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INTRODUCTION 
This project was carried out to support the design of an unmanned underwater vehicle 

(UUV).  In the field of UUV design and development it is becoming increasingly popular to use 
biological inspiration to design the propulsion and control mechanisms to achieve performance 
goals related to efficiency, stealth and maneuverability among others.  Kellogg et al. (2003) have 
used insect wing flapping studies as inspiration for wing design.  Ramamurti and Sandberg 
(2006) have used fish locomotion studies to optimize a fin design.  Using the results of these 
studies, a biomimetic, active-deformation fin for underwater missions has been designed and 
built by Palmisano et al. (2007), and biomorphic flapping wing vehicles for aerial missions have 
been developed by Cylinder et al. (2005). 
 

Using computational fluid dynamics (CFD) analysis, forces and moments created by the fins 
and wings are calculated over a number of cycles for a given set of kinematics.  These force 
time-histories are analyzed to decide what fin or wing motion should be prescribed for various 
maneuvering capabilities.  To match the forces produced in the CFD results, it is essential that 
the kinematics prescribed in these simulations be reproduced in the actual flapping appendage.  
While we can measure the forces and moments on the appendage directly using load and torque 
cells, knowing the actual kinematics allows us to easily correct the control inputs to achieve a 
better match of the desired kinematics.  It also gives us the actual kinematics to input back into 
the CFD code to verify the accuracy of measured forces. 
 

However, the kinematics of flapping motion is more difficult to obtain than for traditional 
propellers.  Attempting to arrange a variety of sensors on the fins and wings would compromise 
the structural integrity of such lightweight mechanisms and would interfere with the flow fields 
around the flapping surfaces.  Johansson and Lauder (2004) have demonstrated the capability of 
utilizing a multi-camera system to capture simultaneous high-speed images of moving 
appendages from two cameras.  This system provides a non-invasive way to get the three-
dimensional coordinates of the appendages throughout the stroke cycles.  We have therefore 
chosen to pattern our facility after that in the Lauder Laboratory at Harvard University.  Studying 
kinematics using this system in conjunction with CFD simulations is a novel approach to the 
verification of force production. 

 
The processes and specifics of the camera system discussed in this paper are general and 

applicable to any test setup.  However, the specific example of a fin design for use on a UUV is 
used to illustrate details. 
 

FIN DESIGN AND TEST SETUP 
An actively deforming mechanical fin has been designed and built using compliant ribs by 

Palmisano et al. (2007).  The fin is comprised of five ribs each actuated by a single servo-motor.  
The ribs are designed to bend in the desired shapes using compliant structure techniques.  In 
addition to the actuation of each individual rib, the bulk rotation of the fin is controlled by a 
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servo-motor as well.  The entire set of five ribs is encased in a liquid silicone rubber skin that is 
designed to elastically deform with the ribs while providing only a small resistance to the 
actuated motion.  The nature of this fin with deforming ribs and skin precludes the use of 
encoders and other instruments used for direct kinematics data measurement that can be found on 
simpler rigid systems. 
 
 
 

 
 

Fig. 1. Test Tank with Camera Setup (Palmisano et al., 2007) 
 

A small water tank (76cm x 30cm x 46cm) is used to test the actuation of the fin.  The fin and 
actuation mechanisms are suspended from a platform hanging above the test tank such that the 
fin is submerged in the water, Fig. 1.  The test platform is also fitted with a load cell to measure 
the force produced along the x-axis and a torque cell to measure the moment around the x-axis, 
Fig. 2.  Using the moment arm and kinematics data the forces along the y-axis and z-axis can be 
computed from this torque data as well. 
 

 
Fig. 2. Test Setup with Load and Torque Cells (Palmisano et al., 2007) 

 
As a means of measuring the kinematics of the fin, two high-speed digital cameras from 

Canadian Photonic Labs (MS10K CCD, MS25K CMOS) are setup outside the tank to record 
images of the fin throughout its stroke.  The cameras are positioned at ~90° to each other, Fig. 1, 
to maximize the accuracy of the position measurements since this provides the most unique field 
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of view for each of the cameras.  Each camera is connected to a computer through Ethernet cable 
to transmit recorded images to picture files stored on the computer’s hard drive. 
 

