some

other mathematically equivalent two-qubit coupling mechanism appropriate to the particular

experimental realization. The form of a naturally occurring interaction Hamiltonian can be

effectively altered by applying appropriately timed spin rotations using externally applied

electromagnetic pulses, whose frequency, strength, polarization, and pulse duration depends

on the particular experimental realization, so that the natural coupling along with the pro-

gram of externally applied pulses together cause the desired quantum lattice-gas collision

operation [Pravia et al., 2002, Pravia et al., 2003, Chen et al., 2006a] 3.

In relativistic formuatlions one typically sees space and time as intrinsically coupled, yet

the quantum algorithm presented here based on local stream and collide operators rigidly

seems to enforce a Galilean-like separation between space and time–space and time are ge-

ometrically coupled in a regular lattice structure. Yet since the fundamental stream and

3A subsequent paper will address how to use nuclear magnetic resonance spectroscopy of a solid-state
crystal with a secular dipolar Hamiltonian for two spin- 1

2 nuclei to emulate both the quantum lattice-gas
collision and stream operators for numerically predicting space-time dependent solutions for the wave function
of a system of Dirac particles.

90



collide operators do not commute, the continuous Lorentz transformations of special relativ-

ity emerge in the long-wave length limit. Furthermore, the dynamical equation of motion

governing the continuous four spinor field modeled by this method remains invariant under

the Lorentz transformation, but only in the continuum limit. The four spinor field may be

treated as a continuous Dirac field in the case when the lattice has infinite resolution (this

is, when the lattice cell size is infinitesimal). So any Galilean-like separation can occur only

at a very small scale. If the operative relativistic quantum mechanical evolution is gener-

ated by the Dirac Hamiltonian, leading to an effective field theory perfectly first order in its

space and time derivatives, then the small scale (lattice cell size) must be infinitesimal, and

hence it would always be beyond experimental detectably. However, if a discrete sub-lattice

were a physical property of spacetime, and it had a finite cell size (perhaps on the order

of the Planck scale), then there may be physical significance to the hyper bcc spacetime

lattice. It remains an outstanding open problem to determine whether or not it is possible

experimentally to measure any lattice property of spacetime, such as a fundamental grid

size.
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Chapter 5

The Schroedinger equation

5.1 Introduction

In quantum lattice-gas algorithms, the quantum wave function, whether for a single quantum

particle or a many-body system of quantum particles, is resolved on a computational grid

(a Bravais lattice). The finite grid size of the lattice provides a cut-off regulation to the

modeled quantum theory, stabilizing the model by removing high k-modes. The evolution

operator governing the time-dependent behavior of the wave function is cast in terms of three

unitary operators locally applied in time-step fashion: (1) a homogeneous stream operator

for the site-to-site hopping of the particles, (2) a homogeneous collision operator for the on-

site particle-particle interactions, and (3) an inhomogeneous gauge operator for particle-field

interactions.

With the first two spatially independent (homogeneously applied) stream and collide

operators alone, we recover free linear quantum wave equations. With the third spatially de-

pendent (inhomogeneously applied) gauge operation, we go much further to model nonlinear

quantum systems: many-body dynamics in an external potential and an internally generated

potential. Hence, we find the quantum lattice gas algorithm is well suited to modeling soli-

ton dynamics. The external spatially varying scalar potential is modeled as a gauge rotation

fixed over time at each lattice site and where the phase angle of rotation is site dependent.

The internal nonlinear mean-field scalar potential is modeled as a gauge rotation dependent

on the local value of the ground state wave function, a mean-field treatment. That is, the

gauge rotation varies over time and space in a nonlinear way.

We introduce the type-I quantum lattice-gas algorithm for modeling the Schroedinger

wave equation by starting in Section 5.2 with the simplest case of a single free particle in a

one-dimensional space [Yepez and Boghosian, 2002]. This is the limiting case of the Dirac

equation considered in Chapter 4. Here the kinetic energy of the modeled quantum particle

is much much less than its rest energy. In this nonrelativistic case, the wave function ψ(x, t)
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obeys the following partial differential equation in the position representation

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m

∂2ψ(x, t)

∂x2
, (5.1)

where h̄ is Planck’s constant and m is the mass of the quantum particle. Here ψ(x, t) is a

continuous probability amplitude field (e.g. a complex scalar field).

The nonlinear Schroedinger (NLS) equation is one of the most basic equations of nonlin-

ear physics. Its salient feature is that it emits soliton solutions by exact integration. Hence,

it plays a vital role in weakly nonlinear systems with the dispersion relation dependent on the

wave amplitude. The NLS equation is pivotal in nonlinear optics [Kivshar and Agrawal, 2003],

plasma physics [Infeld and Rowlands, 2000] as well as in ideas for information transfer in op-

tical computers [Jakubowski et al., 1998, Jakubowski et al., 2001]. In 1+1 dimensions, both

the focusing and defocusing NLS equations are exactly integrable and exhibit soliton solu-

tions. Tests of the 1+1 dimensional quantum lattice gas algorithm for the NLS equation

[Vahala et al., 2003b] and the vector Manakov system [Vahala et al., 2004a] have been pub-

lished. In Section 5.3, we present the quantum lattice representation of the (focusing) NLS

equation in 2+1 dimensions

ih̄
∂ψ(x, y, t)

∂t
+
∂2ψ(x, y, t)

∂x2
+
∂2ψ(x, y, t)

∂y2
+ 2|ψ|2ψ = 0. (5.2)

as a generalization of the quantum lattice representations in 1+1 dimensions. In particular,

we shall consider the transverse modulational instability of the one-dimensional soliton wave

train solution ψ◦(x, t) of (5.2).

In the quantum lattice algorithm for the Schrödinger equation, at each spatial node,

the wave function is represented by the interference sum of probability amplitudes of the

upper excited state of each qubit. In the quantum algorithm for the NLS equation in

1+1 dimensions, 2 qubits per node are used, and collisional interaction is induced by the

unitary
√
SWAP quantum logic gate. The

√
SWAP quantum gate has been implemented

experimentally using two qubits per computational node in a quantum lattice gas model

of the diffusion equation [Pravia et al., 2002, Pravia et al., 2003, Siskind et al., 2005]. This

entanglement is then spread throughout the lattice by the unitary streaming operator, which

is real. In extending the algorithm to 2+1 dimensions, still only 2 qubits per node are required

and the
√
SWAP still represents local qubit-qubit interactions. If implemented on a platform

using future quantum information processing device technology, the quantum algorithm

presented here is suited for a type-I quantum computer architecture, as described in this

Quantum Computation for Physical Modeling (QCPM) special issue in §IA of [Yepez, 2005],

but with local nonlinear interactions inherent in the quantum device.
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Finally, as a straightforward generalization of the quantum algorithm in 2+1 dimensions,

in this Section 5.4 we present the quantum algorithm for the Schroedinger equation in 3+1

dimensions:

ih̄
∂ψ(~x, t)

∂t
= − h̄2

2m
∇2ψ(~x, t) + V (~x, t)ψ(~x, t). (5.3)

5.2 1+1 dimensions

5.2.1 Qubit representation for a single free particle

Encoding the wave function

To “program” a quantum computer to simulate (5.3), it is necessary to first formulate an

encoding scheme where a collection of qubits is used to store the value of the wave function.

Since the number of qubits in any quantum computer is necessarily a finite number, the

wave function will have to be approximated in the usual way by representing a physically

continuous amplitude field as an artificially discrete and finite set of complex numbers. To do

this, let us begin with a one-dimensional spatial lattice with L number of nodes. With each

node of the lattice we associate a position basis ket denoted by |xl〉, where 0 ≥ l ≥ L − 1.

The discrete system ket in the position basis is

|ψ〉 =
L−1∑
l=0

cl|xl〉, (5.4)

where cl = 〈xl|ψ〉 is a complex number. In other words, the basic approach to model the

single particle wave function governed by (5.3) is to express |ψ〉 as a sum of all the possible

ways the particle can be situated on the lattice with a probability amplitude cl associated

with each possible location |xl〉.
In our model, we assign two qubits to each node of the lattice, for a total of 2L qubits

in the whole quantum computer. The qubits that reside at the lth node of the lattice are

denoted by |ql0〉 and |ql1〉 and they are used to encode the coefficient cl of (5.4) of the position

ket for that node. Each qubit is a two-level quantum system |qla〉 = αla|0〉 + βla|1〉, where

|αla|2 + |βla|2 = 1 for a = 0 or 1 and 0 ≥ l ≥ L− 1. We consider each qubit to be a container

that may or may not be occupied by the quantum particle. The quantum particle is said

to occupy the ath local state at position xl when βla = 1. Similarly, the ath local state at

position xl is said to be empty when β1
a = 0.

To see how the qubit encoding works, we write |ψ〉 in the number representation. In the

number representation, each basis state is expressible as the ket |n0
0n

0
1n

1
0n

1
1n

2
0n

2
1 · · ·nL0nL1 〉,

where nla = 0 or 1 for all l and a. The Boolean variables nla are called the number variables

and they correspond to a binary indexing of the basis states in the number representation.
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Since we are concerned with modeling the one-particle wave equation, we need consider only

a subset of all the basis states where only one of the number variables is 1 and all the rest

are 0. This subset of all the basis states is called the one-particle sector. There are 2L such

combinations and we shall label these with the binary encoding formula |22l+a〉, for a = 0, 1

and 0 ≥ l ≥ L − 1. Therefore, the system ket in the number representation can be written

as

|ψ〉 =
L−1∑
l=0

1∑
a=0

ξ2l+a|22l+a〉, (5.5)

where each ξ2l+a is a probability amplitude (e.g. complex number).

Now for each position ket |xl〉 there are two corresponding basis states in the number

representation |22l〉 and |22l+1〉. There are two interfering possibilities for a particle to occupy

the lth position on the lattice. Therefore, the occupancy probability of the lth node is

computed by first summing the probability amplitudes of these corresponding basis states

and then computing the square of the absolute value thereof. In other words, the coefficient

cl in (5.4) is set equal to the sum of the on-site coefficients in (5.5)

cl ≡ ξ2l + ξ2l+1. (5.6)

The definition (5.6) is an essential part of the quantum lattice-gas model presented in this

chapter. In the section below, where we analytically predict an effective field theory for our

artificially discrete model, we explain why we need to make this assignment. We will find

that (5.6) is needed for the predicted effective field theory to accurately approximate the

Schroedinger wave equation in the long-wavelength limit, which is also defined below.

Formulating a suitable gate sequence

We shall require that the algorithmic scheme be at least second order convergent in space,

so that double the grid resolution (e.g. double the number of qubits) will give us one fourth

of the numerical error due to the field discretization. With this type of convergence charac-

teristic, we are assured that we can simulate a wave function governed by the Schroedinger

wave equation (5.3) to any arbitrary degree of accuracy. After we formulate our algorithmic

scheme, we will then a posteriori verify by direct numerical simulation that it is indeed at

least a second-order convergent numerical scheme. In fact, in Section 5.2.3 we will find that

our numerical scheme is fourth-order convergent with an error that goes as (δx)4.

To simulate the quantum behavior of the wave function, we seek to develop a sequence

of 2-qubit gate operations that will act on a large collection of qubits in the simplest way.

We impose the following four simplifying constraints:

1. All quantum gate operations are homogeneous and independent of space and time.
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2. Only a single quantum gate is used to evolve the wave function and this gate is applied

to each lattice node independently (locality).

3. To provide communication channels between lattice nodes, only the simplest gate is

used (e.g. a swap gate).

4. Because the final value of the computed wave function depends on summing interfering

possibilities according to (5.6), we shall use the Hadamard gate at the very end of the

simulation prior to making a measurement of the wave function so that a single qubit

at each node will encode the probability amplitude cl = 〈xl|ψ〉 in (5.4).

With two qubits per node, there are four on-site basis kets, |0〉 ⊗ |0〉 ≡ (1, 0, 0, 0), |0〉 ⊗
|1〉 ≡ (0, 1, 0, 0), |1〉⊗|0〉 ≡ (0, 0, 1, 0), and |1〉⊗|1〉 ≡ (0, 0, 0, 1). In the context of a quantum

lattice-gas model, the unitary matrix Û is called the local collision operator and the on-site

ket |ν〉 ≡ |0〉 ⊗ |1〉 + |1〉 ⊗ |0〉 = (0, 1, 1, 0) is called the number density ket. To have a well

behaved local equilibrium associated with the collision process, the local collision operator

must have the number density ket as an eigenvector with unity eigenvalue.

Quantum algorithm

The quantum gate that we use to evolve the wave function, which is applied independently

on a site-by-site basis, is the
√

SWAP-gate given in (2.82). The two nontrivial eigenvalues

of (2.82) are λ1 = 1 and λ2 = −i, with eigenvectors |ν1〉 = (0, 1, 1, 0) and |ν2〉 = (0,−1, 1, 0),

respectively. Also, since
√

SWAP, which we may denote by
√
χ̂, causes mixing only between

the single-particle basis kets |0〉 ⊗ |1〉 and |1〉 ⊗ |0〉, it conserves particle number. So (2.82)

is an appropriate choice for the local collision operator. The full collision operator is Ĉ =⊗L−1
l=0

√
χ̂. The streaming operator, denoted Ŝ1, causes a global shift to the right of the first

qubit on all the lattice nodes. Therefore, Ŝ1 can be represented by a sequence of interchangers

(2.37) acting on nearest neighbors

Ŝ1 =

L−1
2∏
l=0

χ̂2l,2l+2. (5.7)

The algorithm we use to model the Schroedinger wave equation involves multiple applications

of the collision operator interleaved with streaming operations as follows:

|ψ(t+ τ/2)〉 = Ê
1
2
1 |ψ(t)〉, (5.8)

where the square root of the evolution operator is

Ê
1
2
1 = ŜT

1 ĈŜ1Ĉ. (5.9)
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Here ŜT
1 denotes the transpose of Ŝ1 and is the inverse of Ŝ1. Application of ŜT

1 causes a

global shift to the left of the first qubit on all the lattice nodes. One full time step of the

evolution is

|ψ(t+ τ)〉 = Ê1|ψ(t)〉. (5.10)

We use four applications of the collision operator in Ê1 because Ĉ4 is the identity operation.

Note that Ŝ1 and Ĉ do not commute, otherwise (5.10) would be a trivial evolution equation.

Note that in (5.10), our choice of streaming the first qubit was arbitrary. A more balanced

algorithmic approach would treat both qubits identically. Therefore, we could alternatively

define one full time step as

|ψ(t+ τ)〉 ≡ Ê2Ê1|ψ(t)〉, (5.11)

where

Ê
1
2
2 = ŜT

2 ĈŜ2Ĉ, (5.12)

and where the streaming operator Ŝ2 causes a global shift to the right of the second qubit on

all the lattice nodes. The advantage of using the balanced algorithm (5.11) is that its error

is fourth-order in space whereas for the unbalanced algorithm (5.10) it is only third-order.

Finite difference formulation

It is possible to specify the quantum algorithm to model the Schroedinger equation without

the use of matrices. Instead we can write down a set of finite difference equations, which

are equivalent to (5.8), but perhaps simpler to comprehend at first glance. To do this, let us

introduce a new notation for the 2L probability amplitudes ξ2l+a in (5.5). We will denote the

two complex numbers per lattice node by ϕ0(xl, tn) and ϕ1(xl, tn). That is, we have L-pairs

of complex numbers. Then, the quantum algorithmic operations (5.12) can be expressed as
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follows:

if mod(n, 4) = 0 (5.13)

ϕ0(xl, tn) = A∗ϕ0(xl, tn−1) + Aϕ1(xl, tn−1)

ϕ1(xl, tn) = Aϕ0(xl, tn−1) + A∗ϕ1(xl, tn−1),

if mod(n, 4) = 1 (5.14)

ϕ0(xl, tn) = ϕ0(xl−1, tn−1)

ϕ1(xl, tn) = ϕ1(xl, tn−1),

if mod(n, 4) = 2 (5.15)

ϕ0(xl, tn) = A∗ϕ0(xl, tn−1) + Aϕ1(xl, tn−1)

ϕ1(xl, tn) = Aϕ0(xl, tn−1) + A∗ϕ1(xl, tn−1),

and if mod(n, 4) = 3 (5.16)

ϕ0(xl, tn) = ϕ0(xl+1, tn−1)

ϕ1(xl, tn) = ϕ1(xl, tn−1),

where A = 1
2

+ i
2
. The finite-difference equation pair (5.13) is equivalent to the local collision

operation Ĉ, as is the pair (5.15). The equation pairs (5.14) and (5.16) are equivalent to the

streaming operations Ŝ and ŜT, respectively.

(Noting that A+A∗ = 1, this set of finite difference equations can be expressed in a more

compact way

ϕ0(xl+ε, tn+1) = ϕ0(xl, tn) + Ω0

ϕ1(xl, tn+1) = ϕ1(xl, tn) + Ω1

where ε = (−1)n and Ω0 = A(ϕ1 − ϕ0) and Ω1 = −Ω0, which has the standard form of a

lattice-gas transport equation.)

This finite-difference representation of the algorithm is nearly identical to that presented

by Boghosian and Taylor in 1997 [Boghosian and IV, 1998a] where the two on-site qubits

are simultaneously streamed to the left and right after collision operation

ϕ0(xl+1, tn) = A∗ϕ0(xl, tn−1)− Aϕ1(xl, tn−1)

ϕ1(xl−1, tn) = −Aϕ0(xl, tn−1) + A∗ϕ1(xl, tn−1).

(5.17)

They noted that after four time steps, the total amplitude ψ(xl, tn) = φ0(xl, tn) + φ1(xl, tn)

satisfies a finite-difference equation which approximates the Schroedinger equation in the
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continuum limit. The two essential differences between the improved algorithm (5.13)

through (5.16) presented in this chapter and the quantum algorithm (5.17) appearing in

[Boghosian and IV, 1997] is that we have alleviated the problem of the occurrence of two

non-interpenetrating lattice-gas systems independently evolving on different checker-board

sub-lattices and we have doubled the numerical accuracy. This is a problem that occurs when

both on-site qubits are simultaneously streamed because streaming only a single qubit at a

time, as was done for the quantum lattice-gas model of the diffusion equation [Yepez, 2001b],

causes interactions between all the qubits at each time step.

5.2.2 Effective field theory

It is straightforward using a symbolic mathematics program, and tedious by hand, to use

the update rules (5.13) through (5.16) to algebraically determine the value of ϕ0 and ϕ1 at

a later time. With the initial wave function set at t0, one complete cycle of the algorithm

is completed at t8 (that is, t8 − t0 ≡ δτ). With the wave function defined as ψ(xl, tn) ≡
ϕ0(xl, tn) + ϕ1(xl, tn), the result after one cycle is1

ψ(xl, t8) = −1 + i

2
ψ(xl, t0) + ψ(xl+1, t0) + ψ(xl−1, t0)

−1− i
4

[ψ(xl+2, t0) + ψ(xl−2, t0)] , (5.18)

Note that (5.18) is the simplified form of the finite-difference equation at the macroscopic

scale when the system is very close to local equilibrium throughout the course of the evolution

as ϕ0(x, t) = ϕ1(x, t) ' 1
2
ψ(x, t) for all x. The full finite-difference equation is too long to

present here, but is given in Appendix F. This result is a finite-difference equation for the

following partial differential equation governing the continuous amplitude field ψ(x, t)

∂ψ(x, t)

∂t
+O(δt2) =

i

2

δx2

δτ

∂2ψ(x, t)

∂x2
+O(δx4), (5.19)

which is an approximation of (5.3) where the diffusion constant is h̄/m = δx2/δτ and where

δx is the lattice cell size.

If one adds a phase angle ζ to the off-diagonal components of the collision operator (2.82)

to obtain a more general collision operator according to (2.48a) (conservative quantum logic

1 (Note that the result (5.18) is accurate up to fourth order in δx only in the situation where the initial
system is in local equilibrium defined by ϕ0(xl, tn) = ϕ1(xl, tn). In the more general situation when the
system is not in local equilibrium where ϕ0(xl, tn) 6= ϕ1(xl, tn), the result (5.18) is accurate only up to third
order in δx.)
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gate) with z = −iπ and δ = 1, then

√
χ̂ =


1 0 0 0
0 1

2
− i

2

(
1
2

+ i
2

)
eiζ 0

0
(

1
2

+ i
2

)
e−iζ 1

2
− i

2
0

0 0 0 −i

 , (5.20)

and the resulting governing partial differential equation will have its transport coefficient

dependent on this phase angle as follows:

∂ψ(x, t)

∂t
+O(δt2) =

i

2 sec ζ

δx2

δτ

∂2ψ(x, t)

∂x2
+O(δx4). (5.21)

This allows us to simulate a quantum system where a particle’s mass can be arbitrarily

large m = sec ζ, but has a minimum of one. Note that in this case the error is cubic and

is proportional to sin ζ. So for very large masses, the accuracy of the model is reduced to

third-order in space. Note that (5.21) is a valid effective field theory at the macroscopic

scale when the system is very close to local equilibrium where ϕ0(x, t) = ϕ1(x, t) ' 1
2
ψ(x, t)

for all x.

5.2.3 Dispersion of a Gaussian packet

To numerically test that the quantum algorithm (5.10) is indeed equivalent to the finite-

difference equation (5.18) and to see just how good an approximation of the single-particle

Schroedinger equation it is, we have performed two simulations.

In the first simulation, we test the numerical time evolution of a Gaussian packet

ψ(x, 0) =
1

σ
1
2π

1
4

e−
x2

2σ2 , (5.22)

where ` ≥ x ≥ L for a lattice of size L = 64` and where the packet width is σ = L/10 as

shown in Figure 5.1.

The exact anaytical solution of (5.19) is obtained by computing the Fourier components

of the energy basis functions

a◦ =
1

L

∫ L/2

−L/2
ψ(x, 0)dx (5.23)

an =
2

L

∫ L/2

−L/2
ψ(x, 0) cos

(
2nπ

x

L

)
dx. (5.24)

With h̄ = 1 and m = 1, the energy eigenvalues are

En =
2n2π2δx2

L2δt
, (5.25)
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Figure 5.1: Dispersion of a Gaussian packet: Time evolution of a Gaussian packet for a single quantum
particle overplotted in succession where the x-axis is the position on a 64-node lattice in units of the lattice
spacing ` and the y-axis is the probability density |ψ(x, t)|2. The solid curves are the exact analytical
solution and the circles are the data from the quantum lattice-gas simulation (the initial wave function was
normalized, therefore the area under each curve is one). The lattice size is L = 64`. The initial Gaussian
packet of with σ = L/10 at t = 0 is centered at x = 32` and the dispersion is evident by observing the wave
function at the subsequent times t = 50τ, 100τ, 150τ , and 200τ . Periodic boundary conditions were used and
nmax = 20 energy eigenmodes were used to generate the exact solutions. A time scale factor ts = 1.04 was
used to improve the agreement between the numerical and analytical solutions.

and the time-dependent solution to (5.19) plotted in Figure 5.1 is

ψexact(x, t) = a◦ +
nmax∑
n=1

an cos
(

2nπ
x

L

)
e−iEnt/ts . (5.26)

Note that in (5.26), time is scaled by a factor ts to account for kinetic corrections to the

time step. As the number of lattice nodes becomes large, this scaling factor approaches one.

The second test of the quantum lattice-gas algorithm as a model of the Schroedinger

wave equation is the measurement of its numerical convergence. Multiple simulations (10 in

total) were carried out for lattice sizes ranging from L = 8`, 16`, 32`, . . . up to L = 8192`.

In each case the initial state of the simulation was the ground state (a sinusoidal energy

eigenstate)

ψ(x, 0) = ψexact(x) =
cos (2πx/L)√

L/2
. (5.27)

Each simulation was run for one time step T = τ and the numerical error, denoted ε, from

the exact solution was then measured using the following formula

ε(L) =
1

L

√√√√ L∑
x=1

{|ψ(x, T )|2 − |ψexact(x)|2}2. (5.28)

We define the grid resolution as the inverse of the total number of lattice points. That is,

for a box of size 1, the resolving cell size is defined as δx ≡ 1
L

. A plot of the error versus
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Figure 5.2: L2 norm error for the Schroedinger equation: Log-log plot of the numerical error versus
resolving grid cell size, δx, indicating the convergence property of the quantum lattice-gas algorithm (5.10)
and (5.11) for the Schroedinger equation. The data (black circles) are taken from numerical simulations
with grid sizes from L = 8` up to 8192` after a single time step T = τ . The solid curves are best-fit linear
regression with a slope of 3.48 and 5.45 for the models defined by (5.10) and (5.11), respectively. These
results demonstrate third-order and fourth-order convergence in space for the two models, respectively.

the resolution is given in Figure 5.2. As the resolution is increased, the error drops off as

ε(L) ∼ L−5.45.

5.2.4 Adding an external scalar potential

It is possible to model an external potential by applying a local phase change to the system

wave function [Boghosian and IV, 1998b, Boghosian and IV, 1998a]

ψ(x, t)→ e−iV (x)δtψ(x, t). (5.29)

The effect of this phase change is to alter the finite difference equation (5.18) as follows

ψ(xl, t8) = −1 + i

2
e−iV (xl)δtψ(xl, t0) (5.30)

+ e−iV (xl+1)δtψ(xl+1, t0)

+ e−iV (xl−1)δtψ(xl−1, t0)

− 1− i
4

[
e−iV (xl+2)δtψ(xl+2, t0)

+ e−iV (xl−2)δtψ(xl−2, t0)
]
.

If we expand the potential terms in the arguments of the exponentials

V (xl+1)δt = V (xl)δt+ δtδx
dV (x)

dx

∣∣∣∣
x=xl

+O(δtδx2) (5.31)

we see that we can neglect the second term on the RHS because of diffusive ordering δtδx ∼
δx3 since we need to keep terms only to order δx2. Therefore, in the continuum limit (5.30)

102



is well approximated by

ψ(xl, t8) = −1 + i

2
e−iV (xl)δtψ(xl, t0) (5.32)

+ e−iV (xl)δt [ψ(xl+1, t0) + ψ(xl−1, t0)]

− 1− i
4

e−iV (xl)δt [ψ(xl+2, t0) + ψ(xl−2, t0)] .

Now multiplying through by eiV (xl)δt and expanding the LHS to order δt2 we have the fol-

lowing finite-difference equation:

[1 + iV (xl)δt]ψ(xl, t8) = −1 + i

2
ψ(xl, t0) (5.33)

+ ψ(xl+1, t0) + ψ(xl−1, t0)

− 1− i
4

[ψ(xl+2, t0) + ψ(xl−2, t0)] .

In the continuum limit, this finite-difference equation represents the Schroedinger wave equa-

tion with an external potential term

∂ψ(x, t)

∂t
+O(δt2) =

i

2

δx2

δτ

∂2ψ(x, t)

∂x2
− iV (x)ψ(x, t) +O(δx4). (5.34)

To confirm the validity of (5.34) we perform the following numerical simulations that yield

results that can be checked against analytical predictions:

1. Harmonic oscillation of a displaced Gaussian wave packet in a parabolic potential.

2. Quantum tunneling through a potential barrier.

Harmonic oscillator

The first numerical test presented here is the simulation of the behavior of a wave packet

in an external parabolic potential. This is the well-known problem of the linear harmonic

oscillator. Schroedinger analytically calculated the exact time-dependent solution for the

evolution of a Gaussian packet that is displaced by a distance a from its central ground state

in a parabolic potential well of the form V (x) = 1
2
Kx2. The initial wave function is

ψ(x, 0) =
α

1
2

π
1
2

e−
1
2
α2(x−a)2

, (5.35)

where α =
(
mK/h̄2

) 1
4 is the width of the packet and ωc = (K/m)

1
2 is the angular frequency

of the classical harmonic oscillator [Schrodinger, 1926]. The exact time-dependent solution

for the probability density is the following:

|ψ(x, t)|2 =
α

π
1
2

e−
1
2
α2(x−a cosωct)2

. (5.36)
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Figure 5.3: Harmonically oscillating wave packet: Time evolution of a Gaussian packet initially displaced
by a = 32` lattice sites from the center of a parabolic potential well with K = 10−5. The width of the packet
is α = 14.4`. The time development of the Gaussian packets over plotted in succession where the x-axis is the
position on a L = 256` node lattice and the y-axis is the probability density |ψ(x, t)|2. The red curve is the
parabolic potential. The h̄ = 1 and m = 1, the time period of the oscillation is Tc = 2π

ωc
= 1986.92τ . A total

of ten profiles are over plotted corresponding to time t = 0, 100τ, 200τ, ..., 1000τ , which is approximately half
of the oscillation time period, so the packet is seen to “swing” to the other side of the potential well while
maintaining a fixed shape as analytically predicted.

A derivation of the result (5.36) is also presented by Schiff [Schiff, 1968].

To test the quantum lattice gas algorithm against (5.36) we used a periodic lattice with

L = 256` nodes. The initial Gaussian packet is displaced to the right of the center of the

grid by 32 lattice nodes and so is initially located at x◦ = 160` as shown in Fig 5.3. With

h̄ = 1 and m = 1, the classical time period is Tc = 2π/ωc = 1987τ . So letting the simulation

run for 1000 iterations allows the packet to move to the other side of the potential well near

position x = 96` as demonstrated in Fig 5.3.

The simulation was rum for a total of 6000 time steps and the location of the peak of the

Gaussian wave packet was recorded every 100τ time steps. These data are plotted in Fig 5.4.

The location of the peak oscillates in time as expected. Overplotted on these numerical data

is the exact solution for the oscillation a cosωct+x◦ and the agreement between the analytical

solution and the numerical data is excellent.

Scattering off a potential barrier

The next numerical test of the quantum lattice gas is to simulate the well-known case of

quantum tunneling through a constant potential barrier of width a. That is, V (x) = V◦ for

0 ≤ x ≤ a and V (x) = 0 otherwise. The initial wave function is a Gaussian packet with net

momentum to the right

ψ(x, 0) =
1

π
1
4σ

1
4

e−
1
2(x−x◦σ )

2
+ipx, (5.37)

where p is the momentum parameter. We choose the mean kinetic energy of the packet to be

equal to the constant energy level of the potential barrier 1
2
p2 = V◦. In this case, the packet

tunnels through the barrier but the sum of the transmission and reflection probabilities are

104



0 1000 2000 3000 4000 5000 6000
Time Step Iteration (τ)

100

110

120

130

140

150

160

P
a
c
k
e
t
L
o
c
a
t
i
o
n

Figure 5.4: A comparison between the analytical and numerical predictions of the location of an oscillating
Gaussian packet in a harmonic parabolic potential well. The solid curve is the analytical prediction and the
black circles are the numerical data taken from the quantum lattice gas simulation presented in Figure 5.3.
In the simulation, the packet is initially displaced 32 lattice units from the center of the grid at lattice
node 128 for a periodic system with a total of L = 256` nodes. The numerical predictions are in excellent
agreement with the exact analytical solution.
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Figure 5.5: Resonance tunneling through a square potential barrier: A sequence of snapshots of the time
evolution of a packet that is incident from the left onto a potential barrier where the mean kinetic energy of
the packet equals the energy of the barrier. The x-axis is the lattice position and the y-axis is the probability
density. The iteration time step for each frame of the sequence is labeled in the upper left corners. The
simulation was run on a periodic grid of size L = 4000` for a total of 20000 time steps. The width of the
incident packet was set to σ = .035L = 140` and the initial momentum parameter was set to p = 0.1 in
units where ` = 1, τ = 1 and m = 1. The width of the barrier was set to a = 0.064L = 256`. As expected
the numerical simulation clearly demonstrates the resonance effect where there is a non-zero probability of
the particle to be trapped within the barrier itself.
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less than one because there is a resonance effect where the particle is also trapped inside of

the barrier. This effect is observed in the numerical simulation shown in Figure 5.5.

5.2.5 Two fermionic particles

The efficiency of the quantum algorithm (5.10) becomes evident when it is used to simulate

the dynamics of multiple quantum particles. The case of multiple quantum particles is still

handled by the same evolution operator Ê that we tested for the single particle case. The

particular sequence and number of quantum gate operations remains fixed, independent of

the number of particles to be simulated. The only difference is how the system wave function

is initialized.

In this section, for pedagogical reasons, we will consider the case of simulating two free

quantum particles. The approach we use in this case can be directly generalized to the

many-particle case.

To begin with we write the Schroedinger wave equation for two free quantum particles

ih̄
∂ψ(x, y, t)

∂t
= − h̄2

2m

∂2ψ(x, y, t)

∂x2
− h̄2

2m

∂2ψ(x, y, t)

∂y2
, (5.38)

where x and y are the spatial coordinates of the first and second particle, respectively. Since

the wave function is spatially separable as ψ(x, y, t) = ϕ(x, t)ϕ(y, t), the analytical solution

to (5.38) is obtained in a similar fashion to the one-body case by computing the Fourier

components of the energy basis functions

a◦ =
1

L

∫ L/2

−L/2
ϕ(x, 0)dx (5.39)

an =
2

L

∫ L/2

−L/2
ϕ(x, 0) cos

(
2nπ

x

L

)
dx (5.40)

bn =
2

L

∫ L/2

−L/2
ϕ(x, 0) sin

(
2nπ

x

L

)
dx. (5.41)

The energy eigenvalues are still given by (5.25) and the time-dependent single-particle solu-

tion is

ϕ(x, t) = a◦ +
nmax∑
n=1

[
an cos

(
2nπ

x

L

)
+ bn sin

(
2nπ

x

L

)]
e−iEnt/ts , (5.42)

which is basically the same as (5.26) except that we had to add the sine term because with

two particles the wavefunction is not even, as is (5.22) for example. We shall test the time
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evolution of two Gaussian packets. The initial wave function in our test is the odd function

ψexact(x, y, t) =
1√
2

[ϕα1,σ1(x, t)ϕα2,σ2(y, t)

− ϕα1,σ1(y, t)ϕα2,σ2(x, t)], (5.43)

where

ϕα,σ(x, 0) =
1

σ
1
2π

1
4

e−
(x−α)2

2σ2 . (5.44)

The subscripts on the function ϕα,σ denote its dependence on the position and width of

the individual Gaussian packet. This functional dependence is actually contained within

the form of the coefficients a◦, an, and bn that depend on the position and width of the

Gaussian packet in accordance with (5.39) through (5.41). Note that given the form of

(5.43), ψexact(x, x, t) = 0, which satisfies the Pauli exclusion principle.

Numerical confirmation

To numerically simulate the evolution of the two-particle wave function governed by (5.38)

using quantum algorithm (5.10) we must use a new computational formulation to implement

our algorithm. The finite-difference equation implementation that we used in Section 5.2.1,

in the single-particle case, cannot be directly applied in the two-particle case to each particle

individually because it does not allow for the possibility that the particles can be quantum

mechanically entangled. In general, this will be the case when there is an interaction between

the particles. Therefore, we shall use an implementation that can handle the most general

situations involving correlated particles and one that naturally scales to handle an arbitrarily

large number of particles in the system, the second quantized representation given above in

Section 2.6.

The
√

SWAP gate (2.82) acting on the on-site qubits indexed by α and α + 1 can be

expressed in terms of the creation and annihilation operators as√
χ̂α,α+1 = A∗n̂α(1− n̂α+1)− Aâ†αâα+1 − Aâ†α+1âα

+ A∗(1− n̂α)n̂α+1 + 1− n̂α − n̂α+1, (5.45)

where A = 1
2

+ i
2
. The swap operator (2.28) acting between the first qubits indexed by α

and β at neighboring nodes is

χ̂αβ = 1 + â†αâβ + â†βâα − n̂α − n̂β. (5.46)

The quantum gates (5.45) and (5.46) are used to implement the quantum lattice gas collision

and streaming operations, respectively [Yepez, 2001a].
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The basis state in the two-particle sector can be labeled with the binary encoding formula

|2α−1 + 2β−1〉 where the integers α and β are in the ranges 1 ≤ α ≤ Q and α + 1 ≤ β ≤ Q.

The number of basis states in this case is the binomial coefficient

(
Q
2

)
. The system ket can

then be expressed in the two-particle sector as

|ψ〉 =

Q∑
α=1

Q∑
β=α+1

ξα,β|2α−1 + 2β−1〉. (5.47)

Since there are two qubits per site, we initialize the wave function using (5.43) as follows:

ξα,β ≡ ψexact

(
bα + 1

2
c − L+ 1

2
, bβ + 1

2
c − L+ 1

2
, 0

)
, (5.48)

where the notation bxc means the floor of x and where Q ≡ 2L. The floor operation is used

so that the initial value of the wave function at each node is divided evenly between each

pair of on-site qubits. This is needed because definition (5.6) allowed us to have interfering

possibilities for a single particle to occupy a single position on the lattice. Moreover in the

two particle case, a single particle can still occupy only a single position because of the form

of the wave function (5.43) which is consistent with the anti-commutation relations (2.21).

However, particle one can interfere on-site with itself or with particle two, or vice versa since

the particles are indistinguishable.

At this point we have described how we implement the two quantum gates used in our

algorithm, how we enumerate the basis states, and how we initialize the two-body wave

function in this basis. The only remaining issue left to describe is how we project the two-

coordinate wave function ψ(x, y, t) on to a single-coordinate wave function ψ(x, t) that can

be plotted on a single physical axis. Because of the underlying lattice in our system this is

straightforward to do by summing out one of the coordinates as follows:

ψ(xl, tn) ≡
L−1∑
m=0

ψ(xl, ym, tn). (5.49)

If ψ(xl, ym, tn) is normalized then so is ψ(xl, tn) according to (5.49). A comparison of the time

evolution of the analytical solution (5.43) and the numerical solution (5.49) for a lattice with

30 nodes is shown in Figure 5.6. Even with this small lattice, throughout the time evolution

of the model run the numerical predictions are in good agreement with the predictions of

the exact solution.
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Figure 5.6: Simulation of two fermions: Time evolution of two fermionic particles initialized as Gaussian
packets is overplotted in succession where the x-axis is the position on a 30-node lattice in units of the
lattice spacing ` and the y-axis is the probability density |ψ(x1, x2, t)|2 projected onto the x1-axis. The
solid curves are the exact analytical solution and the circles are the data from the quantum lattice-gas
simulation (the initial wave function was normalized, therefore the area under each curve is one). The initial
Gaussian packets of width σ = 3` at t = 0 of the first and second particle are centered at x = 10` and
x = 20`, respectively. The dispersion of both packets is evident by observing the wave function at the
subsequent times t = 7τ, 21τ, 28τ, 35τ and 42τ . Periodic boundary conditions were used and nmax = 40
energy eigenmodes were used to generate the exact solutions at four times the resolution of the numerical
solution. No time scale factor was used and there is good agreement between the analytical and numerical
predictions at all later times of the numerical simulation as demonstated by the graphs.
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5.3 2+1 dimensions

5.3.1 Qubit representation for the NLS wave function

We discretize the single-particle wave function over a two dimensional square Bravais lattice

(the wave function is defined only on a spacetime lattice) where two qubits are used at each

lattice node to encode the local value of the wave function at that node. Let L denote the

number of lattice nodes along an orthogonal direction and let i and j be integer valued

spatial indices ranging from 1 up to L. Then, at lattice node (i, j) one defines a position

basis ket |xij〉. The discrete single-particle wave function ket |ψ〉 is modeled by a sum over

all possible ways the particle can be located on the lattice sites:

|ψ〉 =
L−1∑
i,j=0

γij|xij〉, (5.50)

where the (complex) probability amplitude for each possibility is γij ≡ 〈xij|ψ〉.
The two qubit kets for each lattice node are denoted by |qij0 〉 and |qij1 〉 with each qubit

having the standard two-level representation

|qija 〉 = αija |0〉+ βija |1〉, (5.51)

with normalization |αija |2 + |βija |2 = 1 for a = 0, 1 at spatial site (i, j). In particular, the

quantum particle is said to occupy the ath local state at position xij when βija = 1, while

the ath local state at xij is empty when βija = 0. For each position ket there are four basis

states in the number representation:

|q11
0 q

11
1 〉 . . . |11〉︸︷︷︸

xij

. . . |qLL0 qLL1 〉 doubly occupied at xij

|q11
0 q

11
1 〉 . . . |10〉︸︷︷︸

xij

. . . |qLL0 qLL1 〉 spin-up at xij

|q11
0 q

11
1 〉 . . . |01〉︸︷︷︸

xij

. . . |qLL0 qLL1 〉 spin-down at xij

|q11
0 q

11
1 〉 . . . |00〉︸︷︷︸

xij

. . . |qLL0 qLL1 〉 empty at xij,

where we use conventional terminology letting |qij0 〉 encode spin-up and |qij1 〉 encode spin-

down, say.

