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This DEPSCoR/AFOSR sponsored research grant has been used to
continue the long-term support of our graduate level research program
on the asymptotic description of ultrawideband signal, ultrashort pulse
electromagnetic wave propagation in causally dispersive media and
waveguiding systems, extending it to include the properties of spatial
inhomogeneity. Our long-term research goal in this important area is to
develop a rigorous, uniform asymptotic description of ultrawideband
electromagnetic pulsed beam propagation, reflection, and transmission
phenomena in both lossy dielectric and conducting dispersive media that
may also exhibit additional complicating behavior such as either spatial
inhomogeneity or spatial dispersion that is valid for arbitrarily short rise-
time pulses. The results of this analysis have direct, meaningful
application to the analysis and design of low-observable surfaces (for
stealth airframes) and ultrawideband radar systems (for observing
stealth airframes), the remote detection of buried structures (such as
landmines and IED's), ionospheric pulse propagation (for remote sensing
from an orbiting satellite), as well as the problem of ultrawideband
electromagnetic pulse exposure of biological tissues. Of further interest is
the application of this theory to undersea communications systems,
terahertz optical communication and integrated optics systems, and the
remote sensing of geophysical structures.

This AFOSR sponsored research program has served to provide partial
support for my research colleague Dr. Natalie Cartwright as a Research
Associate Professor in the Department of Mathematics at the University
of Vermont during the final two years of this grant (2006-2007) following

20071101407 1



the successful completion of her Ph.D. degree in 2004. A copy of her
dissertation "Uniform Asymptotic Description of the Unit Step Function
Modulated Sinusoidal Signal" was reprinted in the University of Vermont
ECE/04/05-01 Research Report that was submitted with my 2004 Final
Technical report. The paper "Uniform Asymptotics Applied to
Ultrawideband Pulse Propagation", based upon her dissertation, is
scheduled to be published in SIAM Review in November of this year. This
important work completes the uniform asymptotic description of
dispersive pulse propagation in a Lorentz model dielectric, a problem that
was initiated by Arnold Sommerfeld in 1907 and by Leon Brillouin in
1914, was revisited by Baerwald in 1930, Stratton in 1941, Oughstun
and Sherman in 1988, and finally completed by Cartwright and
Oughstun in 2007, a mere century after Sommerfeld's first publication
regarding the mathematically proper solution to this fundamental
problem. The asymptotic solution to the ionospheric propagation
problem, including the effects of spatial inhomogeneity, is currently being
pursued by Professor Cartwright at SUNY-New Paltz under a separate
AFOSR Young Investigator Research award. This challenging research
direction is a result of the research developed under this grant and is
being conducted with my collaborative support.

As a product of this funded research, the following papers were
published:

1. K. E. Oughstun and N. A. Cartwright, "Physical Significance of the
Group Velocity in Dispersive, Ultrashort Gaussian Pulse Dynamics,"
Journal of Modern Optics 52, 8, 1089-1104 (2005).

2. K. E. Oughstun, "Dynamical Evolution of the Brillouin Precursor in
Rocard-Powles-Debye Model Dielectrics," IEEE Transactions on
Antennas and Propagation 53, 5, 1582-1590 (2005).

3. K. E. Oughstun, "Several Controversial Topics in Contemporary
Optics: Dispersive Pulse Dynamics and the Question of Superluminal
Pulse Velocities," in Masters in Optics: A Tribute to Emil Wolf (SPIE
Press, 2005) pp.421-453.

4. K. E. Oughstun and R. A. Albanese, "Magnetic Field Contribution to
the Lorentz Model," Journal of the Optical Society of America A 23, 7,
1751-1756 (2006).

5. N. A. Cartwright and K. E. Oughstun, "Uniform Asymptotics Applied
to Ultrawideband Pulse Propagation," SIAM Review 49, 4, xxx-xxx
(2007).

6. N. A. Cartwright and K. E. Oughstun, "Ultrawideband Pulse
Propagation through a Lossy Plasma," Radio Science (in preparation).

Copies of these published papers are attached at the back of this report.
Reprints have already been sent to both Dr. Arje Nachman at AFOSR and
to Dr. Richard Albanese at Brooks City Base at the time each publication
appeared.
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In addition, the following conference and workshop presentations were
given during the period of this grant support:

1. K. E. Oughstun, R. A. Albanese and J. Penn, "Trapezoidal Envelope
Pulse Dynamics in Debye Model Dielectrics," 2005 AFOSR
Electromagnetics Workshop (January 5-7, 2005, San Antonio, Texas).

2. N. A. Cartwright and K. E. Oughstun, "Uniform Asymptotic
Description of the Main Signal Arrival in Dispersive Pulse
Propagation," 2006 AFOSR Electromagnetics Workshop (January 1 1-
13, 2006, San Antonio, Texas).

3. N. A. Cartwright and K. E. Oughstun, "Uniform Asymptotic
Description of the Main Signal," 2006 USNC/URSI National Radio
Science Meeting, (January 4-7, 2006, University of Colorado, Boulder,
CO).

4. N. A. Cartwright and K. E. Oughstun, "Ultrawideband Pulse
Propagation: The Signal Contribution," AMS Joint Mathematics
Meeting (San Antonio, Texas).

5. N. A. Cartwright and K. E. Oughstun, "Uniform Signal Contribution of
the Step Function Modulated Sine Wave," Progress in
Electromagnetics Research Symposium (PIERS 2006) (March 26-29,
2006, Cambridge, MA).

6. N. A. Cartwright and K. E. Oughstun, "Uniform Asymptotic
Description of the Main Signal Contribution in Dispersive Pulse
Propagation," Northern Optics 2006 (June 14-16, 2006, Bergen,
Norway).

7. K. E. Oughstun and N. A. Cartwright, "Dynamical Pulse Evolution in
the weak Dispersion. Limit," Eightennth Annual AFOSR
Electromagnetics Workshop (January 9-11, 2007, San Antonio,
Texas).

8. K. E. Oughstun, "Propagation through Dispersive, Absorptive Media,"
AFOSR Workshop on Electromagnetic Wave Propagation through
Challenging Media (May 8-9, 2007, Hanscom AFB).

9. N. A. Cartwright and K. E. Oughstun, "Ultrawideband Pulse
Penetration in a Debye Medium with Static Conductivity," Fourth
IASTED International Conference on Antennas, Radar, and
Propagation (May 30-June 1, 2007, Montreal, Canada).

10. N. A. Cartwright and K. E. Oughstun, "Ultrawideband Pulse
Penetration in an Isotropic Collsionless Plasma," 2007 CNC/USNC
North American Radio Science Meeting (July 22-26, 2007, Ottawa,
Canada).

11. K. E. Oughstun, "Optimal Pulse Penetration through Dielectric
Barriers," 2007 CNC/USNC North American Radio Science Meeting
(July 22-26, 2007, Ottawa, Canada).

12. K. E. Oughstun and N. A. Cartwright, "Ultrashort Electromagnetic
Pulse Dynamics in the Singular and Weak Dispersion Limits,"
Progress in Electromagnetics Research Symposium (PIERS 2007)
(August 27-30, 2007, Prague, Czech Republic).
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Finally, the first volume of my two volume work Electromagnetic and
Optical Pulse Propagation 1: Spectral Representations in Temporally
Dispersive Media on time-domain electromagnetics was published in the
Springer Series in Optical Sciences in 2006. The Preface in this book
states that "the critical, long-term support of this research by Dr. Arje
Nachmann at the Physics and Electronics Directorate of the United
States Air Force Office of Scientific Research is gratefully acknowledged."
The second volume Electromagnetic and Optical Pulse Propagation 2:
Temporal Pulse Dynamics in Dispersive, Attenuative Media is near
completion.
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Physical significance of the group velocity in dispersive, ultrashort
gaussian pulse dynamics

KURT E. OUGHSTUN* and NATALIE A. CARTWRIGHT

College of Engineering and Mathematics,
University of Vermont, Burlington, VT 05405, USA

(Received 16 February 2004; in final.form 26 April 2004)

The properties of ultrashort gaussian pulse propagation in a dispersive, attenua-
tive medium are reviewed with emphasis on the pulse velocity. Of particular
interest is the group velocity whose physical interpretation loses meaning in
causally dispersive materials as the temporal pulse width decreases into the
ultrashort pulse regime. A generalized definition of the group velocity that applies
to ultrashort pulses in causally dispersive materials is provided by the centroid
velocity of the pulse Poynting vector whose properties are described here.
In particular, it is shown that this physical velocity measure approaches the
group velocity for any value of the initial pulse carrier frequency and at any fixed
value of the propagation distance in the limit as the initial pulse width increases
indefinitely. This then provides a convenient measure for determining when the
group velocity approximation is valid.