CALIBRATION AND CAMERA COEFFICIENTS 
The goal of the two-camera system is to convert two sets of two-dimensional (2-D) camera 

pixel coordinates into a single set of three-dimensional (3-D) inch coordinates without using 
background markers.  To facilitate this, we must collect images of points with known 3-D 
location covering the space that the fin will operate.  This can be done in a number of ways, but 
in the case of the fin test an easy method was devised by suspending a structure of LEGO bricks 
from a platform into the field of interest, Fig. 3.  An image of the LEGO structure is taken from 
each of the two cameras and stored on the computer.  Each point of interest on the structure must 
be identified in 2-D pixel coordinates from both cameras.  Once a sufficient number of points to 
cover the desired space have been taken and recorded in 2-D pixel coordinates, the known 3-D 
inch coordinates of each of the points must be recorded as well.  This provides the basis for a 
transformation from 2-D to 3-D coordinates. 
 

 
Fig. 3. LEGO block calibration 

 
Using the collected coordinates from the LEGO structure a direct linear transform written by 

Reinschmidt (1996) is implemented to find camera coefficients that define position and optical 
geometry for each camera separately.  Direct linear transformation is a well established method 
for this conversion from 2-D digitized to 2-D image space coordinates.  The method involves 
solving a set of simultaneous linear equations that yields the image space coordinates from the 
digitized coordinates (Woltring and Huiskes, 1990).  The equations for each point, i, in matrix 
form are written as 
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where [Xi Yi Zi] is the set of 3-D coordinates of the point, [xi yi] is the set of 2-D image 
coordinates of the point for the camera, and a

r  is the vector of camera coefficients. 
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HIGH-SPEED IMAGING 
Once the camera calibrations have been established we can take high-speed (up to 10,000 

frames per second) images of the fin in motion.  A camera speed of approximately 50 times the 
flapping frequency of the appendage is sufficient to capture the necessary kinematics features.  
For the fin, this value varies between 50-150 fps.  It is essential that the two cameras take images 
from the same starting time and at the same sampling rate so there is a set of two images for each 
time step in the stroke of the fin.  These synchronized images are used to establish the 3-D 
coordinates at each given time step. 
 

To achieve a simultaneous starting time a triggering device is used to initiate the sampling of 
images from both cameras.  The cameras are equipped with a trigger input to facilitate this 
operation.  By sharing one trigger box and wiring the connection such that the same trigger 
signal is going to both cameras, Fig. 4, we can achieve a uniform starting time. 

 

 
Fig. 4. Trigger Box and Connections 

 

 
Fig. 5. Camera Capture Settings 
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Matching the sampling rates of the cameras involves setting them to the same values in their 
respective software programs, Fig. 5.  This ensures that at every time step (as defined by the rate) 
there are two images to analyze.  Other variables to consider in the software include the capture 
mode and image size for each camera.  Capture mode must be set to ‘trigger’ rather than 
‘continuous’ to make use of the trigger box.  The image size for each camera should be set to the 
smallest size which captures the entire field of motion of the fin. 
 

IMAGE PROCESSING 
With the camera coefficients and the series of time stamped images of the fin from each 

camera, we look at each set of images and record the points of interest.  In this case, the points of 
interest are the five rib tips.  Their locations in space and time throughout the stroke will tell us 
what the kinematics look like.  A Matlab program called Digimat written by Madden (2004) is 
used to facilitate the collection of 2-D pixel coordinates from each camera and the transformation 
to 3-D inch coordinates.  This program allows us to view two images side-by-side, and to input 
the matrix of camera coefficients that we have developed. 
 

 
Fig. 6. Digimat GUI 

 
The two side-by-side images (one from each camera) from the same time step are analyzed 

graphically using the mouse to click on the rib tips, Fig. 6.  A helpful tool provided by Digimat is 
once a point on one of the images is recorded, a line appears on the other image to indicate the 
set of possible points that match with the chosen point based on the camera coefficients.  Once a 
series of points from one image set is selected, the points are saved both as pixel coordinates for 
each camera and as 3-D inch coordinates.  The conversion to 3-D inch coordinates is solved in 
Digimat using computations written by Reinschmidt (1996).  The direct linear transformation for 
each camera is computed along with a least squares estimate to adjust for measurement and 
calibration errors (Woltring and Huiskes, 1990). 
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POST PROCESSING 
We need to know where the rib tips are in relation to a hinge axis to measure the rib rotation 

angles and compare them to the prescribed values.  The hinge axis cannot be determined directly 
from the camera images for multiple reasons.  The hinge axis is out of the water, while the fin is 
in the water for our experiments.  This change of medium would invalidate the use of a single 
direct linear transformation because light travels differently through air and water.  Also, the 
camera view of the hinge axis is blocked by a combination of wiring, liquid silicone rubber skin 
and the platform that holds the fin. 
 