In the number representation of the one-particle wave function ket |ψ〉, we need consider

that subset of basis states in which only one amplitude βija = 1 is non-zero (all other β

amplitudes are zero). This subset of basis states is called the one-particle sector. There are
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(2L)2 such states. So in the one-particle sector, there are two ways (interfering possibilities)

for a particle to occupy the ijth lattice position

βij0 α
ij
1 |00 . . . 10︸︷︷︸

xij

. . . 00〉+ αij0 β
ij
1 |00 . . . 01︸︷︷︸

xij

. . . 00〉. (5.52)

Hence the occupancy probability of the ijth node is determined by first summing up the

probability amplitudes of the spin-up and spin-down basis states in the one-particle sector

and then computing the resulting square of this absolute value. Letting γij↑ ≡ βij0 α
ij
1 and

γij↓ ≡ αij0 β
ij
1 , the complex probability amplitude in (5.50) is set equal to the sum of the two

on-site probability amplitudes

γij = γij↑ + γij↓ . (5.53)

5.3.2 Quantum algorithm

To recover a macroscopic scale effective theory that approximates the Schrödinger wave

equation in the long wave length limit, our quantum lattice representation of the dynamics

uses the unitary
√

SWAP quantum logic gate as the collision operator that couples the on-site

probability amplitudes:

C

(
γij↑
γij↓

)
=

1

2

(
1− i 1 + i
1 + i 1− i

)(
γij↑
γij↓

)
, (5.54)

and eight stream operators which independently shift the ↑ and ↓ components of the discrete

spinor wave function in the ±x̂ and ±ŷ directions. The stream operator and its transpose

(which is its adjoint and inverse) in the x̂ direction for the first (spin-up) component are:

Sx↑

(
γij↑
γij↓

)
=

(
γi+1,j
↑
γij↓

)
ST
x↑

(
γij↑
γij↓

)
=

(
γi−1,j
↑
γij↓

)
, (5.55)

and the stream operators in the x̂ direction for the second (spin-down) component of the

discrete spinor wave function:

Sx↓

(
γij↑
γij↓

)
=

(
γi,j↑
γi+1,j
↓

)
ST
x↓

(
γij↑
γij↓

)
=

(
γi,j↑
γi−1,j
↓

)
. (5.56)

Similarly. we define the four stream operators in the ŷ direction:

Sy↑

(
γij↑
γij↓

)
=

(
γi,j+1
↑
γij↓

)
ST
y↑

(
γij↑
γij↓

)
=

(
γi,j−1
↑
γij↓

)
. (5.57)

Sy↓

(
γij↑
γij↓

)
=

(
γij↑
γi,j+1
↓

)
ST
y↓

(
γij↑
γij↓

)
=

(
γij↑
γi,j−1
↓

)
. (5.58)
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We define the fundamental evolution operator for direction ŵ = x̂ or ŷ and spin σ =↑ or ↓
as follows:

Uwσ = SwσC . (5.59)

Now we define the interleaved evolution operator (which would be identity if the stream and

collide operators commuted) as follows:

Iwσ ≡ S†wσU
†
wσSwσUwσ (5.60a)

= S†wσC
†SwσC (5.60b)

= ST
wσCSwσC (5.60c)

= S−w,σCSwσC , (5.60d)

since the adjoint of the fundamental evolution operator is U †
wσ = C †S†wσ, the stream operator

is real S†wσ = ST
wσ, and the collide operator is self-adjoint C † = C . Because of the spacetime

interpretation of spin [Yepez, 2005], where if spin-up moves along ŵ say then spin-down

moves along −ŵ, then the interleaved evolution operator is invariant under the following

simultaneous spin flip and spatial inversion:

I−w,−σ = Iwσ. (5.61)

For example, I−x,↑ = Ix↓.

Now we let E denote the local quantum evolution operator that advances the discrete

spinor wave function one unit in time. Then the evolution equation is the following:(
γi,j↑ (t+ ∆t)

γij↓ (t+ ∆t)

)
= E

(
γi,j↑ (t)

γij↓ (t)

)
(5.62)

The evolution operator can be partitioned in space using an operator splitting method. A

third-order accurate quantum algorithm for the local evolution operator has the form

E = I−y↓Iy↑I−x↑Ix↓ (5.63)

where the macroscopic effective field theory for the spinor field ψ =

(
γ↑
γ↓

)
is

∂tψ =
i

2

∆x2

∆t
σx (∂xx + ∂yy)ψ +O(ε3), (5.64)

where σx =

(
0 1
1 0

)
and where ε ∼ ∆x ∼

√
∆t. So if we trace over the spin components of

ψ and form the scalar Ψ ≡ γ↑ + γ↓, we obtain the following non-relativistic wave equation

for a free quantum particle:

∂tΨ = i
h̄

2m
(∂xx + ∂yy) Ψ +O(ε3), (5.65)
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where the diffusion constant associated with the particle mass is h̄
m

= ∆x2

∆t
in lattice units.

Quadratic products of the interleaved evolution operator (5.60) are invariant to order ε3

under the following double spin flip and spatial interchange operation:

Iw,σIw′,σ′ = Iw′,−σ′Iw,−σ +O(ε3). (5.66)

For example, Ix↑Iy↓ = Iy↑Ix↓ and Ix↑Iy↑ = Iy↓Ix↓. Hence using (5.66), there are(
4
2

)
= 6 ways to re-order the spatial indices of the evolution operator (5.63). Then, using

(5.61), for each configuration of the spatial indices there are 16 ways to re-order the spin

indices of (5.63). Hence, there are a total of 96 ways to rewrite the quantum algorithm

(5.63). For example, we can rewrite (5.63):

E
(5.61)
= Iy↑Iy↑Ix↓Ix↓ (5.67a)

(5.66)
= Iy↑Ix↑Iy↓Ix↓ (5.67b)

(5.66)
= Ix↑Ix↑Iy↓Iy↓. (5.67c)

Every version has the same algorithmic complexity and the error terms are always order ε3.

Furthermore, there are versions of the quantum algorithm where the error terms differ only

by an overall sign change. We exploit this feature to judiciously cause a cancellation of all ε3

error terms by using twice as many operators. This doubles the algorithmic complexity, but

the error is then pushed out to 4th order. Although the algorithmic complexity increases

by a factor of 2, the numerical accuracy of the algorithm increases by a factor of 4 because

of the diffusive ordering of the space and time fluctuations (because (5.65) is parabolic).

Therefore, it is advantageous to employ this numerical schema.

As a case in point, the error terms in (5.67a) and in (5.67c) differ only by an overall sign.

Hence, choosing our evolution operator to be

E = I 2
x↑I

2
y↓I

2
y↑I

2
x↓, (5.68)

we recover the following macroscopic effective field theory for the spinor field

∂tψ = i
∆x2

∆t
σx (∂xx + ∂yy)ψ +O(ε4). (5.69)

Again, tracing over the spin degrees of freedom, we obtain the Schrödinger wave equation

as our effective field theory, but now with diffusion constant

h̄

m
= 2

∆x2

∆t
. (5.70)
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We add a potential V by rotating the overall phase of the spinor field following each appli-

cation of (5.68)

ψ(t+ ∆t) = E e−i∆tV/h̄ψ(t) (5.71)
(5.70)
= E e−i∆x

2(2m/h̄2)V ψ(t). (5.72)

The resulting equation of motion is

∂tψ = i
∆x2

∆t
σx (∂xx + ∂yy)ψ −

i

h̄
V ψ +O(ε4), (5.73)

or in terms of the scalar wave function

ih̄∂tΨ = −h̄∆x2

∆t
(∂xx + ∂yy) Ψ + VΨ +O(ε4). (5.74)

The addition of the potential does not introduce any greater error nor diminishes the numer-

ical accuracy of the scheme. Using (5.61), there are 28 ways to rewrite (5.68). Furthermore,

(5.68) must be invariant under an interchange of the spatial labels x and y and the spin

labels ↑ and ↓. Hence, there are at least 256 ways of writing a quantum algorithm that is

forth order accurate.

5.3.3 Transverse instability

For convenience, we briefly review some properties of a 1D soliton wave train solution of

(5.2) [Kivshar and Agrawal, 2003]. A planar 1D bright soliton solution of (5.2) is

ψ0(x, t) = φ(x− x0 − 2νt; β)ei(νx−ν
2t+βt+θ), (5.75)

where the standard soliton shape is given by

φ(x; β) = β1/2sech(β1/2x) (5.76)

The location of the soliton wave train is x0, 2ν is the (transverse) soliton wave train speed,

β controls its amplitude and θ its phase. For a linear stability analysis of this 1D soliton

wave train, one considers perturbations of the form

δψ(x, y, t) = [u(x) + iw(x)]eiβt+Γt+ipy, (5.77)

where p is the transverse perturbation wavenumber in the y-direction, and Γ(p) is the linear

growth rate of the perturbation. An analytic solution to this linear perturbation problem

does not exist, and one must resort to asymptotic theory–either about the long wavelength

limit (p = 0) or about the maximum growth rate wavenumber pc where Γ(pc) = 0. Here, we
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t=0

t=5000

t=10000

Figure 5.7: Evolution of a 1D soliton wave train for the NLS equation in 2+1 dimensions on a 10242 grid
with periodic boundary conditions. No transverse modulation instabilities are triggered, even after 10,000
iterations. By t = 10, 1000∆t (bottom), the wave train has wrapped around the grid.
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t=0

t=2050

t=2100

Figure 5.8: Evolution of a 1D soliton wave train for the NLS equation in 2+1 dimensions on a 10242 grid
(only half the grid is shown) with a transverse perturbation with amplitude 10−7 lower than the initial peak
amplitude of the soliton wave train. A transverse modulation instability is triggered, clearly observable after
t = 2000∆t time steps.
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t=0

t=25

t=35

Figure 5.9: Evolution of a two orthogonally directed 1D soliton wave trains for the NLS equation in 2+1
dimensions on a 10242 grid. An rapid instability is immediately triggered, creating a rising peak at the
intersection point of the solitons that reached the grid resolution after t = 35∆t time steps.
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Interaction of Two Perpendicular Soliton Wave Trains

Finally, we consider the interaction of two perpendicularly directed soliton wave trains. No

initial perturbations are needed due to the “overlap” region of the two wave trains. A very

rapid instability is immediately triggered at the intersection region of the two wave trains,

and its localization and peak are so rapid that the gradient of the wave function cannot be

further resolved on the grid after just 35 time steps. The instability occurs only at the point

of intersection of the two soliton trains and the unaffected regions of both soliton trains

propagate in normal fashion. This expected behavior is observed in the simulation shown in

Fig. 5.9.

5.4 3+1 dimensions

5.4.1 Quantum algorithm

We model a scalar wave function ψ(~x, t) governed by the one-body Schroedinger equation in

3+1 dimensions by using a 2-spinor field with component amplitudes(
α(~x, t)
β(~x, t)

)
, (5.80)

where α and β complex numbers, and the scalar wave function is the “density” of the 2-spinor

field

Ψ(~x, t) = (1, 1) ·
(
α(~x, t)
β(~x, t)

)
= α(~x, t) + β(~x, t). (5.81)

The streaming operators act independently on the components of the 2-spinor

Ŝ∆~x,0ψ =

(
α(~x+ ∆~x, t)

β(~x, t)

)
(5.82a)

Ŝ∆~x,1ψ =

(
α(~x, t)

β(~x+ ∆~x, t).

)
(5.82b)

With the 2-spinor field defined on a lattice with periodic boundary conditions, (5.82) are

simply permutation operators, representing classical operations on the quantum state.

The collision operator causes local quantum entanglement of the spinor amplitudes

Ĉ ψ(~x, t) =
1

2

(
1− i 1 + i
1 + i 1− i

)(
α(~x, t)
β(~x, t)

)
. (5.83)

In a many-body setting, where α and β are the amplitudes of two on-site particles, then

from a quantum information viewpoint Ĉ is the
√

SWAP quantum logic gate. Yet, here we
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need only consider the one-body sector to explain the essence of the quantum algorithm. It

is convenient to define the interleaved operator

I~xσ = Ŝ−∆~x,σĈŜ∆~x,σĈ, (5.84)

in terms of which the full evolution operator is defined

Û(~x) = I 2
x0I

2
y1I

2
z0e
−iε2Ω(~x)/2I 2

z1I
2
y0I

2
x1e
−iε2Ω(~x)/2, (5.85)

where ε ∼ 1
N

, where N is the grid resolution (i.e. N is the number of grid points along one

edge of the simulation volume). In dimensionless units (hopping speed c = 1), note that

ε2 ∼ ∆x2 ∼ ∆t.

The evolution operator is spatially dependent only through the gauge term and it is

strictly local

ψ(~x, t+ ∆t) = Û(~x)ψ(~x, t). (5.86)

5.4.2 Effective field theory

The R.H.S. of (5.86) is a finite-difference of ψ, which is too long to write out here. If we

Taylor expand the R.H.S. in ε, we obtain the following quantum lattice gas equation(
α′

β′

)
=

(
β
α

)
+ i

ε2

2
∇2

(
β
α

)
− iε2Ω

(
α
β

)
+
ε3

4
∇3

(
α− iβ
−β + iα

)
+O(ε4). (5.87)

where

(
α′

β′

)
= ψ(~x, t+ ∆t). (5.89) is considered a valid dynamical equation of motion only

in the situation where the 2-spinor field is everywhere near local equilibrium. We remark

that this statement about local equilibrium is equivalent to requiring that all the relevant

dynamics is modeled by long wavelength and low frequency modes of (5.86) in the continuum

limit approximation. Therefore, we first consider the local equilibrium configuration with

respect to the collision operator, defined as follows:(
αleq

βleq

)
≡ Ĉ

(
αleq

βleq

)
. (5.88)

Since the ket

(
1
1

)
is an eigenvector of Ĉ, we require αleq = βleq as our principal condition for

local equilibrium. Then, the locally equilibrated quantum lattice gas equation (with equal

spinor components Ψ
2

) is the following:(
Ψ
2

′

Ψ
2

′

)
=

(
Ψ
2
Ψ
2

)
− iε

2

2
∇2

(
Ψ
2
Ψ
2

)
+ iε2Ω

(
Ψ
2
Ψ
2

)
+
ε3

4
∇3

(
Ψ
2

−Ψ
2

)
+ i

ε3

4
∇3

(
Ψ
2

−Ψ
2

)
+O(ε4). (5.89)
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So the equation of motion for the scalar density (5.81) becomes a finite-difference of the

Schroedinger wave equation

Ψ′ = Ψ− iε
2

2
∇2Ψ + iε2Ω Ψ +O(ε4), (5.90)

where the real and imaginary parts of the cubic terms cancel out, separately. Defining the

partial time derivative as ∂tΨ ≡ limε→0
Ψ′−Ψ
ε2

, in the continuum limit the effective field theory

becomes

i∂tΨ = −1

2

∆x2

∆t
∇2Ψ + ΩΨ. (5.91)

The Hamiltonian operator that generates the evolution, Û = ei∆tĤ/h̄, is the following

Ĥ = − h̄2

2m
∇2 + h̄Ω(~x) +O(h̄∆t2, h̄∆x4), (5.92)

where we have written the “diffusion” coefficient as ∆x2

∆t
= h̄

m
. We promote (5.91) to the

nonlinear Schroedinger equation by writing the local gauge term with an external part and

a nonlinear internal part

h̄Ω(~x) = V (~x) + U |Ψ(~x)|2, (5.93)

where U is the on-site two-body interaction energy (not to be confused with the unitary

evolution operator Û). Finally, we obtain the Gross-Pitaevskii equation for the special case

when the external trapping potential is parabolic, V (~x) = k r2, where r =
√
x2 + y2 + z2.

5.5 Summary

Presented was a lattice-based quantum algorithmic method to numerically model time-

dependent solutions of the Schrödinger wave equation in an arbitrary number of spatial

dimensions using a fourth-order accurate operator splitting method. Here we tested the

method in 1+1, 2+1, and 3+1 dimensions, including modeling a quantum system with a

nonlinear potential. These were the first numerical test of the quantum lattice gas algorithm

in multiple spatial dimensions–all previous simulation results that have appeared in the lit-

erature have been for 1+1 dimensional cases. Furthermore, we probed to determine if the

quantum algorithm was cable of accurately modeling the expected physical behavior of the

nonlinear quantum system by triggering the onset of strong and rapid nonlinear instabilities

in solitary wave trains. This was a stringent test of the method.

In all the cases, the quantum algorithm performed excellently with the numerical results

in perfect agreement with the theoretical predictions. Ultimately, in tracking the late time

developed of the growth of the instabilities, we were limited by our fixed grid resolution.

To follow the quantum evolution for significantly longer periods of time following the onset
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of a nonlinear instability, one could introduce adaptive mesh refinements into our quantum

algorithmic scheme.
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Chapter 6

Introduction to Type II analog
quantum computing

There exists a class of quantum algorithms that also requires many qubits (at least millions),

but which only requires that the qubits be entangled over short ranges (the width of a

single molecule) and for only short times (less than the natural T2 spin-spin decoherence

time) [Yepez, 1998, Yepez, 1999]. Such quantum algorithms are suited for implementation

on large parallel arrays of small quantum computers, with each quantum-computing node

embodying only a few qubits, and where a classical communication network connects the

nodes together. Such a hybrid quantum computing architecture is a second type of analog

quantum computer I have that termed a type II quantum computer [Yepez, 2001c].

Type II quantum computers offer a practical solution for general purpose computing for

several reasons. Here are three primary ones:

1. Only a limited degree (in both space and time) of quantum phase-coherence is required

and therefore type II quantum computers can be built today.

2. Its computational power grows exponentially in the number of phase-coherent qubits

per node. (I discuss “computational power” in terms of algorithm complexity in Sec-

tion 11.6.)

3. The number of quantum bits per unit volume is naturally commensurate with the

density of matter in the liquid or solid state (that is, on the scale of Avagadro’s number

of qubits per cubic centimeter) over arbitrarily large volumes. Therefore, the achievable

computational power is not limited by technological difficulties but is mainly limited

by the cost of the technological implemenation, as is characteristic of massively parallel

classical computing architectures.
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With the one exception of a measurement step, the type II quantum computing architec-

ture is identical to the type I architecture discussed in Section 3. The measurement step is

continually and spatially homogeneously applied to all lattice nodes causing repeated wave

function collapse to mitigate against uncontrolled decoherence. Hence, a type II quantum

computer is characterized by both classical parallelism (there being effectively many small

quantum computer nodes) and quantum parallelism (there being, quantum entanglement

within each node for some short time span). Therefore, a type II quantum algorithm is a

hybrid algorithm that is part quantum mechanical and part classical. The quantum part of

the algorithm requires quantum state preparation, application of two-qubit quantum gates

[DeVincenzo, 1995, Barenco et al., 1995, Barenco, 1995], and a measurement protocol. The

classical part of the algorithm involves transferring information between qubit (spin) pairs.

This is done by preparing the state of some qubit in the quantum computer to be equal

to the state of some other qubit that was previously measured in the quantum computer.

Hence, its computational power is related to the product of the number of nodes in the array

times the number of quantum states per node that can be entangled.

6.1 Three spatial scales

There are three spatial scales used to describe the behavior of a type II quantum computer:

the sub-scale, the middle scale, and the super-scale. In Section 3.1 we have already dis-

cussed the sub-scale and the super-scale. These descriptive regimes also apply to type II

quantum computing. That is, at the sub-scale, all the quantum dynamics of the type II

quantum computer occurs on a discrete spatial lattice, just as in the type I case. Again, the

Hamiltonian of the sub-scale quantum system is an engineered one, produced by a program

of externally applied controls as discussed in Section 3. In effect, one quantum spin system,

on a discrete lattice with a Hamiltonian of our choosing, is engineered to act like another

quantum system.

The middle scale is a regime between the sub-scale and super-scale where the probability

of finding a spin in a spin-up state is a real-valued quantity. This is called an occupancy

probability, which is well-defined only at the mesoscopic scale. The mesoscopic spin dynamics

are still spatially and temporally discrete.

One can then describe the dynamical behavior of the “programmed” quantum spin sys-

tem at a middle scale by a finite-difference quantum Boltzmann equation. The sub-scale

spin system at the middle scale is isomorphic to a mesoscopic many-body particle system,

whose kinetic behavior is described by a quantum Boltzmann equation with a highly non-

linear collision function. The quantum Boltzmann equation models the dynamical behavior
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of the occupation probabilities of the the kinetic particle’s positional state encoded in a

qubit’s excited energy state. To estimate an occupation probability experimentally, one

may employ an ensemble or repeated measurement over identical sub-scale realizations, or a

coarse-grained or block measurement of a single sub-scale realizations, to determine the oc-

cupancy of the two-level energy eigenstates of each qubit in the system. In this way a discrete

field of probabilities is obtained, one probability per qubit. At this middle scale, the occu-

pancy probabilities are defined only on the lattice points, so these probabilities constitute a

discrete field of real-valued quantities. The quantum lattice Boltzmann equation for kinetic

transport exactly governs the dynamical evolution of this spatially discrete probability field.

Finally, to bridge the gap to the super-scale, the number of lattice points is increased

towards infinite spatial resolution, the continuum limit, and the resulting effective field be-

comes both a continuous and differentiable field. However, the effective field is not a modeled

wave function as in the type I quantum computing case. Instead, it represents a dynamical

classical field at the physical macroscopic scale. The middle-scale occupancy probabilities at

each site of the lattice are summed together to determine what is called a number density

field. In turn, this number density field may be mapped onto a temperature field, mass

density field, or a flow field. These continuous field quantities are well defined only when the

cell size of the lattice approaches zero. So, this different approach involving state reduction

or measurement, allows us to use a type II quantum computer to model very different super-

scale effective fields, in particular classical physical field quantities governed by dissipative

dynamical equations of motion.

Its dynamical evolution is approximately described, to any order of desired precision, by

a dissipative parabolic partial differential equation of motion. To be clear, the origin of the

dissipation terms in the effective equation of motion is the continual wave function collapse

that is induced at the sub-scale of the type II quantum computer. This is in stark contrast

to the effective equation of motion of a type I quantum computer model which in principle

have no dissipative terms.

The effective equation of motion of a type II quantum computer is chosen by construction,

for example it may be a fluid-like equation, but it is not possible to arbitrarily select a priori

any equation of motion one may want to model. There is a well defined procedure for

deriving the operative effective field theory, which may turn out to be the heat equation,

Burgers equation, the wave equation, magnetohydrodynamic equations, or the Navier-Stokes

equation, for example, depending on the quantum gate protocol employed and the number

of qubit per lattice node.

I know of no procedure to go in the opposite direction. If one chooses any dissipative

partial differential equation of motion a priori, it may not be possible to find the appropri-
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ate quantum gate and quantum circuit topology needed to reproduce this particular partial

differential equation as the operative effective field theory of the type II quantum computer.

Obtaining a particular equation of motion specified a priori requires intuition and a great

deal of experience dealing with the quantum Boltzmann equation formulation. As a “pro-

grammed” aid, it is convenient to use symbolic software to predict the emergent effective field

theory for a particular quantum gate protocol. Perhaps in the future, quantum gate proto-

cols for a specified effective field theory could be automatically generated by an intelligent

computer program, perhaps using the genetic algorithms approach.

In any case, we consider the type II quantum computer to be a model of the physical

system described by that equation of motion so long as the super-scale effective field theory

of the type II quantum computer approximates the physical equation of motion to within an

acceptable level of numerical error. In this sense, the sub-scale quantum mechanical system

is programmed to act, at its super-scale, like a physical macroscopic-scale classical system.

In contrast to the type I quantum algorithms discussed in Section 3, the middle scale

behavior of the type II quantum lattice gas presented here is classical in nature, even though

the microscopic scale dynamics is quantum mechanical, and even though the quantum colli-

sion function has nonlinearities with no classical interpretation. As already mentioned, this

is due to the collapse of each qubit of the quantum computer after each and every application

of a local quantum mechanical collision operator independently applied on each site or node

of the system. Therefore, unlike the type I quantum computing case, a mean-field approx-

imation of the quantum Boltzmann equation associated with a type II quantum computer

that neglects high-order particle-particle (spin-spin) correlations can be readily implemented

on a classical computer. This is very much in analogy with the implementation of a mean-

field lattice Boltzmann equation to represent the mesoscopic dynamics of a classical lattice

gas system [McNamara and Zanetti, 1988].

6.2 Efficiency of type II quantum computing

A speedup due to quantum parallelism is a salient characteristic of a type II quantum

computer with the periodic measurement process. There are three advantages of nano-

scale quantum computing technology that significantly reduce the algorithmic complexity of

computational physics applications.

1. The dissipation in the modeled physical system, such as the viscosity of a fluid system,

can be made arbitrarily small without numerical instabilities or any added computa-

tional overhead. Our basic approach is to set the transport coefficient, such as the shear

viscosity, to a sufficiently low value that the number of time steps needed to advance
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the numerical simulation forward one physical unit of time is order unity regardless of

the grid size.

2. By using the nano-scale device technology to store and process information with short

logic gate times, it is practical to physically build ensemble averaging directly into the

“hardware” of the quantum computer [Pravia et al., 2002, Pravia et al., 2003]. Hence,

we can make the computational overhead associated with ensemble averaging be order

unity.

3. Exploiting quantum entanglement within each node, the amount of required local re-

sources needed to compute the nonlinear collision function is logarithmically less than

the required resources of the classical lattice-gas algorithm.

Speedup occurs even though the quantum mechanical superposition of states is restricted

to only a sub-manifold of the full Hilbert space. In principle, it is possible to gain a speedup

because the computational work required to implement the collision process is order unity

in certain cases. This is possible because the Hamiltonian (say a molecular spin system of a

hydrogen and carbon 13 nuclei of Section 2.12) governing the evolution of a node conserves

certain quantities, such as the total magnetization along an external applied uniform mag-

netic field which can be mapped to a conserved quantity such as the mass density of the

modeled classical physical system.

In the quantum lattice-gas model of Section 9, the total magnetization is mapped on to

a field quantity that is governed by the Burgers equation in the continuum limit. Therefore,

once the appropriate quantum state preparation is completed on each node of the type II

quantum computer, only one unitary transformation step is needed before the quantum

state of each qubit is measured. By refocusing two-spin interactions in a nuclear magnetic

resonance quantum computer [Jones and Knill, 1999], the collision process can therefore be

computed. Other conserved quantities of the on-site Hamiltonian may be mapped to recover

the macroscopic-scale evolution of additional field quantities. For example, the square of

the total spin may be mapped onto a conserved local momentum vector to recover nonlinear

hydrodynamic flow.

Therefore, with the three advantages of tunable viscosity, inherent ensemble averaging,

and localized quantum entanglement, in Section 11.6 we give an argument for a speedup

that goes as the reciprocal of the Reynolds number, 1

Re, for computational Navier-Stokes

fluid dynamics simulation carried out with a quantum lattice gas versus the classical lattice

gas model. The quantum speedup therefore improves with the modeled fluid’s nonlinearity.

The usefulness of the type-II quantum computing approach is that practical and efficient

computation can be carried out at the mesoscopic scale by an emergent finite-difference

127



quantum Boltzmann transport equation to model a broad class of classical effective field

theories in an unconditionally stable manner. The controlled state reduction process in

effect “factorizes” the collision function in the quantum Boltzmann equation so that quan-

tum superpositions and entanglement cannot spread throughout the quantum computer.

This keeps quantum entanglement localized within the lattice nodes for a short duration of

time, less than the spin-spin decoherence time of the physical system in question 1. In this

way, the controlled state reduction process mitigates against any uncontrolled decoherence

mechanisms that would otherwise destroy the phase coherence of the quantum computer’s

wavefunction.

6.3 Controlled state reduction

The state reduction of a phase-coherent quantum system may be induced by either mea-

surement or be intrinsic to the quantum system’s unitary evolution. The subject of the

measurement apparatus as an open quantum mechanical system has been studied as a

means for understanding the reduction of a quantum state following observation of the

system [Zurek, 1981, Zurek, 1982, Walls et al., 1985]. Alternatively, there have been pro-

posals [Ghirardi et al., 1986, Milburn, 1987, Pearle, 1989, Diósi, 1989, Ghirardi et al., 1990,

Milburn, 1991] that modify the fundamental quantum theory to include microscopic pro-

cesses that inherently cause the reduction of the quantum state as a way to naturally give rise

to macroscopic scale dissipative behavior. One approach due to Milburn for modifying the

Schrödinger equation is to introduce a minimum time step for the quantum mechanical evo-

lution where at each time step there is a randomization of the unitary phase generated by the

system Hamiltonian [Milburn, 1987, Milburn, 1991]. The resulting evolution is a sequence

of unitary transformations instead of being continuous and this evolution sufficiently de-

scribes decoherence in open quantum systems [Buzek and Konôpka, 1998]. At “laboratory”

time scales much larger than this minimum time step, the evolution appears continuous; the

Schrödinger equation is recovered at zeroth order and the decay of coherence in the energy

eigenstate basis is recovered at first order. Caves et al. have developed models of continual

quantum measurements distributed in time [Caves, 1986, Caves and Milburn, 1987] and has

developed a path-integral formulation of a one-dimensional quantum system governed by two

rules: (1) between measurements unitary evolution and (2) at each measurement collapse of

1Nuclear spins precess at a frequency of ω = geB
mc about the externally applied magnetic field B. They

can precess in phase with each other only for a characteristic time called the spin-spin decoherence time,
usually denoted by T2. Moreover, the relaxation time usually denoted T1, which is greater than T2, is the
characteristic time required for the spins to relax back to the energy eigenstates of the two-level spin-system,
where these two eigenstates are populated according to the Boltzmann equilibrium occupancy probabilities.
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Figure 6.2: Inviscid flow governed by the Burgers equation: Type-II NMR quantum computer solution of
the Burgers equation, a simple mode of turbulence and shock formation. Experimental NMR data (dots)
versus analytical solution (curves). Lattice size: 16 nodes. Viscosity: ν = 1

4
∆x2

∆t . In collaboration with the
MIT Nuclear Engineering Department [Chen et al., 2006a].
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The quantum algorithm presented in Section 9 for modeling the nonlinear Burgers equa-

tion represents a stronger numerical test of the modeling utility of quantum computers be-

cause the Burgers equation is a difficult nonlinear partial differential equation to accurately

model without numerical instabilities, as demonstrated in Figure 6.2. Its applications to tur-

bulence, intermittency, structures in a self-gravitating medium [Shandarin and Zeldovich, 1989]

and shock formation in inelastic gases [Ben-Naim et al., 1999] gives the Burgers equation

unique importance in the field of computational physics.

Only two qubits are needed at each node of the type II quantum computer and a single

quantum gate is simultaneously and independently applied to all the nodes. In general, to

solve nonlinear partial differential equations in two and three dimensions, more than two

qubits per node is required. The minimum number of qubits required for various nonlinear

systems, including the Burgers equation, in two and three dimensions is presently unknown.

A quantum algorithm presented in Section 10 for the nonintegrable magnetohydrody-

namic equations in one dimension has been developed and tested [Vahala et al., 2003c]. This

quantum algorithm is a generalization of the quantum algorithm for Burgers equations. In

this case, two nonlinear Burgers equations are modeled using the basis quantum algorithmic

approach, but then modified so as to couple the Burgers equations. The resulting coupled

system of equations, transformed using the Elsasser variables, accurately approximate the

magnetohydrodynamic equations for a velocity field and a magnetic field.

Finally, in Section 11 we present the quantum algorithm for modeling the Navier-Stokes

equation. We derive the effective field theory using a Chapman-Enskog perturbation expan-

sion procedure. However, this quantum algorithm requiring six qubits per node has not yet

been experimentally tested on the prototype NMR quantum computer.

6.5 State preparation using real-valued amplitudes

Each qubit embodied in a quantum spin of a type-II quantum computer is initialized using

a single real-valued number in the range of zero to one, which we will denote as aα. Since

digital binary values are not used, but continuous amplitudes for the qubit state, the type

II quantum computer may also be considered an analog quantum computer. With |1〉 and

|0〉 denoting the true and false states of a qubit, then to start out, each qubit is placed into

internal superposition according to the following prescription:

|qα〉 =
√
aα |1〉+

√
1− aα |0〉,

for α = 1, 2, . . . , Q. This is a simple way of encoding the probability that the qubit is true

using the value aα = cos2 ϕα, and the probability it is false using the value 1− aα = sin2 ϕα.
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6.6 Conservative quantum gates

For two qubits, there are two numbers, a and b say, that are needed to specify the tipping

angles, and in turn the amplitudes of the four possible numbered states: |11〉, |10〉, |01〉, and

|00〉. Each of the qubits is set independently:

|q1〉 =
√
a |1〉+

√
1− a |0〉

and

|q2〉 =
√
b |1〉+

√
1− b |0〉.

We can see how analog quantum logic works by considering our initial two-qubit state as the

input to the various gates of interest and writing down the respective outputs.

We begin with the logical swap gate, which is the most basic two-qubit gate. It simply

exchanges the amplitudes corresponding to the basis states |10〉 and |01〉 and it has no affect

on the amplitudes corresponding to the basis states |11〉 and |00〉, where the first qubit

has value b and the second has value a. So by exchanging the amplitudes, the swap gate

exchanges the probabilities as depicted in Figure 6.3A.

swap
-

-

-

-

b

a

a

b

(A)

√
swap

-

-

-

-

b

a
1
2
(a+ b)

1
2
(a+ b)

(B)

√
antisym

swap-

-

-

-

b

a
1
2
(a+ b)−

√
a(1− a)b(1− b)

1
2
(a+ b) +

√
a(1− a)b(1− b)

(C)

Figure 6.3: Analog quantum logic gates: (A) swap gate, (B)
√

swap gate, and (C) antisymmetric
√

swap
gate.

The actions of the symmetric and antisymmetric
√

swap gates entangle their two input

qubits. Hence, for these analog quantum gates, the output values for each qubit following a

measurement will depend on the values a and b of both input qubits. These analog quantum

gates are depicted in Figures 6.3B and 6.3C, respectively. Both of these gates are said to

be conservative because the sum of their input values equals the sum of their output values:

a+ b.
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6.7 Nonlinear scattering

quantum
gate-

-

-

-

b

a

b− Ω(a, b)

a+ Ω(a, b)

Figure 6.4: General conservative quantum logic gate: Ω(a, b) is a nonlinear collision function of the inputs
a and b specifying the operation of the gate.

In Figure 6.4, we express the output values of a conservative quantum logic gate as a

nonlinear function of the inputs a and b. This function called the collision function and is

denoted here by Ω(a, b). The general form of the collision function is

Ω(a, b) = sin2 θ(b− a) + sin 2θ cos ξ
√
a(1− a)b(1− b). (6.1)

We can think of a quantum logic gate as causing a scattering event where the input quantum

particles entering the gate “collide” with each other and subsequently exit the gate with

altered probability amplitudes. For θ = π
2
, the collision function causes a swap operation.

For θ = π
4

and ξ = π
2
, it causes a

√
swap operation. For θ = π

4
and ξ = π

4
, it causes an

antisymmetric
√

swap operation.

A simple version of a general result from Section 7: At the mesoscopic scale, the collision

function is determined by the matrix element

〈qαqβ|ez
∗Ĥ n̂γe

zĤ − n̂γ|qαqβ〉,

where α is an index referring to one qubit and β refers to another qubit, where γ = α or β,

and where n̂γ is a qubit number operator.

If the scattering process shown in Figure 6.4, which includes the evaluation of a nonlinear

collision function, were to be computed in the traditional way using a conventional floating-

point coprocessor, it would entail 6 additions and subtractions, 8 multiplies, 3 trignometric

functions, and 1 square root operation, all of which would be floating-point operations.

Using an iterative Newton-Raphson algorithm, the square root operation takes 13 floating-

point operations for the newest Intel Itanium 64-bit architecture (IA-64). The floating-point

operations required for a sinusoid computation is about two to three times that required for

the square root operation. Using the coordinate rotation digital computer algorithm for the
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sinusoids, the worst case is 50 multiplies. Hence, the quantum gate operation takes 6 + 8 +

3 (50) + 13 =177 equivalent floating-point operations.

The trigonometric factors A ≡ sin2 θ and B ≡ sin 2θ cos ξ are actually fixed by the Euler

angles chosen for the quantum gate, and for physical modeling applications, these factors can

be considered pre-computed quantities. The number of equivalent floating-point operations

is reduced to 6 additions and subtractions, 5 multiplies, and 1 square root operation:

a′ = a+ A ∗ (b− a) +B ∗
√
a ∗ (1− a) ∗ b ∗ (1− b)

b′ = b− A ∗ (b− a)−B ∗
√
a ∗ (1− a) ∗ b ∗ (1− b),

where the evaluation of the collision function Ω(a, b) is counted only once. Hence, the

quantum gate operation takes 6 + 5 + 13 =24 equivalent floating-point operations.

6.8 Quantum analog circuits

As an alternative to the formal description of (2.96) applied to quantum spin systems, we

can think of quantum algorithms represented graphically. We image an abstract quantum

circuit through which quantum particles move or “flow.” Throughout this review, we will

switch between the two different, but isomorphic, pictures. Circuits can be made out of

(A) (B)

Figure 6.5: Logic symbols for quantum
√

swap gates : (A) symmetric and (B) antisymmetric.

these two-input and two-output quantum gates by connecting the output “lines” of one

gate to the “input” lines of some other gate in various topological configurations. To help

make the task of drawing quantum circuits more simple, we follow the convention used to

draw classical electrical circuits by assigning logic symbols to each fundamental element

in the circuit. Quantum logic symbols for our
√

swap gates are given in Figure 6.5. The

inputs and outputs are connected by “wires,” which are not necessarily electrical wires;

these quantum wires carry quantum particles and these wires are not necessarily made out

of conductive metals, such as aluminum. At the moment we will think of these circuits and

their interconnecting wires in an abstract way.
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∆x

Figure 6.6: An analog quantum circuit for modeling diffusion: Point A connects to point A, and point B
connects to point B in periodic fashion.