1. Introduction

The interrelated problems of dispersive wave propagation and the group velocity
have a long and involved history. In 1839. Sir William R. Hamilton [1] considered
dispersive wave propagation as a coherent superposition of monochromatic scalar
wave disturbances, introducing the concept of group velocity and comparing it to the
phase velocity. Lord Rayleigh [2] mistakenly attributed the original definition of the
group velocity to Stokes [3], stating that 'when a group of waves advances into still
water, the velocity of the group is less than that of the individual waves of which it is
composed; the waves appear to advance through the group, dying away as they
approach its anterior limit. This phenomenon was, I believe, first explained by Stokes,
who regarded the group as formed by the superposition of two infinite trains of waves,
of equal amplitudes and of nearly equal wavelengths, advancing in the same direction'.
Rayleigh [4] then used these results to explain the difference in observability of the
phase and group velocities.

The distinction between signal and group velocities originated in the early
research of Voigt [5, 6] and Ehrenfest [7] on elementary dispersive waves, and by
Laue [8] who first considered dispersive wave propagation in a region of anomalous
dispersion where the absorption is both large and strongly frequency dependent. The
distinction between front and signal velocities was then considered by Sommerfeld
[9, 10] who proved that no signal could travel faster than the vacuum speed of light

*Corresponding author. E-mail: oughstun@emba.uvm.edu
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The first experimental measurement of the signal velocity was attempted by Shiren [21]
in 1962 using pulsed microwave ultrasonic waves within a narrow absorption band.
A more detailed analysis of these experimental results by Weber and Trizna [22]
indicated that the velocity measured by Shiren was in reality that for the first
precursor and not the signal. Subsequent research by Handelsman and Bleistein [23]
in 1969 provided a uniform asymptotic description of the arrival and initial evolution
of the signal front. The first experimental measurements of the precursor fields
originally described by Sommerfeld [10] and Brillouin [12, 13] were then published
by Pleshko and Palocz [24] who first referred to the first and second precursors as
the Sommerfeld and Brillouin precursors, respectively. Their experimental results
established the physical propriety of the asymptotic approach.

The establishment of the equivalence between the group velocity and the energy
transport velocity in loss-free media [25-27] provided a physical basis for the group
velocity in lossless systems. The precise formulation of the quasimonochromatic
or slowly-varying envelope approximation by Born and Wolf [28] in the context of
partial coherence theory then completed the mathematical and physical basis for the
group velocity approximation, which was then generalized [29] and extended [30, 3 1]
to any order of dispersion. The quasimonochromatic or slowly-varying envelope
approximation is a hybrid time and frequency domain representation [32] in which
the temporal field behaviour is separated into the product of a temporally slowly
varying envelope function and an exponential phase term whose angular frequency is
centred about some characteristic frequency o, of the pulse. The envelope function is
assumed to be slowly varying on the time scale At - I /w, which is equivalent [33]
to the assumption that its spectral bandwidth Aw satisfies the inequality Aw/wtc << 1.
The frequency dependence of the wavenumber may then be approximated by the first
few terms of its Taylor series expansion about the characteristic pulse frequency
w, with the assumption [30-32] that improved accuracy can always be obtained
through the inclusion of higher-order terms; this assumption has been proven
incorrect [34-35], optimal results being obtained using either the quadratic or the
cubic dispersion approximation of the wavenumber.

The description of the velocity of energy transport through a causally dispersive
medium [12, 13] was reinvestigated by Schulz-DuBois [36] in 1969 and finally by
Loudon [37] in 1970 who provided a correct description of the energy velocity
in a single resonance Lorentz model dielectric. This description and its extension [38]
to a multiple resonance Lorentz model dielectric showed that the energy velocity and
group velocity are different in the region of anomalous dispersion. Based upon this
critical result, Sherman and Oughstun [39, 40] then presented a complete physical
description of dispersive pulse dynamics in a causally dispersive medium in terms of
the energy velocity and attenuation of time-harmonic waves. This description
reduces to the approximate group velocity description in the limit as the material
loss goes to zero. A precise description of the signal velocity was then given by
Oughstun and Sherman [41] in 1988 in connection with the modern asymptotic
theory of dispersive pulse propagation [41-44]. The physical propriety and related
observability of this signal velocity definition was then demonstrated [44, 45] through
a numerical experiment, thereby completing the physical interpretation of the
asymptotic description.

It is clear that a more physically meaningful pulse velocity measure needs to be
considered in order to accurately describe the complicated pulse evolution that
occurs in ultrashort dispersive pulse dynamics. One possible measure is given by the
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In the asymptotic theory of dispersive pulse propagation [12, 44] the integral
representation given in equation (1) is expressed as

A(z, t) = 1 .Lf(W)exp [(Az/c)O(w,O)] dw (5)

with complex phase function

4(W, 6) i_ I [k(w)A: - cot] = iv[,,(w) - 01 (6)

and non-dimensional space-time parameter 6 =-ct/Az. The fact that this exact
integral representation of the propagated optical wave field satisfies relativistic
causality is expressed by the following theorem (originally proved by Sommerfeld
[9, 10] for a Heaviside unit step function modulated signal in a single resonance
Lorentz model dielectric and later extended [39, 44] to an arbitrary plane wave pulse
in a general causally dispersive medium):

Sommerfeld's Theorem: If f(t) = 0 for all t <0 and if 91 (ico[n(w) - 0]) -* -o as
lcw -+ oo with ' (w} = cwf sin(0) for arbitrarily small 6 > 0 for all 0< 1, then
A(z, t) = 0 for all Az > 0 when 0 < 1.

This precise statement of the luminal arrival of the signal front then proves that any
information that may be present in the signal will follow at some later space-time
point with 0 > 1.

3. The velocities of a gaussian envelope pulse in Lorentz model dielectrics

The group velocity approximation is a hybrid time-frequency domain representation
[32] in which the pulse is separated into the product of a slowly-varying envelope
and an exponential phase with angular frequency centred about a characteristic
frequency of the initial pulse. With the initial pulse at the plane z = -O given
by f(t) = u(t) sin (coct + *') with envelope u(t) and fixed carrier frequency we,
the propagated plane wave pulse is then given by the Fourier-Laplace integral
representation [44]

A(:, t) = 1 {i exp(-iV () dc (7)

for all Az > 0, where 4' = 0, 7r/2 for either a cosine or sine wave carrier, respectively.
Here i(w) is the temporal angular frequency spectrum of the initial pulse envelope
function u(t). Because of its central importance in optics, a unit amplitude gaussian
envelope pulse is considered here, where

u(t) = exp (-t 2 /T 2), (8)

with initial full pulse width 2T > 0 measured at the exp(-1) amplitude points.
In a multiple resonance Lorentz model [11] dielectric the complex index of refraction
is described by [44]

, 2-2 + i2 j (9)
jco- 0)2+Ijc
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In particular, the cubic dispersion approximation

fp(o) (wO) + fi)(wc)(O -OOc) + +.2)(wc)(w - w)2 + fil(3)(oc)(w - o) (14)

is also used because the cubic term introduces a small degree of asymmetry into the
propagated pulse. However, recently published research [34, 35] has established that
optimal results in the global sense are obtained either with the quadratic dispersion
approximation (10) or with the cubic dispersion approximation (14).

The phase velocity vp(w) M o/fl(w) describes the rate at which the co-phasal
surfaces propagate through the dispersive medium [2]. Since the phase of a spatially
coherent optical field can only be measured indirectly [52], this velocity measure does
not have any separate, measurable physical meaning in spite of the fact that it plays
a central role in the mathematical description of pulse dispersion, as described by
the Fourier-Laplace integral representation given in equation (1). In particular,
the phase velocity of a pulse is superluminal (i.e. vp(w) > c) when the input pulse
carrier frequency w, is above the uppermost absorption band of a Lorentz model
dielectric, as illustrated in figure 1 for a double resonance Lorentz model dielectric
when WOc > (03.