This inability to use video and perform a transformation into 3-D coordinates necessitates the 
use of a direct measurement of the hinge axis location.  Once the location of the hinge axis is 
determined, defined as a line by the hinge point at rib 1 and the hinge point at rib 5, the entire set 
of rib tip and hinge points is rotated to ensure the hinge axis is parallel to the x-axis defined in 
the calibration. Then all of the points are translated to make the hinge point at rib 5 the (0,0,0) 
global point. 
 

We also have the option of rotating the hinge axis to match a desired angle of attack or phase 
as determined by CFD results.  Plots of the fin tip positions are created for comparison with 
prescribed kinematics, Fig. 7a.  A wire-frame video that can be viewed from various angles is 
also created to visualize the fin operation in 3-D. 
 

(a) 
 

 
(b) 

 
Fig. 7. Fin Kinematics and Force Production 

(a) Experimental vs. Prescribed Kinematics (b) CFD Computed Force and Moment Production 
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The results of the kinematics time-histories are used to prescribe the motion of a fin in CFD 
simulations that is identical to the experimental fin in shape and size.  Running the simulation 
using feflo, an incompressible flow solver created by Ramamurti et al. (1999), the forces and 
moments produced by the fin are computed, Fig 7b. 
 

We have iterated our actuator input values to the actual fin servo-motors based on the results 
of the image digitizing and analysis.  These iterations have allowed the fin to become more 
efficient at producing the greater thrust forces through improvement of the rib kinematics 
throughout the stroke.  The success of changing inputs to the fin based on discrepancies between 
desired and actual kinematics validates the need for a multi-camera system. 
 

ADAPTABILITY 
The cameras’ locations and viewing areas can be easily adjusted using a system of extruded 

aluminum bars and connectors, Fig. 8, in conjunction with interchangeable lenses to 
accommodate a variety of test fins and wings.   A new calibration must be made whenever the 
cameras are moved to a new location.  Camera settings including image size and capture speed 
must also be adjusted for different fin and wing sizes, and flapping speeds. 

 

 
Fig. 8. Camera Slide System 

 
A series of BITE-wing vehicles that were designed and built by Cylinder et al. (2005) have 

been tested using the multi-camera, high-speed system.  Markers must be placed on the fins, Fig. 
9a, to allow measurement of the surface curvature time-history, which is essential for accurate 
computation of the interactions of the downstream wing pair with the time-varying vorticity shed 
from the pair of upstream flapping surfaces, Fig. 9b.  The advantages of the two-camera system 
for kinematics data collection from the BITE-wing vehicles are similar to those for the actively 
deforming fin.  Each of the four wings on the BITE vehicles is affected by aerodynamic forces 
causing it to deform in ways that cannot be measured by onboard sensors due to inaccuracy and 
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weight concerns.  The measured kinematics data is essential for computation of the unsteady 
force and moment time-histories produced by the wings (Ramamurti et al. 2005). 

 

 
(a) 

 

 
(b) 

 
Fig. 9. BITE Vehicle (a) BITE showing markers used for kinematics measurement (b) Pressure 

contours on the symmetry plane (Ramamurti et al. 2005) 
 

CONCLUSION 
Multi-camera image processing has proven an essential tool for verifying force production 

results and accuracy of flapping appendage vehicles.  Three-dimensional points on the fin or 
wing are determined from the intersecting points in the image spaces of two cameras using direct 
linear transformations.  This system provides a non-invasive method of kinematics data 
collection which is essential for lightweight vehicles and high frequency flapping.  Iteration 
based on this data in connection with CFD simulation results is a novel approach to flapping 
actuation design and is important for improvement of fin or wing performance. 
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