6.9 The diffusion equation

Figure 6.6 shows a simple quantum circuit with six nodes connected together to form a

periodic one-dimensional lattice. This circuit is periodic because the end points on the left

side of the circuit labeled A and B are connected to the end points on the right side and

so the starting point for numerically labeling the nodes is arbitrary. The circuit shown in

Figure 6.6 is symmetrical in two ways. First of all, the connections between each node and

its neighbors are identical for all the nodes. So if the circuit is periodically shifted from left

to right by a distance ∆x, or any multiple thereof, the circuit remains the same. Second

of all, the circuit looks the same whether viewed from the top or from the bottom. If it

is flipped over and shifted by ∆x, it looks exactly the same as before. There are a large

number of ways we could connect together a linear array of gates, but it is only the symmetric

circuits that are useful for our purposes of physical modeling. It is possible to write down

a(x,t) a(x+∆x,t)a(x-∆x,t)
b(x,t) b(x+∆x,t)b(x-∆x,t)

a(x-2∆x,t)
b(x-2∆x,t)

Figure 6.7: Circuit fragment with labeled input values.

a simple discrete equation, called a finite-difference equation, that describes the behavior of

this circuit. We shall consider the inputs a and b to depend on a position variable x and time

variable t, so all the inputs taken together as an ordered set constitute a time-dependent

field that is a function of x and t. That is, the field of inputs is denoted a(x, t) and b(x, t),

and the subsequent field of outputs is denoted a(x, t+ ∆t) and b(x, t+ ∆t), where ∆t is the

small amount of time it takes for the analog quantum gate to convert its inputs to outputs.

As a simplification, we imagine that all the gate operations occur in lock-step fashion, so the

circuit can be said to be clocked.

The finite-difference equation is said to be a mesoscopic description of the quantum
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Figure 6.8: Diffusion equation: Diffusion on a linear quantum circuit of 2048
√

swap gates. Successive
time profiles, sampled every 128 time steps, are over-plotted in the vertical.

6.9.2 A mesoscopic scale derivation of the macroscopic effective
field theory

A result from Section 8: If we define a number density field as the sum of the qubit probabil-

ities ρ(x, t) = a(x, t) + b(x, t), then this field satisfies the diffusion equation

∂ρ

∂t
=

1

2

∆x2

∆t

∂2ρ

∂x2
,

if we neglect terms of order ∆x4 and ∆t2 or smaller.

As a quick derivation of this result, in this subsection we develop a set of finite-difference

equations by expressing a(x, t+∆t) and b(x, t+∆t) in terms of the qubit probabilities at one

time step earlier at time t, and then Taylor expand these equations. In Figure 6.6, each gate

located at an even numbered node gets its input from the output of gates at neighboring odd

numbered nodes, and vice versa. The spatial interval ∆x shown in Figure 6.6 is called the

cell size of the lattice. We can express the “new” input values a(x, t+ ∆t) and b(x, t+ ∆t)

going to an odd-numbered node, located at position x say, in terms of the outputs of the
√

swap operations that occurred at the neighboring nodes at positions x + ∆x and x−∆x

one time step earlier at time t. Thus we obtain the following finite-difference equations for

all odd-numbered nodes:

a(x, t+ ∆t) =
1

2
[a(x+ ∆x, t) + b(x+ ∆x, t)]

b(x, t+ ∆t) =
1

2
[a(x−∆x, t) + b(x−∆x, t)] .

A useful quantity to consider is the sum of the quantities a and b. This is called the number

density and is denoted by ρ = a+b. The number density field ρ(x, t) is a discrete field of real-

valued quantities. If we add together the above two equations, we get a single finite-difference
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equation for the number density:

ρ(x, t+ ∆t) =
1

2
[ρ(x+ ∆x, t) + ρ(x−∆x, t)] . (6.2)

Similarly, the outputs for the even-numbered nodes are

a(x, t+ ∆t) =
1

2
[a(x−∆x, t) + b(x−∆x, t)]

b(x, t+ ∆t) =
1

2
[a(x+ ∆x, t) + b(x+ ∆x, t)] ,

and when we add these two equations together we get the same result as before, so the

finite-difference equation (6.2) applies to all nodes of the lattice and therefore is the operative

equation describing the behavior of the analog quantum circuit shown in Figure 6.6.

For a one-dimensional array with L nodes (where in this case each node constitutes a

single
√

swap gate), the total size of the system is L = N∆x. Keeping L fixed, I would like

to discuss how this circuit behaves when L becomes very large and ∆x becomes very small.

At the macroscopic scale, the cell size ∆x and the gate time ∆t both approach zero and are

infinitesimally small quantities so the number density field ρ(x, t) becomes a continuous field

of real-valued quantities. Hence we can express the number density in (6.2) in differential

point form using the Taylor expansion:

ρ(x, t+ ∆t) = ρ(x) + ∆t
∂ρ

∂t
+O(∆t2).

This is possible because ∆t is an infinitesimally small quantity at the macroscopic scale, yet

we must remember that it is not actually zero, and so keep the error term of order ∆t2,

which is denoted O(∆t2), on the right hand side of the equation to account for this fact. We

can also Taylor expand the number density about x but we have to make sure the error term

in the x-expansion that we keep is of a comparable size to the error in the t-expansion so as

to maintain consistency and balance in our approach. Because of the random walk nature

of quantum particles in this circuit, we must expand ρ to fourth-order in the spatial terms:

ρ(x±∆x, t) = ρ(x)±∆x
∂ρ

∂x
+

1

2
∆x2 ∂

2ρ

∂x2
± 1

6

∂3ρ

∂x3
+O(∆x4).

If we insert these Taylor expansions into the finite-difference equation (6.2), after some

cancellation, we get the following partial differential equation:

∂ρ

∂t
=

1

2

∆x2

∆t

∂2ρ

∂x2
+O(∆t2,∆x4), (6.3)

which the diffusion equation. The diffusive transport coefficient is ν = 1
2

∆x2

∆t
. This partial

differential equation constitutes an effective field theory that describes the behavior of a

quantum spin system constrained by the topology of our simple quantum circuit.
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6.9.3 Numerical accuracy

To test the accuracy and convergence of the quantum algorithm, we can compare the pre-

dicted numerical solution to the exact solution after a fixed number of time steps. To obtain

the most statistically accurate results, we choose to initialize the circuit using the largest

possible sinusoid with a wave length equal to the total size of the lattice. This test is re-

peated over a range of small to large lattices, and the numerical error is then calculated

as the “distance” between the numerical and exact predictions. The total numerical error

obtained from each test was plotted versus inverse resolution of the numerical simulation.

The result, shown in Figure 6.9, is that the error accurately follows a power law ∆x4.471,

which demonstrates that the actual numerical error is close to fourth order convergence in

space as we had analytically predicted, and in fact the circuit behaves better than expected

because it has a slightly higher rate of convergence.
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Figure 6.9: Diffusion equation: Numerical error as a function of the inverse of the grid resolution, 1
N ,

graphed on a log-log plot for the quantum algorithm for the diffusion equation as described in Section 8.2.
The data (black circles) are taken from numerical simulations with the number of nodes from N = 64 up to
N = 32768. The slope of the best-fit regression line is 4.471.

6.10 Burgers equation

At the macroscopic scale, we can talk about the flux density of particles and the flow speed.

For a conservative system with no source terms, the change per unit time of the number

of particles within the interval x and x + ∆x can be related to the flux density entering

and exiting that interval. Particles are driven “down-slope” by gradients in the number

density field. This dynamics is linear. In fluids, such as air and water, the dynamics driving

the motion of particles is a nonlinear one called convection, and we are able to model this

process as well. If we replace all the gates in the strictly diffusive circuit of Figure 6.6, with
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Figure 6.10: An analog quantum circuit for modeling shock formation. The quantum gates have alternating
polarity from node to node. Point A connects to point A, and point B connects to point B in periodic fashion.

antisymmetric
√

swap gates, the circuit becomes a nonlinear one in the sense that there is

a new nonlinear term that appears in the effective field theory governing the quantum spin

system within the circuit. Since an antisymmetric
√

swap gate has a definite polarity, to

retain the required symmetry of the circuit as we discussed above, we need to orient the

gates in alternating fashion from node to node as shown in Figure 6.10.

ti
m
e

Figure 6.11: Dynamical evolution governed by the Burgers equation: Diffusion and shock formation on a
linear quantum circuit of 2048 antisymmetric

√
swap gates. Successive time profiles, sampled every 128 time

steps, are over-plotted in the vertical.

A result from Section 9: The spacetime-dependent macroscopic behavior of the quantum

circuit shown in Figure 6.12 is governed by the nonlinear partial differential equation

∂tu+ u∂xu = ν∂xxu.

where we have defined the flow velocity as u = ∆x
∆t

[ρ(x, t)− 1], and where the number density

field is the sum of the qubit probabilities ρ(x, t) = a(x, t) + b(x, t).

6.10.1 A microscopic scale argument for shock wave formation

The macroscopic scale dynamical behavior of the circuit shown in Figure 6.12 is also described

by the nonlinear Burgers equation. Although this circuit is less accurate than the one shown

in Figure 6.10 in that its spatial discretization error is of order ∆x3, its simplicity nevertheless
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Figure 6.12: A simple analog quantum circuit in one dimension: Point A connects to point A, and point
B connects to point B in periodic fashion.

makes it useful for us to intuitively see why the Burgers equation is indeed the appropriate

effective field theory.

The microscopic scale argument that we made in Section 6.9.1 still basically applies to

the circuit in Figure 6.12 because the first term of the collision function for the antisymmetric
√

swap gate still equally splits the input probabilities, so a particle entering a quantum gate

at one of the lattice nodes is equally influenced to exit in the forward or backward direction.

However, there exists a second second-order polynomial term in the collision function for

the antisymmetric
√

swap gate that biases the outcome. So if Circuit 6.12 is initialized

with a quantum particle on the top rail, that particle will more likely be fed forward to the

next adjacent node. Vice versa, if a quantum particle were initially placed on the bottom

rail, it would more likely be fed backward to the previous adjacent node in the chain. This

directional bias has the affect of giving rise to a convective term in the governing equation

of motion, which is the nonlinear term in the Burgers equation. That is, the total time

derivative of the right hand side of the equation of motion can be expressed as the sum of

two basic parts: the partial time derivative ∂u
∂t

and the convective spatial derivative ∂x
∂t

∂u
∂x

.
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Chapter 7

The quantum Boltzmann equation

7.1 Preliminaries

I will use the following convention for indices

1. Small roman letters (a, b, c) for the momentum directions on the lattice, a ∈ {0, . . . , B−
1}.

2. Greek letters (α, β, γ) for specifying qubits, α ∈ {0, . . . , N − 1}.

3. Italic letters (i, j, k) for the spatial dimensions, i ∈ {1, . . . , D}.

7.2 Overview

Here we present a quantum lattice gas algorithm to numerically predict the time-dependent

solutions of a classical equations which are moments of a Fokker-Planck equation:

dissipative classical equation of motion, (7.1)

for example dynamical equations for fluid turbulence. At this point, we purposefully are not

specifying any details about (7.1) since these depend on the quantum algorithm in question

Table 7.1: Ket symbols

Symbol Size of Manifold Description
|Ψ〉 2Q Total system ket
|ψ〉 2B On-site ket
|q〉 2 Qubit, local state ket
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for the computational physics application at hand. We shall derive (7.1) as the effective

field theory for the macroscopic behavior of a system of quantum particles governed at the

mesoscopic scale by a discrete quantum Boltzmann equation:[
∂t + ~ca · ∇+

1

2
δt ~ca~ca : ∇∇

]
fa(~x, t) =

1

δt
Ωa(f∗). (7.2)

fa(~x, t) are probability fields for the occupation at position coordinate ~x and at time t of a

particle moving along lattice direction ~ca, where a = 1, 2, . . . , B. Ωa(f∗) is a nonlinear colli-

sion function for local particle interaction that satisfies the isotropic condition
∑

a Ωa(f∗) = 0.

δr and δt are the cell sizes of the space-time lattice.

(7.2) is a statistical description of the kinetic transport dynamics of a microscopic system

of quantum particles. We shall derive (7.2) as the effective field theory for the mesoscopic

behavior of the microscopic quantum system where the motion of the particles and their

quantum mechanical interactions are represented by two unitary operators, a streaming

operator Ŝ and a collision operator Ĉ , respectively, according to the quantum lattice gas

paradigm. The parabolic partial differential operator on the L.H.S. of (7.2) derives from Ŝ .

The form of Ω(f∗) on the R.H.S. of (7.2) derives from Ĉ . Denoting the microscopic quantum

state of the system at time t by |Ψ(t)〉, the microscopic quantum mechanical evolution

equation is written as follows:

|Ψ(t+ δt)〉 = Ŝ Ĝ Ĉ |Ψ(t)〉. (7.3)

(7.3) is the fundamental equation that specifies the quantum algorithm. Furthermore, (7.3)

reduces to the Schroedinger wave equation when the operator Ĝ is the identity operator.

Here, the Hamiltonian H that generates the quantum evolution is formally expressed as

eiĤ δt/h̄ ≡ Ŝ Ĉ (type-I case). However, for (7.3) to give rise to fluid equations of motion with

viscous dissipation proportional to the curvature of the flow field, Ĝ must be chosen to be a

projection operator that commutes with the particle number operator (type-II case).

(7.3) comprises a four-step quantum algorithm: initialization step (state preparation of

|Ψ(t)〉), collision step (entanglement of quantum state by Ĉ ), measurement step (collapse of

quantum state by Ĝ ), and streaming step (interchange of amplitudes by Ŝ ).

7.3 Occupancy probability and the mass and momen-

tum densities

The probability of occupancy at time t of the αth local state is denoted fα(t). Let the αth

local state be associated with a displacement vector êa at position ~x. Also, let n̂α denote the
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number operator for the αth local state. That is, n̂α|Ψ(t)〉 has eigenvalue 1 or 0 corresponding

to the αth local state being occupied or empty at time t. A fundamental construct of the

quantum lattice-gas formalism is that the probability of occupancy, fα(t), is expressed in

terms the quantum mechanical density matrix %(t) = |Ψ(t)〉〈Ψ(t)| as the following trace

fα(t) = fa(~x, t) ≡ Tr[%(t)n̂α]. (7.4)

In the literature on classical lattice gases and the lattice-Boltzmann equation, fa(~x, t) is

referred to as the single-particle distribution function, and it is defined at the mesoscopic

scale.

Let α◦ denote the first local state within the group of local states at position ~x of the

Bravais lattice. In addition, let α◦ correspond to the displacement vector ê0. Next, suppose

the local states are numbered in a systematic and well ordered fashion so that each local

state α = α◦ + a, for all a ∈ {0, 1, . . . , B − 1}, resides at position ~x. Note that with this

numbering scheme, the directional index a, associated with the αth local state, is found by

the modulus operation a = (α mod B). Then, the local mass density and the momentum

density at ~x and t can be expressed in terms of the occupancy probability, fa(~x, t), following

the convention used to define the mass and momentum densities in a classical lattice gas

ρ(~x, t) = lim
`s→0

B∑
a=1

m fa(~x, t) (7.5)

= lim
`→0

α◦+B∑
α=α◦

mTr[%(t)n̂α]

ρ(~x, t)vi(~x, t) = lim
`s→0

B∑
a=1

mc2eai fa(~x, t) (7.6)

= lim
`→0

α◦+B∑
α=α◦

mc2e(αmodB)iTr[%(t)n̂α].

The mass and momentum densities are considered “macroscopic” field quantities. They are

only well defined in the continuum limit, where the primitive cell size of the lattice approaches

zero. However, for practical considerations, they are approximated by high resolution grids

with small but finite cell size.

7.4 Mesoscopic transport equation

Let us consider two qubits |q〉 and |q′〉, which are located at neighboring sites ~x and ~x′ =

~x+ `êa, respectively. I shall refer to the local states encoded by these two neighboring qubits
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Table 7.2: Two neighboring qubits

Qubits |q〉 |q′〉
Local State α α′

Position ~x ~x′ = ~x+ `êa
Momentum ~p = mcêa ~p′ = ~p

by their numerical labels α and α′, respectively. Next, suppose these local states may be

occupied by particles with momentum mcêa. Following this construction, the action of the

streaming operator Ŝ causes a particle to move from site ~x to the neighboring site ~x′, hopping

from local state α with momentum ~p = mcêa to local state α′ with the same momentum

~p′ = ~p. This labelling convention is summarized in Table 7.2. With this understanding, we

can write the identity

〈Ψ|n̂α|Ψ〉 = 〈Ψ|Ŝ†n̂α′Ŝ|Ψ〉. (7.7)

This is a simple mathematical way of stating the following: If you make a measurement of

the occupancy of local state α before streaming, the result you get must be the same as

when you make a measurement of α′ after streaming.

The first step toward deriving a mesoscopic transport equation for the quantum lattice

gas is to rewrite the basic evolution equation |Ψ(t+ τ)〉 = ŜĈ|Ψ(t) in (2.99) as

〈Ψ(t)|Ĉ†n̂αŜ† | Ψ(t+ τ)〉 = 〈Ψ(t)|Ĉ†n̂αĈ | Ψ(t)〉, (7.8)

which is done by multiplying through from the left by 〈Ψ(t)|Ĉ†n̂αŜ†, and then using the

identity Ŝ†Ŝ = 1. From the identity (7.7), we know that n̂αŜ
† = Ŝ†n̂α′ . Using this fact in

the above equation allows us to write it as follows

〈Ψ(t)|Ĉ†Ŝ†n̂α′ | Ψ(t+ τ)〉 = 〈Ψ(t)|Ĉ†n̂αĈ | Ψ(t)〉. (7.9)

The “bra” vector on the LHS of this equation can be simplified using the adjoint of (2.99),

which is 〈Ψ(t+ τ)| = 〈Ψ(t)|Ĉ†Ŝ†, so that we obtain the following result

〈Ψ(t+ τ)|n̂α′|Ψ(t+ τ)〉 = 〈Ψ(t)|Ĉ†n̂αĈ|Ψ(t)〉. (7.10)

Using (7.4) and referring to Table 7.2, (7.10) expresses the probability of occupancy of local

state α′ at site ~x+`sêa at time t+τ in terms of a matrix element evaluated at the neighboring

site ~x and at the earlier time t. That is,

fa(~x+ `sêa, t+ τ) = 〈Ψ(t)|Ĉ†n̂αĈ|Ψ(t)〉. (7.11)
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We may add fa(~x, t) − 〈Ψ(t)|n̂α|Ψ(t)〉, which vanishes by definition, to the right hand side

(RHS) of (7.11). Then, we recognize (7.11) as a transport equation for the particle occupan-

cies. The result is a quantum Boltzmann equation, in finite-difference form, for the quantum

lattice-gas system

fa(~x+ `sêa, t+ τ) = fa(~x, t) + Ωmeso

a (Ψ), (7.12)

where the collision term is expressed as the following matrix element:

Ωmeso

a (Ψ) ≡ 〈Ψ(t)|Ĉ†n̂αĈ − n̂α|Ψ(t)〉. (7.13)

7.5 Continuum limit derivation of the quantum Boltz-

mann equation

I would like to rederive the transport equation (7.12) for the quantum lattice-gas system.

The derivation given here is carried out in the continuum limit (imagine a space-time lattice

with infinite resolution as the cell size vanishes). All the usual restrictions arising from the

discretization of the microscopic quantities are temporarily removed. A particle can exist

at any point in space and time, and it can also have any momentum ~p = m~v. The only

assumption I make here is that I can still decompose the space-time into an ordered set of

local states, which in this case is infinite but denumerable. That is, I imagine there are

an infinite number of local states at each point in space (B = ∞), one corresponding to

every possible particle momentum. Since the number of points in the space is also infinite

(V =∞), the total number of local states is doubly infinite (N = BV =∞2). Nevertheless,

I assume the local states are well ordered and denumerable.

The probability of finding a particle with momentum ~p in the αth-local state located at

position ~x given by (7.4) is the following matrix element:

f(~x, ~p, t) ≡ 〈Ψ(t)|n̂α|Ψ(t)〉. (7.14)

I assume f(~x, ~p, t) is a continuous and differentiable mesoscopic field quantity. For the

moment, suppose the α is the local state of an “incoming” particle, preceding a possible

collision event. I still want to imagine the particle dynamics divided into mutually exclusive

events (collision followed by streaming) repeated in stepwise fashion ad infinitum. Next,

the probability of finding a particle in the local state, α′, corresponding to momentum ~p′ at

position ~x′ = ~x+ τ
m
~p′, is expressed by the matrix element

f(~x+
τ

m
~p′, ~p′, t+ τ) ≡ 〈Ψ(t+ τ)|n̂α′ |Ψ(t+ τ)〉. (7.15)
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Suppose α′ is the local state of the “outgoing” particle. Then, a basic definition of the total

time derivative of f(~x, ~p, t) is the following ratio

df(~x, ~p, t)

dt
≡ lim

τ→0

f(~x+ τ
m
~p′, ~p′, t)− f(~x, ~p, t)

τ
, (7.16)

or, in terms of the matrix elements, it is

df(~x, ~p, t)

dt
= lim

τ→0

〈Ψ(t+ τ)|n̂α′ |Ψ(t+ τ)〉 − 〈Ψ(t)|n̂α|Ψ(t)〉
τ

. (7.17)

This is the seed of a Boltzmann equation for particle transport and the RHS of this equation

constitutes the collision term, although this may not appear quite obvious at this point in the

development. In the following development, I shall interpret the collision term and rewrite

it so that it explicitly depends only on n̂α at position ~x and |Ψ(t)〉. In so doing, we shall see

how the collision dynamics is inherently encoded in this expression.

First, we add zero to the RHS of the above equation to write the collision term in two

parts, explicitly separating the total change into “temporal-change” and “spatial-change”

parts, as follows:

df(~x, ~p, t)

dt
= lim

τ→0

〈Ψ(t+ τ)|n̂α′|Ψ(t+ τ)〉 − 〈Ψ(t)|n̂α′|Ψ(t)〉
τ

+lim
τ→0

〈Ψ(t)|n̂α′ |Ψ(t)〉 − 〈Ψ(t)|n̂α|Ψ(t)〉
τ

.

(7.18)

From the time-displacement operation, eτ
∂
∂tf(~x, ~p, t) = f(~x, ~p, t + τ), we see that the first

term on the RHS of the above equation is a partial derivative with respect to time

∂f(~x+ τ
m
~p, ~p, t)

∂t
+O(Sh2) = lim

τ→0

〈Ψ(t+ τ)|n̂α′|Ψ(t+ τ)〉 − 〈Ψ(t)|n̂α′|Ψ(t)〉
τ

. (7.19)

The Strouhal number, Sh, is defined as the ratio of the mean-free time to the characteristic

time scale (Sh ≡ τ
T

). Similarly, from the space-displacement operation, eτ~v·∇f(~x, ~p, t) =

f(~x+ τ~v, ~p, t), we see that the second term is a partial derivative with respect to position

~v ·∇f(~x, ~p, t) +
1

2
(~v ·∇)2f(~x, ~p, t) +O(Kn3) = lim

τ→0

〈Ψ(t)|n̂α′ |Ψ(t)〉 − 〈Ψ(t)|n̂α|Ψ(t)〉
τ

. (7.20)

The Knudsen number, Kn, is defined as the ratio of the mean-free path to the characteristic

length scale (Kn ≡ `
L

). Therefore, we have the convective derivative

df(~x, ~p, t)

dt
=
∂f(~x+ τ

m
~p, ~p, t)

∂t
+ ~v · ∇f(~x, ~p, t) +

1

2
(~v · ∇)2f(~x, ~p, t) +O(Sh2,Kn3), (7.21)

composed of a local term and a nonlocal advection term. In the local term, it is technically

correct (albeit unconventional) to explicitly write the partial time derivative’s dependence

on τ , even though τ → 0. This is done to stress an equivalence with the matrix element

formulation given by (7.18).
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Second, we rewrite the “local change” term. Since |Ψ(t+τ)〉 = eiĤτ/h̄|Ψ(t)〉 and eiĤτ/h̄ =

1 + iĤτ/h̄+O(τ 2), we have

〈Ψ(t+ τ)|n̂α′ |Ψ(t+ τ)〉 = 〈Ψ(t)|n̂α′|Ψ(t)〉+
iτ

h̄
〈Ψ(t)|[n̂α′ , Ĥ]|Ψ(t)〉+O(τ 2). (7.22)

Using this equation in conjuction with (7.19), we have

h̄
∂f(~x+ τ

m
~p, ~p, t)

∂t
= i〈Ψ(t)|[n̂α′ , Ĥ]|Ψ(t)〉. (7.23)

This result is expected, since in quantum mechanics, the partial time derivative of an operator

is found by calculating the commutator of that operator with the Hamiltonian. Using this

result, the Boltzmann equation (7.18) becomes

df(~x, ~p, t)

dt
=
i

h̄
〈Ψ(t)|[n̂α′ , Ĥ]|Ψ(t)〉+ lim

τ→0
〈Ψ(t)|nα

′ − nα
τ

|Ψ(t)〉. (7.24)

Now the RHS no longer depends on |Ψ(t+ τ)〉 (so it is local in time), but it is still nonlocal

in space because it depends on n̂α′ as well. That is, if the RHS of the above equation were

to depend only on n̂α, then it would have “strictly local” form.

Third, using the fact that eiĤτ/h̄ ≡ ŜĈ, we can rewrite the commutator as

i

h̄
[n̂α′ , Ĥ] = lim

τ→0

e−iĤτ/h̄n̂α′e
iĤτ/h̄ − n̂α′
τ

= lim
τ→0

Ĉ†Ŝ†n̂α′ŜĈ − n̂α′
τ

. (7.25)

Now, n̂α and n̂α′ are related by the similarity transformation (7.7), n̂α = Ŝ†n̂α′Ŝ, so the

commutator reduces to
i

h̄
[n̂α′ , Ĥ] = lim

τ→0

Ĉ†n̂αĈ − n̂α′
τ

. (7.26)

Inserting this into (7.24) gives the final local form of the quantum Boltzmann equation for

f(~x, ~p, t), which is
df(~x, ~p, t)

dt
= lim

τ→0

1

τ
〈Ψ(t)|Ĉ†n̂αĈ − n̂α|Ψ(t)〉. (7.27)

Notice that the collision term depends only on the wave function evaluated at time t and

the occupancy of the αth local state located at position ~x. However, if there exists quantum

entanglement between particles at different points in space, then |Ψ(t)〉 cannot be written

in separable tensor product form over the spatial points. So in this case, the collision term

is “nonlocal.” When we say the quantum Boltzmann equation is local in form, we refer to

a special case barring nonlocal quantum entanglements. The quantum Boltzmann equation

accounts for global entanglement through the collision process and is an exact reformulation

of the many-body Schrödinger equation.
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Chapter 8

The diffusion equation

8.1 Model formulation

Consider the quantum computer with L number of nodes depicted in Figure 8.1. There are

two qubits per node that may remain phase coherent for a short duration in time. Initially,

the state of each qubit

|qa(x, t)〉 = αa|0〉+ βa|1〉 (8.1)

is independently set so that the on-site ket, |ψ(x, t)〉, is a tensor product over the qubit

residing at site x

|ψ(x, t)〉 = |q1(x, t)〉 ⊗ |q2(x, t)〉, (8.2)

for all x. The occupancy probability of the ath qubit at site x at time t is

fa(x, t) ≡ 〈ψ(x, t)|n̂a|ψ(x, t)〉, (8.3)

for a = 1, 2. We define the “mass density” field as the sum of the occupancy probabilities1

ρ(x, t) ≡ f1(x, t) + f2(x, t). (8.4)

In the continuum limit, where the lattice resolution becomes infinite, the mass density field

is considered to be a continuous and differentiable field. Given an appropriate sequence of

quantum gate operations applied to the quantum computer array depicted in Figure 8.1,

the ρ field will evolve in time in a diffusive fashion. The dynamics is governed, in the

long-wavelength limit, a parabolic partial differential equation of motion of the form

∂ρ

∂t
= D

∂2ρ

∂x2
. (8.5)

The value of the diffusion constant, D, is determined by the choice of the quantum gate used

to compute outgoing configurations and is also determined by the discrete particle movement

on the one dimensional lattice used in this model.
1Here we have taken the mass of a particle to be unity, m = 1.
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|q1〉 ⊗ |q2〉︸ ︷︷ ︸
node 1
x◦

|q1〉 ⊗ |q2〉︸ ︷︷ ︸
node 2
x◦+`

· · · |q1〉 ⊗ |q2〉︸ ︷︷ ︸
node L

x◦+(L−1)`

Figure 8.1: Depiction of a type II quantum computer with L nodes and 2 qubits per node. The array
is one dimensional with periodic boundary conditions. The coordinate x◦ refers to the location of the first
node. The symbol ⊗ represents the tensor (or outer) product operation.

Let use a particle-conserving dynamics and therefore use a conservative two-qubit quan-

tum gate of the form (2.40).

8.2 Factorized quantum lattice-gas algorithm

The factorized quantum lattice-gas algorithm for the one-dimensional diffusion equation can

be implemented in the following three steps.

STEP 1: We assume the initial state of the quantum computer is set as specified in Fig-

ure 8.1, where |qa(x, t)〉 =
√
fa(x, t)|1〉+

√
1− fa(x, t)|0〉.

STEP 2: Apply the collision operator simultaneously to all sites

|ψ′(x, t)〉 = Û |ψ(x, t)〉.

This step accounts for all the quantum computation that is accomplished in a classically

parallel fashion across all nodes of the array.

STEP 3: Measure (“read”) all the occupancy probabilities using the following matrix ele-

ment

f ′1(x, t) = 〈ψ′(x, t)|n̂1|ψ′(x, t)〉

f ′2(x, t) = 〈ψ′(x, t)|n̂2|ψ′(x, t)〉

on all sites. In practice, f1 and f2 must be determined by either repeated measurement of

a single realization of the system or by a single measurement over a statistical ensemble of

systems.

STEP 4: Reinitialize (“write”) the state of the quantum computer as a separable state
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where each qubit is set as follows

|q1(x, t+ τ)〉 =
√
f ′1(x− `, t)|1〉+

√
1− f ′1(x− `, t)|0〉

|q2(x, t+ τ)〉 =
√
f ′2(x+ `, t)|1〉+

√
1− f ′2(x+ `, t)|0〉

for all x. Note that qubit |q1〉 is shifted to its neighboring node at the left and |q2〉 is shifted

to its neighboring node at the right. This step requires nearest-neighbor classical communi-

cation between all lattice nodes.

ONE TIME-STEP UPDATE COMPLETED.

8.3 Model analysis

To model the diffusion equation, we use the following symmetric collision operator

Û =
√
χ̂ =


1 0 0 0
0 1

2
− i

2
1
2

+ i
2

0
0 1

2
+ i

2
1
2
− i

2
0

0 0 0 1

 . (8.6)

which is obtained from the Heisenberg Hamiltonian (2.76). With this collision operator,

the outgoing occupancy probabilities f ′1 and f ′2 are computed from the incoming occupancy

probabilities f1 and f2 according to step 2 of the algorithm specified in the previous section

f ′1 = 〈ψ|Û †n̂1Û |ψ〉 (8.7)

f ′2 = 〈ψ|Û †n̂2Û |ψ〉,

where |ψ〉 = (
√
f1|1〉+

√
1− f1|0〉)⊗ (

√
f2|1〉+

√
1− f2|0〉), as stated in Section 8.2. These

functional relations between the outgoing and incoming probabilities reduce to the following

equations

f ′1 = f1f2 +
1

2

∣∣∣√f1(1− f2) + i
√

(1− f1)f2

∣∣∣2 =
1

2
(f1 + f2) (8.8)

f ′2 = f1f2 +
1

2

∣∣∣i√f1(1− f2) +
√

(1− f1)f2

∣∣∣2 =
1

2
(f1 + f2).

According to this prescription, Equation (8.8) is guaranteed to keep the mass at a site

conserved

f ′1 + f ′2 = f1 + f2. (8.9)

We can express the collision Equation (8.7) along with the streaming operation as a single

finite-difference quantum Boltzmann equation

fa(x+ ea`, t+ τ) = fa(x, t) + Ωa, (8.10)
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where the collision term is

Ωa ≡ 〈ψ|Û †n̂aÛ − n̂a|ψ〉 =
1

2
[fa+1(1− fa)− fa(1− fa+1)] , (8.11)

for a = 1, 2 and where e1 = 1 and e2 = −1. The lattice Boltzmann equation (8.10) can be

linearized by expanding the collision term to first order in the fluctuation [Das et al., 1993,

Bussemaker et al., 1995], Ωa '
∑

b Jabδfb, where the Jacobian matrix is

J =

(
∂Ω1

∂f1

∂Ω1

∂f2
∂Ω2

∂f1

∂Ω2

∂f2

)
=

1

2

(
−1 1
1 −1

)
. (8.12)

The eigenvalues and eigenvectors of J characterize the behavior of a lattice-gas system in

the long-wavelength and low frequency limit. The eigenvalues of J are λ1 = 0 and λ2 = −1,

with eigenvectors ~ξ1 = (1, 1) and ~ξ2 = (−1, 1), respectively. The conserved macroscopic field

corresponding to the zero eigenvalue is the mass-density field

ρ = ~ξ1 · (f1, f2) = f1 + f2 (8.13)

as expected.

Local equilibrium of the mass-density field, ρeq ≡ d, occurs when the on-site particle

distribution causes the collision term to vanish, Ωa|f=feq = 0, for all a. In the present case,

this occurs when the occupancy probability of the left and right channels are equal

f eq

1 = f eq

2 =
d

2
, (8.14)

which is evident from Equation (8.11). Local equilibrium of the system can also be defined

in terms of the collision operator Û by the following constraint

Û |ψeq〉 = |ψeq〉, (8.15)

which is also evident from Equation (8.11) since in this situation Ωa|ψ=ψeq = 0. Now if we

explicitly write out Equation (8.15) in matrix form
1 0 0 0
0 1

2
− i

2
1
2

+ i
2

0
0 1

2
+ i

2
1
2
− i

2
0

0 0 0 1




√
f eq

1

√
f eq

2√
f eq

1

√
1− f eq

2√
1− f eq

1

√
f eq

2√
1− f eq

1

√
1− f eq

2

 =


√
f eq

1

√
f eq

2√
f eq

1

√
1− f eq

2√
1− f eq

1

√
f eq

2√
1− f eq

1

√
1− f eq

2

 (8.16)

we see that the following two equations must be satisfied

e−i
π
4

√
2

(√
f eq

1

√
1− f eq

2 + i
√

1− f eq

1

√
f eq

2

)
=

√
f eq

1

√
1− f eq

2 (8.17)

e−i
π
4

√
2

(
i
√
f eq

1

√
1− f eq

2 +
√

1− f eq

1

√
f eq

2

)
=

√
1− f eq

1

√
f eq

2 .
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If f eq

1 = f eq

2 ≡ d
2
, these local equilibrium conditions reduce to the single identity

e−i
π
4

√
2

(1 + i) = 1. (8.18)

Therefore, we now see why it is necessary to include the phase factor e−i
π
4 in the definition

of the collision operator so that Û has an eigenvalue of unity value with an eigenvector

corresponding to a local equilibrium configuration.

8.4 Numerical confirmations

In this section we show several results from one-dimensional numerical simulations of the

factorized quantum lattice gas. All the numerical simulations were carried out using Math-

ematica.

8.4.1 Delta function initial condition

The algorithm described in Section 8.2 for the factorized quantum lattice gas, with two qubits

per site, for the diffusion equation has the property that it simulates two non-interpenetrating

lattice-gas systems simultaneously. That is, there are two independent “checker-board” sub-

lattices. For illustration purposes, let all even numbered cells of the lattice be color-coded

white and all the odd numbered cells of the lattice be color-coded black. This defines the

two “checker-board” partitions of the lattice. Any particles initially on the black partition

collide and stream to the white partition and vice versa. This is because each of the qubits

per site move to their nearest neighboring sites which are on the alternate partition. After

a second application of the local update rule, the particles return to the original partition.

For this reason, particles on the white sub-lattice never interact with those on the black one.

This dual-lattice behavior is shown on the left column of Figure 8.2 which shows snapshots

of the time evolution at every other time step for a small lattice of size L = 32`. Initially all

the particles are located at the center cell of the lattice. There is a delta function peak in

the mass-density field

ρ(x, 0) = δ(x− L

2
), (8.19)

where δ(x) = 1 for x = 0 and δ(x) = 0 otherwise. After two time-steps, particles diffuse two

lattice cells away from the center point and there are no particles occupying the lattice cells

immediately neighboring the center one. The double lattice effect is seen in the subsequent

snapshots of the mass-density field.

It is possible to repair this deficiency in the algorithm by allowing only the state of one

of the qubits of a cell to be transferred to the neighboring cell. The state of the other qubit
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in the cell remains fixed. The improved version of the algorithm is described in a step-

by-step fashion in Appendix H. With the improved version of the algorithm, the resulting

mass-density field is smoothly varying across the lattice cell even in this case with the most

discrete initial condition. This is depicted on the right column of Figure 8.2.

8.4.2 Broadening of a Gaussian packet

The next numerical test of the factorized quantum lattice gas demonstrates that the dy-

namical evolution of its mass-density field is indeed governed by the diffusion equation. The

mass-density field is initialized with a Gaussian waveform

ρ(x, 0) =
1

4
e

(x−L2 )2

σ2◦ +
1

2
, (8.20)

where the initial packet width is σ◦ = L
10
`. The Gaussian packet will undergo diffusive

broadening as its width, σ(t) =
√
σ2
◦ + 4Dt, increases over time while its peak amplitude

decreases at a rate of 1
σ(t)

, as shown in Figure 8.3. The exact analytical solution for the

mass-density field at some later time, t, is given by the following expression

ρexact(x, t) =
1

4

σ◦√
σ2
◦ + 4Dt

e
(x−L2 )2

σ2◦+4Dt +
1

2
, (8.21)

where the diffusion constant is D = 1
2
`2

τ
.

The dispersion rate of the packet can be directly determined by measuring the decay

rate of the peak, since the peak amplitude is proportional to the inverse of the packet width.

The numerical data extracted from the simulation is plotted along with the exact analytical

solution in Figure 8.4. The agreement between the numerical simulation and the exact

analytical solution is excellent, which confirms that the dynamical space-time evolution of

the mass-density field is governed by the parabolic diffusion equation.