The classical group velocity vg(w) (0f(w)/&v)- describes the rate at which the
envelope of a group of waves travels through the dispersive medium [1-4].
As described by Rayleigh [2], a group of waves is defined as moving beats following
each other in a regular pattern as, for example, that obtained from the coherent
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Figure 1. Angular frequency dispersion of the relative phase velocity vp/c (dot-dashed
curve), relative group velocity vg/c (dashed curve) and relative energy velocity (solid curve)
in a double resonance Lorentz model dielectric with infrared (wo = 1.74 x 10"4 rs - ,
b0= 1.22 x 1014 rs - ', S0 = 4.96 x 1013 rs -1  and near ultraviolet (w2=9.145 x 105rs- 1,
b2 = 6.72 x 10'5 rs - ', 3 2 = 1.434 x 105 rs - ) resonance lines.
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corresponds to a generalized Brillouin precursor (describing the low-frequency
response of the medium below the lowermost absorption band), and the field
component Am(z, t), if it is present, corresponds to a generalized middle precursor
(describing the intermediate-frequency response of the medium below the uppermost
absorption band). A general condition for the appearance of the middle precursor is
given in [42]. Each field component AJ(z, t) contains a gaussian amplitude factor, the
peak amplitude point of each propagating at the classical group velocity evaluated at
the instantaneous oscillation frequency of that field component at that space-time
point [54, 55]. As the pulse evolves, the instantaneous oscillation frequency at each
peak amplitude point changes, the change being most rapid during the initial pulse
evolution and in the anomalous dispersion regions where the material dispersion is
greatest. If the input pulse carrier frequency co, is situated in a region of anomalous
dispersion where the classical group velocity is either superluminal or negative
(or both), then, as the pulse begins to evolve with increasing propagation distance, its
instantaneous oscillation frequency at that peak amplitude point rapidly shifts into
a region of normal dispersion where the group velocity is subluminal and approaches
the energy transport velocity [55]. Hence, any superluminal or negative movement of
the peak pulse amplitude point occurs in the initial pulse evolution and is extremely
short-lived. Whether or not this motion has any physical significance is debatable as
peak amplitude points in the dynamical pulse evolution are arguably not causally
related [56] and may or may not convey any transfer of information [57-59].
Nevertheless, Sommerfeld's theorem clearly establishes that the front of the electro-
magnetic field cannot move superluminally. Since the field at some propagation
distance can always be separated into two pans, one preceding a given point to
in time and the other following that point in time, then for all larger propaga-
tion distances, Sommerfeld's theorem states that the field part following that initial
point in time cannot move ahead of the propagated space-time point 0 F =
(c/Az)(t - to) - I travelling at the speed of light c; that is, peak amplitude points
at two different space-time points in the propagated field evolution that are super-
luminally separated are not causally connected.

It is clear that a more physically meaningful pulse velocity measure needs to be
considered in order to more accurately describe the complicated pulse evolution that
occurs in ultrashort dispersive pulse dynamics. One possible measure is given by the
pulse centrovelocity [46]

VcE =_ V tE 2(r,t) dt / E2(r,t)dt , (19)

which describes the evolution of the temporal centre of gravity of the pulse intensity.
A more appropriate velocity measure would track the temporal centroid of the
Poynting vector of the pulse. This pulse centroid velocity of the Poynting vector was
first introduced by Lisak [47] in 1976. Recent descriptions [48-50 of its properties
have established its efficacy in describing the evolution of the pulse velocity with
propagation distance in a Lorentz model dielectric.

The instantaneous centroid velocity of the pulse Poynting vector is defined as [50]

VC1= lim (Az/A(t)) (20)A:--0
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Dynamical Evolution of the Brillouin Precursor in
Rocard-Powles-Debye Model Dielectrics

Kurt Edmund Oughstun

Abstract.-When an ultrawide-band electromagnetic pulse pen- of well-defined precursor fields which asymptotically dominate
etrates into a causally dispersive dielectric, the interrelated effects the dynamical field behavior in the mature dispersion regime
of phase dispersion and frequency dependent attenuation alter [ 19], [20]. Notice that an ultrawide-band pulse need not be ul-
the pulse in a fundamental way that results in the appearance
of so-called precursor fields. For a Debye-type dielectric, the trashort; for example, a rectangular envelope modulated pulse
dynamical field evolution is dominated by the Brillouin precursor of temporal duration T > 0 has a spectrum that is always ul-
as the propagation depth typically exceeds a single penetration trawide-band, falling off as Jw-1 as Iwi - oo, while the pulse
depth at the carrier frequency of the input pulse. This is because itself may not be ultrashort.
the peak amplitude in the Brillouin precursor decays only as the The precursor fields are a characteristic of the material
square root of the inverse of the propagation distance. This nonex-
ponential decay of the Brlliouln precursor makes it ideally suited dispersion [20], the input pulse merely providing the requisite
for remote sensing. Of equal importance is the frequency structure spectral energy in the appropriate frequency domain. For the
of the Brillouin precursor. Although the instantaneous oscillation Lorentz model [21] of resonance polarization phenomena, used
frequency is zero at the peak amplitude point of the Brillouln in the classical theory of dispersive pulse propagation [1]-[6],
precursor, the actual oscillation frequency of this field structure Is both a high-frequency (above resonance) Sommerfeld precursor
quite different, exhibiting a complicated dependence on both the
material dispersion and the Input pulse characteristics. Finally, a and a low-frequency (below resonance) Brillouin precursor are
Brillouln pulse is defined and Is shown to possess near optimal (if present in the propagated field structure when the input pulse is
not optimal) penetration into a given Debye-type dielectric. ultrawideband. Additional precursor fields may also exist for a

Index Terms--Eectromagnetic propagation in absorbing media, multiple resonance Lorentz model dielectric [22]. For both the
electromagnetic propagation in dispersive media, electromagnetic Debye model [23] of orientational polarization phenomena [24]
transient propagation, ultrawideband radar. and the Rocard-Powles extension [25] of the Debye model,

only the Brillouin precursor field is present in the propagated

I. INTRODUCTION field structure [20]. Because of its unique nonexponential peak
decay, the Brillouin precursor has direct application to foliage

HE dynamical evolution of an ultrawide-band electromag- and ground penetrating radar, remote sensing and wireless
T netic pulse as it propagates through a causally dispersive communications in adverse environments. However, its effi-
dielectric is a classical problem [1 ]-[6] in electromagnetic wave cacy depends upon its physical frequency structure about this
theory with considerable current importance [7]-[ 11]. The fre- peak amplitude point.
quency dependent phase and attenuation in a causal medium For carrier frequencies in the radio spectrum and below (f, <
are interrelated through a Hilbert transform [12]. Because of 300 GHz) the material response is typically dominated by ori-
this, an ultrawide-band pulse undergoes fundamental changes entational polarization effects [24]. Above this frequency, res-
as it propagates through a dispersive material. Each spectral onance polarization effects begin to dominate the material dis-
component travels through the dispersive medium with its own persion. The focus of this paper is on the Brillouin precursor in
phase velocity so that the phasal relationship between the spec- Rocard-Powles-Debye model dielectrics when the input ultra-
tral components of the pulse changes with propagation distance, wide-band pulse has a carrier frequency that is sufficiently small
and each spectral component is attenuated at its own rate so that resonance polarization effects are entirely negligible.
that the relative amplitudes between the spectral components
of the pulse also change with propagation distance. These two
interrelated effects result in a complicated dynamical evolu- II. PLANE WAVE PULSE PROPAGATION IN TEMPORALLY
tion of the propagated field [6] that is accurately described by DISPERSIVE DIELECTRICS
the asymptotic theory [ 13]-[17] as the propagation distance ex- The angular frequency domain form of Maxwell's equations
ceeds a value set by the material absorption depth at the input in source-free regions of a temporally dispersive dielectric is
pulse carrier frequency [ 18]. For an ultrawide-band pulse, these given by the pair of equations (with i = V-)
combined effects manifest themselves through the formation

V x E(r, w) =i ,iH(r, w)
Manuscript received May 8, 2003; revised November 10, 2004. This work

was supported in pan by the United States Air Force Office of Scientific Re- x ft(r, w) iw(,)fE(r, w) (1)
search (AFOSR) under Grant F49620-01-0306.