8.4.3 Exponential decay of a sinusoidal perturbation

As another test of the factorized quantum lattice-gas model, let us consider an example

problem to illustrate diffusive damping in the continuum limit. We begin with a lattice with

L = 128` sites (or nodes). The mass density field is initially set to be a sine wave

ρ(x, 0) =
1

4
sin

2πx

L
+

1

2
. (8.22)

The boundary conditions are periodic and remain fixed at all time

ρ(0, t) = ρ(L, t) =
1

2
. (8.23)
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Figure 8.2: Mass-density field with an initial delta function: The initial condition of the mass-density field
is set to a delta function in the middle of a lattice of size L = 32`. Snapshots of the time evolution of the
mass-density field is shown for the case where both qubits are streamed (left column plots) as described in
Section 8.2 and also for the case where a single qubits are streamed alternatively in both directions (right
column plots) as described in Appendix H. A double lattice effect is observed in the first case and does not
occur in the second case with the improved version of the algorithm.
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Figure 8.3: The time evolution of a Gaussian packet of a lattice of size L = 256` for t =
0, 256, 512, 768, 1024τ . The packet width is initially σ = 0.1` and broadens over time as shown in the
figure by over plotting.
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Figure 8.4: Time series plot of the temporal decay of a Gaussian packet of a lattice of size L = 128` for
t = 0 up to t = 128τ . The packet width is initially σ = L

10` and broadens in time as σ =
√
σ◦ + 4Dt where

the initial width is σ◦ = 0.1` and the diffusion constant is D = 1
2
`2

τ . The packet’s amplitude decays at a
rate of 1

σ , which is the exact solution plotted as the solid curve. The plotted data (black circles) taken from
the numerical simulation of the factorized quantum lattice gas are in excellent agreement with the exact
analytical solution.
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After repeated application of the collision and streaming operators of the factorized quantum

lattice gas, the amplitude of the mass-density wave is observed to decay in time. To be a

solution of the diffusion equation (8.5), the mass-density field must have the form

ρexact(x, t) =
1

4
e−Γt sin

2πx

L
+

1

2
, (8.24)

where the damping constant is Γ = Dk2, the wave number is k = 2π
L

, and the diffusion

constant is D = 1
2
`2

τ
. This is in fact observed in the numerical simulation which indicates
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Figure 8.5: Exponential damping of a sinusoidal profile by action of mass diffusion. The solid curve is the
predicted envelope 1

4e
− 1

2 ( 2π
128 )2 + 1

2 . The plotted data (black circles) taken from the numerical simulation of
the factorized quantum lattice gas are in excellent agreement with the theoretical envelope.

exponential decay of the mass-density profile, as shown in Figure 8.5.

A final test of the factorized quantum lattice-gas algorithm as a model of the diffusion

equation is the measurement of its numerical convergence. Multiple simulations (10 in total)

were carried out for lattice sizes ranging from L = 64`, 128`, 256`, . . . up to L = 32768`. In

each case the initial state of the simulation was a sinusoidal perturbation of the mass-density

field about half-filling according to Equation (8.22). Each simulation was run for T = 64τ

time-step iterations and the numerical error, denoted ε, from the exact solution was then

measured using the following formula

ε(L) =
1

L

√√√√ L∑
x=1

[ρ(x)− ρexact(x)]2, (8.25)

where the exact solution for the mass-density field is

ρexact(x) =
1

4
e−

1
2

( 2π
L

)2T sin
2πx

L
+

1

2
. (8.26)

We define the grid resolution as the inverse of the total number of lattice points. That is,

for a box of size 1, the resolving cell size is defined as δx ≡ 1
L

. A plot of the error versus
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the resolution is given in Figure 6.9. As the resolution is increased, the error drops off as

ε(L) ∼ L4.471. The factorized quantum lattice-gas algorithm has numerical convergence that

is at least second-order accurate in space and first-order accurate in time.
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Chapter 9

The Burgers equation

9.1 Introduction

The purpose of this chapter is to theoretically and numerically analyze the dynamical behav-

ior of a quantum model of the classical nonlinear Burgers equation in one spatial dimension.

The quantum model is a particular construction or example of an open quantum system with

a minimum time step allowing for interleaved non-unitary measurment and unitary evolu-

tion. The measurement steps are dispersed periodically in time and across all the elements

of the quantum system. At the microscopic scale, the equation of motion is a quantum me-

chanical wave equation with localization. That is, the Schrödinger equation is modified in

such a way that long-range quantum coherence is destroyed whereby the physical behavior

of the system at the macroscopic scale effectively becomes a nonlinear classical field theory

with dissipation, the Burgers equation for shock formation.

We begin in Section 9.1.1 by summarizing the dynamical equations of motion of the open

quantum system and we do this for three spatial scales. The microscopic scale equation is

a Schrödinger wave equation modified to allow for localization. The open quantum system

comprises a set of two-level qubits (e.g. spin-1
2

nuclei). The Hamiltonian that generates the

phase-coherent part of the evolution is engineered in such as way that the quantum system

effectively models a kinetic many-particle system. The open quantum system acts as a kind

of analog simulator.

Each qubit in the system is assigned a unique position and momentum-space coordinate

pair. The moduli squared of the probability amplitude of a qubit’s logical |1〉 state (e.g

expectation value of its excited state) is equated to an element of a “single-particle” distri-

bution associated with the position and momentum-space coordinate of a modeled particle in

a many-body system. There can be as many particles in the emulated kinetic system as there

are qubits in the quantum system. Let us denote a qubit’s quantum state as |q〉 = α|0〉+β|1〉,
where |α|2 + |β|2 = 1. We shall refer to the state the |0〉 as the qubit’s ground state and the
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state |1〉 as the qubit’s excited state. If |α| = 0 and |β| = 1, we say that the qubit encodes the

presence of a “particle” of unit mass. If |α| = 1 and |β| = 0, we say that the qubit encodes

a “hole,” or the absence of a particle. Hence, we shall sometimes refer to |β|2 as an occupa-

tion probability. The quantum system dynamics comprises both qubit-qubit interaction and

motion of the qubits. Sometimes the terms qubit and particle are used interchangeably.

Further details about the qubit encoding are given in Section 9.2.1. For reasons of re-

ducing computational expense when simulating the quantum model, the mesoscopic scale

single-particle distribution is highly resolved in position-space but minimally resolved in

momentum-space. The mesoscopic scale equation of motion of the effective kinetic many-

particle system is a quantum Boltzmann equation that governs the time-dependent behavior

of the single-particle distribution function. A derivation of the quantum Boltzmann equa-

tion from the modified Schrödinger equation is given in Section 9.2.2. The quantum Boltz-

mann equation has an unconventional collision function with a unique analytical form that

is derived from the microscopic Hamiltonian that generates the locally coherent quantum

mechanical evolution.

A derivation of the collision function is given in Section 9.3.1. Since the underlying

quantum mechanical system is locally phase-coherent, one can ask if there exists an eigenstate

of the unitary evolution operator that has a unity eigenvalue. The quantum evolution is

stationary with respect to this particular eigenstate: the probability of occurrence of this

eigenstate must be identical before and after the local unitary quantum mechanical evolution.

Equating the analytical expressions for these probabilities allows us to uniquely determine

the mesoscopic local equilibria associated with the single-particle probability distribution.

This calculation is carried out in Section 9.3.2 and the result is that the equilibrium values

of the single-particle probability distribution are parameterized by Fermi-Dirac functions.

This is consistent with the fact that two-level qubits, or spin-1
2

quantum objects, are used

to encode these mesoscopic occupation probabilities. The energy eigenvalue of each qubit

within a localized region of space is accordingly shifted. That is, the energy eigenvalues of

local qubits are non-degenerate.

In Section 9.3.3, we linearize the quantum Boltzmann equation about its local equilibria

and then use a Chapman-Enskog perturbative expansion to derive the nonlinear macroscopic

scale equation of motion as the zeroth-order moment of the single-particle distribution func-

tion. The macroscopic equation of motion is effectively a diffusive and convective nonlinear

Burgers equation. The consequence of this perturbative expansion is an analytically pre-

dictable macroscopic scale transport coefficient, which in this case is the shear viscosity of

the modeled fluid. The freedom we have in choosing our local quantum mechanical evolution

translates into our ability to choose any desired shear viscosity in the model, from inviscid
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flow all the way up to highly viscous flow. In other words, the rate of dissipation is arbitrarily

tunable in the model.

Next, Section 9.4 we analyze the non-equilibrium mesoscopic dynamics from the per-

spective of entropy considerations. This is a way of understanding the numerical stability

of the quantum algorithm. The quantum mechanical entropy function is introduced in Sec-

tion 9.4.1. By extremizing this entropy function, using a Lagrange multiplier to fix energy

conservation, we again obtain the Fermi-Dirac function as the local equilibria for the qubit

excited state’s occupation probabilities. In Section 9.4.2, we calculate an effective transition

matrix, defined at the mesoscopic scale, of the quantum system. The transition matrix re-

casts the quantum evolution as a Markov process at the mesoscopic scale. In Section 9.4.2

and Section 9.4.2, we demonstrate that the transition matrix of the modeled kinetic system

obeys the principle of detailed-balance in its qubit-qubit interactions.

Finally, in Section 9.5 we present several numerical results obtained from simulating

the quantum model on a standard classical computer. Shock front development is read-

ily observed. In Section 9.5.1, the consistency of the entropy function description of the

mesoscopic dynamics is compared with the quantum Boltzmann equation description of the

dynamics. The entropy function and quantum Boltzmann equation descriptions are found

to be in perfect agreement. The quantum collision function maps incoming local qubit con-

figurations into outgoing qubit configurations with higher entropy in such a way that the

trajectory of configurations always follows contours on the entropy surface. The quantum

model manifests behavior that at the mesoscopic scale emulates the second law of ther-

modynamics. An entropic lattice Boltzmann model of the Burgers equation has also been

developed [Boghosian et al., 2004a], but its numerical stability is not as good as stability we

find for the quantum lattice gas model.

9.1.1 Multiscale dynamics descriptions

The open quantum system model numerically predicts the time-dependent solutions of the

one-dimensional Burgers equation

∂tu(x, t) + u∂xu(x, t) = ν∂xxu(x, t), (9.1)

which is a simplified model of shock formation with flow field u(x, t) and kinematic viscosity

ν. From a kinetic theory perspective, (9.1) is the effective field theory for the macroscopic

behavior of a system of qubits governed at the mesoscopic scale by a quantum lattice Boltz-

mann equation:

f±(x± cδt, t+ δt) = f±(x, t)± Ω(f+, f−). (9.2)

163



f±(x, t) are probability fields for the occupation at position x and at time t of a right moving

qubit (+ direction) and a left moving qubit (− direction). Ω(f+, f−) is a nonlinear collision

function for local qubit-qubit interaction. A qubit’s local speed is c ≡ δx
δt

, where δx and δt

are the cell sizes of the space-time lattice.

(9.2) is a statistical description of the kinetic transport dynamics of the system of qubits

on a lattice. (9.2) is the effective finite-difference equation for the mesoscopic behavior of the

microscopic quantum system where the motion of the qubits and their quantum mechanical

interactions are represented by two unitary operators, a streaming operator Ŝ and a collision

operator Ĉ , respectively, according to the quantum lattice gas paradigm [Yepez, 2001a].

The spatial displacement of f± appearing on the L.H.S. of (9.2) derives from the unitary

streaming operator Ŝ . Taylor expanding f±(x ± cδt, t + δt) about the spacetime point

(x, t) gives rise to a parabolic partial differential equation. Hence, (9.2) can be written in

differential point form as ∂tf±(x, t) = L̂±f±(x, t)± 1
δt

Ω(f+, f−), where L̂± = ∂x (∓c−D◦∂x)

is a Fokker-Planck operator, c is a constant drift coefficient, and D◦ = 1
2
δx2

δt
is the diffusion

coefficient. Here, the reason the spatial derivatives occur at second order while the temporal

derivative occurs at first order is that the diffusive ordering of the fluctuations ε ∼ δx ∼
√
δt

arises because of the microscopic random walk motion of the qubits. The form of the

nonlinear collision function Ω(f+, f−) on the R.H.S. of (9.2) is derived from the unitary

collision operator Ĉ in Section 9.3.1. In Section 9.3.2 the nonlinear collision function is

linearized about the equilibrium occupation probabilities f eq
± . Then using a perturbative

technique in Section 9.5.3, corrections to the drift and diffusion coefficients arise from the

quantum mechanical qubit-qubit interactions, particularly nonlinearities appearing in the

drift. The result is a nonlinear parabolic partial differential equation for the sum of the

occupation probabilities f+ + f−.

Denoting the microscopic quantum state of the system at time t by |Ψ(t)〉, the microscopic

quantum mechanical evolution equation is written as follows:

|Ψ(t+ δt)〉 = Ŝ Ĝ Ĉ |Ψ(t)〉. (9.3)

(9.3) reduces to the Schrödinger wave equation when the operator Ĝ is the identity operator.

Quantum mechanical evolution, such as governed by the Schrödinger wave equation, is both

linear and non-dissipative. The reason for employing the unconventional operator Ĝ is to

induce both non-linearity and dissipation into the effective dynamics. There are various

alternatives for the operational form of Ĝ . As mentioned above, one representational choice

for Ĝ is the non-unitary process of quantum measurement that effectively erases local phase

information contained in the wave function upon its collapse. Another representational choice

for Ĝ is as a unitary operator that randomly alters the local phase of the wave function.
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In either case, the result is similar and local in its effect at the spacetime point where Ĝ is

applied: coherent phase information, and entanglement, is lost. It is this essential projective

property of the Ĝ operator to which we ascribe the nonlinearity and dissipation of the model

and to which we refer by using the terms wave function localization or open quantum system.

9.1.2 Application to quantum computing

The type of open quantum model treated in this paper may be viewed as a parallel quantum

algorithm designed for implementation on a quantum computer with periodic state reduction.

(9.3) comprises a four-step quantum algorithm:

1. initialization step (state preparation of |Ψ(t)〉),

2. collision step (entanglement of the quantum state by Ĉ ),

3. localization step (long-range decoherence or reduction of the quantum state by Ĝ ),

4. and streaming step (interchange of amplitudes by Ŝ ).

The Hamiltonian H that generates the unitary quantum evolution in (9.3), when for-

mally expressed as eiĤ δt/h̄ ≡ Ŝ Ĉ , may be called a quantum lattice-gas Hamiltonian (type I

case). Quantum models of the form given by (9.3), when Ĝ is identity, are known as quan-

tum lattice gas algorithms and include models by Riazanov [Riazanov, 1958], Feyman and

Hibbs [Feynman and Hibbs, 1965], Jacobson and Schulman [Jacobson and Schulman, 1984],

Bialynicki-Birula [Bialynicki-Birula, 1994], Succi et al. [Succi and Benzi, 1993, Succi, 1996,

Succi, 1998, Succi, 2002], Meyer [Meyer, 1996a, Meyer, 1996b, Meyer, 1997c, Meyer, 1997a,

Meyer, 1998], Boghosian et al. [Boghosian and IV, 1997, Boghosian and IV, 1998b, Boghosian and IV, 1998a],

Yepez and Boghosian [Yepez and Boghosian, 2002], and Vahala et al. [Vahala et al., 2003b,

Vahala et al., 2004b, Vahala et al., 2003a, Vahala et al., 2004a]. However, for (9.3) to give

rise to a macroscopic dissipative effective field theory, such as (9.1) with viscous dissipation

proportional to the curvature of the flow field, Ĝ can be chosen to be a projection operator

that commutes with the number operator (type II case).

Parallel quantum algorithms of this sort for computational physics have been devel-

oped to numerically predict time-dependent field solutions of the classical wave equation

[Yepez, 1998, Yepez, 2001a], the diffusion equation [Yepez, 2001b, Berman et al., 2002], the

Navier-Stokes equation [Yepez, 1999, Yepez, 2001a], the nonlinear Burgers equation [Yepez, 2002c,

Yepez, 2002a], and the one dimensional equations for magnetohydrodynamic shocks [Vahala et al., 2003c].

Such parallel quantum algorithms do not fully exploit the computational complexity of the

underlying quantum computer because of the imposed state reduction. Hence, any quan-

tum mechanical complexity that provides an algorithmic speedup can only be harnessed
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locally over a relatively limited spatial region. So long as the spatial localization limits

phase-coherence to less than a few dozen qubits, implementation of the parallel quantum

algorithms is straightforward using present day classical computers, otherwise these parallel

quantum algorithms could only be implemented on type-II quantum computers that may

be built someday [Yepez, 2002b]. The first parallel quantum algorithms for the diffusion

and Burgers equations have with success been experimentally tested on quantum informa-

tion processing prototypes of parallel quantum computers, or type-II quantum computers

[Yepez, 2001c], using spatial nuclear magnetic resonance (NMR) spectroscopy on a linear

array (in both position-space and momentum-space) of segmented ensembles of two-qubit la-

beled chloroform molecules [Pravia et al., 2002, Pravia et al., 2003, Chen et al., 2006a]. The

experimental implementation details and results from a recent NMR-based quantum informa-

tion processing experiment of the open quantum model presented in this paper are discussed

in our companion paper [Chen et al., 2006a].

9.2 Model construction

9.2.1 Qubit encoding

macro: (ρ, u) (ρ, u) · · · (ρ, u) Burgers
meso: (f+, f−) (f+, f−) · · · (f+, f−) Boltzmann
micro: |q+〉 ⊗ |q−〉︸ ︷︷ ︸

node 1
x◦

|q+〉 ⊗ |q−〉︸ ︷︷ ︸
node 2
x◦+δx

· · · |q+〉 ⊗ |q−〉︸ ︷︷ ︸
node L

x◦+(L−1)δx

Schrödinger

Figure 9.1: A type II quantum lattice gas with L nodes and 2 qubits per node depicted at three spatial
scales. The array is one dimensional with periodic boundary conditions. The coordinate x◦ refers to the
location of the first node. The symbol ⊗ represents the tensor (or outer) product operation. At the lowest
level are microscopic field quantities (i.e. amplitudes of qubit states) governed by the modified Schrödinger
equation (9.3) with an “programmed” Hamiltonian. At the middle level are mesoscopic field quantities (i.e.
occupation probabilities f±) governed by the quantum Boltzmann equation (9.2). Finally, at the highest
level are macroscopic field quantitites (i.e. ρ or u) governed by the nonlinear Burgers equation (9.1).

We consider a quantum system with Q number of qubits used to encode (9.3). A quantum

lattice gas system with L = Q
2

number of nodes is depicted in Figure 9.1 where, at the

microscopic scale, two qubits |q+〉 and |q−〉 per node are used to encode the mesoscopic

probabilities f+ and f− of the qubit excited state occupations at that node:

|q±(x, t)〉 =
√

1− f±(x, t)|0〉+
√
f±(x, t)|1〉, (9.4)

for 0 ≤ f± ≤ 1, and where |0〉 and |1〉 denote the ground state and excited state, respectively,

of a qubit. Each qubit in the system is independently set; the on-site ket, |ψ(x, t)〉, is a tensor
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product over the qubits residing at site x

|ψ(x, t)〉 = |q+(x, t)〉 ⊗ |q−(x, t)〉, (9.5)

for all x. At time t, the quantum state of the entire microscopic quantum lattice gas system

in (9.3) is the tensor product of all the on-site kets:

|Ψ(t)〉 =
L−1⊗
j=0

|ψ(x+ jδx, t)〉. (9.6)

Since the qubits can be thought of as containers for encoding the quantum particle occupation

probabilities according to (9.4), the particle number operator is equivalent to the qubit

number operator. Let n̂α, where α = 1, . . . , Q, denote the qubit number operator for the αth

qubit at site x. The occupancy probability of a particle located at the αth qubit at time t is

the matrix element

fα(x, t) ≡ 〈Ψ(t)|n̂α|Ψ(t)〉. (9.7)

Because the quantum state (9.6) is separable over the nodes of the lattice, (9.7) can be

rewritten using the on-site ket at node x:

f±(x, t) ≡ 〈ψ(x, t)|n̂±|ψ(x, t)〉, (9.8)

where we have assumed the on-site kets are normalized 〈ψ(x, t)|ψ(x, t)〉 = 1 for all x, and

where n̂+ ≡ n̂⊗ 1 and n̂− ≡ 1⊗ n̂ are defined in terms of the singleton number operator n̂.

9.2.2 Quantum Boltzmann equation

Here we shall derive (9.2) from (9.3). The application of Ŝ causes the amplitudes associated

with the |q+〉 qubits to move to the right by δx and the amplitudes of the |q−〉 qubits to the

left. In particular, say |Ψ′〉 = Ŝ |Ψ〉 causes the amplitudes of the α-th qubit to be transferred

to the α′-th qubit. Then, by streaming, the occupation probabilities shift so that we must

have the equality fα′ = fα. By (9.7), this equality is expressible directly in terms of the

operators:

Ŝ †n̂α′Ŝ = n̂α. (9.9)

The identity (9.9) will allow us to derive (9.2) from (9.3). We include collisional scattering

and write:

fα′
(9.7)

= 〈Ψ(t+ δt)|n̂α′ |Ψ(t+ δt)〉 (9.10)

(9.3)
= 〈Ψ(t)|Ĉ †Ĝ †Ŝ †n̂α′Ŝ Ĝ Ĉ |Ψ(t)〉 (9.11)

(9.9)
= 〈Ψ(t)|Ĉ †Ĝ †n̂αĜ Ĉ |Ψ(t)〉. (9.12)
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Since Ĝ commutes with n̂α, for all α, and Ĝ †Ĝ = 1, we have

fα′ − fα = 〈Ψ(t)|Ĉ †n̂αĈ − n̂α|Ψ(t)〉, (9.13)

where we have subtracted fα = 〈Ψ(t)|n̂α|Ψ(t)〉 from the both sides of (9.13). In the contin-

uum limit, as the lattice resolution becomes infinite (δx → 0 and δt → 0), the occupation

probabilities form a continuous and differentiable field in position space. Defining its total

time derivative as
fα′−fα
δt

, we obtain the general form of (9.2):

dfα
dt

=
1

δt
〈Ψ(t)|Ĉ †n̂αĈ − n̂α|Ψ(t)〉. (9.14)

Because of the diffusive ordering of the temporal and spatial fluctuations of fα, we expand

the L.H.S. to first order in time and second order in space. Furthermore, since the collisions

are separable over the nodes of the lattice, Ĉ =
⊗L−1

j=0 Û , where Û is the on-site collision

operator, we recover (9.2) where the type-II collision function is

Ω[ψ(x, t)] = 〈ψ(x, t)|Û †n̂±Û − n̂±|ψ(x, t)〉. (9.15)

9.2.3 Macroscopic field assignment

The mesoscopic probabilities f± in turn are used to calculate the macroscopic variables using

the Chapman-Enskog perturbative expansion given in Section 9.3.3. The number density

field ρ(x, t) is

ρ(x, t) ≡ f+(x, t) + f−(x, t), (9.16)

and the flow field u(x, t) in (9.1) is

u(x, t) ≡ c [f+(x, t) + f−(x, t)− 1] , (9.17)

where the propagation speed of the qubits is the ratio of the lattice cell size to the time step

interval, c = δx
δt

, as is characteristic of lattice gas models 1.

9.2.4 Summary of the four-step quantum algorithm

(9.3) is encapsulated in the following four steps:

1. Initialization step: The state of the quantum lattice gas is set as specified in Fig-

ure 9.1, where |q±(x, t)〉 =
√
f±(x, t)|1〉+

√
1− f±(x, t)|0〉.

1Here we have taken the mass of a particle encoded in a qubit to be unity, m = 1.
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2. Collsion step: Apply the collision operator simultaneously to all sites

|ψ′(x, t)〉 = Û |ψ(x, t)〉.

3. Localization step: This step may be implemented in a non-unitary or unitary way. In

the non-unitary way, the outgoing occupancy probability distribution is represented by the

following matrix element

f ′±(x, t) = 〈ψ′(x, t)|n̂±|ψ′(x, t)〉. (9.18)

To recover the Burgers’ equation, f± can be determined by observation of a single system

repeated enough times to recover the distribution (9.18) by equating to the frequency-of-

occurrence of outcomes (“non-unitary read”). Alternatively, the phase of each qubit in the

system can be periodically randomized by application of a unitary rotation of the qubits.

4. Streaming step: Reinitialize (“write”) the state of the quantum lattice gas as a sepa-

rable state where each qubit is set as follows

|q±(x, t+ τ)〉 =
√
f ′±(x∓ δx, t)|1〉+

√
1− f ′±(x∓ δx, t)|0〉 (9.19)

for all x. Note that qubit |q+〉 is shifted to its neighboring node at the left while |q−〉 is shifted

to its neighboring node at the right. This step requires nearest-neighbor communication

between all lattice nodes. At this point, one time-step update is completed.

9.3 Analytical treatment

9.3.1 Quantum collision function

Here we shall derive (9.1) from (9.2). We begin with the outgoing occupation probabilities

f ′± = 〈ψ′|n̂±|ψ′〉 = 〈ψ|Û †n̂±Û |ψ〉. (9.20)

The initial on-site ket |q+〉 ⊗ |q−〉 is

|ψ〉 =
√
f+f−|11〉+

√
f+(1− f−)|10〉 (9.21)

+
√

(1− f+)f−|01〉+
√

(1− f+)(1− f−)|00〉

=


√

(1− f+)(1− f−)√
(1− f+)f−√
f+(1− f−)√
f+f−

 . (9.22)

169



We use a conservative quantum logic gate to represent the collision operator:

Û =


1 0 0 0
0 e−iξ cos θ −e−iζ sin θ 0
0 eiζ sin θ eiξ cos θ 0
0 0 0 1

 . (9.23)

The qubit number operators are:

n̂+ =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 n̂− =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 (9.24)

Substituting (9.22-9.24) into (9.20) gives us explicit update rules for the probability occu-

pancies

f ′+ = f+f− +
∥∥∥eiξ cos θ

√
f+(1− f−) + eiζ sin θ

√
(1− f+)f−

∥∥∥2

(9.25a)

f ′− = f+f− +
∥∥∥−e−iζ sin θ

√
f+(1− f−) + e−iξ cos θ

√
(1− f+)f−

∥∥∥2

, (9.25b)

where the double vertical bars denote the norm or absolute value of the enclosed quantity.

After some algebraic manipulation, this pair of equations can be reduced to the standard

form

f ′± ≡ 〈ψ′|n̂±|ψ′〉 = f± ± Ω(f+, f−). (9.26)

On the R.H.S. of (9.26), the quantum collision function, Ω(f+, f−), is

Ω(f+, f−) = − sin2 θ[f+(1− f−)− (1− f+)f−] (9.27)

+ sin 2θ cos(ζ − ξ)
√
f+(1− f+)f−(1− f−),

where θ, ζ, and ξ are Euler angles. In addition to the dependence of the Euler angles, there

appears an unusual dependence on the square root of the occupation probabilities. This type

of additional term is a consequence of the microscopic scale quantum nature of the model

that remains evident at the mesoscopic scale. This term gives rise to non-linearity in the

macroscopic equation of motion. The reason the square root term arises in (9.27) has its

origin in the fundamental qubit encoding, described in Section 9.2.4, where the square root

of the occupation probabilities is employed to generate the initial probability amplitudes

of a qubit’s two-level states. In turn, the local on-site ket appearing in (9.21) and (9.22)

depends on the square root of the occupation probabilities. Inserting (9.22) into (9.20), and

after working through some algebraic manipulations, we see that the mesoscopic collision

operator too must depend explicitly on the value of a probability amplitude, and not just
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on classical probabilities. The fact that the square root of probabilities are employed in the

algorithm is a characteristic feature of its quantum mechanical nature.

(9.27) can be expressed a bit more simply:

Ω(f+, f−) = sin2 θ(f− − f+) (9.28)

+ sin 2θ cos(ζ − ξ)
√
f+(1− f+)f−(1− f−).

9.3.2 Local equilibria
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Figure 9.2: A plot of the equilibrium occupancy probabilities d± versus the number density at that
site. The upper solid curves are d+(θ, ξ, ζ) and the lower dotted curves are d−(θ) as specified by (9.34) for
θ = π

512 , ...,
π
2 −

π
512 in steps of ∆θ = π

32 for ξ = ζ. The abscissa and ordinate are both non-dimensional
probability values. As θ = π

2 is the diffusive case where d± = ρ
2 .

Let d± denote the local equilibrium values of the occupation probabilities. The equilib-

rium condition Ω(f+, f−)|f±=d±
= 0 becomes:

d+

1− d+

− d−
1− d−

= 2 cot θ cos(ζ − ξ)

√
d+

1− d+

d−
1− d−

, (9.29)

which is a statement of detailed-balance of collisions at the mesoscopic scale and which we

analyze in Section 9.4.2.

We take the equilibrium occupation probabilities to have the following form:

d+ =
1

γz + 1
and d− =

1
z
γ

+ 1
. (9.30)

Substituting (9.30) into (9.29) gives a quadratic equation in γ that has the solution

γ =
√
α2 + 1 + α (9.31a)

1

γ
=
√
α2 + 1− α, (9.31b)
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where α ≡ cot θ cos(ζ − ξ). Next, substituting (9.30) into the total number density, ρ =

d+ + d−, we obtain a quadratic equation in z

ρz2 +

(
γ +

1

γ

)
(ρ− 1)z + ρ− 2 = 0. (9.32)

Substituting the positive root solution of (9.32) into (9.30), we find after much algebraic

manipulation

d+ =
1 + γ2 + (1− γ2)ρ− γ

√(
1
γ

+ γ
)2

(ρ− 1)2 + 4(ρ− 2)ρ

2(1− γ2)
. (9.33)

Then substituting γ =
√
α2 + 1 + α into (9.33) gives the result

d± =
ρ

2
∓ 1

2α

(√
1 + α2 −

√
1 + α2(ρ− 1)2

)
. (9.34)

The local equilibria d± are plotted in Figure 9.2 for a range of angles.

9.3.3 Chapman-Enskog expansion for the Burgers equation

It is convenient to treat the occupation probabilities as a two-component field

f =

(
f+

f−

)
. (9.35)

We expand f about its equilibrium value denoted d so that f = d+δf +O(ε2), where ε ∼ δx

is analogous to what in the literature on fluid dynamics is called the Knudsen number 2. The

equilibrium condition Ω|f=d = 0 leads to a tractable polynomial equation for the components

of d. The linearized finite-difference quantum Boltzmann equation is

f(x± δx, t+ δt)− f(x, t) = Jδf(x, t), (9.36)

where the Jacobian of the collision term is

J ≡
(

∂Ω
∂a

∂Ω
∂b

−∂Ω
∂a
−∂Ω

∂b

)∣∣∣∣
f=d

=

(
J+ J−
−J+ −J−

)
. (9.37)

The left and right eigenvectors of J are

ξ1 =
(
1 1

)
ξ1 =

1

J− − J+

(
J−
−J+

)
(9.38)

ξ2 =
1

J+ − J−
(
J+ J−

)
ξ2 =

(
1
−1

)
(9.39)

2In this one-dimensional quantum model, the flow speed is proportional to the number density, u =
cs(1 − ρ). Therefore, requiring ε ∼ δρ be small implies a low Mach number constraint. The analytical
development is guaranteed to be valid only in the subsonic limit where u� cs.
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with associated eigenvalues λ1 = 0 and λ2 = J+ − J−. ξiξj = δij. J may be rewritten as

J = λ2ξ2ξ
2 =

(
J+ J−
−J+ −J−

)
(9.40)

J is singular. Its Moore-Penrose generalized inverse [Penrose, 1955] is the following:

J−1
gen =

1

λ2

ξ2ξ
2 =

1

J+ − J−
J. (9.41)

Now we invoke the continuum limit where δx → 0 and δt → 0 so f is a continuous and

differentiable two-component field. We obtain a first-order equation by Taylor expanding

(9.36) in x and t and keeping only terms that are first order in ε:

σzδx∂xd = Jδf +O(ε2), (9.42)

where σz =

(
1 0
0 −1

)
. Multiplying (9.42) on the left by J gives

Jσzδx∂xd = (J+ − J−)Jδf +O(ε2), (9.43)

which has the nontrivial solution

δf =
1

J+ − J−
σzδx∂xd +O(ε2) (9.44)

consistent with (9.41). Taking the difference of the respective components gives

δf+ − δf− =
1

J+ − J−
δx∂xρ+O(ε2). (9.45)

Similarly from (9.36), we obtain the second order equation:

δt∂td + σzδx∂x (d + δf)

+
δx2

2
∂xxd+O(ε3) =

(
Ω
−Ω

)
. (9.46)

We now take the sum of the respective components:

δt∂tρ + δx∂x (d+ − d− + δf+ − δf−)

+
δx2

2
∂xxρ+O(ε3) = 0. (9.47)

Inserting (9.45) into the above equation gives the general effective field theory for any one-

dimensional two-qubit-per-site lattice gas that conserves particle number

∂tρ + c∂x (d+ − d−) +
δx2

δt

∂x(J+ − J−)

(J+ − J−)2
∂xρ

+
δx2

2δt

(
2

J+ − J−
+ 1

)
∂xxρ+O(ε3) = 0. (9.48)
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(9.34) implies that

d+ − d− = − 1

α

(√
1 + α2 −

√
1 + α2(ρ− 1)2

)
. (9.49)

Again, we compute the components of J :

J± =
∂Ω

∂p±
= sin2 θ

(
∓1− α (2d± − 1)d∓(1− d∓)√

d+(1− d+)d−(1− d−)

)
. (9.50)

And this implies

J+ − J− = −2 sin2 θ(1 + α2R), (9.51)

where the factor R = R(α, ρ) is too complicated an expression to write out here but has

the important property that R(α, ρ) = 1 +O(α). Finally, substituting the two results (9.49)

and (9.51) into (9.48) gives the effective field theory

∂tρ+ c cot θ cos(ζ − ξ)(1− ρ)∂xρ =
cot2 θ

2

δx2

δt
∂xxρ+O(ε3, εα2), (9.52)

which becomes identical to (9.1) for u = cs(1−ρ) with sound speed cs = c cot θ cos(ζ−ξ) and

kinematic viscosity ν = 1
2

cot2 θ δx
2

δt
. cs and ν are “programmable” by appropriately choosing

the Euler angles in (9.23).

9.4 Stability considerations

9.4.1 Quantum mechanical entropy function
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Figure 9.3: Left: equilibria contours of the kinetic mode veq = d+−d−. Right: constant-entropy contours
of Hγ(ρ, v) for θ = 1.5 radians.

The unconditional numerical stability of the quantum algorithm can be understood from

another vantage point which clarifies the statement of the unitarity of the quantum mechan-

ical collision process. There exists an entropy function, denoted here as H, that is consistent
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with the unitary collision operator (9.23), the Fermi-Dirac equilibrium for the occupation

probabilities of the qubit’s eigenstates (9.30), quantum Boltzmann equation (9.20), and the

nonlinear quantum collision function (9.28). The quantum mechanical entropy function is

H = −
∑
a=±

[fa ln(γafa) + (1− fa) ln(1− fa)] , (9.53)

where γ+ =
√
α2 + 1 + α, γ− = 1

γ+
=
√
α2 + 1 − α. Let E± denote the qubit energy

eigenvalues. If we calculate the maximum of the entropy function, ∂H
∂fa

= 0, where we add

the Lagrannian multiplier βE±f± to H as a conserved energy constraint, we find that the

solution for f± is (9.30). That is,

∂H
∂f±

= − ln(γ±f±)− 1 + ln(1− f±) + 1 + βE±, (9.54)

from which we can solve for the non-equilibrium distribution function

fnoneq
± =

1
1
γ±
eβE±−∂f±H + 1

. (9.55)

The equilibrium point occurs at ∂f±H = 0, so from (9.55) we obtain the Fermi-Dirac function

f eq
± =

1
1
γ±
eβE± + 1

. (9.56)

We can also check whether (9.53) is consistent with the quantum collision function (9.28). To

do this, we express (9.28) in terms of the macroscopic variables ρ = f+ +f− and v ≡ f+−f−
as follows:

Ωqu(ρ, v) = − sin2 θ v (9.57)

+
1

2
sin 2θ cos ξ

√
(ρ2 − v2)

[
1− ρ+

1

4
(ρ2 − v2)

]
.

The equilibria contours of constant v, the kinetic mode defined by (9.49), are shown on the

left of Figure 9.3. Since ρ is conserved, the quantum Boltzmann equation (9.20) re-expressed

in terms of the macroscopic variables acts only on the kinetic mode:

v′ = v + 2 Ωqu(ρ, v). (9.58)

We can also express the entropy function in terms of the macroscopic variables:

Hγ(ρ, v) = 2 ln 2− 1

2
{(ρ+ v) ln [γ(ρ+ v)] + (ρ− v) ln

ρ− v
γ

+ (2− ρ+ v) ln(2− ρ+ v)

+ (2− ρ− v) ln(2− ρ− v)}. (9.59)

The entropy functionH = Hγ(ρ, v) is indirectly a function of the Euler angles of the quantum

logic gate since γ = γ(θ, ξ, ζ). Constant entropy contours of the surface defined by (9.59)

are shown at the right of Figure 9.3.

175



9.4.2 Detailed balance

Transition matrix and detailed-balance

With two qubits located per lattice node, there are four basis states:

s0 = |00〉 f+ = 0 f− = 0 P0 = (1− d+)(1− d−)
s1 = |01〉 f+ = 0 f− = 1 P1 = (1− d+)d−
s2 = |10〉 f+ = 1 f− = 0 P2 = d+(1− d−)
s3 = |11〉 f+ = 1 f− = 1 P3 = d+d−.

(9.60)

In (9.60), the configuration probabilites Pi, for i = 0, 1, 2, 3, are mean-field estimates ne-

glecting qubit-qubit correlations. Using Q qubits to encode up to Q fermions, there are 2Q

quantum states. We shall consider the Q = 2 case:
P ′0
P ′1
P ′2
P ′3

 =


T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33


︸ ︷︷ ︸

transition matrix


P0

P1

P2

P3

 (9.61)

Conservation of probability condition is:

2Q−1∑
i=0

P ′i =
2Q−1∑
i=0

Pi, (9.62)

which implies

2Q−1∑
i=0

2Q−1∑
j=0

TijPj − Pi

 =
2Q−1∑
j=0

Pj

(
2n−1∑
i=0

Tij

)
−

2Q−1∑
j=0

Pj

= 0 (9.63)

provided the columns of the transition matrix sum to unity. Hence, to conserve probability,

we require:
2Q−1∑
i=0

Tij = 1. (9.64)

Conservative transition matrix

The detailed-balance condition is stated as follows:

TijPi = TjiPj, (9.65)
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for i 6= j. To conserve particle number, the transition matrix for the Q = 2 case is constrained

to have the form:

Tconservative =


1 0 0 0
0 1− A− C A+D 0
0 B + C 1−B −D 0
0 0 0 1

 , (9.66)

where the rows sum to unity according to (9.64) to preserve probability (P ′1 +P ′2 = P1 +P2),

so we have

P ′1 + P ′2 = (1− A− C)P1 + (A+D)P2 (9.67)

+(B + C)P1 + (1−B −D)P2.

This implies

P1 + P2 = (1− A+B)P1 + (1 + A−B)P2 (9.68)

or

(B − A)(P1 − P2) = 0. (9.69)

The detailed-balance condition (9.65) for i = 1 and j = 2 is:

(A+D)P1 = (B + C)P2. (9.70)

The set of equations (9.69) and (9.70) admit two solutions. The first solution (diffusion case)

is the following: A = B and C = D with identical local equilibria P1 = P2. In the mean-field

limit, we can write P1 = (1 − d+)d− and P2 = d+(1 − d−), so the equality P1 = P2 implies

the equilibrium occupation probabilities are equal as well, d+ = d−. This solution can be

parametrized by an angle θ where in (9.66) A = B = sin2 θ:

Tdoubly stochastic =


1 0 0 0
0 cos2 θ − C sin2 θ + C 0
0 sin2 θ + C cos2 θ − C 0
0 0 0 1

 . (9.71)

(9.71) leads to the constraint
(
P2

P1
− 1
)

(sin2 θ + C) = 0, which in turn gives P1 = P2.

The second solution (Burgers case) of (9.69) and (9.70) is the following: A = B and

C 6= D with non-equal local equilibria P1 6= P2. In this case, the transition matrix is not

doubly stochastic. There is no transition matrix that is doubly stochastic that gives rise to

a situation where P1 6= P2. We will see in the next section Section 9.4.2 that the transition

matrix of the quantum model has this second form:

Tqm =


1 0 0 0
0 cos2 θ − C sin2 θ +D 0
0 sin2 θ + C cos2 θ −D 0
0 0 0 1

 , (9.72)
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where the particular values of C = C(θ, ξ, ζ, ψ1, ψ2) and D = D(θ, ξ, ζ, ψ1, ψ2) will be deter-

mined by the Euler angles in the unitary collision operator (9.23) and probability amplitudes

of the quantum state vector.

At equilibrium, using (9.30), P1

P2
= γ2 , so the detailed-balance condition (9.70) in this

case is

γ2 =
sin2 θ + C

sin2 θ +D
. (9.73)

A solution is the following:

C =
γ sin 2θ

2
ei(ξ−ζ) (9.74a)

D = −sin 2θ

2γ
e−i(ξ−ζ). (9.74b)

Since C and D depend on γ, this means the components of the transition matrix will in turn

depend on the state probabilities because γ =
√

P1

P2
. The dynamics remains intrinsically

nonlinear. Inserting (9.74) into (9.73), gives the following quadratic equation for γ:

sin2 θγ2 − sin 2θ cos(ξ − ζ)γ − sin2 θ = 0. (9.75)

This has a solution

γ =
√

cot2 θ cos2(ξ − ζ) + 1 + cot θ cos(ξ − ζ), (9.76)

which is exactly (9.31). Hence, (9.74) is a consistent solution since γ = γ(θ, ξ, ζ).

Quantum transitions

Here we derive the mesoscopic stochastic transition matrix (9.72) along with the parameters

(9.74) by starting directly from the quantum unitary evolution. To do this, we begin by

writing the quantum mechanical collision transformation acting on the microscopic quantum

state as a general block-diagonal unitary matrix with complex coefficients:
ψ′0
ψ′1
ψ′2
ψ′3

 =


1 0 0 0
0 U11 U12 0
0 U21 U22 0
0 0 0 U33



ψ0

ψ1

ψ2

ψ3

 (9.77)

The unitarity condition (Û †Û = I) constrains the complex coefficients as follows:

|U11|2 + |U21|2 = 1 U∗11U12 + U∗21U22 = 0
U∗12U11 + U∗22U21 = 0 |U12|2 + |U22|2 = 1

U∗33U33 = 1.
(9.78)
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The quantum state incoming probabilities are defined as follows:

P0 ≡ |ψ0|2 P1 ≡ |ψ1|2 P2 ≡ |ψ2|2 P3 ≡ |ψ3|2, (9.79)

and, likewise, the quantum state outgoing probabilities are:

P ′0 ≡ |ψ′0|2 P ′1 ≡ |ψ′1|2 P ′2 ≡ |ψ′2|2 P ′3 ≡ |ψ′3|2. (9.80)

From (9.77) we see that

|ψ′0|2 = |ψ0|2 (9.81a)

|ψ′1|2 = (U∗11ψ
∗
1 + U∗12ψ

∗
2)(U11ψ1 + U12ψ2) (9.81b)

|ψ′2|2 = (U∗21ψ
∗
1 + U∗22ψ

∗
2)(U21ψ1 + U22ψ2) (9.81c)

|ψ′3|2 = |ψ3|2, (9.81d)

which can be rewritten as a quantum transition map:

P ′0 = P0 (9.82a)

P ′1 = |U11|2P1 + |U12|2P2 (9.82b)

+U∗11U12ψ
∗
1ψ2 + U∗12U11ψ1ψ

∗
2

P ′2 = |U21|2P1 + |U22|2P2 (9.82c)

+U∗21U22ψ
∗
1ψ2 + U∗22U21ψ1ψ

∗
2

P ′3 = P3. (9.82d)

In matrix form this becomes
P ′0
P ′1
P ′2
P ′3

 =


1 0 0 0
0 |U11|2 |U12|2 0
0 |U21|2 |U22|2 0
0 0 0 1


︸ ︷︷ ︸
classical diffusive part


P0

P1

P2

P3

 (9.83)

+


0

U∗11U12ψ
∗
1ψ2 + U∗12U11ψ1ψ

∗
2

U∗21U22ψ
∗
1ψ2 + U∗22U21ψ1ψ

∗
2

0


︸ ︷︷ ︸

quantum mechanical part

.

The classical part of (9.83) is exactly (9.71). The quantum mechanical part gives rise to

non-diffusive advective behavior, which leads to nonlinear shock formation characteristic of
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the Burgers equation. Finally, from (9.83) we have a quantum transition matrix:

Tqm =


1 0 0 0

0 |U11|2 + U∗11U12
ψ2

ψ1
|U12|2 + U∗12U11

ψ1

ψ2
0

0 |U21|2 + U∗21U22
ψ2

ψ1
|U22|2 + U∗22U21

ψ1

ψ2
0

0 0 0 1

 (9.84)

(9.84) conserves probability (
∑3

i P
′
i =

∑3
i Pi) due to unitarity, so its columns sum to unity

owing to the unitary condition (9.78).

Now with the equilibrium probability amplitudes

ψ0 =
√

(1− d+)(1− d−) (9.85a)

ψ1 =
√

(1− d+)d− (9.85b)

ψ2 =
√

(d+(1− d−) (9.85c)

ψ3 =
√
d+d−, (9.85d)

and using (9.30), we see that ψ1

ψ2
=

√(
d−

1−d−

)(
1−d+

d+

)
= γ, so that (9.84) becomes:

Teq
qm =


1 0 0 0

0 cos2 θ − ei(ξ−ζ) sin 2θ
2γ

sin2 θ − γe−i(ξ−ζ) sin 2θ
2

0

0 sin2 θ + ei(ξ−ζ) sin 2θ
2γ

cos2 θ + γe−i(ξ−ζ) sin 2θ
2

0

0 0 0 1

 , (9.86)

where γ is determined by (9.31). The equilibrium value of the quantum transition matrix

(9.86) is identical to (9.72) with components (9.74).

9.5 Simulation results

9.5.1 Consistency of the entropy and collision functions

Figure 9.4 is a composite plot showing the Hγ function constant-density contours graphed

for ρ = 0.7 and ξ = ζ = 0, but each curve has a different θ Euler angle. The top curve is

for θ = 0.5708 radians, which corresponds to a high viscosity model with ν = 2.42548 δx
2

δt
.

The intermediate Hγ curves are plotted with θ incremented by ∆θ = 0.05 radians. The

bottom curve has θ = 1.5708 radians ' π
2
, which is a nearly inviscid contour of the entropy

surface corresponding to an extremely low viscosity of ν = 1.34 × 10−11 δx2

δt
. The abscissa

is the kinetic mode v = f+ − f− plotted over the range −ρ ≥ v ≥ ρ for ρ = 0.7. The

ordinate is the Hγ function plotted over the range −0.5 ≥ Hγ ≥ 2.0. Each set of dynamical

trajectory points computed using (9.58) exactly lies on the respective Hγ function contour,
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Figure 9.4: Hγ function constant-density contours of the entropy surface (solid gray curves), which
are vertically stacked over one another for graphical clarity. The x-axis is v = f+ − f− and the y-axis is
entropy as defined by (9.59). The dynamical trajectories (black dots) were computed using the nonlinear
quantum collision function Ωqu(ρ, v) for different values of the shear viscosity for a relatively high value
of ν = 2.42548 δx

2

δt (on the top) down to an extremely low value of ν = 1.34 × 10−11 δx2

δt (at the bottom).
Viscosity values are labeled on the left of the respective Hγ contours, not numerical values of entropy.
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demonstrating the consistency of the quantum Boltzmann equation and the entropy function

descriptions.

In the inviscid limit where θ → π
2
, the quantum collision function reduces to Ωqu(ρ, v) =

−v, and in turn (9.58) reduces to v′ = −v. So as the fluid’s viscosity is reduced, the collision

process causes the sign of velocity field to alternate. This is shown in Figure 9.4, where for

the lower viscosity cases, the value of the kinetic mode jumps back and forth from the left

(−v) to the right side (+v) of the entropy contour and back again.

9.5.2 Comparison to the Cole-Hopf solution

Choosing three sets of “Euler” angles in (9.23) to be θ = π
12.8239

(case A), θ = π
6.77582

(case

B), and θ = π
4

(case C) and θ = π
2.36955

(case D), and ξ = ζ, then ν = 8 δx
2

δt
(case A),

ν = 2 δx
2

δt
(case B), ν = 1

2
δx2

δt
(case C), and ν = 1

32
δx2

δt
(case D) are the respective shear

viscosity transport coefficients. For these four cases, we compare the numerical prediction

that the macroscopic scale behavior of the quantum algorithm is governed by the Burgers

equation (9.1) with the exact solutions obtained by analytical means. For the purposes of

the numerical tests, the system is simulated directly at the mesoscopic scale using (9.26),

and all initialized with the same sinusoidal profile in the number density field

ρ(xl, 0) = ρa cos

(
2πl

L

)
+ ρb, (9.87)

where ρa = 0.4 and ρb = 1, and L = 256. A time history of the dynamical evolution of

the number density fields is plotted in Figure 9.5. The analytical solution of the Burgers

equation is obtained by application of the Cole-Hopf transformation 3

ρ = ρa +
2ν

cψ

∂ψ

∂x
, (9.88)

where

ψ ≡ I0(z) + 2
∞∑
`=1

(−1)Floor[`/2]I`(z)F`(2π`x+ ν`t)e
−µ`t, (9.89)

and where z ≡ csρb
4πν

, µ` ≡ ν(2π`)2, ν` ≡ cs(1−ρa)(2π`), the I`’s are modified Bessel functions,

and the function F` denotes the sine or cosine function when ` is odd or even, respectively,

F`(x) ≡ (−1)` + 1

2
cos(x)− (−1)` − 1

2
sin(x). (9.90)

3It is possible to add an external noise term of the form ∂η(x,t)
∂x into the right-hand side of the Burgers

equation (9.1). The potential field h(x, t) is defined as follows: ∂h(x,t)
∂x ≡ u(x, t). Then h(x, t) satisfies the

Kardar-Parisi-Zhang equation [Kardar et al., 1986].

182



0 50 100 150 200 250
Sites

u

t=96

0 50 100 150 200 250
Sites

t=224

u

t=64 t=192

u

t=32 t=160

u

t=0 t=128A

B

C

D

Figure 9.5: Development of a shock front in the flow field u(x, t) after the system is initialized with a
sinusoidal profile on an L = 256 site lattice for four different viscosities: (A) ν = 8, (B) ν = 2, (C) ν = 1

2 ,
(D) ν = 1

32 , where the viscosity is in lattice units δx2

δt . The curves are shifted vertically one from the other
by ∆ρ = 1

2 to avoid overlapping. Agreement between the numerical data (solid curves) and the analytical
solution (dashed curves) is excellent. The shock fronts of the analytical solutions are slightly wider than
the shock fronts of the numerical simulations which have much sharper edges. This is because these plotted
analytical solutions are slightly over-damped to help stabilize the series solution (9.89), so the quantum
model data is more accurate approximation of the time-dependent solution to the Burgers equation. All four
cases were initialized using (9.87) with ρa = 1 and ρb = 0.4.
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To match the numerical simulations, the parameters in the analytical solution (9.89) were

set to c = Lcs = 256 cot θ δx
δt

and ν = 1
2

cot2 θ δx
2

δt
. Also in (9.89) the size of the system is set

to unit length, 0 ≤ x ≤ 1.

The agreement between the numerical prediction and the analytical solution is excellent

for all cases, as shown in Figure 9.5. There is a slight discrepancy between the analytical

and numerical results after the shock front has developed in the flow field. The discrepancy

occurs at the corners or edges of the shock. The analytical solution appears to be smoother

across the shock front than the numerical solution. To plot the analytical solution, it was not

possible to include all terms in the series expansion (9.89) from ` = 1 up to ` =∞. Instead,

an approximation was made using only the first 80 terms in the expansion (9.89). For cases

when the shock front is too steep, the analytical solution diverges at shock front while the

quantum algorithm remains unconditionally stable; it becomes computationally difficult to

compute the analytically predicted exact solution using (9.89). To avoid this situation, some

additional damping was added to the analytical series solution to ensure its convergence.

This explains the observed discrepancy.

9.5.3 Near inviscid flow

Figure 9.6 shows the time evolution of the same quantum lattice gas system with L = 256

nodes. There are two situations with the collision operators set with different values for

the Euler angles: ν = 1
2
δx2

δt
(dotted curve) and ν = 0.00251446 δx

2

δt
(solid curve) cases. The

vertical axis is ρ plotted in the range of 1
2
≤ ρ ≤ 3

2
. The time step is in the upper left

corner of each snapshot. The viscosity of the quantum model is close to zero. The quantum

algorithm is unconditionaly stable and obeys the principle of detailed-balance. Having a

variable transport coefficient that can be made small, it is consistent with the inviscid Burgers

equations when the Euler angle θ ' π
2
. The numerical simulation result plotted in Fig. 9.7

manifests a characteristic property of a type-II quantum algorithm. The expected value of

the occupancy of the ground state and excited state of a microscopic qubit contained within

a quantum mechanical node of the lattice are shifted. The expectation value of the excited

state is plotted in the blue curve shown in in Fig. 9.7b. Regardless of the dissipation regime

(high or low viscosity), there is a gap in value of the occupation probabilites; hence, d+ 6= d−.

The physical cause of this gap is the following. The microscopic dynamics is interpreted as

the motion of qubits moving left and right through a chain of quantum processors. If the

likelihood of a qubit exiting left or right from a quantum processor is equal, then the excited

state energies encoding the left- and right-going probabilities would be degenerate. The

equilibrium probabilities must overlap: d+ = d−. The macroscopic effective field theory

would be strictly diffusive as any qubit would move up and down the one dimensional chain
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t=896 t=1920
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t=384 t=1408

t=128 t=1152

Figure 9.6: Two scenarios: the quantum lattice gas with θ = 1.5 radians and ζ = ξ = 0 (solid curve) and
θ = π

4 and ζ = ξ = 0 (dotted curve).This demonstrates a quantum lattice gas modeling a low viscosity fluid
when θ ' π

2 .
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Figure 9.7: Highly under-resolved simulation with θ = 1.5 radians with L = 256δx. (a) Six successive
snapshots of the flow field data (black curve) and the numerical prediction of the occupancy probabilities
f+ (blue dots) and f− (red dots). The analytically predicted equilibria, d+ and d−, are over plotted (black
curves). There is excellent agreement between theory and simulation, with a deviation occurring at late
times after the shock front is fully formed. (b) An expanded view of the shock front at t = 2048 δxδt . The
width of the shock front is much less than δx so a kind of Gibbs oscillations emerges.
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of quantum processors in an unbiased random walk fashion. However, if the likelihood of

a qubit exiting a quantum processor to the left does not equal the likelihood it will exit

to the right, then the degeneracy in the distribution functions is lifted and an energy gap

appears as demonstrated Figs. 9.7. In this case, the macroscopic effective field theory would

not be strictly diffusive; there would be an overall net advection of qubits in one direction

(the symmetry of the lattice is broken and this causes an energy gap in excited state energy

levels). This net advection gives rise to the nonlinear terms in (9.1).

In regions of ∂v
∂x

< 0, shocks tend to form in the v-field. Asymptotically, v attains a

constant slope with shock discontinuities. In Fig. 9.7, the extent of the Gibbs oscillations

at the shock front is greater at the mesoscopic than at themacroscopic scale because of a

fortuitous cancellation of errors. In Figure 9.8, we compare the analytically predicted values
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Figure 9.8: Analytical versus numerical equilibria: (top plot) high viscosity θ = π
4 radians, and (bottom

plot) low viscosity θ = 1.5 radians. The numerical data of the occupancy probabilities f+ (blue dots) and
f− (red dots) are shown for the flow field at t = 2048δt. The analytically predicted equilibria, d+ and d−,
plotted as well (black curves). In the low viscosity case, the deviation of the occupancy probabilities for
the highest and lowest values of the number density correspond to the aberrant Gibbs oscillations seen in
Fig. 9.7 of the under resolved flow.

of the equilibrium distribution to the numerically obtained distribution. There is excellent

agreement in the high dissipation regime, shown in the top graph in Figure 9.8. However, a
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discrepancy emerges in the extremely low dissipation regime, shown in the bottom graph in

Figure 9.8, which corresponds to the under-resolved shock front.

9.6 Summary

In summary, the type-II quantum algorithm:

• uses conservative quantum logic that is easily implementable

• is fourth-order accurate in space

• is unconditionally stable

• has a well-defined entropy function

• obeys detailed-balance due to the unitarity of the quantum collision process

• has tunable transport coefficients, for example sound-speed and viscosity coefficients

• is valid for highly nonlinear dynamics, for example the inviscid Burgers equations when

the Euler angle θ ' π
2

of a conservative
√

SWAP quantum logic gate

• is valid for highly nonlinear dynamics, for example it can achieve arbitrarily high

Reynolds numbers

• uses exponentially fewer local resources because of efficient microscopic Hamiltonian

encoding of the particle-particle collisions

• is computationally efficient, for example with a speedup scaling as Re
1
2 for the Burgers

equation and Re for the Navier-Stokes equation.

The quantum algorithm for modeling the Burgers equation is the simplest case (two

qubits per node) of a more general quantum algorithmic approach using many qubits per

node for modeling classical nonlinear dynamical fluid systems that shows an advantage over

classical algorithms. It is the simplest way to demonstrate the source of quantum efficiency

in computational physics applications in the same spirit as demonstrating the source of

quantum efficiency in quantum information processing by using the Deutsch-Josza quantum

algorithm for checking whether a function is constant or balanced 4.

4The efficiency of the Deutsch-Josza algorithm can be explained as follows. Classically, to find out if a
coin is fair or not, both sides must be observed; two bits of information are used. Quantum mechanically,
this determination can be made with a single observation of a qubit; only one bit of information is used.
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turbulence in higher spatial dimensions will require a quantum computer. Fortunately, such

an implementation on a future quantum computer should be possible because this quantum

modeling method has a well-defined microscopic quantum mechanical dynamics generated

by a Hamiltonian with only local qubit-qubit interactions.
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Chapter 10

Magnetohydrodynamic Burgers
equation

10.1 Introduction

The solution of nonlinear equations poses major challenge for parallel computational tech-

niques. This has led to the development of mesoscopic algorithms which are ideally paral-

lelized (on classical computers), like lattice Boltzmann methods. However the straightfor-

ward application of lattice Boltzmann methods lead to severe numerical instabilities as the

transport coefficients tend to zero. To overcome these instabilities, entropic constraints are

introduced into the lattice Boltzmann algorithm which enforce positive-definiteness of the

distribution functions. While these entropic algorithms, when they exist, are uncondition-

ally stable and still permit excellent parallelization, they require at every time step and at

every grid point a Newton-Raphson root finder algorithm which enforce bounds to remain

on a constant entropic surface. Quantum algorithms are also being developed for nonlinear

equations which have intrinsic classical and quantum parallelization, and which are uncondi-

tionally stable algorithms (because of the unitary collision and streaming operators) without

the need of expensive root-finding routines of entropic lattice Boltzmann.

Parallel quantum algorithms [Yepez, 1998] have been developed to numerically predict

time-dependent field solutions of the diffusion equation [Yepez, 2001b], the nonlinear Burgers

equation [Yepez, 2002c, Yepez, 2002a], the one dimensional equations for magnetohydrody-

namic turbulence with fixed (large) transport coefficients [Vahala et al., 2003c], the Korteweg

de Vries equation [Vahala et al., 2003b], the nonlinear Schroedinger equation in 1D and 2D

[Vahala et al., 2003b, Vahala et al., 2004b], and the Manakov equations [Vahala et al., 2003a,

Vahala et al., 2004a]. The first parallel quantum algorithms for the diffusion and Burgers

equations have with success been experimentally tested on quantum information processing

prototypes of parallel quantum computers (or type-II quantum computers [Yepez, 2001c]) us-

191



ing spatial nuclear magnetic resonance spectroscopy on a linear array (in space and in recipro-

cal space) of segmented ensembles of two-qubit labeled chloroform molecules [Pravia et al., 2002,

Pravia et al., 2003, Chen et al., 2006a].

Here, we generalize our parallel quantum algorithm for modeling magnetohydrodynamic

(MHD) turbulence but to now handle arbitrary transport coefficients. This algorithm is

based upon the quantum algorithms for the diffusion [Yepez, 2001b] and Burgers equations

[Yepez, 2002c, Yepez, 2002a]; it can be implemented on a parallel quantum computer with

pairs of labeled chloroform molecules. The intent of this paper is solely to demonstrate the

quantum Boltzmann equation method, so all the details about the microscopic quantum

mechanical implementation of the method have been replaced with a simpler and friendlier

mesoscopic treatment. The quantum mechanical foundation of the method lends it several

advantageous features as a tool for computational physics. First, there is inherent numerical

stability. Second, there is a corresponding entropy function description of the model dynam-

ics and an entropy theorem, although for economy and brevity the details of the entropy

function are not presented here. The Boltzmann collision function can be computed directly

without the need of root finding as is required for entropic lattice Boltzmann equation models

of turbulence [Boghosian et al., 2001, Boghosian et al., 2003, Boghosian et al., 2004a]. Al-

though the quantum algorithm presented here was originally developed for a parallel quan-

tum computing architecture, the quantum Boltzmann equation is a practical algorithmic

method for presentday classical computers.

Turbulence is plagued by spatiotemporal intermittency involving coherent structures

– structures that are at odds with the simple scale-similarity arguments. Insight into

these coherent structures comes by examining simplified models and the simplest model

exhibiting Alfvenization (the exchange of fluid and magnetic energies) are the 1D equations

[Thomas, 1968, Fleischer and Diamond, 2000]

∂v

∂t
+ v

∂v

∂x
= − ∂

∂x

(
B2

2

)
+ µ

∂2v

∂x2
(10.1a)

∂B

∂t
+

∂

∂x
(vB) = η

∂2B

∂x2
(10.1b)

for the velocity field ~v = v(x)x̂ and the magnetic field ~B = B(x)ẑ. The transport coefficients

are µ the fluid viscosity, and η the plasma resistivity. These 1D equations are derived from

the full MHD equations when the fluid density length scales are much longer than those

of the B field [Thomas, 1968, Fleischer and Diamond, 2000]. To leading order, this results

in a constant density so that (10.1) forms a closed set of equations for v and B. Adding

a y-component of the magnetic field gives a 1D model for solar flares [Galtier, 1999]. In
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Elsasser variables z± = v ±B, (10.1) can be written in symmetric form

∂z±
∂t

+ z±
∂z±
∂x

= µ
∂2z±
∂x2

± 1

2
(η − µ)

∂2(z+ − z−)

∂x2
. (10.2)

If the transport coefficients are equal, η = µ, then (10.2) reduces to two uncoupled nonlinear

Burgers equations for z±. [In the limit B ≡ 0, (10.1) reduces to Burgers equation for v]. The

Burgers equation [Woyczynski, 1998] is a well-known paradigm for Navier-Stokes turbulence

and has also been studied extensively for many decades as a simplified model for boundary

layer behavior, shock wave formation, mass transport, self-organized criticality and growing

interfaces. It is also a test-bed for numerical methods since a general analytic solution exists

[Hopf, 1950, Cole, 1951]. In Burgers turbulence, regions where ∂v
∂x

< 0 steepen into shock

singularities, while regions where ∂v
∂x

> 0 become smoother. However, with the inclusion

of the B field, there is now a magnetic back-pressure in (10.1) that is absent from the

Burgers equation. In particular, the B field will concentrate in regions of the velocity shock,

softening the shock front. For η 6= µ, (10.1) is non-integrable. Our initial attempt at a

quantum algorithm for (2) was restricted to the case µ = 1/2 and η = 1, in lattice units.

Here we present a quantum lattice Boltzmann algorithm that permits arbitrary transport

coefficients – a nontrivial generalization.

10.2 Quantum algorithm

To model (10.1) we use two quantum Boltzmann equations: we employ a two phase algorithm

for an ordered one dimensional array of L nodes, enumerated by a “spatial” integer coordinate

x = 1, 2, ..., L. At each node there are four probability values 0 ≤ pa ≤ 1, for a = 1, 2, 3, 4

which we shall call occupation probabilities. In first phase of the algorithm, the occupation

probabilities are encoded using the Elsasser variables 1 + v(x) +B(x) and 1 + v(x)−B(x),

whereas in the second phase of the algorithm, the occupation probabilities are encoded

using the 1 + v(x) and B(x) fields as density variables. In the first phase of the algorithm,

the evolution of the occupation probabilities is carried out using the quantum Boltzmann

equation for the nonlinear Burgers; and in the second phase, the evolution is carried out

using the quantum Boltzmann equation for linear diffusion. A unitary matrix, denoted T ,

is employed to transform the occupation probability distribution back and forth between

the Elsasser and density variable representations. During the evolution steps of the first and

second phases of the algorithm, the probabilities are updated independently in pairs: (p1, p2)

and (p3, p4). In the transformation steps, the probabilities are adjusted in the alternate pairs:

(p1, p3) and (p2, p4). Therefore, this quantum algorithm is a four-qubit algorithm.
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10.2.1 Initialization step

The zeroth step encodes all four probability fields at t = 0 using the initial v(x) and B(x)

fields:

p1,2(x) = d1,2[cot θ, 1 + v(x) +B(x)] (10.3a)

p3,4(x) = d1,2[cot θ, 1 + v(x)−B(x)], (10.3b)

where the local equilibrium functions

d1(α, ρ) =
ρ

2
+

1

2α

[√
1 + α2 −

√
1 + α2(ρ− 1)2

]
(10.4a)

d2(α, ρ) =
ρ

2
− 1

2α

[√
1 + α2 −

√
1 + α2(ρ− 1)2

]
(10.4b)

are the zeros of the full quantum collision function [Yepez, 2006]. This step occurs only in

the first pass through the algorithmic loop.

10.2.2 Quantum Boltzmann equation for nonlinear Burgers

The first evolution step uses the full quantum Boltzmann equation to update all the proba-

bility fields:

p1,2(x∓ 1) = p1,2(x)∓ [p1(x)− p2(x)] sin θ ± (10.5a)√
p1(x)[1− p1(x)]p2(x)[1− p2(x)] sin 2θ

p3,4(x∓ 1) = p3,4(x)∓ [p3(x)− p4(x)] sin θ ± (10.5b)√
p3(x)[1− p3(x)]p4(x)[1− p4(x)] sin 2θ.

10.2.3 Transformation to density variables

The second step of the algorithm transforms the local probability distribution from the

Elsasser variables representation to the density variables representation:

pa(x) = Tab pb(x), (10.6)

where there is an implied summation over the repeated index and the unitary transformation

matrix is

T =
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 . (10.7)
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Here, the density assignments to evaluate the v(x) and B(x) fields are:

v(x) = p1(x) + p2(x)− 1 (10.8a)

B(x) = p3(x) + p4(x). (10.8b)

(10.8) are not part of the mesoscopic quantum algorithm, merely diagnostic evaluation of

the dynamics–a kind of “observation” that does not affect the dynamics.

10.2.4 Quantum Boltzmann equation for linear diffusion

The third step uses the following quantum Boltzmann equation to independently update the

probability fields associated v and B fields:

p1,2(x∓ 1) = p1,2(x)∓ [p1(x)− p2(x)] sin2 α (10.9a)

p3,4(x∓ 1) = p3,4(x)∓ [p3(x)− p4(x)] sin2 β. (10.9b)

To improve the numerical convergence of the quantum algorithm overall, this diffusion step

should be implemented with a fourth-order accurate scheme employing interleaving. The

details have been omitted here for the sake of brevity, but can be found in [Yepez, 2001b].

10.2.5 Transformation to Elsasser variables

The fourth step of the algorithm re-encodes the local probability distribution pa into prob-

abilities associated with the Elsasser variables v +B and v −B:

pa(x) = T †ab pb(x). (10.10)

Note that T † = T , the variable transformation is self-adjoint. At this point, one iteration of

the algorithm is completed and time is advanced by one unit ∆t.

Here, the Elsasser assignments to evaluate the macroscopic scale v(x) and B(x) fields

from the occupation probabilities are the following formulae:

v(x) =
1

2
[p1(x) + p2(x) + p3(x) + p4(x)]− 1 (10.11a)

B(x) =
1

2
[p1(x) + p2(x)− p3(x)− p4(x)] . (10.11b)

In this way, a time history of the v(x) and B(x) fields can be generated by looping back to

the first step. Like (10.8), (10.11) is not part of the mesoscopic quantum algorithm, merely

a diagnostic evaluation of the dynamics. Now we can see why the inverse of (10.11), which

is

p1,2(x) =
1

2
[1 + v(x)±B(x)] = p3,4(x), (10.12)

was used in (10.3) to encode the probability fields using the initial v(x) and B(x) fields at

t = 0. That is, we initially start out in the Elsasser variable representation.
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10.2.6 Basic algorithmic steps summarized

In summary, the mesoscopic quantum algorithm is the following:

Step 0: Initialization using (10.3).

Step 1: Nonlinear evolution using (10.5).

Step 2: Transformation to density variables using (10.6).

Step 3: Linear evolution using (10.9).

Step 4: Transformation to density variables using (10.10), which is iden-

tical to (10.6).

Following Step 4, time advances t→ t+∆t, and we loop back to Step 1. It is also interesting

to note that the unitary transformation T acts not on the probability amplitudes but on the

actual probabilities themselves. This does not destroy the overall unitariness of the algorithm

since T † = T .

10.3 Effective Field Theory

We shall not present the effective field theory for arbitrary transport coefficients since the

resulting finite difference equations are far too complex and lengthy to present here 1..

Instead, we shall discuss the effective field theory for two special choices of α, β, θ

For the special case of α = 0 and β = 0 and θ = π
4
, it can be shown that the mesoscopic

transport equation (10.5) can be written directly as a finite difference equation in the v(x)

and B(x) fields:

v′(x) =
1

2
[v(x− 1) + v(x+ 1)] (10.13a)

+
1

4

[
v(x− 1)2 − v(x+ 1)2

]
+

1

4

[
B(x− 1)2 −B(x+ 1)2

]
B′(x) =

1

2
[B(x+ 1) +B(x− 1)] (10.13b)

+
1

2
[v(x− 1)B(x− 1)− v(x+ 1)B(x+ 1)] .

1The unitary collision operators are implemented with perfect control and the occupation probabilities
are measured exactly. These assumptions hold only for an ideal experimental setup. We address actual
quantum control and Von Neuman projective shot noise in our papers on experimental parallel quantum
computing with NMR [Pravia et al., 2002, Pravia et al., 2003, Chen et al., 2006a].
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The macroscopic scale effective field theory for v(x, t) and B(x, t) follows from taking the

continuum limit of (10.13) with the ordering ∆x ∼ O(ε) and ∆t ∼ O(ε2). We obtain (in

lattice units ∆x = 1 = ∆t)

∂v

∂t
+ v

∂v

∂x
=

1

2

∂2v

∂x2
−B∂B

∂x
+O(ε3) (10.14a)

∂B

∂t
+ v

∂B

∂x
=

1

2

∂2B

∂x2
−B∂v

∂x
+O(ε3). (10.14b)

This is just the 1D MHD (10.1) in the special case where the kinematic shear viscosity and

resistivity transport coefficients are equal, µ = η = 0.5. If we make an Elsasser variables

substitution, z± = v ±B, then (10.14a) and (10.14b) simplify into two uncoupled nonlinear

Burgers equations for z±, see (10.2). We now proceed from the integrable 1D MHD with

µ = η to the non-integrable case of unequal transport coefficients, µ 6= η.

After some algebra for the special case where α = 0 and β = π
4

and θ = π
4
, it follows

that the dynamics of the v(x) and B(x) fields can be written directly as a finite difference

equation:

v′(x) =
1

2
[v(x− 1) + v(x+ 1)] +

1

4

[
v(x− 1)2 − v(x+ 1)2

]
(10.15a)

+
1

16
[B(x− 2)−B(x+ 2)] [B(x− 1) + 2B(x) +B(x+ 1)]

B′(x) =
1

4
[B(x− 2) + 2B(x) +B(x+ 2)] (10.15b)

+
1

4
[v(x− 1)B(x− 2) + [v(x− 1)− v(x+ 1)]B(x)− v(x+ 1)B(x+ 2)] .

Again proceeding to the continuum limit by Taylor expanding (10.15), we obtain our desired

1D MHD equations with unequal transport coefficients: viscosity µ = ∆x2

2∆t
and resisitivity

η = ∆x2

∆t
.

In the general case where π
4
≤ θ < π

2
, 0 ≤ α < π

2
, and 0 ≤ β < π

2
, we obtain the following

effective field theory:

∂v

∂t
+ v

∂v

∂x
= µ

∂2v

∂x2
−B∂B

∂x
+O(ε3) (10.16a)

∂B

∂t
+ v

∂B

∂x
= η

∂2B

∂x2
−B∂v

∂x
+O(ε3), (10.16b)

with adjustable transport coefficients for the viscosity and resistivity:

µ(θ, α) =
1

2

(
cot2 θ + tan2 α

) ∆x2

∆t
(10.17a)

η(θ, β) =
1

2

(
cot2 θ + tan2 β

) ∆x2

∆t
. (10.17b)
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The equations for (10.17a) are based on a previous result from the quantum algorithm for

modeling the Burgers equation [Yepez, 2006], and the dependence of the transport coeffi-

cients on the Euler angles in (10.17a) have been confirmed numerically, see Section 10.4

below.

10.4 Numerical Tests

t!3072 t!3584 t!4096

t!1536 t!2048 t!2560

t!0 t!512 t!1024

Figure 10.1: Simulation results in the low dissipation regime α = 0, β = 0 and θ = 1.5 radians, which
corresponds to µ = η = 0.0025. The simulation was carried out on a lattice with 256 nodes, used as the
spatial coordinates along the x̂-axis. The following values of four field quantities are plotted along the ŷ-axis.
The blue curve is the velocity field, −1 ≤ v(x) ≤ 1. The red curve is the magnetic field, 0 ≤ B(x) ≤ 1.
The purple curves are the first and second occupation probability fields, 0 ≤ p1 ≤ 1 and 0 ≤ p2 ≤ 1. The
green curves are the third and fourth occupation probability fields, 0 ≤ p3 ≤ 1 and 0 ≤ p4 ≤ 1. There
are four black curves; these are analytical predictions, based on the computed macroscopic field profiles, of
the equilibrium occupation probabilities and they are in excellent agreement with the numerical predictions.
The mesoscopic fields remain in local equilibrium. Snapshots are shown at every 512 time steps. In regions
of ∂v

∂x < 0, shocks tend to form in the v-field with localized enhancement of the B-field. Asymptotically, v
attains a constant slope with shock discontinuities while the B field is constant with discontinuities at the
leading edges of the front. The extent of the Gibbs oscillations at the shock front is greater at the mesoscopic
than at the macroscopic scale because of a fortuitous cancellation of oscillations.
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t!1152 t!1344 t!1536

t!576 t!768 t!960

t!0 t!192 t!384

Figure 10.2: Simulation results in the highly dissipation regime : α = 0, β = 0 and θ = π
4 yielding

µ = η = 0.5, but otherwise similar to the previous figure (see Fig. 10.1 caption). No Gibbs oscillations occur
since the shock front is spatially resolved. The color codings and lattice parameters are the same as those
used in Fig. 10.1.
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t!3072 t!3584 t!4096

t!1536 t!2048 t!2560

t!0 t!512 t!1024

Figure 10.3: Simulation results with α = 0 (low viscosity), β = 1.0 radian (high resistivity), and θ = 1.5
radians (i.e., µ = 0.0025, η = 1.22). Slight Gibbs oscillations occurs as a steep unbifurcated shock front
forms in the velocity profile since (10.16a) asymptotically becomes the Burgers equation. The caustic in the
magnetic field is diffusion dominated, with tails emanating from the location of the shock front. The color
codings and lattice parameters are the same as those used in Fig. 10.1.
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t!3072 t!3584 t!4096

t!1536 t!2048 t!2560

t!0 t!512 t!1024

Figure 10.4: Simulation results with α = 0 (low viscosity), β = 1.2 radians (high resistivity), and θ = 1.5
radians (i.e., µ = 0.0025, η = 3.31). Slight Gibbs oscillations occurs as a steep unbifurcated shock front
forms in the velocity profile since (10.16a) asymptotically becomes the Burgers equation. The caustic in the
magnetic field is diffusion dominated, with tails emanating from the location of the shock front. The color
codings and lattice parameters are the same as those used in Fig. 10.1.
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t!3072 t!3584 t!4096

t!1536 t!2048 t!2560

t!0 t!512 t!1024

Figure 10.5: Simulation results with α = 0 (low viscosity), β = 1.4 radians (high resistivity), and θ = 1.5
radians (i.e., µ = 0.0025, η = 16.81). Slight Gibbs oscillations occurs as a steep unbifurcated shock front
forms in the velocity profile since (10.16a) asymptotically becomes the Burgers equation. The caustic in the
magnetic field is diffusion dominated, with approximately exponential tails emanating from the location of
the shock front. The color codings and lattice parameters are the same as those used in Fig. 10.1.
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Figure 10.6: Comparison of theory versus numerical data for the magnetic field profile near a shock front
with α = 0 (low viscosity), β = 1.4 radians (high resistivity), and θ = 1.5 radians (i.e., µ = 0.0025, η = 16.81).
The caustic in the magnetic field (black dots) is diffusion dominated, with theoretically predicted exponential
tails (red curve) emanating from the location of the shock front on a grid of size L = 256∆x. The data is
shifted to the left by a distance of L

4
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t!3072 t!3584 t!4096

t!1536 t!2048 t!2560

t!0 t!512 t!1024

Figure 10.7: Simulation results with α = 0.8 radians (high viscosity), β = 0 (low resistivity), and θ = 1.5
radians (i.e.,µ = 0.53, η = 0.0025). No Gibbs oscillations occurs and no shock front forms in the velocity
field, which is diffusion dominated. The solitary and persistent pulse in the magnetic profile is caused by
the forcing of the initial sinusoidal velocity field. The color codings and lattice parameters are the same as
those used in Fig. 10.1.
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Figure 10.8: Comparison of theory versus numerical simulation results with α = 0.8 radians (high viscos-
ity), β = 0 (low resistivity), and θ = 1.5 radians (i.e., µ = 0.53, η = 0.0025). The solitary and persistent
pulse in the magnetic profile (black dots) has an approximately hyperbolic secant profile (red theoretical
curve). The data is shifted to the left by a distance of L

4 .
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t!3072 t!3584 t!4096

t!1536 t!2048 t!2560

t!0 t!512 t!1024

Figure 10.9: Simulation results with α = 1.0 radian (high viscosity), β = 0 (low resistivity), and θ = 1.5
radians (i.e., µ = 1.22, η = 0.0025). No Gibbs oscillations occurs and no shock front forms in the velocity
field, which is diffusion dominated. The solitary and persistent pulse in the magnetic profile is caused by
the forcing of the initial sinusoidal velocity field. The color codings and lattice parameters are the same as
those used in Fig. 10.1.
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t!3072 t!3584 t!4096

t!1536 t!2048 t!2560

t!0 t!512 t!1024

Figure 10.10: Simulation results with α = 1.2 radian (high viscosity), β = 0 (low resistivity), and θ = 1.5
radians (i.e., µ = 3.31, η = 0.0025). No Gibbs oscillations occurs and no shock front forms in the velocity
field, which is diffusion dominated. The solitary and persistent pulse in the magnetic profile was caused
by the forcing of the initial sinusoidal velocity field. The magnetic solitary pulse begin to cause a step
discontinuity in the sinusoidal velocity profile. The color codings and lattice parameters are the same as
those used in Fig. 10.1.
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t!3072 t!3584 t!4096

t!1536 t!2048 t!2560

t!0 t!512 t!1024

Figure 10.11: Simulation results with α = 1.4 radians (very high viscosity), β = 0 (low resistivity), and
θ = 1.5 radians (i.e., µ = 16.81, η = 0.0025). No Gibbs oscillations occurs and no shock front forms in
the velocity field, which is diffusion dominated. A very strong solitary and persistent pulse in the magnetic
profile is caused by the forcing of the initial sinusoidal velocity field. This magnetic solitary pulse clearly
causes a step discontinuity in the sinusoidal velocity profile. The color codings and lattice parameters are
the same as those used in Fig. 10.1.
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Figure 10.12: The time evolution of the B field at location x = 192 determined from the quantum
algorithm (dotted curve). Two cases are shown. For the θ = π

4 case, after the shock formation around
t ∼ 200∆t. For the θ = 1.5 radians case, shock formation occurs latter in time at around t ∼ 2500∆t. The
analytical asymptotic solutions (red curves) shows the B field decays like t−1 as expected, see (10.19). There
is excellent agreement between theory and the numerical solution over the whole dissipative regime from
high to low resistivity.