The author is with the Computational Electromagnetics Laboratory, College where c(w) = c, (w) + ic, (w) is the complex-valued dielectric
of Engineering and Mathematics, University of Vermont, Burlington, VT
05405-0156 USA (e-mail: oughstun@emba.uvm.edu). permittivity whose real part c,(,) = R{ (w)I and imaginary

Digital Object Identifier 10.1 109/TAP.2005.846452 part ci(w) =-- Jc(w)} form a Hilbert transform pair [12] and

0018-926X/$20.00 0 2005 IEEE



1584 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL 53, NO. 5, MAY 2005

For 0 > 0o, the asymptotic description of the propagated
£field in a Debye-type dielectric may be expressed either in the

form [20]
_07-

A(z, t) - AB(Z, t) + Ae(z, t) (13)

d: as Az - oo, or else in a form that is a superposition of expres-
sions of the form given in (13). For example, an input rectan-
gular envelope pulse of temporal duration T may be expressed

E as the difference between two Heaviside unit-step-function sig-
03. nals displaced in time by T, each propagated signal being de-

E "scribed by the asymptotic expression given in (13), the first
02, being referred to as the leading-edge signal and the latter as the

trailing-edge signal. Similar representations hold for other ini-
tially symmetric pulse shapes. The field quantity AB(Z, t) is due

o 10' 1" . . ""*" ........10 .. to the asymptotic contribution from the near saddle point and is
. - referred to as the Brillouin precursor [20]. The field contribution

Fig. 1. Angular frequency dispersion of the real (solid curve) adimginary A,(z, t) is due to the pole contributions (if any) and is referred
(dashed curve) pants of the complex index of refraction for the simple to as the signal component [ 1 ]-[6].
Rocard-Powks-Debye model of triply-distilled water. The asymptotic description of the Brillouin precursor in a

Rocard-Powles-Debye model dielectric is obtained through a
presented in this paper. The branch points of n(wJ) and t(w, 8) direct application [6] of Olver's theorem [28] to the contourinclude the singularities ac = -i/nt 1 , w f2 =-i/ and zeroes integral obtained from (8) by deforming the contour C to aninclu= - l arie- c)/(2lr =), Wz2 = -1(T + , where Olver-type path through the near saddle point, with the resultW./ =Wshown in (14) at the bottom of the page, as Az --+ oo with 0 >

T7-~~Tr7-Tnd 2 -4 2 (1 + /e 1/2Ir' -  " +zM,- ,d - , ( co) , where wN(0) denotes the near saddle point location and
For a Debye-type dielectric, the saddle point equation yields where 0"(w) = 2

o(w, 8)/Ow2 - i[2n'(w) + wn"(w)]. Unlike
[20] just a near saddle point solution in the low-frequency do- that for a Lorentz model dielectric where there are two neigh-
main about the origin. For Iwi < iwp the complex index of boring near saddle points that coalesce into a single second-
refraction (10) may be approximated by the quadratic expres- order saddle point, thereby requiring uniform [6], [14] and tran-
sion sitional [29] asymptotic expansion techniques, the asymptotic

2 1 2expression given in (14) is uniformly valid for all finite 0 >2 ' r 21.r /2 ..
n(w) . 0o0- €o. + 3co) - 1 W + -W (11) Ero provided that any pole singularities of the spectral func-

200 [4c. 20o tion fi(wN(0) - w,) are sufficiently well-removed from the near

saddle point location. In that case, the pole contribution A,(z, t)
where 0o =_ n(O) = . With this substitution, the saddle is given by a direct application of the residue theorem.
point equation yields, for 0 > 0o - rc2 /3(, the approximate For example, for a Heaviside unit-step-function signal, i(w -
near saddle point location' w) = i/(w, - w) so that there is a simple pole singularity sit-

uated along the positive real frequency axis at the input carrier

WNW1r--+ Eo - 0) 12)frequency. If 0. denotes the space-time value when the Olver-
3N() t-[1 1+ (0-0) (12) type path P(O) crosses the pole, then [6], [13]-[15], shown in

(15) at the bottom of the following page, as Az -- oo with
1/2

with rK = aTp/(28o) and ~ (ar-,/(20))[ c,,( , + 0 > EW . The uniform asymptotic theory [6], [14], [301 de-
3 c.)/(4.T°r,) - 1]. Numerical results show that this saddle scribing the interaction between a saddle point and a simple pole
point moves down the imaginary axis as 0 increases from the singularity of the integrand identifies 0. as the space-time value
value 0.o = Z crossing the origin at 8 = Oo and then ap- 0 at which the steepest descent path through the near saddle
proaching the branch point singularity w.2 = -i/,r as 0 -. 0, point crosses the simple pole singularity at w = W,
as described by (12). IV. DYNAMICAL EVOLUTION OF THE BRILLOUIN PRECURSOR

tThis approximate solution is different from the one presented in [26, eq.
(21)] which is accurate only over a small space-time interval about the value The dynamical structure of the Brillouin precursor in a single
01p that is defined in that paper. relaxation time Rocard-Powles-Debye model dielectric when

AB(Z, t) 1 {]1/2 fi(wN(O) - we) exp () (WN(O)0)]} (14)
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Fig. 3. Dynamical field evolution of an input unit amplitude ten cycl8 Fig. 5. Peak amplitude attenuation as a function of the relative propagation
rectangular envelope pulse with f = I GHz carrier frequency at one, three, distance for input unit amplitude single cycle rectangular envelope pulses with
five, seven and nine absorption depths in the simple Rocard-Powles-Debye carrier frequencies f = 0. 1 GHz (* symbols), f, = 1 GHz (o symbols), and
model of triply-distiUed water. f, = 10 GHz (+ symbols). The solid curve describes the pure exponential

attenuation given by exp(-Az/z,).

1 ,/, -O
is then limited to that contained in a single cycle of the input
rectangular envelope pulse. For a ten cycle pulse as illustrated

0o8 in Fig. 3, this means that, at most, only ten percent of the input

oA, 2 . , pulse energy is available to this precursor pair [33].
4 A more efficient way to generate a Brillouin precursor pair

A.2 5 6 7 8 9 10 in a dispersive material is with a single cycle pulse. The pulse
o Asequence presented in Fig. 4 illustrates the dynamical pulse

SUV Vevolution as a unit amplitude, rectangular envelope single
-OA " cycle pulse with fc = 1 GHz penetrates into water with

&Az/zd = 0, 1,2,..., 10. The evolution of the pulse into a

4.o pair of leading and trailing-edge Brillouin precursors is clearly
evident as the propagation distance exceeds a single absorp-
tion depth (AZ/Zd > 1) and the peak amplitude attenuation

12 goes from exponential decay to the (Az)-1/2 algebraic decay
1.3 IA IS t1  

1.7 1,. 2 described in (16). This transition is illustrated in Fig. 5 which
presents the peak amplitude decay as a function of the relative

Fig. 4. Propagated pulse sequence of a unit amplitude rectangular envelope propagation distance AZ/Zd. The solid curve in the figure
single cycle pulse with f. = 1 GHz carrier frequency in the simple describes the behavior of the function exp(-AZ/Zd) which
Rocard-Powles-Debye model of triply-distilled water, represents pure exponential decay. The numerically determined

peak amplitude decay for three different input single cycle
when the propagation distance exceeds a single absorption pulses with carrier frequencies f, = 0.1 GHz, I, 1 GHz,
depth at the pulse carrier frequency. This is illustrated in the and f: = 10 GHz is presented in this figure by the *, o, and
sequence of graphs presented in Fig. 3 for an input ten cycle + symbols, respectively, each data set connected by a cubic
rectangular envelope pulse with I GHz carrier frequency and spline fit.
T = 10 ns initial pulsewidth at one, three, five, seven, and The temporal width of the leading-edge Brillouin precursor
nine absorption depths in water. Notice that the leading and as a function of the propagation distance is illustrated in Fig. 6.
trailing-edge Brillouin precursors persist long after the 1 GHz Part (a) of the figure is plotted in terms of the absolute propaga-
signal has been significantly attenuated by the medium. Al- tion distance in meters while (b) is plotted in terms of the relative
though these two Brillouin precursors penetrate very far into propagation distance AZ/Zd. The dependence of the absorption
the material, they only carry a small fraction of the initial pulse depth Zd = a- 1 (w,) on the carrier frequency of the pulse is re-
energy in the particular case illustrated here. The leading-edge flected in the individual curves appearing in Fig. 6(b). The solid
Brillouin precursor is essentially a remnant of the first half cycle curves in the figure describe the asymptotic result given in (20)
of the initial pulse while the trailing-edge Brillouin precursor and the three sets of data points present numerical results for the
is a remnant of the last half cycle. The input pulse energy f, = 0.1 GHz, f, = 1 GHz, and f, = 10 GHz single cycle
available to the leading and trailing-edge Brillouin precursors pulse cases, each data set connected by a cubic spline fit. Notice
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(b) Fig. 10. Propagated pulse sequence forthe Brillouin pulse BPI with delay time