The 1D MHD equations are solved using the quantum Boltzmann equation method de-

scribed above for initial profiles v(x, 0) = 0.4 cos
(

2π
L

)
and B(x, 0) = 0.1 on a L = 256∆x

grid. The evolution of the fields are shown in Fig. 10.1 (low dissipation regime) and Fig. 10.2

(high dissipation regime). Regions of ∂v
∂x
< 0 steepen towards shocks while regions of ∂v

∂x
> 0

smooth. At first the B field rapidly increases by a factor of 10 and concentrates where

velocity shocks form. Asymptotically in time (but when the nonlinear terms are important

and before the profile linearly diffuses away) the velocity profile bifurcates and eventually

becomes linear in x except at the shocks. There is a surprising cancellation of errors. If

one looks at the profiles of the occupation probabilities in Fig. 10.1 (low dissipation regime),

they separately each have Gibbs oscillations. However, when the two occupation probability

fields are added together forming the v(x) field or subtracted forming the B(x) field, the

oscillations substantially cancel out because they are out of phase. The Gibbs oscillations

subside altogether with higher grid resolution since its source is an under resolved shock

front.

The B field asymptotically tends to a constant with spatial jumps around the velocity

shock fronts. The linear sloped v field decays in time as does the constant B field. Indeed,

we can check our model in this asymptotic region. Assuming v(x, t) −→ a(t)x + b(t) and

B(x, t) −→ B(t), except at isolated locations corresponding to shock fronts, (10.1) yield

constraint equations for a(t), c(t), and B(t):

da

dt
+ a2 = 0

db

dt
+ ab = 0

dB

dt
+ aB = 0. (10.18)
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The analytical solution of (10.18) yield asymptotic v and B field profiles

v(x, t) =
x+ k2

t+ k1

B(t) =
k3

t+ k1

, (10.19)

with constants of integration k1, k2 and k3. From the quantum simulations shown in

Figs. 10.1 and 10.2, we plotted in Fig. 10.12 the B field at x = 192 as a time series (black

dots). The solid curve is the asymptotic decay (10.19) derived from (10.1). The decay is

fast for the high resistivity case and it is slow for the low resistivity case. There is excellent

agreement after the shock has fully formed with the analytical asymptotic solutions (red

curves) validating our model for 1D MHD with unequal and arbitrary transport coefficients.

10.5 Final remarks

The numerical simulation results plotted in Figs. 10.1 and 10.2 manifest a characteristic

property of a type-II quantum algorithm. The expected value of the occupancy of the

ground state and excited state of a microscopic qubit contained within a quantum mechanical

node of the lattice (in the 1D MHD model presented here there would be four qubits per

node) are shifted. The expectation value of the excited state is plotted in the purple and

green curves shown in in Figs. 10.1 and 10.2. Regardless of the dissipation regime (high or

low viscosity and resistivity), there is a gap in value of the occupation probabilites; hence,

peq
1 6= peq

2 (two purple curves) and peq
3 6= peq

4 (two green curves). The physical cause of this

gap is the following. The microscopic dynamics is interpreted as the motion of quantum

particles moving left and right through a chain of quantum processors. If the likelihood

of a quantum particle exiting left or right from a quantum processor is equal, then the

excited state energies encoding the left- and right-going probabilities would be degenerate.

The equilibrium probabilities must overlap: peq
1 = peq

2 and peq
3 = peq

4 . This degeneracy

occurs in pairs because there are four occupation probabilities and only two macroscopic field

quantities. The macroscopic effective field theory would be strictly diffusive as any quantum

particle would move up and down the one dimensional chain of quantum processors in an

unbiased random walk fashion. However, if the likelihood of a quantum particle exiting a

quantum processor to the left does not equal the likelihood it will exit to the right, then the

degeneracy in the distribution functions would be lifted and an energy gap would appear as

demonstrated Figs. 10.1 and 10.2. In this case, the macroscopic effective field theory would

not be strictly diffusive; there would be an overall net advection of quantum particles in one

direction (the symmetry of the lattice is broken and this causes an energy gap in excited

state energy levels). This net advection gives rise to the nonlinear terms in (10.16).

It is also interesting to note the strong asymmetry at the macroscopic level between the
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v-field and the B-field, while at the quantum mesoscopic level there is symmetry in the four

probabilities. The root of this macroscopic asymmetry is evident from the full 3D MHD

equations where the momentum equation has a gradient of a symmetric tensor while the

evolution of the magnetic flux is governed by the gradient of an anti-symmetric tensor. To

clarify that we recover the macroscopic asymmetry, we have interchanged the initial profiles

for v and B and chosen transport coefficients corresponding to Fig. 10.1: µ = η = 0.0025.

One notices that the initially constant v-profile develops a doubly periodic oscillation (driven

by the single oscillation in the B-field) which then undergo shock formation at the two regions

in which ∂v
∂x
< 0, see Fig. 10.13.

t!3072 t!3584 t!4096

t!1536 t!2048 t!2560

t!0 t!512 t!1024

Figure 10.13: Simulation results in the low dissipation regime α = 0, β = 0 and θ = 1.5 radians, which
corresponds to µ = η = 0.0025. but for the initial conditions: B(x, 0) = 0.4 cos

(
2π
L

)
and v(x, 0) = 0.1.

The blue curve is the velocity field. The red curve is the magnetic field. The purple curves are the first
and second occupation probability fields (p1 and p2). The green curves are the third and fourth occupation
probability fields (p3 and p4).

The quantum Boltzmann equation is a new unconditionally stable algorithm for nu-

merically predicting the time-dependent behavior of magnetohydrodynamic turbulence and

shock formation for tunable transport coefficients. In contrast, the standard lattice Boltz-
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mann algorithm becomes numerically unstable at low transport coefficients which are over a

magnitude greater than those considered in Fig. 10.1. An open and very interesting problem

is the extension of this quantum algorithm to MHD turbulence in 2+1 and 3+1 dimensions.
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Chapter 11

The Navier-Stokes equation

11.1 Introduction

In the defense community there are a plethora of neutral-fluid flows problems, particularly

flows by regions with non-trivial spatial boundaries, such around an aircraft fuselage or a

ship hull, through a jet engine compartment, or over the Earth’s surface. While analytical

solutions to such problems remain elusive and generally intractable, today they are within

the reach of the computational physicist. To tackle such problems, practitioners usually

resort to direct numerical simulation methods, yet here the amount of computer memory

and processing time grows faster that the number of desired computed field points. Even

in cases with simple or periodic boundaries, where more efficient numerical representations

are available (such as a psuedo spectral approach pioneered by G.I. Taylor in the 1930’s

and S.A. Orszag et al. in the 1970’s [Orszag and Patterson, 1972]), the scaling of computer

resources with grid size is daunting. This computational complexity has translated into

significant annual costs to defense department high performance computing offices purchasing

large numbers of processing elements (typically thousands or ten of thousands), configured

in massive parallel computing arrays. But this cost, increasing year after year, has been

borne so engineers can solve mission critical fluid problems, perpetually requiring higher

resolution grids and more accurate and faithful simulations. For example, high resolution

flow simulations like those shown in Figure 11.1 are vital to aeronautical engineers designing

the shape of advanced fighter jets or unmanned aerial vehicles or submarines to economize on

fuel consumption and minimize maneuvering instabilities and wakes, to propulsion engineers

designing nozzle and flow control orifices to maximize thrust, or to meteorologists trying to

understand intermittent turbulence induced in the upper atmosphere under the jet stream

to maximize laser propagation from airborne platforms. Yet to the theoretical physicist, the

situation is even more dire: the prediction of any aspects of turbulence (beyond Kolmogorov’s

1941 universality hypothesis), using advanced statistical methods and perturbation methods,
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borrowed from triumphant quantum field theory and statistical mechanics, remains the oldest

and most prominent of classical grand challenge problems, open now for over 150 years.

This dire situation arises because, even in the macroscopic limit, strong correlations and

feedback mechanisms between large scale and small scale flow structures, over many decades

of spatial separation, dominate the overall flow evolution. The clearest high level picture

capturing the essential physics of this problem, with restrictioned attention to divergence

free and low Mach number flows, are the incompressible Navier-Stokes equations. The strong

correlation between disparate scales is captured by the extremely simple non-local convective

derivative (the second order nonlinearity in the velocity field).

11.1.1 Laminar to turbulent flow transition

The lattice model now affords a deep insight into the origin and essential inner workings

of free shear turbulence. This is a kinetic lattice gas model, the clearest low level picture

correctly capturing the essential physics and hydrodynamics of the problem. As the well

known Ising lattice gas model is fundamental to a statistical mechanics understanding of

the essential physics of ferromagnetism and the order-disorder phase transition, the kinetic

lattice gas model is fundamental to a dynamical mechanics understanding of fluids and the

laminar-to-turbulent flow transition.

A new universal feature of the laminar-to-turbulent transition becomes clear in high

Reynolds number simulations. Following an initial period of laminar flow with vortex sheet

stretching, and preceding the final inertial subrange period of isotropic and homogeneous

turbulent flow with self-similar vortex tubes, there exists a well-defined interim period, here

termed the breaking subrange. The hypothesis is that this subrange manifests self-organized

criticality. The breaking subrange is dominated by anisotropic and non-homogeneous tur-

bulent flow. Avalanches occur intermittently, where large coherent spatial structures grow,

become unstable under maximal shear, and subsequently break into isotropic and homoge-

neous turbulence. These avalanches occur progressively in time across the entire space. See

the bottom image of Fig. 11.1 showing the kind of anisotropic turbulent flow that occurs

during an avalanche event, with young vortex tendrils. The time rate of change of the enstro-

phy, ∂E
∂t

, has a generally negatively sloped avalanche cascade, with marked peaks, indicating

the successive breaking points, as shown in Fig. 11.3.

By carefully comparing the renderings in Fig. 11.2 to the enstrophy plots in in Fig. 11.3,

it is possible to see three distinct morphological stages of the flow: vortex stretching range,

breaking subrange, and the inertial subrange. The morphological evolution transitions from

(1) large vortex sheets to (2) convoluted vortex sheets with virgin vortex tendrils to (3) small

entangled vortex tubes.
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Figure 11.1: Supercomputer simulation of Navier-Stokes turbulence. Surface of constant vorticity in
turbulent flow, showing entangled vortex tubes (top) and anisotropic flow in the breaking subrange (bot-
tom). The dot product of the velocity and vorticity fields are displayed in the red-blue color coding. The
bottom image is a zoomed view at t = 5K∆t of Fig. 11.2, where the vertical white line is one edge of the
cubical simulation grid. Long vortex tendrils are easily seen. Large-scale simulations offer a way to see the
morphological evolution and structural development of turbulence in fluids, but they also give a preview of
the kind of numerical output to be available from future quantum computers.
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Figure 11.2: Surfaces of constant enstrophy (E = 1
2

∫
dV |~ω|2 where ~ω = ∇ × ~u) illustrating an incom-

pressible fluid’s morphological evolution from t = 0 up to t = 7, 000∆t iterations, in time steps of 1, 000∆t
on a cubical cartesian grid of size L = 512∆x. Surface coloring uses ~u · ~ω (red equals -1 and blue 1).
This 3+1 dimensional turbulent neutral fluid simulation run using the entropic lattice Boltzmann equation
with 15-body particle-particle collisions (ELB-Q15 model) computed at every lattice site at each time step.
At each site, local relaxation of the single-particle probability distribution a desired equilibrium function,
represented as a low Mach number polynomial expansion. The initial flow is a Kida and Murakami pro-
file [Kida and Murakami, 1987] with a super cell size set to L◦ = 512∆x, the total grid size. So the flow
configurations within all 8 octants of the large grid are initially identical. The characteristic flow speed is
u◦ = 0.07071∆x

∆t . The collisional inversion parameter is set to β = 0.99592, corresponding to a kinematic
viscosity of ν◦ = 6.8× 10−4 ∆x2

∆t , for α = 2. 214
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Figure 11.3: Plot of enstrophy versus time (smooth black curve) showing three stages in the morphological
evolution: (1) vortex stretching range (t < 3, 200∆t), (2) breaking subrange (3, 200 < t < 9, 000∆t), and (3)
inertial subrange (t > 9, 000∆t). The enstrophy is normalized so that at t = 0 it is unity. The isovalues used
to visualize the 8 images in Fig. 11.2 are shown (black squares). Stage 1: The initial exponential increase
(blue curve) of enstrophy designates the initial vortex stretching range with characteristic laminar flow. There
is excellent agreement between the analytical fit (blue curve) and the enstrophy data (black curve). Stage 2:
The time derivative of the enstrophy curve (jagged black curve) is also plotted. The time period of generally
negative slope of the enstrophy derivative (gray shaded region) is here termed the breaking subrange, where
large scale anisotropic ordering of turbulence occurs and intermittently breaks down over time. The first
major breaking point occurs at about t = 3, 200∆t (vertical red line) and subsequent intermediate avalanches
occur at about t = 5, 100∆t and t = 6, 750∆t (thin vertical red lines), respectively. Stage 3: The final
exponential decrease of enstrophy (red curve) designates the inertial subrange where the homogeneous and
isotropic “small scale” turbulent flow morphology, with characteristic entangled vortex tubes, is organized in
a spatially self-similar way. Here the energy spectral density obeys the Kolmogorov universality hypothesis,
the famous k−

5
3 power law for energy cascade downward to smaller scales. The onset of the inertial subrange

occurs close to t = 9, 000∆t (vertical blue line). Here the velocity probability distribution functions, for
each component, are Gaussian (top inset) and the vorticity probability distribution function approaches an
exponential (bottom inset). There is excellent agreement between the analytical fit (blue curve) and the
enstrophy data (black curve). There exists a fourth stage of the morphology of turbulence at late times
(t > 14, 000∆t), not shown here, called the viscous subrange.
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11.1.2 Q versus S models: closure of sub-grid effects

The continuum hydrodynamical equations are projections of the entropic lattice Boltzmann

(ELB) equation, a projection down from the Q× LD-dimensional kinetic phase space on to

a 4×LD-dimensional hydrodynamic null space 1. This projection recovers the Navier-Stokes

equations in the Chapman-Enskog limit. This has an important consequence: there exist

many “qubit” models (or Q models for short) with a different local stencils (i.e. lattice vectors

sets with different finite point group symmetries and coordination number), which will also

recover the Navier-Stokes equations asymptotically (continuous rotational symmetry).

ELB is ideal for large eddy simulation (LES) closures since in LES one typically deals

with mean strain rates for modeling the eddy viscosity. These nonlocal fluid calculations are

immediately recovered from simple local moments in ELB.

At this stage, the ELB runs are a validation of the method and this is important because

ELB is a crucial precursor to a viable quantum lattice Boltzmann method [Yepez, 2001a].

The good numerical agreement between the LES-LB (lattice Boltzmann equation with sub-

grid Smagorinsky closure here referred to as an S model) and the basic ELB Q models is

encouraging. Now fully convinced of the validity of ELB, work to speed it up for present

day supercomputer implementations is underway. But the most promising opportunity is

to simply build a type-II quantum computer [Pravia et al., 2002, Chen et al., 2006b], which

could far outstrip any classical supercomputers, for turbulence fluid simulations. In the

fullness of time, the ELB will outpace the LES-LB, even without quantum computers.

There are a few reasons for this view. First, the kinetic lattice gases obey detail balance

while sub-grid closure methods, such as the LES-LB, do not. And another advantage of

the ELB over LES-LB is that ELB obeys the second law of thermodynamics while LES-LB

and other LES methods do not necessarily obey the second law. Third, in the LES-LB the

strain tensor must be computed at every site. With no-slip boundaries, computing the strain

tensor becomes problematic. In contrast, ELB is purely local, so grid sites near boundaries

are handled as easily as sites far away from boundaries. All these are important differences

when the model is used for practical engineering grade applications.

11.1.3 Timings and scaling

Turbulent dynamics are easily solved since the underlying kinetic equation (11.8) has only

local algebraic nonlinearities in the macroscopic variables and simple linear advection. At

1A subset of all the eigenvectors in the Q-dimensional kinetic space, have zero eigenvalues. These eigen-
vectors span the hydrodynamic null space. It is 4 dimensional because the kinetic lattice gas model conserves
probability (mass) and probability flux along the spatially orthogonal directions (three components of the
momentum vector).
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this mesoscopic level there are various kinetic lattices (Q=15, 19, or 27) with different lattice

vectors on a cubic lattice, which model the Navier-Stokes equation to leading order in the

Chapman-Enskog perturbative asymptotics.

With the CAP data obtained on BABBAGE, the effects of the underlying lattice symme-

try on the fluid turbulence statistics (through autocorrelation tensors of velocity, vorticity,

pdfs of vorticity, and the like) can be determined, but there is not have sufficient space to

preset details here. The Q15 model seems to be the most efficient model. An example out-

put of this model is shown in Fig. 11.2. Even on a relatively modest size 5123 grid, we can

achieve such a high degree of resolved nonlinearity (Re=26,512) that the consequent isotropic

turbulence at the onset of the inertial subrange (at about t ∼ 9, 000∆t) outstrips the ability

to visualize the myriad vortex tubes. Fig. 11.2 is just a test case. The sustained floating

point per seconds (MFLOPS/PE) we achieved are the best of all scientific codes run, for ex-

ample on the Earth Simulator, attaining over 67% of peak performance on 4,800 processors.

Achieving the world’s highest Reynolds number in the field of computational fluid dynamics

should also occur in the near future. The current tested code on BABBAGE, on 1, 6003 grid

with 2,048 processing elements, can achieve a Reynold’s number of Re=565,667. Modeling

atmospheric scale turbulence, in the range of Re ∼ 106 is possible today, for the first time

in the half century long history of numerical digital computers applied to aerodynamics.

Figure 11.4: TFlops/sec scaling of ELB-Q27 code on BABBAGE with number of CPUs.

Some runs with these models–in particular the Q15, Q19, Q27 and S27 models–have been

completed. The advantages of these lower Q models are reduced wallclock times with less

memory demands. The nonlinear convective derivatives of in the Navier-Stokes equation are

recovered from purely local moments of kinetic space distribution function. This is the basic
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reason why ELB scales so well with PEs: the algorithm consists of simple local computations

and streaming of information only to near neighbor grid sites.

No. PEs GRID MODEL WALLCLOCK (s) GFlops/s per PE
2912 19503 ELB-Q27 7,554.7 2.17
2912 19503 ELB-Q19 5,602.7 2.24
2912 19503 ELB-Q15 4,798.4 2.05
2912 19503 LES-LB-S27 4,451.2 1.05

Table 11.1: The gigaflops per second per processor element for 2912 CPU runs on a 1952× 1946× 1950
grid for four lattice Boltzmann codes variants. The wallclock time is for 2,000∆t (lattice time steps). A full
turbulence simulation takes about 54,000 time steps.

During Phase I, investigating the scaling properties of the Q27 code, over 6.3 tera flops

per second on the full 2912 processor elements available on BABBAGE was achieved, see

Fig. 11.4.

The LES-LB-S27 code, which no longer needs the solution of an entropy constraint equa-

tion, has also been tested in Phase I. It is less computationally intensive (due to the avoidance

of log-calls and the need for a Newton-Raphson root finder at each spatial node and time

iteration) and shorter wallclock time than the ELB-Q27 code, see Table 11.1.

11.1.4 Quantum information processing

Quantum information processing (QIP) and quantum communications will be integral to

the 21st century. For many years, QIP has been included in the Developing Science and

Technologies List, in the section of critical information systems technology. It appears that

superconductive quantum information processing may soon be elevated to the status of a

militarily critical technology. There now exists the rather imminent possibility of the devel-

opment of large quantum computer arrays, potentially far outstripping any supercomputers

now used for defense department computations.

On BABBAGE Q27, Q19, Q15 lattice Boltzmann codes were tested, like the one shown

in Figure 11.1. Using 2,048 processors it took two days to complete a single job. A 1, 0243

grid takes about 44 hours for Q27 on 512 processors, while the corresponding run for Q15

takes about 28 hours. The cost of the largest supercomputer parallel arrays annually adds

to a significant fraction of a billion dollars for new government-owned systems in the United

States (e.g. 19,000 processor Franklin at DOE/NERSC cost about $50 million and occupies

the space of a gymnasium ). Remarkably, exploiting quantum mechanical complexity new

quantum device technology available today can be used to efficiently compute the collision

operator of the Q15 lattice Boltzmann code, the basic engine of the code.

218



Figure 11.5: Shown here is a quantum information processor circuit to embody a qubit (top), a basic
device for storing quantum information, designed by Terry Orlando of MIT and build at MIT Lincoln Lab-
oratory at Hanscom AFB in 2000 [Mooij et al., 1999, Orlando et al., 1999]. The circuit must be placed in
a dilution refrigerator. Air Force Office of Scientific Research (AFOSR) supported novel quantum comput-
ing technology based on superconductive electronics under the Quantum Computation for Physical Mod-
eling (QCPM) theme, and this research has recently found follow-on use. A superconducting wire loop
with multiple Josephson junctions forms a qubit and such qubits are coupled together to make quantum
logic gates. AFOSR funded this new solid-state technology, fabricated at the superconductive electronics
foundry at MIT Lincoln laboratory. This helped establish the basic fabrication techniques to build scal-
able quantum computers and mapped the quantum control methodology, proven with NMR spectroscopy
[Pravia et al., 2002, Chen et al., 2006b], onto the field of superconductive electronics for quantum informa-
tion processing, mapping pulse protocols to allow qubit-qubit logical operations, constituting a basic 2-qubit
quantum processor. Going from a 2-qubit processor to a 16-qubit processor necessarily entails a significant
applied research effort recently announced by D-Wave, a Canadian start-up company. D-Wave’s 16-qubit
processor, fabricated by NASA, is shown (bottom).
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Therefore, a relatively low cost and small type-II quantum computer with a few thousand

16-qubit quantum processor chips, perhaps cooled with dilution refrigeration, could handle

the same supercomputing job. It could cost a few million dollars to assemble, a couple orders

of magnitude less expensive than classical digital electronics based supercomputers, such as

BABBAGE, and physically smaller by many orders of magnitude as well. Furthermore,

future quantum processor arrays with more qubits per node, in the very near future, should

outstrip any traditional parallel supercomputer purchased under the department of defense

high performance computing modernization program.

The kinetic lattice gas model has proven to be a state-of-the-art tool for understanding

the morphological evolution of turbulence.

11.2 Brief review of fluid dynamics

The long wavelength hydrodynamic behavior of a many-body system of particles can be

modeled at the macroscopic scale by an effective field theory, a set of coupled partial dif-

ferential equations. The smooth fields of mass density, ρ, and flow velocity, ~v, obey a mass

continuity equation and a viscous Navier-Stokes fluid equation of motion. There is also a

parabolic heat equation for the energy density, yet for simplicity, I will not consider the heat

equation here, and instead I shall consider an athermal fluid.

Because the mass increase within a region R is entirely accounted for by the flux of

particles into R through its boundary ∂R, the ρ and ~v fields obey the continuity equation

∂tρ+ ∂i(ρvi) = 0. (11.1)

This is the first equation of motion. Here the shorthand notation for partial derivatives is

used: ∂t ≡ ∂/∂t and ∂i ≡ ∂/∂xi. The field equation embodying Newton’s second law, for a

region R expressing the change in the momentum density in terms of the stress applied at

the boundary ∂R, is Euler’s equation

∂t(ρvi) + ∂jΠij = 0. (11.2)

Now following Landau and Lifshitz [Landau and Lifshitz, 1987], the momentum flux density

tensor is written as2

Πij = Pδij + ρvivj − η(∂ivj + ∂jvi −
2

D
∂kvkδij)− ζδij∂kvk. (11.3)

The viscous stress tensor is σ′ij = η(∂ivj + ∂jvi − 2
D
∂kvkδij) + ζδij∂kvk, where η and ζ are

the transport coefficients for the shear viscosity and bulk viscosity, respectively, and D is

2 For non-divergent flow (∂jvj = 0) in the incompressible fluid limit, (11.3) is Πij = Pδij + ρvivj +
η(∂ivj + ∂jvi). Furthermore, the term η∂ivj in the Euler equation vanishes in this limit.
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the number of spatial dimensions of the system. The first two terms in (11.3) represent the

ideal part of the momentum flux density tensor, which is the sum of the pressure term, P ,

plus the convective term, ρ~v~v, which is nonlinear in the velocity.

In general the pressure, P , is a function of the mass density field, ρ = ρ(~x, t), and for

a thermal fluid it also is a function of the temperature field, T = T (~x, t). The pressure

tensor is diagonal because the fluid is isotropic. P = P (ρ, T ) is termed the equation of

state. For a neutral fluid comprosed of independently moving particles, the pressure depends

linearly on the mass density, P = c2
sρ, where cs is the speed of sound in the fluid. In a

thermohydrodynamic system, the sound speed is temperature dependent, cs =
√

kBT
m

(where

kB is the Boltzmann constant and m is the mass of a single particle). In this case the pressure

obeys the well known ideal gas law, P = nkBT , where n = ρ
m

is the particle number density.

For an athermal hydrodynamic system (one where the system is at uniform homogeneous

temperture, and where heat transport is neglected), cs is a constant.

Substituting (11.3) into Euler’s equation (11.2), gives us the second equation of motion

for a viscous isotropic fluid

ρ (∂tvi + vj∂jvi) = −∂iP + ρν∂2vi +
(
ζ +

η

D

)
∂i∂jvj. (11.4)

This is the called the Navier-Stokes equation. In (11.4), η is the shear viscosity and ζ is the

bulk viscosity. The transport coefficient for momentum diffusion, ν ≡ η
ρ
, is the kinematic

viscosity. It gives a measure for the rate of decay of local shears in the fluid and determines

how fast a perturbed fluid will relax from an anisotropic flow profile at the macroscopic scale

to an isotropic steady state profile. Both the shear viscosity and the bulk viscosity cause

damping of compressional waves in the mass density field. The shear viscosity alone causes

damping of shear waves in the momentum density field. In general, for a nonisotropic fluid,

there may also exist a cubic viscosity. However, in our case we shall deal with isotropic fluids

where the shear and cubic viscosities coincide.

11.2.1 Dimensionless numbers

Let L and T denote the characteristic length and time scales, respectively, of a hydrodynamic

scale fluctuation. That is, L and T are quantities characterizing the fluid’s configuration at

the macroscopic scale. Examples of the characteristic length scale for hydrodynamic flow

are the wavelength of a compressional wave in the mass density field, the wavelength of a

shear wave in the momentum density field, or the diameter of a fluid vortex. The mean free

path is the average distance a particle travels between collisions. Let λ and τ denote the

mean-free length and time, respectively, characterizing the microscopic particle collisions.

Relevant hydrodynamic quantities are the
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• characteristic flow speed, u ∼ L
T

;

• sound speed, cs ∼ λ
τ
;

• shear viscosity, η (and the kinematic viscosity, ν ≡ η
ρ
∼ λ2

τ
); and,

• bulk viscosity, ζ.

The relevant dimensionless quantities are the

• Knudsen number, Kn, defined as the ratio of the mean-free path to the characteristic

length scale (Kn ≡ λ
L

);

• Strouhal number, Sh, defined as the ratio of the mean-free time to the characteristic

time scale (Sh ≡ τ
T

);

• Mach number, M, defined as the ratio of the characteristic velocity to the sound speed

(M ≡ u
cs

);

• Reynolds number, Re, defined as the ratio of the product of the characteristic velocity

times characteristic length to the kinematic viscosity (Re ≡ uL
ν
∼ M

Kn); and,

• fractional mass density variation, δρ
ρ

.

11.3 Microscopic lattice model

In the lattice model, dynamics is projected into a discrete kinetic phase space (a product

space over the position and momentum degrees of freedom). The logical “1” state (the excited

state) of a qubit |q〉 associated with the spacetime point (~x, t) encodes the probability fq of

the existence of a particle at that point moving with velocity ~cq = ∆~xq
∆t

, where ∆~xq are lattice

vectors, for q = 1, 2, . . . , Q. Similarly, the logical “0” state (the ground state) of a qubit |q〉
associated with the spacetime point (~x, t) encodes the probability 1− fq of the existence of

a hole at that point.

A fundamental property of the lattice model is that particle motions in momentum space

and position space occur independently [Yepez, 2005]. Particle momentum and position

space motions are generated by the combination of an engineered qubit-qubit interaction

Hamiltonian H ′ and a free Hamiltonian −ih̄
∑

q ~cq · ∇, respectively.
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11.3.1 Interaction Hamiltonian

All positive indices of ladder operators are taken modulo Q, and negative indices are con-

verted to positive indices −q = q+ Q
2

, for even Q. All sums are taken in increments of unity.

The interaction Hamiltonian can be written as follows:

H ′ = A

Q
2∑

q= 1
2

a†2qa
†
−2qa2q+1a−2q−1 +B

Q
2∑

q= 1
2

a†2qa2q+1 + h.c. (11.5a)

=
A

2

Q∑
q=1

a†2qa
†
−2qa2q+1a−2q−1 +

B

2

Q∑
q=1

a†2q−1a2q + h.c., (11.5b)

where A and B are energy constants. The factor of 1
2

is inserted to avoid double counting.

 
 
 
 

 

2  6  Dimensions 

Two-Dimensional Lattice Network 

Single Lattice Site 

ψ0  |000000>
ψ1  |000001>
ψ2  |000010>

ψ62 |111110>
ψ63 |000010>

Figure 11.6: An triangular lattice of quantum nodes (depicted as circles) arranged in a 2-dimensions. The
large circle on the right is an expanded view of a single node at one site of the lattice. It depicts the on-site
submanifold, H. Each quantum node has Q = 6 qubits so the on-site ket | ψ〉 resides in a 64-dimensional
Hilbert space. Each node is coupled to its 6 nearest neighbors by a mechanism allowing for the exchange (or
teleportation) of qubit states.

The following is an explicit example of the Hamiltonian of a quantum lattice gas in 2+1

dimensions that generates all the collisions of a system of particles moving on a triangular

lattice.

H ′ = A
(
a†1a2a4

†a5 + a†3a4a
†
6a1 + a†5a6a

†
2a3 + h.c.

)
+ B

(
a†1a2 + a†3a4 + a†5a6 + h.c.

)
(11.6)

The triangular lattice is shown in Fig. 11.6. A comparison between classical lattice gas and

quantum lattice gas simulations are shown in Fig. 11.7.
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Figure 11.7: Theory versus simulation comparison of the velocity dependence of the single-particle distri-
bution function in the non-Galilean parameterization: fa = 〈ψ|n̂a|ψ〉 = d+ dDêa ·~v+ gdD(D/2 + 1)Q̂a : ~v~v.
FHP simulation data is overplotted on this predicted mesoscopic distribution function. Plots (a) and (b)
are for background densities of d = .20 and d = 0.25, respectively. A velocity shift is imparted along the
x-axis; that is, along the f1 direction indicated in the figure. Data were collected from a 128× 128 classical
FHP simulation (crosses) and was coarse-grained averaged over 1600 time steps from time step t = 400
to t = 2000. Data were also collected from a smaller 32 × 32 quantum FHP simulation (circles) and were
measured at a single time step at t = 200.
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11.3.2 Local quantum dynamics

The initial local quantum state is a tensor product over the qubits ψ(~x, t) =
⊗Q

q=1 |q(~x, t)〉.

ψ′(~x, t) = e
−iH′∆t

h̄ ψ(~x, t) (11.7a)

|q(~x, t+ ∆t)〉 = e−ih̄~cq ·∇|q′(~x−∆~xq, t)〉. (11.7b)

All the particle-particle interactions, 2-body up to and including (Q− 2)-body interactions,

generated by H ′ are mapped to a local collision function H ′ 7→ Ωq that depends on the fq’s

at the lattice site [Yepez, 2001a].

In the type-II quantum computing case, quantum entanglement is localized among qubits

associated with the same (~x, t) [Yepez, 2006], so we have:

f ′q(~x, t) = fq(~x, t) + Ωq(f1, f2, . . . fQ) (11.8a)

fq(~x, t) = f ′q(~x−∆~xq, t−∆t), (11.8b)

where fq and f ′q are called the incoming and outgoing probabilities, respectively. In the

classical limit, there exists a fundamental entropy function

H (f1, . . . , fQ) =

Q∑
q=1

(fq ln(γqfq) + (1− fq) ln(1− fq)) , (11.9)

where the γq are weights determined by the microscopic collision operator.

11.4 The approach to local equilibrium

Our lattice-based quantum system is said to be in local equilibrium when the system ket

|Ψeq(t)〉 is an eigenvector, with unity eigenvalue, of the collision operator Ĉ

Ĉ|Ψeq〉 ≡ |Ψeq〉. (11.10)

The value of the probability of occupancy (7.4) is then determined from |Ψeq〉 as follows

f eq

a (~x, t) = 〈Ψeq(t)|n̂α|Ψeq(t)〉. (11.11)

Notice by the definition (11.10) for local equilibrium, the collision term (7.13) in the lattice

Boltzmann equation vanishes

Ωmeso

a (|Ψeq〉) = 0. (11.12)

At steady-state equilibrium, the occupancy probabilities are unchanging over time. That

is, |Ψeq〉 is the ground state of the system. At local equilibrium, the distribution along the
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momentum directions of the particle occupancies are uniform, so the local configurations are

perfectly symmetric, and Ωmeso
a cannot cause any further changes.

Let us predict the non-equilibrium behavior of the quantum lattice-gas system when it

is near and approaching local equilibrium. Since continuous macroscopic fields for the mass

and momentum densities are defined for the quantum lattice-gas system in the continuum

limit, by (7.5) and (7.7), we can characterize the system using the dimensionless quantities

traditionally used to characterize fluid systems. Given the law of similarity3, if the macro-

scopic scale behavior of the quantum lattice gas is fluid-like, then it may be compared to a

natural fluid characterized by the same dimensionless quantities.

Several dimensionless quantities (the Knudsen, Strouhal, Mach, and Reynolds numbers,

and fractional mass density variation defined above in Section 11.2.1) allow us to quantify

how close the system is to local equilibrium. At local equilibrium all the dimensionless

numbers vanish (only the Mach number may be nonzero at equilibrium if there is a global

uniform background flow, however this can be avoided by an appropriate choice of the

Galilean frame-of-reference). In nonequilibrium situations far from steady-state, Kn, Sh, M,

and δρ
ρ

are order unity.

Hydrodynamic behavior is attained in the long wavelength limit where Kn and Sh are

close to zero. Viscous hydrodynamic behavior is attained in the long wavelength limit when

Sh ∼ Kn2 and δρ
ρ
∼ Kn. This is called diffusive ordering which is characteristic of random

walk processes.4. Incompressible viscous hydrodynamics occurs when we also have M ∼ Kn

so that Re ∼ O(1) and δρ
ρ
∼ Kn2. A procedure for linearizing the mesoscopic quantum

Boltzmann equation and comparing the resulting dispersion relations to the solution of the

effective field theory equations of motions (11.1) and (11.4) is given immediately below

in Section 11.4.1. The procedure involves a series of expansions in δρ
ρ

. A Mach number

expansion of the probability of occupancy is used (see Appendix I). Then, a Chapman-

Enskog procedure, given in Section 11.5.2, is used, which is necessary for the derivation of

the macroscopic equations of motion and which involves perturbative expansions in Kn and

Sh, given in Section 11.5.3.

At t = ∞, an infinite lattice-gas system completely relaxes to steady-state equilibrium,

where the mass density field is uniformly constant. The steady-state equilibrium occupation

probability, denoted by d, is the same everywhere, fa(~x,∞) = d, for all a and all ~x. For

a lattice of finite size, the number of phase space points is also finite, although extremely

large. The number of phase space points equals 2BV , where B is the number of local states

3See page 56 of Fluid Mechanics by Laudau and Lifshitz [Landau and Lifshitz, 1987].
4A tagged particle in a lattice gas undergoes a random walk, and the observed diffusive behavior of tagged

particles in lattice-gas simulations agrees well with analytical results [Binder, 1988, Brito and Ernst, 1992]
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per site and V is the total number of sites. Hence the Poincaré recurrence time, which is

the number of phase space points of a closed loop trajectory, is also finite and the state of

the finite-lattice gas system is not defined at t = ∞. Hence, we may instead say that the

lattice-system has completely relaxed to a steady state on a time scale much much larger

than the characteristic time ( τ

Sh
) for the largest hydrodynamic scale fluctuation.

11.4.1 Linearized quantum Boltzmann equation

Our first step towards analyzing the nonsteady-state behavior of the system will be to expand

f noneq
a about d. We write the occupancy probability as a constant part (d ≡ ρ

mB
) and a

fluctuating part δfa(~x, t)� d

fa(~x, t) = d+ δfa(~x, t). (11.13)

We can also expand the collision term about steady-state equilibrium

Ωmeso

a (|Ψ〉) = Ωmeso

a (|Ψeq〉) + δΩmeso

a . (11.14)

Now the first term on the R.H.S. vanishes according to (11.12) and the second term on

the R.H.S. arises because of fluctuations in the probability of occupancies of all the local

states in the entire system. This is because the fluctuations of the collision term depend on

fluctuations of the system ket |Ψ〉, which may have global superposition of the qubit states.

Hence, we can formally write the collision term as a function of the occupancy probabilites

of all Q qubits in the system

Ωmeso

a (|Ψ〉) = Ωmeso

a (f1, f2, . . . , fQ). (11.15)

This functional form of the collision term is quite different than in the classical case where Ĉ

is an orthogonal matrix. In the classical case, the collision term Ωmeso
a is only a function of the

local occupation probabilities at a single site in the system. Because of global superposition

and entanglement, Ωmeso
a , expressed in (7.36), for the quantum case, is a complicated function

of the occupation probabilities.

At the mesoscopic scale, we regard each of the occupancy probabilities, fα, as a contin-

uous variable. The basic approach is that Ωa is a continuous and differentiable function of

the occupation variables. With this understanding, using the chain rule, we can write the

collision term (11.14) as follows

Ωmeso

a (|Ψ〉) = δΩmeso

a =
B∑
b=1

∂Ωmeso
a

∂fb

∣∣∣∣
f∗=d

δfb +O(δf 2). (11.16)

The asterisk symbol used as a subscripted index on the occupation probability, as f∗, denotes

the dependence on all the possible values of the index. Using (11.13) and (11.16), we can
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write the quantum Boltzmann equation (7.12) in linearized form

δfa(~x+ `sêa, t+ τ) = δfa(~x, t) + Jabδfb(~r, t), (11.17)

where the Jacobian of the collision term is defined as

Jab ≡
∂Ωmeso

a

∂fb

∣∣∣∣
f∗=d

. (11.18)

Let f̃a(~k, ω) denote the discrete Fourier transform of the occupation probability fa(~x, t) (see

Appendix H.1). Then taking the discrete Fourier transform of the linearized Boltzmann

equation (11.17) we obtain the following characteristic equation

ei(`sêa·
~k+ωτ)δf̃a(~k, ω) = δf̃a(~k, ω) + Jabδf̃b(~k, ω), (11.19)

which we rewrite as [(
ei(`sêa·

~k+ωτ) − 1
)
δab − Jab

]
δf̃b(~k, ω) = 0. (11.20)

Therefore, we have the following matrix equation

M δf̃ = 0, (11.21)

where δ̃f = (δ̃f0, δ̃f1, . . . , δ̃fB−1) and the components of the square matrix M are

Mab ≡
(
ei(`sêa·

~k+ωτ) − 1
)
δab − Jab. (11.22)

Solving (11.21) gives us the dispersion relations for the system obeying what is called gener-

alized hydrodynamics. The generalized hydrodynamics for classical lattice-gas systems have

been previously worked out [Das et al., 1993, Grosfils et al., 1993]. The development given

here for the quantum lattice-gas system follows Das and Ernst’s treatment of a classical

lattice-gas system [Das et al., 1993]. However, in the present treatment, I do not use differ-

ential point form notation for mesoscopic fields (since technically this is unwarranted and

allowed only in the continuum limit). Instead, to be absolutely rigorous, I have applied the

discrete Fourier transform to the mesoscopic field to obtain (11.21) and (11.22). So, up to

this point in the analytical treatment, I have not invoked the continuum limit.

11.4.2 Dispersion relations

To solve (11.21) for the dispersion relation ω = ω(~k), we must find the B roots of the secular

determinant of the matrix M [Das et al., 1993, Grosfils et al., 1993]. In general, there are
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two types of long wavelength excitations (~k → 0), and they are called hard kinetic modes

and soft hydrodynamic modes.

In the long-wavelength limit, the kinetic modes are nonvanishing at first order. The

kinetic modes decay rapidly in the lattice-gas system because of a positive imaginary part

in the eigenvalue spectrum of ω, (Im(ω) > 0), at k = 0. In contrast, the soft hydrodynamic

modes decay over a long-time scale. They are associated with eigenvalues that vanish in

the long-wavelength limit, (Im(ω) = 0), at k = 0. These vanishing eigenvalues in turn are

associated with the conserved quantities in the lattice-gas system.

In the long-wavelength limit, k ∼ 0, the dispersion relation for the 1D3Px lattice-gas

corresponds to a damped sound mode

ω(~k) = ±csk + iΓ(ρ)k2. (11.23)

The real part of ω is linear in the wave number. Since Re(ω) is linear in the wave num-

ber, the sound mode excitation propagates at the sound velocity corresponding to the slope,

which is denoted here by cs. Furthermore, the sound mode is damped in the viscous hydro-

dynamic regime characterized by diffusive ordering where the dispersion relation is parabolic

in wavenumber, Im(ω) ∼ O(k2). In general, in a single-speed lattice gas, the decay of the hy-

drodynamic modes depends on shear viscosity and sound damping (there is no mode related

to bulk viscosity).

11.4.3 Criterion for deviations from local equilibria

At local equilibrium, we assume that the occupancies of the local states at each site in

the system are isotropic. This is called the subsonic limit. A stronger definition of the

subsonic limit is when the fractional variation of the occupancy probabilities, |δfa|/f eq
a , at

all lattice sites, are assumed to be uniformly distributed along all the momentum directions,

1 ≤ a ≤ B. Hence, the criterion for a fractional mass density variation on the order of the

Knudsen number, can be expressed as5

|δfa|
f eq
a
∼ λ

BL
. (11.24)

The maximum size of the simulation volume is limited by the amount of physical compu-

tational resources available. In a microscopic quantum lattice-gas simulation, the occupation

5 Suppose, as a concrete example, that an initial nonequilibrium state of the system is chosen with a
characteristic feature size on the order of say one hundred lattice grid units, L ∼ 100`. Next, suppose the
mean-free path length is on the order of the size of a single primitive lattice cell, λ ∼ `. If the fractional mass
density variation, which must be on the order of the Knudsen number is δρ

ρ ∼
λ
L ∼ 0.01, then the lattice gas

would accurately model the dynamical fluid behavior in the regime of incompressible viscous hydrodynamics.
Continuing the example, if B = 6 then |δfa|/f eq

a ∼ 0.002.
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probabilities, fa, must be determined by either partitioning the maximum size simulation

into ensemble realizations or coarse-grain blocks. Let us, for the moment, revisit the subject

of averaging over the microscopic quantities to obtain the mesoscopic values. There are more

details to discuss.

In ensemble averaging, many realizations of the quantum lattice-gas system, which are

identical at the macroscopic scale, are computed independently. Measurements are separately

made from each realization, and all the resulting measurements are then averaged. For

example, the state of the αth qubit is measured for each copy of the system, which results in

a series of 1’s and 0’s, and the average value is an estimate of fα. In coarse-grain averaging,

one measures the occupancy of all the local states, occupied by a particle with momentum

mcêa, at all the sites within a spacetime block of a large microscopic system. Again, this

results in a series of 1’s and 0’s, which are then averaged to estimate fa( ~X, T ), where ~X and

T denote the coordinates of the centroid of a spacetime block within the superlattice.

In either case, whether ensemble or coarse-grain averaging is employed, all the available

computational resources are expended. However, the numerical results can be quite dif-

ferent, for two reasons: because lattice-gas systems obey diffusive ordering and because of

renormalization effects arising from particle-particle correlations.

Let us first consider the consequences of diffusive ordering. If one doubles the system

size, L→ 2L, one must quadruple the simulation time, T → 4T , to evolve to a macroscopic

state similar to the one obtained by running a simulation of size L for time T . Consequently,

if the fixed amount of computational resource is partitioned to do ensemble averaging, then

many “small” systems are simulated which “rapidly” relax towards steady-state equilibrium.

If the fixed amount of computation resource is partitioned to do coarse-grain averaging, then

one “large” system is simulated which “slowly” relaxes towards steady state. Therefore,

estimates can be made more quickly using ensemble averaging, but only in those situations

were particle-particle correlations can be neglected.

This brings us to the issue of renormalization. In a large system simulation, there is

sufficient time for many particle collision events to occur allowing the particle occupancies

to become correlated. These particle-particle correlations, in certain situations, may have

an appreciable effect on the value of the transport coefficients [Boghosian, 1995]. One enu-

merates all connected diagrams corresponding to the pathways by which outgoing particles,

initially correlated by a collision, move through the system, interact with other particles,

and eventually return as incoming particles to a final collision event. Each connected di-

agram corresponds to a term in an asymptotic series expansion of the collision operator,

which is summed to give a renormalized collision operator. If the ultimate aim of is to es-

timate a transport coefficient, which strongly depends on particle-particle correlations, then
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coarse-graining averaging must be used [Bussemaker et al., 1995, Boghosian, 1995].

In either case, it is necessary to satisfy the criterion that (δfa/f
eq
a ) ∼ O(Kn) or smaller

for all a. If this criterion is satisfied, the linearized quantum Boltzmann equation (11.17) can

accurately describe Navier-Stokes hydrodynamics. This is a stronger requirement then δρ
ρ
∼

O(Kn). The requirement that (δfa/f
eq
a ) ∼ O(Kn) for viscous hydrodynamics (or the more

stringent requirement that (δfa/f
eq
a ) ∼ O(Kn2) for incompressible viscous hydrodynamics)

implies a lower bound for the number of states used in an ensemble average or for the

minimum size of the spacetime block used in a coarse-grain average. All these considerations,

usually applied to classical lattice-gas simulation, are also relevant to quantum lattice-gas

simulations.

11.5 Macroscopic scale

11.5.1 Eigensystem of the linearized collision operator

In the long wavelength (~k → 0) limit, the characteristic equation (11.20) reduces to the

simple form

[(eωτ − 1)1− J] δf̃ = 0. (11.25)

Expanding to first order in Sh (second order in ε) this becomes the eigenvalue equation

J δf̃ = ωτδf̃ +O(ε3). (11.26)

Therefore, in the long-wavelength and low-frequency limits, the eigenvalues of J determine

possible values for ω and in turn the hydrodynamic and kinetic behavior of the lattice-gas

system. This eigenvalue problem is analytically solvable, without the need for any numerical

treatment as is needed for finding the ~k-dependent roots of the secular determinant of the

matrix M in (11.22).

Consider the following eigenvalue equation

Jabξ
α
b = καξ

α
a , (11.27)

with eigenvectors ξα and eigenvalues κα, where α = 1, . . . , B.

The problem is simplified if J is circulant [Wolfram, 1986]. The components of J can be

specified by the difference of the indices, Jab = Ja−b. Hence, we make the ansatz that the

eigenvectors ξα have the following form

ξαa = e2πiaα/B. (11.28)
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Then inserting (11.28) into (11.27) and taking m = a− b, gives a solution for the eigenvalues

κα =
B∑

m=1

Jme
2πimα/B. (11.29)

Let us see why there will be as many zero eigenvalues as there are conserved quanti-

ties in the lattice gas dynamics. For convenience, we will use ket notation where |α〉 ≡
(ξα1 , ξ

α
2 , . . . , ξ

α
B) and |δf̃〉 ≡ (δf̃1, δf̃2, . . . , δf̃B). We can write J as follows

J =
B∑
α=1

κα|α〉〈α|, (11.30)

so (11.26) becomes
B∑
α=1

κα|α〉〈α|δf̃〉 = ωτ |δf̃〉. (11.31)

All the scalars 〈α|δf̃ (1)〉 for which κα = 0 have no effect on the dynamics since J |δf̃〉 = 0

and so correspond to the conserved quantities of the system. The set of eigenvectors with

degenerate eigenvalue of zero span what is called the hydrodynamic space, which I denote

by H. The remaining set of eigenvectors (with nonzero eigenvalues) span what is called

the kinetic space, which I denote as K. Therefore J can be explicitly written as a linear

combination over eigenvectors in the kinetic space

J =
∑
α∈K

κα|α〉〈α|. (11.32)

In an athermal system, there are 1 +D conserved quantities, the mass plus the momentum

for each dimension of the space. So H is a D + 1 dimensional space and K is a B −D − 1

dimensional space. Let us denote the kinetic eigenkets as follows, |D + 2〉, |D + 3〉, . . . , |B〉,
which span the kinetic subspace K. Then, the generalized inverse of J is defined over K as

follows

J−1 = (|D + 2〉 |D + 3〉 · · · |B〉)︸ ︷︷ ︸
B×K matrix


1

κD+2
0 · · · 0

0 1
κD+3

· · · 0
...

. . .

0 · · · 1
κB


︸ ︷︷ ︸

K×K matrix


〈D + 2|
〈D + 3|

...
〈B|


︸ ︷︷ ︸
K×B matrix

. (11.33)

From (11.33), it follows by construction that

J−1|α〉 =
1

κα
|α〉, (11.34)
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for |α〉 ∈ K.

Within K there exists the viscous subspace, V ⊂ K characterized by the degenerate eigen-

value κη. Because the collisional process is invariant under the finite point-group symmetries

of the Bravais lattice, there is a lack of preference in direction for momentum diffusion in

the system. That is, the system does not make diffusion any easier in one direction rather

than another. Hence, there is a subspace of K characterized a degenerate eigenvalue which

contributes positively to the shear and bulk viscosities.

A ket |eiej〉 may be formed from the dyadic product eaieaj. The ket | eiej〉 resides in V .

Hence, it is an eigenket of the generalized inverse of the Jacobian of the collision operator,

J−1, and has eigenvalue 1
κη

. That is, for a hydrodynamic lattice-gas fluid

J−1|eiej〉 =
1

κη
|eiej〉. (11.35)

The identity (11.35) will be needed in the following section.

11.5.2 Chapman-Enskog expansion

The characteristic equation (11.20) of the linearized quantum Boltzmann equation[(
e`sêa·

~k+ωτ − 1
)
δab − Jab

]
δf̃b(~k, ω) = 0

is an approximate description of the mesoscopic particle dynamics since the collision term on

the R.H.S. has been expanded to first order about the equilibrium value of the occupation

probability. In this approximation, the collision term, Jab, acts as a linear operator on the

local configuration δf . I would now like to expand the L.H.S. of this characteristic equation.

To do so, let us use ε as a small expansion parameter, ε� 1. In the viscous hydrodynamic

regime, this expansion parameter is the Knudsen number, Kn ' êa · ~k = `s|k| ∼ ε. And,

because of diffusive ordering, the Strouhal number is Sh ' ωτ ∼ ε2. We expect (11.20) is an

appropriate description of the mesoscopic dynamics so long as the nonequilibrium occupation

probabilities are close enough to their equilibrium values so that the action of the linearized

collision term, Jab, is sufficient to cause any such nonequilibrium configuration to relax back

to an equilibrium configuration.

Begin by expanding (11.20) to first order in ε

(i`sêa · ~kδab − Jab)δf̃b ' 0. (11.36)

The essential ansatz is that the deviations, δf̃a, of the occupation probability can be expanded

in powers of ε

δf̃a = δf̃ (0)
a + δf̃ (1)

a +O(ε2), (11.37)
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where δf̃
(0)
a ∼ ε and δf̃

(1)
a ∼ ε2. The superscript on δf̃ (0) denotes that it is a deviation from

the steady-state equilibrium d due to bulk motion of the fluid. The superscript on δf̃ (1)

denotes that it is a deviation due to spatial gradients in the bulk profile. We require that the

largest Mach number at any point in the system must be small, M� 1, that δf̃ (0) ∼M ∼ ε.

We can insert (11.37) into the first order ε-expansion of the characteristic equation (11.36).

Jabδf̃
(0)
b = 0, and we equate the two O(ε2) terms

i`sêa · ~kδf̃ (0)
a = Jabδf̃

(1)
b . (11.38)

Since J has a well-defined generalized inverse, we can invert the Jacobian matrix according

to (11.33) to solve for the second order correction to the occupation probability

δf̃ (1) = i`sJ
−1
ab êb · ~kδf̃

(0)
b . (11.39)

Therefore, using the basic approach of the Chapman-Enskog expansion (11.37), we have the

result that

δf̃a = [δab + i`sJ
−1
ab êb · ~k]δf̃

(0)
b +O(ε3). (11.40)

In the continuum limit, we are justified in taking the inverse Fourier transform of (11.40),

which gives the fluctuating part of the non-equilibrium probability occupancy in differential

point form

δfa(~x, t) = [δab + `sJ
−1
ab êb · ∇]δf

(0)
b (~x, t) +O(ε3). (11.41)

Then using (11.13), the probability of occupancy in the continuum limit is

fa(~x, t) = [δab + `sJ
−1
ab êb · ∇]f

(0)
b (~x, t) +O(ε3). (11.42)

Assuming a Fermi-Dirac form for the occupation probability in accordance with Section 2.5,

we insert the Mach number expansion (I.20) from Appendix I into (11.42). After some

algebraic manipulation, the result is

fa = d[1 +
D

c
eaivi + g

D(D + 2)

2c2
Qaijvivj + τDJ−1

ab ebiebj∂ivj] +O(M3), (11.43)

where d is the background density, D is the number of spatial dimensions, c is the unit

propagation speed of particle on the lattice, vi is the macroscopic velocity, g is a Galilean

pre-factor, Qaij = eaieaj − δij/D is a traceless second-rank tensor, M is the Mach number.

Using the identity (11.35), that J−1
ab ebiebj = 1

κη
eaieaj, (11.43) becomes

fa = d[1 +
D

c
eaivi + g

D(D + 2)

2c2
Qaijvivj −

τD

κη
eaieaj∂ivj] +O(M3). (11.44)

The approximation (11.44) is a good one provided several conditions are met:
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1. the ratio of the superlattice cell size to the characteristic scale length of the small

hydrodynamics fluctuation is close to zero, `s
L
∼ 0 (satisfied in the continuum limit)

2. the angular distribution of particles along momentum directions is close to an isotropic

one

3. the flow is subsonic (M� 1)

4. spatial gradients are small (Kn ∼ 0 and δρ
ρ

is small).

11.5.3 Derivation of the continuum equations

The derivation of the continuum equations of motion at the macroscopic scale is carried out

in this section. The method of derivation is outlined by these following few steps:

1. Expand the quantum Boltzmann equation (7.12) to first order in time and second order

in space 6.

2. In the continuum limit, calculate the first and second moments of the quantum Boltz-

mann equation 7.

3. Insert the mesoscopic occupancy probability given by (11.44) into the moment equa-

tions obtained in Step 2.

After some algebraic manipulations, we obtain an approximation of the equations of motion

that serve as an effective field theory at the macroscopic scale. Because of diffusive ordering,

the result is that the macroscopic equations of motion are a set of coupled parabolic partial

differential equations. In the present derivation, I do not give a multi-scale analysis such

as the one carried out by Frisch et al. [Frisch et al., 1987] in their treatment of 2 and

3 dimensional lattice-gas hydrodynamics. This omission is justified because only a single

time-scale is needed for most lattice-gas systems since the transport coefficients are very

large. That is, there is little or no separation between the short time scale associated with

sound mode excitations and the longer time scale associated with viscous mode excitations

arising from momentum diffusion. Viscous damping in lattice-gas fluids is observed over

relatively short-time scales and therefore significantly affects, and is mixed in with, sound

wave propagation and convection. Nevertheless, at the end of this section, I will divide the

6 Only a first order time derivative is needed because of the long-time scales associated with viscous
damping. Time and spatial scales are related parabolically (T ∼ L2 or ε2 ∼ δx2 ∼ δt) in lattice-gas systems.

7This is done because for each additive conserved quantity of the dynamics, a macroscopic field is expressed
as a moment of the mesoscopic field of probability of occupancies. In the present case, ρ and ~v are expressed
in terms of the fa’s according (7.5) and (7.7).
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effective field theory into two sets of equations that apply at short and long time scales,

respectively.

We determine the macroscopic equations of motion using the quantum Boltzmann equa-

tion (7.27) of Section 7.5
dfa
dt

= lim
τ→0
`s→0

Ωmeso
a

τ
. (11.45)

In consideration of diffusive ordering, we expand the L.H.S. of this equation to first-order in

time and second-order in space

∂fa
∂t

+ cêa · ∇fa +
`2
s

2τ
(êa · ∇)2fa +O(Kn3, Sh2) = lim

τ→0
`s→0

Ωmeso
a

τ
. (11.46)

This is the quantum lattice-Boltzmann equation, where Ωmeso
a is defined by (7.13). Since∑

a Ωmeso
a = 0, the zeroth moment of (11.46) is

∂t

(
m
∑
a

fa

)
+ ∂i

(
mc
∑
a

eaifa

)
(11.47)

+
`2
s

2τ
∂i∂j

(∑
a

eaieajfa

)
+O(Kn3, Sh2) = 0.

Using the identities (J.11) from Appendix J, the corrected occupancy probability (11.44),

along with definitions for the mass density (7.5) and momentum density (7.7), this reduces

to a mass continuity equation in the long-wavelength, low-frequency, and subsonic limits

∂tρ+ ∂i(ρvi) +O(Kn3, Sh2,M3) = 0. (11.48)

Since
∑

a eaiΩ
meso
a = 0 too, the first moment of (11.46) is

∂t

(
mc
∑
a

eaifa

)
+ ∂j

(
mc2

∑
a

eaieajfa

)
(11.49)

+
`2
s

2τ
∂j∂k

(
mc
∑
a

eaieajeakfa

)
+O(Kn3, Sh2) = 0.

This reduces to Euler’s equation in the long-wavelength, low-frequency, and subsonic limits

∂t(ρvi) + ∂jΠij +O(Kn3, Sh2,M3) = 0, (11.50)

where the momentum flux density is

Πij = Pij + gρvivj −
ρ`2
s

(D + 2)τκη
∂jvi +

`2
s

2τ

ρ

(D + 2)
∂jvi (11.51)
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Diffusive Ordering

In the case of the diffusive ordering, characteristic of parabolic differential equations such

as the Burgers and Navier-Stokes equation, the relation between the lattice cell size and the

update time is ∆x2 ∼ ν∆t. Hence, using (11.61), the lattice grid size Nx and the number of

time steps Nt are related as follows:

Nt ∼
1

Re
N2
x . (11.67)

We combine the results for the two cases (11.65) and (11.66) as follows:

Nx ∼ Reβ (11.68)

where β = 1
2

for the Burgers equation and β = 3
4

for the Navier-Stokes equation. Inserting

(11.68) into (11.67), we have

Nt ∼ Re2β−1 (11.69)

Convective ordering

In the case of convective ordering, the relation between the lattice cell size and the update

time is a linear one ∆x ∼ u◦∆t. Hence, the lattice grid size and the number of time steps

are equal: Nt ∼ Nx, so in this case Nt ∼ Reβ.

11.6.2 Algorithmic complexity

Classical case

The total algorithmic complexity of computation of a unit of physical time of the classical

lattice-gas model is the product of the ensemble of size N , the number of interaction required

to complete the numerical simulation Nt, the lattice grid size Nx, and local resources of size

%

Ccl ≡ NNtN
D
x %, (11.70)

where D is the spatial dimension. The quantity % is the amount of resources needed to

encode and evaluate the function for the local microscopic collisions.

For a fixed viscosity fluid model, inserting (11.63), (11.68), and (11.69) into (11.70), the

classical algorithmic complexity becomes

Ccl =
(

Re
1
2

) (
Re2β−1

) (
ReβD

)
ρ = ρRe(D+2)β− 1

2 . (11.71)

Quantum mechanical case

There are three advantages of nano-scale quantum computing technology that signifi-

cantly reduce the algorithmic complexity of computational fluid dynamics.
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First, a crucial advantage comes from the quantum algorithmic approach itself where the

fluid viscosity can be made arbitrarily small without inducing numerical instabilities and

without any additional computational overhead. The kinematic viscosity is a freely tunable

parameter. We cannot reduce the kinematic viscosity to zero because that would, in turn,

require infinite lattice resolution to resolve the resulting infinitesimal features of the fluid.

In a quantum model, we can however reduce the viscosity to the minimum value compatible

with a given lattice grid size. Our basic approach is to set the viscosity as follows:

ν ≡ Lu◦
N2
x

. (11.72)

In this way, the number of time steps is always order unity Nt ∼ 1 regardless of the grid

size, so the algorithmic complexity becomes significantly lower than the fixed viscosity case.

Second, because of wave function collapse by Von Neumann projective measurement,

ensemble averaging is required just as in the classical case. However, by using the nano-scale

device technology to store and process information at extremely high densities approach-

ing atomic liquid-state or solid-state densities using extremely short logic gate switching

times, it becomes practical to physically build the mechanism for ensemble averaging di-

rectly into the “hardware” of the quantum computer. A proof-of-concept of this approach

has been achieved using state-of-the-art spatial nuclear magnetic resonance spectroscopy

[Pravia et al., 2002, Pravia et al., 2003]. Hence, the algorithmic complexity of ensemble av-

eraging may be counted as order unity overhead: N ∼ 1.

Third, because it is possible to exploit quantum entanglement within each node of the

type-II quantum computer, the amount of required local resources needed to compute the

nonlinear collision function goes as log2 %, which is exponentially less than the required

classical resources needed to compute the same function. Relating % to the minimum number

of bits per node needed to encode (??), our parsimonious quantum algorithm for the Burgers

equation is a demonstration of quantum efficiency: (9.1) can be modeled classically with 3

bits per node whereas we prove only 2 qubits per node is required quantum mechanically.

Furthermore, the evaluation of Ωcl(a, b) requires 8 floating-point operations, whereas the

evaluation of Ωqu(a, b) requires only 1 quantum logic gate operation. Therefore, with the

three advantages of tunable viscosity, inherent ensemble averaging, and localized quantum

entanglement, the quantum mechanical algorithmic complexity is

Cqu ≥ ND
x log2 %. (11.73)

With a quantum computer, since we are modeling the time evolution of a classical sys-

tem, the value of u(x, t) must be known everywhere at every time step whence the need

for continual measurement in any quantum mechanical computing device. Therefore, the
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memory load factor for the lattice is still ND
x in (11.73) and not log2N

D
x in the quantum

case [Yepez, 2001c].

Inserting (11.68) into (11.73), we obtain the result:

Cqu = ReDβ log2 %, (11.74)

which represents a significant quantum speedup. In comprehensive fluid models capturing

thermohydrodynamics, phase transitions, multi-species reaction processes, or magnetohydro-

dynamics, the quantity of qubits required per node is numbered in the hundreds. In these

cases, classical algorithmic approaches become intractable while the quantum mechanical

algorithmic approach is still practical in principle according to (11.74).
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Chapter 12

Conclusion

12.1 Quantum information age

In the middle of last century, scientists had a veritable bonanza. They broke through barriers

that seemed nearly insurmountable, including splitting the atom, supersonic flight, and

breaking enemy codes. On July 16, 1945, the Office of Scientific Research and Development

of the War Department reached a historical technology transition with a detonation of the

first atomic bomb at the Trinity site in the desert of central New Mexico. On October 14,

1947, US Air Force Captain Chuck Yeager broke the sound barrier flying faster than the

speed of sound in the bullet-like X-1, built by NASA and Bell Laboratories, producing the

first man-made aerodynamic shock wave. On June 1, 1944, just 5 days before the Allied

amphibious landing on the beaches of Normandy to emancipate Europe from the Nazis grip,

the Colossus I went into operation just in time to crack the German ‘Fish’ material that

confirmed Hilter swallowed the Allied deception plans to attack Pas-de-Calais instead.

Thus the atomic age, the age of supersonic rocket powered flight as a prelude to the space

age, and the digital information age were borne. Today we are at the dawn of a new age,

the quantum information age.

12.2 Technology transition

As we seek to make logical gates smaller and smaller, we are approaching the point in time

where to one must abandon a classical or semi-classical physics approach in favor of a purely

quantum mechanical one. For example, in 2002 Intel introduced a 90 nanometer lithography

process on silicon dioxide for static random access memory embedded in the Itanium 64-bit

word size processor, and in the year in 2003 Toshiba and Sony announced a 65 nanometer

process. By 2004 a 25 nanometer process was invented, an authentic nanotechnology. Here

the engineered bit, contained in a static random access memory cell, is so small that a single
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stray cosmic ray such as an alpha particle impacting a memory cell will not only ionize that

cell but also neighboring cells, potentially causing many bit-flip errors. That point in time

when we are forced to abandon classical engineering technologies is the moment we hit the

quantum barrier.

It is expensive to cross this barrier because new and untested quantum technologies must

emerge from the tried and true basic science of quantum mechanics and progress to the

status of a robust and easily reproducible engineering technology. Successfully crossing this

barrier will not only represent the greatest technical transition in the Department of Defense

but perhaps also the greatest technology in the history of the world to date. This classical

to quantum technical transition will even surpass the historic tech-transitions of thermody-

namics to the steam engine, and of optics, chemistry, and electronics, and condensed matter

physics to the photolithographically integrated solid-state circuit. The scale of the scien-

tific effort needed to surmount the quantum barrier can be easily underestimated, as is the

importance of breaking through this barrier.

This technical transition will likely also be the most expensive one to date. The scale of

the engineering effort of the quantum tech-transition needed to produce a state-of-the-art

type II quantum computer could be comparable to, and actually may supersede, the scale

of the effort that occurred during the Manhattan project during World War II1.

During the Manhattan project the well developed basic science of atomic and nuclear

physics, which by the way was substantially semi-classical physics, was transitioned to the

military as a technology for nuclear bomb making. Similarly, today the well developed basic

quantum mechanical science of atomic, nuclear, superconductive, optical, and condensed

matter physics, all entailing full-fledged many-body quantum physics, will be transitioned in

various incarnations as novel technologies for communication and then computation. This

is a tall order.

12.3 Massive parallelism

One way to understand these analogous technical transitions, and in a way which is consis-

tent with Moore’s second law, is by considering the following imaginary scenario. Imagine

we are displaced back in time from the present we again must contend with the seemingly

indomitable Nazis. Imagine also that as a nation we in the United States lacked the resolve

to tackle the monumental task of tech-transitioning nuclear physics to nuclear bomb mak-

ing. Instead, suppose we took the more practical and familiar road. Therefore, instead of

1I presented this viewpoint in more detail in an invited talk on type II quantum computing at the 2002
Air Force Office of Scientific Research Computational Mathematics Meeting held at University of Florida
Graduate Engineering and Research Center
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developing the 4.5 ton Little Boy atomic bomb that the United States dropped on Hiroshima

on the 6th of August 1945 which had the equivalent of 13,000 tons of trinitrotoluene (TNT)

or the 5.15 ton Fat Man plutonium-implosion bomb dropped on Nagasaki three days later

which had the equivalent of 20,000 tons of TNT, suppose in our fictitious scenario the United

States followed a conventional-bomb program instead of the fateful nuclear-bomb program.

Figure 12.1: Large B-17 formation: This is a large B-17 formation from the Fifteenth Air Force, 463rd
Bomb Group. The Flying Fortress in one of the most famous airplanes ever built. The B-17 prototype first
flew on July 28, 1935. Few B-17’s were in service on December 7, 1941, but production quickly accelerated.
Production ended in May 1945 and totalled 12,726. They served in every WW II combat zone, but are best
known for daylight strategic bombing of German industrial targets.

We could have deployed a large array of one thousand B-29 Super-fortresses, similar to

the large arrays of B-17 Flying Fortresses shown in Figure 12.1. With each B-29 loaded with

10 tons of explosives, the entire array deployed as a single formation could have delivered

a fierce 20,000 ton blast over Nagasaki–the equivalent blast of the Fat Man. At the cost

of approximately $600,000 per Super-fortress, this massively parallel array of B-29s would

have cost only 600 million dollars. In comparison to the nuclear approach, this is a bargain

because it is much less than the $2 billion dollar price tag actually spent for the three secret

cities built for atomic bomb development at Oak Ridge, Tennessee, Hanford, Washington,

and Los Alamos, New Mexico. Furthermore, B-17 Flying Fortress formations had already

been used in precise daylight bombing raids over Europe and hence formation flying was a

successfully proven technology. In fact, Boeing manufactured some 12,730 Flying Fortresses,

so producing massive numbers of bombers was also a proven technological feat.

At the time, one might have argued that the massively parallel approach of using large

bomber formations could not keep pace with the highly efficient output of the nuclear tech-

nology approach which eventually produced fusion bombs. After all, following a mere decade

of research we had achieved an efficiency of three-orders of magnitude where a 5 ton bomb
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construction of massively parallel supercomputers. Fortunately, we are not displaced back in

time to relive the atomic age of bomb making. Yet today we are living through another his-

toric age, the information age of computer making. The relevant question today is whether

we should use a conventional massively parallel approach or instead embark on the daring

alternative of using a quantum mechanical approach to achieve parallelism through quan-

tum entanglement. Today, most government high-performance supercomputing resources for

state-of-the-art computing are targeted toward conventional programs of massive classical

parallelism.

The National Energy Research Scientific Computing (NERSC) Center, funded by the

U.S. Department of Energy’s Office of Science, put its 10 trillion floating-point operations

per second (10 teraflops) IBM supercomputer with 6,656 processors into service March 3,

2003, see Figures 12.2 and 12.3. The NERSC Center, located at Lawrence Berkeley National

Laboratory, serves more than 2,000 researchers at national laboratories and universities

across the country in research problems such as combustion, climate modeling, fusion energy,

materials science, physics, chemistry and computational biology.

The NERSC Center is only one of many national massively parallel supercomputer cen-

ters. Similarly massive centers are also operated by the Department of Defense. Presently,

as the Department of Energy contracts with IBM to procure the largest and fastest su-

percomputer in the world, called ASCII Purple, the United States government is in effect

taking the more practical and familiar road of massively-parallel conventional technologies

to achieve a 100 teraflops milestone at a cost exceeding a quarter of a billion dollars. As

we continue to try to engineer ever faster supercomputers using strictly classical principles

and familiar associated technologies, the development and maintenance costs of “formation-

flying” will skyrocket out of control. This in effect is presently occuring in regards to IBM’s

massively-parallel conventional computing project. It is a tangible aspect of Moore’s second

law. Clearly, logistical considerations will eventually impose limits upon the approach of

using massively-parallel arrays of conventional processors. The day IBM expresses serious

concern that the massively-parallel conventional computer they are building is so complex

and has so many functions that fully testing it will take years is the day we know we have

reached the quantum barrier.

As of yet, I do not believe we have reached that point in time. According to the historical

data presented in Figure 1.2, the quantum barrier is nearly two decades in the future; it is

projected to occur sometime in the middle of the year 2021. However, we have reached the

point in time when it is now technologically practical embark on a basic research project

to break the quantum barrier. Building a state-of-the-art supercomputer, a 1,000 teraflops

type II quantum computer, could be accomplished with present day technologies, albeit at
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great expense.

12.4 Physical simulation

It is an ironic twist of fate that the inhumane technology of nuclear weapon manufacture

that gave birth to the atomic age can actually now push us ever deeper into the information

age. To achieve such high rates and densities of computation needed to accurately model

dynamical physical systems such as the behavior of nuclear detonations, we will be neces-

sarily forced to cross the quantum barrier—no classical technology could ever achive the

scale, resolution, nor degree of nonlinearity to faithfully reproduce nuclear explosions within

the computational space of classical binary logic. Nuclear physics technology, through its

own self-reflective simulation within the substrates of the highest-performing supercomput-

ers, is driving supercomputing towards the application of quantum computation for physical

modeling using nuclear spins and their interactions to encode information and perform fun-

damental logical operations to efficiently process that information2.

Figure 12.4: F-18 shock waves: Shock waves behind the canopy and along the wings and fuselage of an
F-18 fighter jet the instant it breaks the sound barrier.

If Moore’s law shown in Figure 1.2 persists, sometime around 2021 the first large-scale

type II quantum computer may come on line with a vast memory size of ten million ter-

abytes. Its three-dimensional numerical grid size might be on the order of one hundred

thousand lattice sites on a side. This would be sufficient to resolve a coupled set of Boltz-

mann equations modeling the kinetic processes capturing all the essential physics down to

the dissipation scale lengths related to the viscosities and resistivities of the highly turbulent

2 The real-time gaming industry and the animated motion pictures industry are both significant driv-
ing forces underlying continued computing advancement, but they are no economic match for the level of
government investment in high-performance supercomputing.
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fluid of the kind fluid flow shown in Figure 12.4, including all the relevant phase-change

dynamics, thermodynamics, and shock wave processes. Today, however, we can only dream

Figure 12.5: F-16 simulation: Nonlinear subsonic flow around an international F-16 fighter jet at a 7◦

angle of attack computed on a Silicon Graphics Origin 3200 parallel supercomputer using a computational
fluid algorithm based on the lattice Boltzmann equation.

about carrying out faithful physical simulations of this kind. Using the computational fluid

dynamics algorithm based on lattice Boltzmann equation, today we can model only subsonic

unsteady flow such as that about the international F-16 fighter shown in Figure 12.5. Yet,

it is possible that the type II quantum computing methodology will be extended to han-

dle large scale magnetohydrodynamic flows and other complex flows using immensely large

spatial simulations.

How would we make sure our quantum computer was operating correctly? How would

we diagnose the output of such a large field of data? The first and most important physical

principle that we would exploit in this task would be wave function collapse achieved by

quantum projective measurement. This reduces the data set logarithmically. Next, we could

perform consistency checks by accumulating totals for each of the conserved quantities in our

numerical simulation. We would check that mass, the components of moment of the flow field,

the total energy, the components of the magnetic field are globally conserved. These would

be rigorous tests of the validity of the numerical simulation because of the astronomical

unlikelihood of these conserved quantities being accidently and coincidentally conserved.

Furthermore, we would extract reduced sets of information, such as two-dimensional slices,

of the massive data set. We would also extract aggregated data at limited regions showing

hydrodynamic pressure or magnetic pressure contours at those locations and do consistency
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checks against analytical predictions, at least for the most simple test cases with special

initial conditions and symmetries. Furthermore, quantum controls of logical gate operations,

implementing conservative quantum gates would be subject to independent testing.

We will always be wedded to conventional classical computers to carry out these types

of data reduction activities and diagnostics. In that sense, we will always retain fleets of

conventional processing units to carry out some reasonable amount of “formation-flying.”

12.5 Final remarks

Quantum algorithms for simulating the physical dynamics of classical systems can serve as

an important pathway leading to quantum computers becoming a new dominant computing

standard. Although this application is specialized, it can nevertheless be a springboard to

more general purpose quantum computing applications, very much like the role the Earth

Simulator in Japan plays in the field of high-performance supercomputing [Sato, 2003]. It

is my expectation that neither Shor’s factoring algorithm nor code-breaking nor Grover’s

search algorithm will, in the end, be the pathway causing quantum computers to become a

new dominant computing standard, although these quantum algorithms have certainly been

the primary pathway as the nascent field of quantum information processing has initially

gained world-wide attention.

In our narrow treatment of the broad subject of quantum information processing and

quantum logic, we have discussed only conservative quantum logic. The reason for doing

so is that it is a natural choice as the basis for any standardized implementation of uni-

versal quantum logic because the laws of physics are themselves conservative. The use of

conservative quantum logic significantly reduces fixed-cost overhead and hence remarkably

simplifies the design and implementation details of quantum computer architectures. Con-

servative quantum logic is naturally suited to quantum computation of physical modeling

applications.