Fig. 9. Temporal structure of the Brilouin pulse BPI with time delay T - T = 1/(2f,) for f, = I GHz in the simple Rocard-Powles-Debyc model of

1/(2f!) for f, = I GHz. The separate leading and trailing-edge precursor triply-distilled water.
components are illustrated in part (a) and their superposition is given in part (b).

in improved penetration into the dispersive, absorptive mate-
penetrate a finite distance into a given dispersive dielectric. The rial. However, this destructive interference can never be corn-
results presented in Figs. 4 and 5 indicate that the pulse that pletely eliminated for all propagation distances since the time
will provide near-optimal, if not indeed optimal, penetration is delay between the peak amplitude points for the leading and
comprised of a pair of Brillouin precursor structures with the trailing-edge Brillouin precursors decreases with the inverse of
second precursor delayed in time and 7r phase shifted from the the propagation distance [6], [15]. Nevertheless, it can be ef-
first. This so-called Brillouin pulse is obtained from (14) with fectively eliminated over a given finite propagation distance by
Az = Zd = a-1/2 (we) in the exponential, the other factors not choosing the time delay T sufficiently large. The tradeoff in
appearing in the exponential set equal to unity, and is given by doing this is to decrease the effective oscillation frequency of

r 4(WN(O),O) 1_, [4(WN(OT),OT) 1  the radiated pulse.

fBp(t) = exp I I W eXP ( 1 (22) The numerically determined peak amplitude decay with rel-
ative propagation distance Az/zd is presented in Fig. 11. The

where OT = 0 - cTzd with T > 0 describing the fixed lower solid curve depicts the exponential attenuation described
time delay between the leading and trailing-edge Brillouin pre- by the function exp(-Az/zd), and the lower dashed curve de-
cursors. If T is chosen too small then there will be significant scribes the peak amplitude decay for a single cycle rectangular
destructive interference between the leading and trailing-edges envelope pulse with f, = 1 GHz. Notice that the departure from
and the pulse will be rapidly extinguished. For practical rea- pure exponential attenuation occurs when Az/zd % 0.5 as the
sons, 2T should be chosen near to the inverse of the operating leading and trailing-edge Brillouin precursors begin to emerge
frequency f, of the antenna used to radiate this Brillouin pulse. from the pulse. The dashed curve labeled BPI describes the peak

With T = 1/(2f,) the input Brillouin pulse is approximately amplitude decay for the Brillouin pulse with T = 11(2f,),

a single cycle pulse with effective oscillation frequency equal BP2 describes that for the Brillouin pulse with T = 1.fc,
to f. The input Brillouin pulse when fc = 1 GHz is depicted and BP3 describes that for T = 3/(2fc). There is no notice-
in Fig. 9; part (a) of the figure shows the separate leading and able improvement in the peak amplitude decay as the delay
trailing-edge Brillouin precursor structures while part (b) of the time T is increased beyond 3/(2fc) over the illustrated range
figure shows the final pulse obtained from the superposition of of propagation distances. Notice that at ten absorption depths,
these two parts, as described by (22). The initial rise and fall exp(-Az/zd) = exp(-10) --1 4.54 x 10- 5, the peak ampli-
time for this pulse is ,- 0.6 ns. The dynamical evolution of this tude of the single cycle pulse is 0.0718, the peak amplitude of
input Brillouin pulse in triply-distilled water is illustrated by the the Brillouin pulse BPI is 0.2123, the peak amplitude of the
pulse sequence given in Fig. 10 with AZ/Zd = 0, 1, 2,..., 10. Brillouin pulse BP2 is 0.2943, and the peak amplitude of the
Comparison with the pulse sequence depicted in Fig. 4 for a Brillouin pulse BP3 is 0.3015, over three orders of magnitude
I GHz single cycle rectangular envelope pulse shows that the larger than that expected from simple exponential attenuation.
Brillouin pulse decays much slower with propagation distance. The power associated with the observed peak amplitude
Improved results are obtained when the delay is doubled to the decay presented in Fig. 11 may be accurately determined [34]
value T = 11f,. In this case there is a noticeable "dead-time" by plotting the base ten logarithm of the peak amplitude data
between the leading and trailing-edge Brillouin precursor struc- versus the base ten logarithm of the relative propagation dis-
tures which decreases the effects of destructive interference be- tance. If the algebraic relationship between these two quantities
tween these two components of the Brillouin pulse, resulting is of the form Apuk = B(Az/zd) P where B is a constant, then
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seminal analysis, Brillouin concluded that","2 "The signal velocity does not differ from the group
velocity, except in the region of anomalous dispersion. There the group velocity becomes greater
than the velocity in vacuum if the reciprocal c/U < 1; it even becomes negative.. .Naturally, the
group velocity has a meaning only so long as it agrees with the signal velocity. The negative parts
of the group velocity have no physical meaning... The signal velocity is always less than or at
most equal to the velocity of light in vacuum." This research then established the asymptotic
theory of pulse propagation in dispersive, absorptive media. An essential feature of this approach
is its' adherence to relativistic causality through careful treatment of the dispersive properties of
both the real and imaginary parts of the complex index of refraction.

At approximately the same time, Havelock 14
,

5 completed his research on wave propagation in
dispersive media based upon Kelvin's stationary phase method 6. It appears that Havelock was
the first to employ the Taylor series expansion of the wave number (K in Havelock's notation)

about a given wavenumber value i that the spectrum of the wave group is clustered about,
referring to this approach as the group method. In addition, Havelock 5 stated that "The range of
integration is supposed to be small and the amplitude, phase and velocity of the members of the
group are assumed to be continuous, slowly varying, functions of x" This research then
established the group velocity method for dispersive wave propagation. Since the method of
stationary phase' 7 requires that the wavenumber be real-valued, this method cannot properly treat
causally dispersive, attenuative media. Furthermore, notice that Havelock's group velocity
method is a significant departure from Kelvin's stationary phase method with regard to the
wavenumber value K about which the Taylor series expansion is taken. In Kelvin's method, 4 is

the stationary phase point of the wavenumber K while in Havelock's method r.0 describes the
wavenumber value about which the wave group spectrum is peaked. This apparently subtle
change in the value of KO results in significant consequences for the accuracy of the resulting
group velocity description.

There were then two different approaches to the ?problem of dispersive pulse propagation: the
asymptotic approach (based upon Debye's method' of steepest descent) which provided a proper
accounting of causality but was considered to be mathematically unwieldy without any simple,
physical interpretation, and Havelock's group velocity approximation (based upon Havelock's
reformulation 4,1 5 of Kelvin's asymptotic method' 5 of stationary phase) which violates causality
but possesses a simple, physically appealing interpretation. It is interesting to note that both
methods are based upon an asymptotic expansion technique but with two very different
approaches, the method of stationary phase relying upon coherent interference and the method of
steepest descent relying upon attenuation.

The asymptotic approach was revisited by Baerwald' 8 in 1930 who reconsidered Brillouin's
description 0, ' of the signal velocity in causally dispersive systems, and also by Stratton19 in
1941, who reformulated the problem in terms of the Laplace transform and derived an alternate
contour integral representation of the propagated signal. Stratton appears to have first referred to1 0 I1 , 1 2

the forerunners described by Sommerfeld 0 and Brillouin"' as precursors. The first experimental
measurement of the signal velocity was attempted by Shiren20 in 1962 usin pulsed microwave
ultrasonic waves within a narrow absorption band. His experimental results were 'found to lie
within theoretical limits established by calculations of Brillouin and Baerwald." However, a more
detailed analysis of these experimental results by Weber and Trizna2l indicated that the velocity
measured by Shiren was in reality that for the first precursor and not the signal. Subsequent
research by Handelsman and Bleistein 22 in 1969 provided a uniform asymptotic description of the
arrival and initial evolution of the signal front. The first experimental measurements of the

3



Aw/ c <<1 is satisfied. The frequency dependence of the wavenumber may then be
approximated by the first few terms of its Taylor series expansion about the characteristic pulse
frequency W with the assumption3

,'
3 6'50 that improved accuracy can always be obtained through

the inclusion of higher-order terms; this assumption has been proven incorrect8 ' 49, optimal results
being obtained using either the quadratic or the cubic dispersion approximation of the
wavenumber.