It appears that a new trend has emerged in quantum computing, particularly if we look at

the progress over the past seven years or so in the application of nuclear magnetic resonance

spectroscopy to quantum computing. Every year or so a new chemical is found that has an

additional spin-1
2

nucleus, either a proton or carbon-13 isotope, so that the computational

space doubles at this pace. Moore’s law can be upheld with quantum computing technologies

so long as we add one qubit (per node of a type II quantum computer) every two years. And

although we cannot improve upon the remarkable reduction rate of bit sizes halving every

two years, we likely can bypass Moore’s second law. In that regard, quantum computers can

one day offer an economically advantageous solution to our computing industry.
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Appendix A

Representations of conservative
quantum gates

A.1 Ĥ2 = Ĥ case

From (2.40) and (2.46), we can solve for Ĥ:

Ĥ =
1

ez − 1
(Υ− 1) =

1

ez − 1


0 0 0 0
0 A− 1 B 0
0 C D − 1 0
0 0 0 E − 1

 . (A.1)

Let us pick a new set of variables to simplify matters:

A =
A− 1

ez − 1
B =

B

ez − 1
(A.2)

C =
C

ez − 1
D =

D − 1

ez − 1
(A.3)

δ =
E − 1

ez − 1
(A.4)

Then inserting (A.2-A.4) into (A.1), the Hamiltonian has the simple matrix and operator

representation

Ĥ =


0 0 0 0
0 A B 0
0 C D 0
0 0 0 δ

 , (A.5)

and from this we deduce the operator form of the idempotent Hamiltonian

Ĥ = Bâ†2â1 + Câ†1â2 +Dn̂1(1− n̂2) +A(1− n̂1)n̂2 + δn̂1n̂2. (A.6)

Next inserting the new variables (A.2-A.4) into (2.40) and (2.43), the matrix and operator
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A physical and useful special case occurs if we choose B = −1
2
e−iξ:

Ĥ =


0 0 0 0
0 1

2
−1

2
e−iξ 0

0 −1
2
eiξ 1

2
0

0 0 0 δ

 (A.16)

= −1

2

(
â†1â2e

iξ + â†2â1e
−iξ − n̂1 − n̂2

)
+ (δ − 1)n̂1n̂2.

Since n̂1 = â†1â1 and n̂2 = â†2â2, we can rewrite the idempotent Hamiltonian as follows

Ĥ =
1

2
(â†1 − e−iξâ

†
2)(â1 − eiξâ2) + (δ − 1)n̂1n̂2. (A.17)

Also

Υ̂(z) =


1 0 0 0
0 1

2
(ez + 1) −1

2
(ez − 1)e−iξ 0

0 −1
2
(ez − 1)eiξ 1

2
(ez + 1) 0

0 0 0 (ez − 1)δ + 1

 (A.18)

= 1 + (ez − 1)

[
1

2

(
â†1 − e−iξâ

†
2

) (
â1 − eiξâ2

)
+ (δ − 1)n̂1n̂2

]
. (A.19)

Finally, for z = iπ we get the general quantum swap gate

Υ̂(iπ) =


1 0 0 0
0 0 e−iξ 0
0 eiξ 0 0
0 0 0 1− 2δ

 = 1−
(
â†1 − e−iξâ

†
2

) (
â1 − eiξâ2

)
− 2(δ − 1)n̂1n̂2. (A.20)

For ξ = 0, (A.20) is a symmetric quantum swap gate. To satisfy the unitary condition

for our quantum logic gate, ΥΥ† = 1, we must restrict the real-valued component δ by the

following constraint equation:

(1− 2δ)2 = 1, (A.21)

which implies that either δ = 0 or δ = 1. Then our quantum swap gate (A.20) can be

rewritten as:

Υ̂(iπ) =


1 0 0 0
0 0 e−iξ 0
0 eiξ 0 0
0 0 0 ±1

 , (A.22)

where the plus sign applies for bosonic particles (the δ = 0 case) and the minus sign for

fermionic particles (the δ = 1 case). For z = iπ
2

we get the
√

swap gate

Υ̂

(
iπ

2

)
=


1 0 0 0
0 1

2
+ i

2

(
1
2
− i

2

)
e−iξ 0

0
(

1
2
− i

2

)
eiξ 1

2
+ i

2
0

0 0 0 (i− 1)δ + 1

 (A.23)

= 1 + (i− 1)

[
1

2

(
â†1 − e−iξâ

†
2

) (
â1 − eiξâ2

)
+ (δ − 1)n̂1n̂2

]
. (A.24)
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A.2 Ĥ3 = Ĥ case

There exists an alternative Hamiltonian that is not idempotent but has a similar property

at third order, Ĥ3 = Ĥ, which can generate a conservative quantum logic gate of the form

(2.40).

In this second case, the series expansion of the quantum gate (2.45) reduces to the form

(2.47), which is

Υ̂(z) = 1 + (cosh z − 1)Ĥ2 + sinh zĤ.

Our approach will be to assume the Hamiltonian still has the form (A.5) and that its square

has a diagonal matrix form:

Ĥ2 =


0 0 0 0
0 A B 0
0 B† D 0
0 0 0 δ

 ·


0 0 0 0
0 A B 0
0 B† D 0
0 0 0 δ

 (A.25)

=


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 δ

 (A.26)

= n̂1(1− n̂2) + (1− n̂1)n̂2 + δn̂1n̂2 (A.27)

= n̂1 + n̂2 + (δ − 2)n̂1n̂2. (A.28)

where as in the previous case either δ = 0 or δ = 1. This imposes the following constraint

equations on the components:

A2 = 1− |B|2 (A.29)

A+D = 0 (A.30)

D2 = 1− |B|2, (A.31)

which admit the solutions:

A = ±
√

1− |B|2 (A.32)

D = ∓
√

1− |B|2. (A.33)

Then the Hamiltonian has the form

Ĥ =


0 0 0 0

0 ±
√

1− |B|2 B 0

0 B† ∓
√

1− |B|2 0
0 0 0 δ

 (A.34)

= Bâ†2â1 + B†â†1â2 ∓
√

1− |B|2n̂1(1− n̂2)±
√

1− |B|2(1− n̂1)n̂2 + δn̂1n̂2

= Bâ†2â1 + B†â†1â2 ∓
√

1− |B|2n̂1 ±
√

1− |B|2n̂2 + δn̂1n̂2.
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Appendix B

Generating function example

(
1∑
p=0

1∑
m=0

np+msp−mz

)7

=
n7

sz7

+
7n6

sz6
+

7n8

sz6

+
21n5

sz5
+

49n7

sz5
+

21n9

sz5

+
35n4

sz4
+

147n6

sz4
+

147n8

sz4
+

35n10

sz4

+
35n3

sz3
+

245n5

sz3
+

441n7

sz3
+

245n9

sz3
+

35n11

sz3

+
21n2

sz2
+

245n4

sz2
+

735n6

sz2
+

735n8

sz2
+

245n10

sz2
+

21n12

sz2

+
7n

sz
+

147n3

sz
+

735n5

sz
+

1225n7

sz
+

735n9

sz
+

147n11

sz
+

7n13

sz
+1 + 49n2 + 441n4 + 1225n6 + 1225n8 + 441n10 + 49n12 + n14

+7n sz + 147n3 sz + 735n5 sz + 1225n7 sz + 735n9 sz + 147n11 sz + 7n13 sz

+21n2 sz
2 + 245n4 sz

2 + 735n6 sz
2 + 735n8 sz

2 + 245n10 sz
2 + 21n12 sz

2

+35n3 sz
3 + 245n5 sz

3 + 441n7 sz
3 + 245n9 sz

3 + 35n11 sz
3

+35n4 sz
4 + 147n6 sz

4 + 147n8 sz
4 + 35n10 sz

4

+21n5 sz
5 + 49n7 sz

5 + 21n9 sz
5

+7n6 sz
6 + 7n8 sz

6

+n7 sz
7.
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Appendix C

Spin operators

The operator Ŝnx flips the nth spin:

Ŝ1x| ↓↓〉 = | ↑↓〉 Ŝ2x| ↓↓〉 = | ↓↑〉
Ŝ1x| ↓↑〉 = | ↑↑〉 Ŝ2x| ↓↑〉 = | ↓↓〉
Ŝ1x| ↑↓〉 = | ↓↓〉 Ŝ2x| ↑↓〉 = | ↑↑〉
Ŝ1x| ↑↑〉 = | ↓↑〉 Ŝ2x| ↑↑〉 = | ↑↓〉

(C.1)

The operator Ŝnz flips the phase of the state (multiplies the amplitude by -1) if the nth spin

is down and does nothing otherwise:

Ŝ1z| ↓↓〉 = −| ↓↓〉 Ŝ2z| ↓↓〉 = −| ↓↓〉
Ŝ1z| ↓↑〉 = −| ↓↑〉 Ŝ2z| ↓↑〉 = | ↓↑〉
Ŝ1z| ↑↓〉 = | ↑↓〉 Ŝ2z| ↑↓〉 = −| ↑↓〉
Ŝ1z| ↑↑〉 = | ↑↑〉 Ŝ2z| ↑↑〉 = | ↑↑〉

. (C.2)

The operator Ŝny both flips the nth spin and flips the phase of the state if the nth spin is

down and multiplies the amplitude by i since Ŝny = iŜnzŜnx:

Ŝ1y| ↓↓〉 = −i| ↑↓〉 Ŝ2y| ↓↓〉 = −i| ↓↑〉
Ŝ1y| ↓↑〉 = −i| ↑↑〉 Ŝ2y| ↓↑〉 = i| ↓↓〉
Ŝ1y| ↑↓〉 = i| ↓↓〉 Ŝ2y| ↑↓〉 = −i| ↑↑〉
Ŝ1y| ↑↑〉 = i| ↓↑〉 Ŝ2y| ↑↑〉 = i| ↑↓〉

. (C.3)
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Appendix D

Unfolding the multiqubit number
operator

The single qubit number operator (N = 1) is

n̂ =

(
1 0
0 0

)
. (D.1)

The two qubit number operator (N = 2) can be expressed as the following tensor product

that depends on n̂

n̂
(2)
1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 (D.2)

=

(
1 0
0 0

)
⊗
(

1 0
0 1

)
= n̂⊗ 1

n̂
(2)
2 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 (D.3)

=

(
1 0
0 1

)
⊗
(

1 0
0 0

)
= 1⊗ n̂.

The three qubit number operator (N = 3) can be expressed as the following tensor product

that depends on n̂

n̂
(3)
1 = n̂⊗ 1⊗ 1 (D.4)

n̂
(3)
2 = 1⊗ n̂⊗ 1 (D.5)

n̂
(3)
3 = 1⊗ 1⊗ n̂. (D.6)
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In general, for a B qubit node, the ath number operator, n̂a can be expressed in a way that

depends on a single n̂ placed at the ath position within the following tensor product

n̂a =

B−terms︷ ︸︸ ︷
1⊗ 1⊗ · · · ⊗ n̂ ⊗︸ ︷︷ ︸

ath−term

· · · ⊗ 1, (D.7)

where here 1 denotes the 2× 2 identity matrix.

Similarly, for a Q qubit system, the αth number operator, n̂α can be expressed in a way

that depends on a single n̂ placed at the αth position within the following tensor product

n̂α =

N−terms︷ ︸︸ ︷
1⊗ 1⊗ · · · ⊗ n̂ ⊗︸ ︷︷ ︸

αth−term

· · · ⊗ 1 . (D.8)

This tensor product can be partitioned into L = Q/B terms as follows

n̂α =

B−terms︷ ︸︸ ︷
1⊗ · · · ⊗ 1⊗ · · · ⊗

B−terms︷ ︸︸ ︷
1⊗ · · · ⊗ n̂ ⊗︸ ︷︷ ︸

ath−term

· · · ⊗ 1⊗ · · · ⊗
B−terms︷ ︸︸ ︷

1⊗ · · · ⊗ 1, (D.9)

where a = (α mod B). Each set of B-terms 1⊗· · ·⊗1 constitutes a 2B×2B identity matrix.

The set of B-terms 1⊗· · ·⊗ n̂⊗· · ·⊗1 is the on-site number operator, n̂a by identity (D.7).

Therefore, using these two facts, we have the final result that

n̂α =

L−terms︷ ︸︸ ︷
1⊗ 1⊗ · · · ⊗ n̂a ⊗︸ ︷︷ ︸

`th−term

· · · ⊗ 1, (D.10)

where here 1 denotes the 2B × 2B identity matrix. The index ` is a site index referring to

site ~x` in the lattice. The identity (D.10) represents the unfolding of the Q-qubit system

number operator into a tensor product with a B-qubit on-site number operator.
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Appendix E

Relativistic path integral

Following Jacobson and Schulman [Jacobson and Schulman, 1984], we may write the Kro-

necker delta as a continuous integral:

δ

(
M,

N∑
i=0

σi

)
=

∫ π

−π

dθ

2π
eiθ(M−

P
i σi). (E.1)

Then inserting (E.1) into (4.15) gives

Kσ0σN =

∫ π

−π

dθ

2π
eiθM

∑
{σ1,...,σN−1}

e−
PN
i=0 σi−ν

PN−1
i=0 (1−σiσi+1). (E.2)

Now since
∑N

i=0 σi = 1
2
(σ0 + σN) + 1

2

∑N−1
i=0 (σi + σi+1), we pull down the summation in the

argument of the exponential to form the following product:

Kσ0σN =

∫ π

−π

dθ

2π
eiθMe−

iθ
2

(σ0+σN )
∑

{σ1,...,σN−1}

N−1∏
i=0

e−
iθ
2

(σi+σi+1)−ν(1−σiσi+1). (E.3)

The components of the transfer matrix are

Uσi,σi+1
≡ e−ν(1−σiσi+1)− iθ

2
(σi+σi+1), (E.4)

then (E.3) becomes

Kσ0σN =

∫ π

−π

dθ

2π
eiθMe−

iθ
2

(σ0+σN )Zσ0σN . (E.5)

where for convenience we restate the definition (4.21)

Zσ0σN ≡
∑
σ1=±1

· · ·
∑

σN−1=±1

Uσ0,σ1Uσ1,σ3 · · ·UσN−1,σN . (E.6)

(E.4) in matrix form is

U =

(
U−1,−1 U−1,1

U1,−1 U1,1

)
=

(
e−iθ e−2ν

e−2ν eiθ

)
. (E.7)
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and (E.6) is an (N − 1)-fold matrix multiplication of U :

Z =

(
Z−1,−1 Z−1,1

Z1,−1 Z1,1

)
=

(
e−iθ e−2ν

e−2ν eiθ

)N
(E.8)

From (4.14), the off-diagonal components of (E.7) are e−2ν = i∆t mc
2

h̄
, and in turn the

eigenvalues of (E.7) are

λ± = cos θ ± i
(

sin2 θ + ∆t2
m2c4

h̄2

) 1
2

. (E.9)

We can write (E.7) as

U = λ+|+〉〈+|+ λ−|−〉〈−|, (E.10)

where |±〉 are orthonormal eigenvectors of (E.7). The components of the orthonormal eigen-

vectors |±〉 =

(
x
y

)
satisfy

(
e−iθ i∆tmc2

h̄
i∆tmc2

h̄
eiθ

)(
x
y

)
=

[
cos θ ± i

(
sin2 θ +

∆t2m2c4

h̄2

) 1
2

](
x
y

)
, (E.11)

and from which we know the ratio of the components is

y

x
= β ±

√
1 + β2, (E.12)

where β ≡ h̄ sin θ
∆tmc2

. Notice that β = tan 2δ is the solution of an equation of the form of (E.12):

±1 + sin 2δ

cos 2δ
= β ±

√
1 + β2. (E.13)

Since the R.H.S. of (E.13) can be rewritten

± cos δ + sin δ

cos δ ∓ sin δ
= β ±

√
1 + β2, (E.14)

our orthonormal eigenkets are

|±〉 =

(
cos δ ∓ sin δ
± cos δ + sin δ

)
. (E.15)

Then using (E.15), the projection operators are

|±〉〈±| =
1

2

(
1∓ sin 2δ ± cos 2δ
± cos 2δ 1± sin 2δ

)
(E.16a)

=
1

2
[1± (σx cos 2δ − σz sin 2δ)] . (E.16b)

As a consistency check, the projection operators are idempotent: (|±〉〈±|)2 = |±〉〈±|.
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Inserting (E.10) into (4.23), and because of the orthonormality of the eigenvectors, we

have

Z = λN+ |+〉〈+|+ λN− |−〉〈−|, (E.17)

and in turn inserting (E.9) and (E.17) into (E.5), we have

Kσ0σN =
∑
µ=±1

∫ π

−π

dθ

2π
eiθMe−

iθ
2

(σ0+σN )

[
cos θ + iµ

(
sin2 θ + ∆t2

m2c4

h̄2

) 1
2

]N
(|µ〉〈µ|)σ0σN

.

(E.18)

Inserting (E.16b) into (E.18) gives:

Kσ0σN =
1

2

∑
µ=±1

∫ π

−π

dθ

2π
eiθMe−

iθ
2

(σ0+σN )

[
cos θ + iµ

(
sin2 θ + ∆t2

m2c4

h̄2

) 1
2

]N
(E.19)

× [1 + µ(σx cos 2δ − σz sin 2δ)]σ0σN
.

Expanding the trigonometric terms to include only first-order terms, we have

cos θ = 1 +O(∆z2) sin θ =
p∆z

h̄
+O(∆z3) (E.20)

From our definition of β = tan 2δ, we have

tan 2δ =
h̄

∆tmc2
sin

(
p∆z

h̄

)
(E.21)

=
p

mc
+O(∆z2), (E.22)

which in turn implies that

cos 2δ ' mc√
p2 +m2c2

sin 2δ ' p√
p2 +m2c2

. (E.23)

Kσ0σN =
∆z

2h̄

∑
µ=±1

∫ πh̄
c∆t

− πh̄
c∆t

dp

2π
ei
pz
h̄

[
1 + iµ

c∆t

h̄

(
p2 +m2c2

) 1
2 +O(∆t2)

]N
e−i

p∆z
2h̄

(σ0+σN )

×

[
1 + µ

σxmc− σzp√
p2 +m2c2

+O(∆t2)

]
σ0σN

. (E.24)

With ∆t = t
N

and using (1 + x
N

)N → ex and c∆t = ∆z → dz as N →∞, and keeping only

the lowest-order terms, (E.24) becomes the following kernel:

Kαβ(z, t) ≡ lim
N→∞

Kσ0σN =
dz

2h̄

∑
µ=±1

∫ ∞
−∞

dp

2π
ei
pz
h̄ ei

µEt
h̄

[
1 +

σxmc
2 − σzpc
µE

]
αβ

, (E.25)
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where E ≡
√
p2c2 +m2c4. For differential time steps, (E.25) takes the form

Kαβ(dz, dt) =
dz

2h̄

∑
µ=±1

∫ ∞
−∞

dp

2π
ei
pdz
h̄

(
1 + i

µEdt

h̄
+O(dt2)

)[
1 +

σxmc
2 − σzpc
µE

]
αβ

. (E.26)

Expanding the sum in (E.26) and keeping only first-order terms, the differential kernel can

be written in purely exponential form:

Kαβ(dz, dt) =
dz

h

∫ ∞
−∞

dp ei
pdz
h̄

[
ei
dt
h̄

(σxmc2−σzpc)
]
αβ
, (E.27)

which is the Fourier transform of the differential evolution operator eiH/h̄ = ei(σxmc
2δt−σzpδz)/h̄.

The result (E.27) is identical to our quantum lattice-gas formulation of the path integral

(4.32).
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Appendix F

Finite-difference algorithm for
Schroedinger’s equation

The full finite-difference equation for the quantum lattice-gas model presented in this chapter

is very long. To simplify this expression, we introduce a local neighborhood vector with the

following 18 components

~η(xl, t) = (ϕ0(xl, t), ϕ1(xl, t), (F.1)

ϕ0(xl+1, t), ϕ1(xl+1, t), ϕ0(xl−1, t), ϕ1(xl−1, t),

ϕ0(xl+2, t), ϕ1(xl+2, t), ϕ0(xl−2, t), ϕ1(xl−2, t),

ϕ0(xl+3, t), ϕ1(xl+3, t), ϕ0(xl−3, t), ϕ1(xl−3, t),

ϕ0(xl+4, t), ϕ1(xl+4, t), ϕ0(xl−4, t), ϕ1(xl−4, t)).

We define the following two coefficient vectors

~α ≡ (−3,−3i, 3, i,−3,−5i, 1, i, 3, 3i,−1, i, 1, 3i, 0, 0,−1,−i)
~β ≡ (−3i,−3,−5i,−3, i, 3, 3i, 3, i, 1, 3i, 1, i,−1,−i,−1, 0, 0).

(F.2)

The microscopic evolution equation (5.11), explicitly written out, has the following protocol

of operations

|ψ(t16)〉 ≡
(
ŜT

2 ĈŜ2ĈŜ
T

2 ĈŜ2Ĉ
)(

ŜT

1 ĈŜ1ĈŜ
T

1 ĈŜ1Ĉ
)
|ψ(t0)〉. (F.3)

The corresponding full finite-difference equation can be specified by the following dot product

of these vectors

ϕ0(xl, t16) =
~α · ~η(xl, t0)

16
(F.4)

ϕ1(xl, t16) =
~β · ~η(xl, t0)

16
. (F.5)
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Note that if t0 is the initial time, then the interval τ ≡ t16 is defined the update time step.

The finite-difference equation for ψ = ϕ0 + ϕ1 is

ψ(xl, t16) =
(~α + ~β) · ~η(xl, t0)

16
(F.6)

and it has a high degree of numerical accuracy as indicated in Figure 5.2.
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Appendix G

Triangular and square symmetry
groups

As an example of how to use the finite-point group symmetries of the spatial lattice to reduce

to the size of the Hilbert space sectors, we consider very small lattices (clusters) with 3 nodes

and 4 nodes, both with 2-qubits/node.

The triangular cluster possesses the C3v point group symmetry and the square cluster

possesses C4v.

Table G.1: C3 and C3v character table
C3 E C3 C2

3

A 1 1 1
E 1 ε ε∗

E 1 ε∗ ε

C3v E 2C3 3σv
A1 1 1 1
A2 1 1 -1
E 2 -1 0

Table G.2: C4 and C4v character table

C4 E C4 C2 C3
4

A 1 1 1 1
B 1 -1 1 -1
E 1 i -1 -i
E∗ 1 -i -1 i

C4v E 2C4 C2 2σv 2σd
A1 1 1 1 1 1
A2 1 1 1 -1 -1
B1 1 -1 1 1 -1
B2 1 -1 1 -1 1
E 2 0 -2 0 0

The C3v group has six group operations and three irreducible representations, and C4v has

eight and five, respectively. They are shown in Table G.1 and Table G.2 for these example

groups.

Specifically, for the case of C3v, we obtain four sets of states in the symmetry basis:

{ψA1
n }, {ψA2

n }, {ψEn }, and {(ψEn )∗}. For the case of C4v, we obtain six sets of states: {ψA1
n },
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{ψB1
n }, {ψA2

n }, {ψB2
n }, {ψEn }, and {(ψEn )∗}. The E-representation always appears twice 1. In

the {ψn} basis a Hamiltonian system on a triangular lattice therefore decouples into four

diagonal blocks and a Hamiltonian system on a square lattice decouples into six diagonal

blocks. So this is a good example illustrating how group theory reduces the complexity of

the problem by partitioning each sz-sector of the Hilbert space into smaller sub-sectors.

1 

2 3 4 

1 2 

3 

Figure G.1: Symmetry axes for the triangular and square clusters.

For the triangular cluster, using (2.91) we implement the C3v point operators as follows

R̂C3 = X̂12X̂23 (G.1a)

R̂C2
3 = X̂23X̂12 (G.1b)

R̂σ
(1)
v = X̂23 (G.1c)

R̂σ
(2)
v = X̂31 (G.1d)

R̂σ
(3)
v = X̂12, (G.1e)

which are 120◦ and 240◦ rotations, and reflections about sites 1, 2, and 3, respectively. For

the square cluster, we implement the C4v point group operators as follows

R̂C4 = X̂34X̂23X̂12 (G.2a)

R̂C2 = X̂23X̂12 (G.2b)

R̂C3
4 = X̂12X̂23X̂34 (G.2c)

R̂σ
(13)
v = X̂24 (G.2d)

R̂σ
(24)
v = X̂13 (G.2e)

R̂σ
(13)
d = X̂12X̂34 (G.2f)

R̂σ
(24)
d = X̂14X̂23, (G.2g)

which are 90◦, 180◦ and 270◦ rotations, and reflections about two diagonals and the vertical

and horizontal, respectively.

1Using projection operators constructed from the C3 and C4 character tables breaks the size of the E-type
blocks in two for the half-filling cases
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Appendix H

Improved algorithm for the diffusion
equation

The algorithm described in this appendix uses a variant of the typical lattice-gas update

procedure. First, there are two particles per site, but only one of them is a moving particle.

The other is a stationary or rest particle. Second, the moving particle hops in both directions

(and this is not typical in lattice-gas models). The collision operator is homogeneously

applied across the lattice and then the moving particle hops one lattice unit to the right.

The collision operator is then homogeneously applied again across the entire lattice and then

the moving particle hops one lattice unit to the left. The moving particle must hop in both

directions to keep the macroscopic dynamics unbiased and symmetrical. Therefore, each

time step involves two applications of the collision operator and streaming operator.

The factorized quantum lattice-gas algorithm for the one-dimensional diffusion equation

can be implemented with two passes as defined in the following six steps (two groups of

three). This version of the algorithm is considered to be an improvement over the simpler

version given in Section 8.2 because it remedies the problems of coexisting independent sub-

lattices. Spurious high frequency noise is thereby removed from the time variation of the

macroscopic mass-density field as well. We assume the initial state of the quantum computer

is set as specified in Figure 8.1, where |qa(x, t)〉 =
√
fa(x, t)|1〉+

√
1− fa(x, t)|0〉.

STEP 1: Apply the collision operator simultaneously to all sites

|ψ′(x, t)〉 = Û |ψ(x, t)〉.

This step accounts for all the quantum computation that is accomplished in a classically

parallel fashion across all nodes of the array.

STEP 2: Measure (“read”) all the occupancy probabilities using the following matrix ele-
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ments

f ′1(x, t) = 〈ψ′(x, t)|n̂1|ψ′(x, t)〉

f ′2(x, t) = 〈ψ′(x, t)|n̂2|ψ′(x, t)〉

on all sites. In practice, f1 and f2 must be determined by either repeated measurement of

a single realization of the system or by a single measurement over a statistical ensemble of

systems.

STEP 3: Reinitialize (“write”) the state of the quantum computer as a separable state

where each qubit is set as follows

|q1(x, t+ τ)〉 =
√
f ′1(x, t)|1〉+

√
1− f ′1(x, t)|0〉

|q2(x, t+ τ)〉 =
√
f ′2(x+ `, t)|1〉+

√
1− f ′2(x+ `, t)|0〉

for all x. Note that qubit |q2〉 is shifted to its neighboring node at the right. This step

requires nearest-neighbor classical communication between all lattice nodes.

STEP 4: Apply the collision operator again as in STEP 1.

STEP 5: Measure (“read”) the occupancy probabilities again as in STEP 2.

STEP 6: Reinitialize (“write”) the state of the quantum computer as a separable state

where each qubit is set as follows

|q1(x, t)〉 =
√
f1(x, t)|1〉+

√
1− f1(x, t)|0〉 (H.1)

|q2(x, t)〉 =
√
f2(x− `, t)|1〉+

√
1− f2(x− `, t)|0〉

(H.2)

for all x. Note that qubit |q2〉 is shifted to its neighboring node at the left. This step requires

classical communication between all lattice nodes.

ONE TIME-STEP UPDATE COMPLETED.

With this improved version of the quantum algorithm, the diffusion constant that arises

in the effective field theory is Dimp = 1
4
`2

τ
, half the value the diffusion constant that arises

from the simpler version of the algorithm presented in Section 8.2. The reason for the re-

duction in dissipation is that the diffusion constant goes as the ratio of the square of the
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mean-free path length to the mean-free collision time. In the simple version of the quantum

algorithm, the mean-free path length goes as the lattice cell size ` and the mean-free collision

time is the time of a single update τ . However, in the improved version of the algorithm,

the collision frequency is doubled, so effectively both the mean-free path length and the

mean-free collision time are halved. Consequently, the value of the transport coefficient is

halved, Dimp = D
2

.

H.1 Discrete Fourier transform

Consider a quantity A(~x) defined over the entire lattice. The discrete transform and its

inverse in one dimension are

A(kn) =
1√
V

∑
{xl}

eiknxlA(xl) (H.3)

A(xn) =
1√
V

∑
{kl}

e−iklxnA(kl). (H.4)

The possible k-vectors are kn = 2nπ/V l and the lattice vectors are xn = `n, where n =

1, . . . , V and ` is the cell size. The generalization to D dimensions is straightforward.

Inserting (H.4) into (H.3) gives

A(kn) =
1√
V

∑
{xl}

eiknxl

 1√
V

∑
{km}

e−ikmxlA(km)


=

∑
{km}

A(km)

 1

V

∑
{xl}

ei(kn−km)xl

 (H.5)

(H.6)

For the R.H.S. of this last expression to equal A(kn), the quantity in brackets must be a

Kronecker delta. Therefore, the resolution of the identity is

1

V

∑
{xl}

ei(kn−km)xl = δnm. (H.7)

Similarly, inserting (H.3) into (H.4) gives

A(xn) =
1√
V

∑
{kl}

e−iklxn

 1√
V

∑
{xm}

eiklxmA(xm)


=

∑
{xm}

A(xm)

 1

V

∑
{kl}

eikl(xm−xn)

 . (H.8)
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Again, for the R.H.S. of this last expression to equal A(xn), the quantity in brackets must

be a Kronecker delta. Therefore, the resolution of the identity is

1

V

∑
{kn}

eikn(xm−xn) = δmn. (H.9)
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Appendix I

Single-particle Fermi-Dirac
distribution function

The single-particle Fermi-Dirac distribution function has the form

f(za) =
1

za + 1
, (I.1)

where the natural log of the fugacity

ln za = αρ+ βêa · ~p+ γE (I.2)

is a linear combination of the conserved scalar quantities, the mass ρ,the momentum compo-

nent êa ·~p along the lattice direction êa, and the energy E at a lattice site. The real numbered

coefficients α, β, and γ are free parameters that we will determine. It is convenient to define

the momentum and energy independent part of the fugacity as

z◦ ≡ eαρ. (I.3)

Since fa(z◦) = d is the reduced density, d ≡ ρ
mB

, we must set

z◦ =
1− d
d

. (I.4)

This fixes the coefficient α. To fix the coefficients β and γ, we can specify two moments of the

single-particle distribution function as constraint conditions. We begin by Taylor expanding

the single-particle distribution function f(za) about z◦

f(za) = d+ f ′(z◦)δz +
1

2
f ′′(z◦)(δz

2) + · · · . (I.5)

The derivatives of f evaluated at z◦ are

f ′(z) =
−1

(z + 1)2
−→ f ′(z◦) = −d2 (I.6)
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and

f ′′(z) =
2

(z + 1)3
−→ f ′′(z◦) = 2d3, (I.7)

so

f(za) ∼= d
[
1− dδz + d2(δz)2

]
. (I.8)

To determine δz, we begin by writing the fugacity in series form

za = z◦

[
∞∑
k=0

(βêa · ~p)k

k!

][
∞∑
k=0

(γE)k

k!

]
. (I.9)

In the subsonic limit, ~p� mc, keeping terms only to second order in the velocity, the fugacity

becomes

za = z◦

[
1 + βêa · ~p+

1

2
(βêa · ~p)2

]
(1 + γE) +O(v3). (I.10)

since p ∼ v and E ∼ v2. Then to second order in the velocity, the change in za is

δza ≡ za − z◦ =

(
1− d
d

)[
βêa · ~p+

1

2
(βêa · ~p)2 + γE

]
+O(v3) (I.11)

and the square of the change is

(δza)
2 =

(
1− d
d

)2

β2 (êa · ~p)2 +O(v3). (I.12)

Inserting the expressions for δz and (δz)2 into the Taylor expansion of f(za) we have

f(za) = d

{
1− (1− d)

[
βêa · ~p+

1

2
(βêa · ~p)2 + γE

]
+ (1− d)2 (êa · ~p)2

}
= d

[
1− (1− d) (βêa · ~p+ γE) +

1

2
(1− d)(1− 2d)β2 (êa · ~p)2

]
. (I.13)

We have the freedom to choose the coefficients β and γ as free parameters of the distribution

function to satisfy any two constraints. Consider fixing the value of the coefficients β and γ

by using the following moments for the mass density and momentum density

ρ = m
B∑
a=1

fa (I.14)

ρ~v = mc
B∑
a=1

êafa. (I.15)

This choice may be termed the non-Galilean parametrization. Constraints (I.14) and (I.15)

are typically used in the formulation of classical lattice gases. The single particle distribution

function using this non-Galilean parameterization was first found in the mid 1980’s by the US
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researchers Wolfram and Hasslacher and by the French researchers Frisch, d’Humières, Lalle-

mand, Pomeau, and Rivet [Wolfram, 1986, Frisch et al., 1987]. Their derivation of (I.20) is

different then the derivation presented in this section; they used only two free coefficients in

the expression for the fugacity, one for the mass and the other for the momentum; whereas

we use three free coefficients. The reason for using only two free parameters is that in the

standard single-speed classical lattice-gas construction, the energy is degenerate with the

mass, so it was deemed unnecessary to keep a separate free coefficient for the energy. How-

ever, it is expedient to use a free parameter for E. Using (I.14) and (I.15) as constraint

equations gives us a non-unity density-dependent prefactor in the convective term in the

hydrodynamic flow equation.

Inserting (I.13) into (I.15), the odd term in the distribution function expansion survives

the first moment sum over lattice directions; the odd term is the one linear in the momentum.

This fixes the value of β to be

β = − D

1− d
(I.16)

so the distribution function becomes

fa = d

[
1 +Dêa · ~p+

D2

2

1− 2d

1− d
(êa · ~p)2 + (1− d)γE

]
. (I.17)

Inserting (I.17) into (I.14), all the even terms that survive the sum over lattice directions

must add to zero. This fixes the value of γ as follows

D

2

1− 2d

1− d
p2 − (1− d)γE = 0 (I.18)

or

γE = D
1− 2d

(1− d)2

p2

2
. (I.19)

Therefore, the non-Galilean distribution function is

fa = d

[
1 +Deaipi +

D(D + 2)

2
g(d)Qaijpipj

]
, (I.20)

where the density dependent prefactor g(d) is defined

g(d) ≡ D

D + 2

1− 2d

1− d
(I.21)

and the traceless second-rank tensor Q̂a is defined

Qaij ≡ eaieaj −
δij
D
. (I.22)

Q̂a is an isotropic symmetric tensor.
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The second moment of (I.20) gives the momentum flux density

mc2

B∑
a=1

eaieajfa = Pδij + gρvivj. (I.23)

The density-dependent prefactor g appears in the nonlinear convective term. The pressure

in (I.23) has a quadratic velocity dependence

P = ρc2
s

(
1− gv

2

c2

)
. (I.24)
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Appendix J

Lattice tensors

Let us define an n-th rank tensor composed of a product of lattice displacement vectors êa

for a single-speed lattice gas as follows

E(n) = Ei1...in =
B∑
a=1

(ea)i1 · · · (ea)in . (J.1)

Wolfram’s notation is used here [Wolfram, 1986]. For certain lattices all odd-rank E vanish.

The Kronecker delta is defined as follows: δij ≡ 1 if i = j, and δij ≡ 0 if i 6= j . It is possible

to express the even-rank E-tensors in terms of products of Kronecker deltas.

Let ∆(2n) denote a symmetric tensor with even rank 2n. For n = 1, the symmetric

second-rank tensor is Kronecker’s delta

∆
(2)
ij = δij. (J.2)

For n = 2 case, a symmetric fourth-rank tensor ∆
(4n)
ijkl has three terms

∆
(4)
ijkl = δijδkl + δikδjl + δilδkj. (J.3)

Let’s see why this is true. The number of terms in ∆(4) can be determined by first counting

the total number of permutations of the indices (in this case there are 4 indices, so the number

of permutations is simply 4! = 24) and then dividing this by the number of duplicated terms.

Duplicate terms arise for two reasons. First, since the Knonecker delta is symmetric in its

indices, the following four products are identical: δijδkl = δijδlk = δjiδkl = δjiδlk. This

duplication is 22-fold. Second, the order of the Kronecker deltas also doesn’t matter; that

is, δijδkl = δklδij. This duplication is 2!-fold. The number of duplicate terms arising from

writing all possible products of two Kronecker deltas is 222! = 8, for n = 2. Therefore, ∆(4)

consists of 24
8

= 3 terms.

For the general case, for any n, the total number of permutations of the 2n indices is

(2n)!. There are 2n identical ways of writing the product of n Kronecker deltas. For each
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choice of indices, there are n! additional ways of ordering the Kronecker deltas within each

term. So, the total number of identical ways to write an 2nth-rank tensor as a product of n

Kronecker deltas is 2nn! = (2n)!!. Since the number of terms can be determined by dividing

the total number of permutations of the indices by the number of duplicated identical terms,

∆(2n) consists of a sum of (2n!)
(2n)!!

= (2n − 1)!! terms. For example, for n = 3, ∆(6) has 15

terms, for n = 4, ∆(8) has 35 terms, and so forth.

E is proportional to ∆

E(2n) = α(2n)∆(2n). (J.4)

The constant of proportionality, denoted α(2n), may be obtained by taking the trace succes-

sively as follows. Since eaieai = 1 and δii = D, for n = 1 it follows that∑
a

eaieai = α(2)δii −→ α(2) =
B

D
, (J.5)

giving the following identity relating the second-rank tensors

E(2) =
B

D
δij. (J.6)

Since δijkk = (D + 2)δij and consequently δiijj = D(D + 2), for n = 2 it follows that∑
a

eaieaieajeaj = α(4)δiijj −→ α(4) =
B

D(D + 2)
, (J.7)

giving the following identity relating the fourth-rank tensors

E(4) =
B

D(D + 2)
(δijδkl + δikδjl + δilδkj) . (J.8)

Continuing this procedure, in general for any n, the lattice tensors are

E(2n+1) = 0 (J.9)

E(2n) =
B

D(D + 2) · · · (D + 2n− 2)
∆2n. (J.10)

In Section 11.5.3, we will need the following four identities

B∑
a=1

êa = 0 (J.11a)

B∑
a=1

êaêa =
B

D
∆(2) (J.11b)

B∑
a=1

êaêaêa = 0 (J.11c)

B∑
a=1

êaêaêaêa =
B

D(D + 2)
∆(4). (J.11d)
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Bravais lattices that satisfy these identities are: the two-dimensional triangular lattice with

B = 6; the three-dimensional icosahedral lattice with B = 12; and the four-dimensional

face-centered hypercubic lattice with B = 24 [Wolfram, 1986]. The identities (J.11) are

commonly used in the lattice-gas literature.
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