Because of the slowly-varying envelope approximation together with the neglect of the frequency
dispersion of the material attenuation, the group velocity approximation is invalid in the ultrashort
pulse regime in a causally dispersive material or system, its' accuracy decreasing as the
propagation distance Az increases. This is in contrast with the modem asymptotic description
whose accuracy increases in the sense of Poincar&1 as the propagation distance increases. There
is then a critical propagation distance z, > 0 such that the group velocity description using either
the quadratic or cubic dispersion approximation provides an accurate description of the pulse
dynamics when 0 _ Az < z,, the accuracy increasing as Az -+ 0, while the modem asymptotic
theory provides an accurate description when Az > zc, the accuracy increasing as Az -+ -. This
critical distance z, depends upon both the dispersive material and the input pulse characteristics
including the pulse shape, temporal width and characteristic angular frequency w. For example,

= co for the trivial case of vacuum for all pulse shapes, whereas zr - Zd for an ultrashort,
ultrawideband pulse in a causally dispersive dielectric with e-' penetration depth zd at the
characteristic frequency oc of the input pulse.

In spite of these results, the group velocity approximation remains central to the description of
ultrashort pulse dynamics in both linear and nonlinear optics with little regard to its domain of
validity. This is seemingly supported by the apparent agreement between experimental
measurements and results predicted by the group velocity approximation. Herein lies the central
controversy considered in this paper. Related to this is the controversy regarding the possibility of
superluminal pulse velocities since the group velocity can assume any value between -o and
+-o in a region of anomalous dispersion.

20.2. Integral Representation of the Propagated Pulse and Causality

The propagated plane wave, pulsed optical field A(z,t) that results from the initial pulse
A(zo, t) = f(t) at the plane z = zo is given by the Fourier-Laplace integral representation6

1 t- i ()-wl
A(z,t) = icf(o)e' ldo (20.1)

for all Az > 0. Here f(w) is the temporal angular frequency spectrum of the initial pulse
function f(t), C denotes the contour of integration w = W' + ia where w' = 9{fw} ranges from
negative to positive infinity, and a is a constant greater than the abscissa of absolute convergence
for f(t). The spectrum A(z, w) of the optical field A(z,t) satisfies the Helmholtz equation

[v2 +P(w)]i(zw) = 0, (20.2)

where

5



20.3. Havelock's Classical Group Velocity Approximation

The group velocity approximation is a hybrid time and frequency domain representation50 in
which the temporal pulse behavior is separated into the product of a slowly-varying envelope
function and an exponential phase term whose angular frequency is centered about some fixed
characteristic frequency of the initial pulse. Consider then the specific form of the initial pulse at
the plane z = Zo that is given by f(t) = u(t) sin(ot + Vf) with envelope u(t) and constant carrier
frequency w. The propagated plane wave pulse is then given by the Fourier-Laplace integral
representation6

A(z, t) = I 9Rie-'WJ i (w-o)eii(W)&zG]do} (20.7)

for all Az > 0, where , = 0;r/2 for either a cosine or sine wave carrier, respectively. Here
i(0)) is the temporal angular frequency spectrum of the initial pulse envelope function u(t). In
the slowly-varying envelope approximation, the envelope function u(t) is assumed to be slowly-
varying on the time scale At, - l/w, which is equivalent 5' to the quasimonochromatic
approximation that the spectral bandwidth Aw of i(w) is sufficiently narrow that the inequality
Ato/w << 1 is satisfied. The complex wavenumber k(o) is then expanded in a Taylor series
about the carrier frequency w with the assumption 33 6

, that this series may be truncated after a
few terms with some undefined error. It is typically assumed that the attenuation coefficient

a(w) = 3{k(to)} is sufficiently small that it's frequency dispersion is entirely negligible in

comparison to that for the propagation factor l(to) = %imR(w)1, so that a(w) -,a(w); this is

entirely compatible with the stationary phase foundation 14" 6 of the group velocity description
which requires that the wavenumber be real-valued since this frequency independent attenuation
factor may then be taken outside of the integration. In addition, the propagation factor fl(o) is
typically represented by the quadratic dispersion approximation

/(w) 1(o) + 0(w t)(o - wO)+ Il2)(to (Xo-W) 2  (20.8)
2!

where fl(j)(w)= Djfl(w)/taw. The coefficient f(')(w ) is the inverse of the group velocity

evaluated at the carrier frequency, while the coefficient #(2) (o) describes the so-called group
velocity dispersion"'. With this substitution, Eq. (20.7) becomes

A(_,_t)- ________ ri* )&z=,t-W- 3  z r'e (3'(w2t)AZ + t' - ) dt 1(20.9)

and the pulse phase propagates through the dispersive medium at the phase velocity

, (0))(20.10)

while the pulse envelope propagates through the dispersive medium at the group velocity

7



field. A complete understanding of these saddle point dynamics together with the manner in
which they interact with the initial pulse spectrum provides a detailed, accurate description of the
entire dynamical evolution of the propagated pulse in the dispersive, absorptive medium for all
Az> zc, the accuracy of this approximation increasing in the sense of Poincar&17 as the
propagation distance increases above some critical propagation distance z, > 0.

The set of saddle points of the complex phase function a(o,O) = io[n(o) -9] is determined by
the condition that O(W, 0) be stationary at a saddle point, in which case 0'(o, 0) = 0, where the
prime denotes differentiation with respect to tW, so that

n(tO) + oin'(0) = 0 (20.14)

The solutions of this saddle point equation then give the desired saddle point locations in the
complex 0)-plane as a function of the space-time parameter 0 = ct/Az. The saddle points will
then evolve with time at any fixed propagation distance Az. Because of the general symmetry
relations43'4 n(-w) = n'(cO*) and 0(-O,O) = 0*(tO,O) that are satisfied by a causal medium, if

W,(0) is saddle point of O(W,O), then so also is -ao;(8).

An appreciation of the physical significance of the saddle points can be obtained from the relation

(Az/c)O(), O) = i(k(O)Az - ar) for the complex phase function. Upon differentiating this

expression with respect to CO, one obtains (Az/c)'(W, O)= i((ak(aO)/laa)Az-t). Since

0'(0), 0) = 0 at each saddle point tOj(0) of 0, then

Az I-g (20.15)---(ak l ) -VW

and the complex group velocity is real-valued at the saddle points.

With the saddle point locations known for 0 > 1, the asymptotic analysis then proceeds by
expressing the integral representation given in Eq. (20.5) in terms of an integral I(z,O) with the
same integrand but with a new contour of integration P(O) to which the original contour C may
be deformed43". By Cauchy's residue theorem, the integral representation (20.5) of A(z,t) and
the contour integral I(z, 6) are related by

A(z,t) = I(z,0) - 91{2;iA(O)} , (20.16)

where

A(O)= LResj exp[(Az/c)O(tO (20.17)

is the sum of the residues of the poles that were crossed in the deformation from C to P(O), and
where
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values of z > z0 for sufficiently large t. As a result, this contribution to the asymptotic behavior of
the propagated field describes the steady-state behavior of the signal. The arrival of this signal
contribution is determined by the dynamics of that dominant saddle point that becomes
exponentially negligible in comparison to the pole contribution. A detailed knowledge of the
saddle point dynamics for a given dispersive material is then seen to be a critical ingredient for a
detailed description of dispersive pulse propagation in that material, not just for the transient field
behavior described by Eq. (20.19), but also for the steady-state behavior described in Eq. (20.20).

In a multiple resonance Lorentz model56 dielectric the complex index of refraction is described
by46

nw b2,j (20.21)
M W (02J. + 2i3 2co

where 0)2j is the undamped resonance frequency, b2j is the plasma frequency, and 3 2j the
phenomenological damping constant for the (2j) resonance line of the dielectric material. This
causal model52 provides an accurate description of both the normal and anomalous dispersion
phenomena observed in homogeneous, isotropic, locally linear optical materials. The regions of

anomalous dispersion approximately extend over each frequency domain (w2j, o2j+), where

02J+I -- 02J + b2. In this case the saddle point equation (20.14) has at least two sets of saddle

points that are symmetrically situated about the imaginary axis. One pair of saddle points (the
distant saddle points' 1,12,43, 4) evolve in the high-frequency region frOI > )2N+1 of the complex w)-
plane above the uppermost absorption band of the material, while another pair of saddle points
(the near saddle points' 1,12,43 46) evolve in the low-frequency region IWI < (0o of the complex (0-
plane below the lowermost absorption band of the dielectric. If the dielectric material is described
by multiple resonance lines, then additional middle saddle points will appear in the region

10 < )2N below the uppermost absorption of the dielectric. The asymptotic description of the
propagated pulse may then be expressed either in the form

A(z,t) ~ As(z,t) + A.(z,t) + AB(z,t) + A,(z,t) (20.22)

as Az - co, or by an expression that is a superposition of expressions of the form given in Eq.
(20.22).

Here As(zt) denotes the contribution from the distant saddle points with nonuniform asymptotic
approximation given by Eq. (20.19) for 0 > 1 and is referred to as the first or Sommerfeld
precursor. This nonuniform approximation breaks down at 6 = 1 when the distant saddle points
are at infinity. The uniform asymptotic description 22

,
45 46 of the Sommerfeld precursor, uniformly

valid in the space-time parameter 0 = ct/Az for all 0 > 1, must then be used in place of Eq.
(20.19) for the initial pulse evolution. The instantaneous angular oscillation frequency of the
Sommerfeld precursor is approximately given by the real part of the distant saddle point
location 43

,
46 in the right-half of the complex wo-plane. The Sommerfeld precursor then describes

the signal front which arrives at 0 = 1 with infinite oscillation frequency (but zero amplitude for
a finite energy input pulse) and consequently propagates at the speed of light c in vacuum. As 0
increases away from unity, the amplitude of the Sommerfeld precursor rapidly increases to a
maximum value and then decreases monotonically for all larger 0 while the instantaneous
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20.5. Accuracy of the Group Velocity Description of Ultrashort Pulse Dynamics

The accuracy of the group velocity approximation of ultrashort pulse dispersion is now
considered in order to establish the space-time domain over which this approximate description is
valid. A double resonance Lorentz model of a fluoride-type glass with infrared
(wo = 1.74 x 1014 ris, bo = 1.22 x 1014 rfs, 0 = 4.96 X 1O13 ris) and near ultraviolet

(0 2 =9.145xlO'r/s, b2 =6.72x101 r/s, 82 =1.434xlO5 r/s) resonance lines is
considered with complex index of refraction given by Eq. (20.21) with N = 2. The angular
frequency dispersion of the real and imaginary parts of the complex wavenumber
k(w) = (opc)n(w) for this double resonance Lorentz model dielectric is illustrated in Figure 1.
The upper and lower solid curves in each part of the figure describe the exact frequency
dependence of fi(w) _9{k(o)} and a(w) - Z{k(o)}, respectively, while the dashed red curves

describe the cubic dispersion approximation when (a) a), = w, = 1.615 x 10" ris and (b)
w, = 0.87o)2 = 8.0 x 1015 rfs. The cubic dispersion approximation is seen to provide a reasonably
accurate estimate of the local frequency dispersion of the propagation factor fl((o) about the
carrier frequency within the passband where the dispersion is normal when (o, = cow, but the
accuracy of this approximation is seen to decrease48'49 as o, is shifted toward either absorption
band where the dispersion becomes anomalous. The inclusion of higher-order terms in the Taylor
series approximation of the complex wavenumber only serves to further decrease its accuracy in a
global sense4 ' 49. The cubic dispersion approximation of the attenuation coefficient is not as
accurate as that for the propagation factor making the necessity of the approximation
a(w) - a(w) used in the group velocity description all the more important.

Cubic Dispersion Approximation Cubic Dispersion Approximation

of the Complex Wavenumber of the Complex Wavenumber

W .w. 1=.615x0'5 r/s =w 2 = 9.145 x 10" r/s

t0o . to..

10" 10 0 1 1 * 1 10 to" 1 1 le 10
Angular Frequency () (b) Angular Frequency (r/m)

Figure 1. Angular frequency dependence of the real (upper solid curves) and imaginary (lower
solid curves) parts of the complex wavenumber for a double resonance Lorentz model of a
fluoride-type glass with infrared and near ultraviolet resonance lines. In part (a) the dashed
curves describe the cubic dispersion approximation about the minimum dispersion point in the
passband between the absorption bands and in part (b) they describe that approximation about
the upper resonance frequency.

Because of its central importance in ultrashort optical pulse technology, a unit amplitude gaussian
envelope pulse f(t) = u(t)sin(wt + 7r/2) is considered, where
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superluminal and negative. Part (a) of the figure illustrates the approximate group velocity and
actual pulses at one absorption depth Az = Zd in the medium, where Zd = a - '(w); the actual
pulse is clearly not travelling at a rate given by the classical group velocity vg(O.)= 1/fl(0).
Part (b) of the figure illustrates the actual and approximate pulses when the approximate group
velocity pulse (dashed curve) has been temporally shifted such that its peak amplitude point is
coincident with that for the actual pulse (solid curve). The error between these two pulses is then
computed in two different ways. The first error measure (errorl) is given by the integral of the
square of the difference between the two aligned pulses. This error then measures both shape and
energy differences. The second error measure (error2) is obtained by first renormalizing both
pulses by the square root of their respective pulse energies and then taking the integral of the
square of their differences. This error then measures the shape difference between the two aligned
pulses at a given fixed propagation distance.

S= wMin 1.615 X Or/s w = 1.615X10"r/s

T= 7.78 fs
2T=7.78fs.

* 2T=23.3fs -

, 2T=23.3fs 2T ..
,, a 2T=38.9f4_-'

4-1

3 T S 2T=77.8fs .j

T= 7 7.8 f'$--- % ~

1 ~ 2 0 _ 2 2 4 6 1 7 6 a 1.

(a) d  (b) AZ/Zd

Figure 3. Error resulting from the group velocity description of the propagated gaussian
envelope pulse with a cubic dispersion approximation of the propagation factor /3(w) in a
double resonance Lorentz model dielectric as function of the relative penetration depth &z/z,
when the input pulse carrier frequency co is equal to the angular frequency w,, at the
minimum dispersion point in the passband between the two absorption bands for different
values of the input pulse width 2T.

The numerical results for these two error measures are depicted in Figure 3 as a function of the
relative propagation distance AzZd when the input pulse carrier angular frequency 0), is set
equal to the angular frequency 0,,, at the minimum dispersion point in the passband between the
two absorption bands of the double resonance Lorentz model dielectric. The results are presented
for four different values of the input gaussian envelope pulse width 2T. The results clearly show
that, as expected, the error decreases with increasing initial pulse width at any fixed value of the
propagation distance. The first error measure (errorl) is seen in part (a) of the figure to initially
increase with increasing propagation distance, reaching a peak value at approximately one
absorption depth (AZ/Zd - 1), and then decreasing to zero as the relative propagation distance
AZIZd increases above unity. This behavior is due to the fact that the group velocity approximate
pulse amplitude decays exponentially with penetration distance at a faster rate than does the
actual ultrashort pulse so that the observed monotonic decrease in error with increasing
propagation distance Az/zd > I primarily describes the slow, nonexponential amplitude decay
with propagation distance of the actual pulse in the lossy dielectric. This difference between the
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20.6. The Question of Superluminal Pulse Velocities

A number of velocity measures have been introduced for the purpose of describing the rate at
which some particular feature of a pulse travels through a dispersive material. The most important
of these are the phase3, group - 3 ° 32, energy3 '41, signal5" 2'1 '434 , and centroid 6 ' 5 velocities. Each
of these velocity measures in free space equals the velocity of light c in vacuum, but they are in
general different in a causally dispersive material such as that described by the Lorentz model.

The phase velocity vp(w) = w /3(w) describes the rate at which the co-phasal surfaces propagate
through the dispersive medium3 [cf. Eqs. (20.9)-(20.10)]. Since the phase of a spatially coherent
optical field can only be measured indirectly66 , this velocity measure does not have any separate,
measurable physical meaning in spite of the fact that it plays a central role in the mathematical
description of pulse dispersion, as described by Eq. (20.1). In particular, the phase velocity of a
pulse is superluminal [i.e. vp(o) > c] when the input pulse carrier frequency Oj, is above the
uppermost absorption band of a Lorentz model dielectric, as illustrated in Fig. 5(a) for a single
resonance Lorentz model dielectric when 0j, > o1.For an ultrashort pulse with above resonance
carrier frequency whose temporal energy centroid is moving subluminally, the phase velocity is
then seen to describe the motion of a space-time point where there is negligible pulse energy.

O.s Vr,

10.

,v/c's 00 0 oO

1/ 04.

J° VEC : C

0.1

.10 %0 W0  1  1" W, 0 o  
a1  a, 10 lB(a) w (r) (b) (ris) 110

Figure 5. Frequency dependence of (a) the relative phase velocity (dashed curve),
group velocity (dash-dot curve) and energy velocity (solid curve) and (b) the relative
energy velocity (solid curve) and signal velocity (open circles) in a single resonance
Lorentz model dielectric.

The group velocity vg(o) M-(fl((w)/ao) - describes the rate at which the envelope of a group
of waves travels through the dispersive medium 1" [cf. Eqs. (20.9) and (20.11)]. As described by
Rayleigh3, a group of waves is defined as moving beats following each other in a regular pattern
as, for example, that obtained from the coherent superposition of two monochromatic waves with
slightly different amplitudes and frequencies. Although the group velocity does indeed describe
the beat velocity of such an infinite wave group, its extension to the description of the velocity of
an ultrashort pulse in a causally dispersive medium is invalid. This is readily evident in Fig. 2(a)
where the group velocity approximate pulse is seen to be moving at a faster rate than is the actual
pulse. This example illustrates the extreme dispersion case when 0 = (w)2. The group velocity
value v, (*o) is then seen to be a poor measure of the actual pulse velocity when the material loss
is not negligible, although it can describe the initial pulse evolution when the material loss is near
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For the numerical gaussian pulse example illustrated in Fig. 2, the peak amplitude point of the

actual pulse is moving with the average velocity vp = 0.91c and the peak amplitude point of

the group velocity approximate pulse is moving with the average velocity '= -0.30c, while

the phase velocity is given by vp((0=)- 0.82c, the group velocity is given by v(w) =-0.41c,

and the energy velocity is given by vE((0c) _ 0.18c at the input pulse carrier angular frequency

0 = (02 = 9.145 x 1015 r/s. The peak amplitude values reported here are "time-of-flight" values
that result from numerical measurements of the initial and final pulse positions. This average
peak amplitude velocity measure changes as the propagation distance into the dispersive
dielectric increases, as does the instantaneous peak amplitude velocity. The instantaneous peak
amplitude velocity of an ultrashort gaussian pulse has been shown59,60 to evolve with increasing
propagation distance along the group velocity curve toward the energy velocity curve as the
instantaneous oscillation frequency at the peak amplitude point shifts away from the region of
anomalous dispersion and into the normal dispersion region either above or below that absorption
band. It is then not surprising that the numerical velocity values given above are all significantly
different as each describes a different feature of the pulse that may only be valid either in the limit
of vanishingly small propagation distance (the group velocity) or else in the large propagation
distance asymptotic limit (the energy velocity).

, , v/c } i ,y,/c ,,""

01
-- .,.'" k -swcv,

ac'
0) 
l) a"'

.. . . . ... .. . ... .. P L ....... .. L+ , . . .. . . .

10 100 r t 0" 10 30" 101 0 30 100 i0
) W /(b)( )

Figure 6. Frequency dependence of the relative phase velocity (dashed curves), group velocity
(dash-dot curves) and energy velocity (solid curves) for (a) the double resonace Lorentz model
dielectric considered in Fig. 1 and (b) the same double resonance Lorentz model dielectric
when each of the phenomenological damping constants have been reduced by a factor of ten.

It is clear that a more physically meaningful pulse velocity measure needs to be considered in
order to accurately describe the complicated pulse evolution that occurs in ultrashort dispersive
pulse dynamics. One possible measure is given by the pulse centrovelocity 61

VcE V(f tE2(r,t)dt/f E2(r,t)dt)] , (20.26)

which describes the temporal center of gravity of the pulse intensity. A more appropriate velocity
measure would track the temporal centroid of the Poynting vector of the pulse. This pulse
centroid velocity of the Poynting vector was first introduced by Lisak62 in 1976. Recent
descriptions 636 5 of its properties have established its efficacy in describing the evolution of the
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distances to its asymptotic behavior for large propagation distances. The minimum point in this
dip occurs at a propagation distance whose value increases with increasing initial pulse width
while the minimum value decreases with increasing initial pulse width. At the leading edge of
each dip when the centrovelocity rapidly decreases, the pulse begins to separate into a pair of
middle and Brillouin precursors and the temporal pulse centroid is found to occur at a space-time
point between these two pulse components where the pulse energy is minimal. Finally, notice that
the centrovelocity for a gaussian pulse is subluminal and nonnegative (i.e., 0 5 vc, c) for all
propagation distances at this input carrier frequency.

In Fig. 7(b) the input pulse carrier frequency is set equal to the upper resonance frequency w02 of
the double resonance Lorentz model dielectric where the dispersion is anomalous. The classical
group velocity limit vg(coc) = -0.4076c is again approached at a sufficiently small propagation

distance in the limit as the initial pulse width increases and the initial pulse spectrum narrows
about the carrier frequency Oc, but at a much slower rate than that obtained at the minimum
dispersion point. However, notice that if the initial pulse width is sufficiently small (as it is for the

1.37fs pulse case), then the initial pulse spectrum is extremely ultrawideband such that the
classical group velocity limit is not obtained as Az --* 0 and the centrovelocity remains positive
for all propagation distances Az 0. In the opposite limit as Az/zd -' -c the centroid velocity is

again found to approach the velocity v. = c/n(O) that the peak amplitude point in the Brillouin
precursor travels at through the dispersive material. For a sufficiently long initial pulse width, the
transition of the ultrawideband pulse centroid velocity between these two limits is marked by a
rapid decrease in centrovelocity to -cc and then from +- to subluminal values before
approaching the asymptotic limit v. = c/n(O) set by the peak amplitude point of the Brillouin
precursor. The discontinuous jump in the centrovelocity from -c to +- is found to occur at a
relative propagation distance whose value increases with increasing pulse width provided that the
initial pulse spectrum is ultrawideband.

In spite of the fact that the instantaneous centrovelocity of the pulse Poynting vector can take on
both negative and superluminal values for sufficiently small relative propagation distances, the
pulse itself is found to only undergo a slight change in shape. There isn't any superluminal
movement of the pulse when the instantaneous pulse centrovelocity is superluminal, nor is there
any retrogression in position when the pulse centrovelocity is negative. Sommerfeld's theorem
firmly establishes that electromagnetic field energy cannot move forward of any space-time point
in the pulse at a superluminal rate. Finally, notice that this seemingly nonphysical behavior only
occurs in the immature dispersion regime (0 5 Az < z,) where the group velocity approximation
applies in the limit as Az - 0.

20.7. Conclusions

The analysis and numerical results presented in this paper have established the following results:
(1) The group velocity approximation is valid only in the immature dispersion regime 0 Az < Z,
its accuracy increasing as Az -+ 0. The asymptotic description is valid in the mature dispersion
regime Az > z , its accuracy increasing in the sense of Poincar 17 as Az -* c. The critical
distance z, depends upon the input pulse type and initial pulse length, as well as upon the input
pulse carrier frequency for a given dispersive material. (2) The instantaneous centroid velocity of
the pulse Poynting vector is a convenient, albeit sometimes misleading, measure of the pulse
evolution in a dispersive medium for input gaussian envelope pulses. Although this velocity
measure can take on both negative and superluminal values for relative propagation distances in
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The classical Lorentz model of dielectric dispersion is based on the microscopic Lorentz force relation and New-
ton's second law of motion for an ensemble of harmonically bound electrons. The magnetic field contribution in
the Lorentz force relation is neglected because it is typically small in comparison with the electric field con-
tribution. Inclusion of this term leads to a microscopic polarization density that contains both perpendicular
and parallel components relative to the plane wave propagation vector. The modified parallel and perpendicu-
lar polarizabilities are both nonlinear in the local electric field strength. C 2006 Optical Society of America
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1. INTRODUCTION the special case of a chiral molecule, where it has been

The Lorentz model" - of resonant dispersion phenomena shown 1' that the magnitude of the magnetic response of

in dielectric materials is a classical model of central im- the induced second-order optical activity can be compa-

portance in optics4 5 as well as in the broader discipline of rable to the magnitude of the electric response alone.

electromagnetics. 6 It is a causal model6 '7 that describes However, as we have been unable to find any previously

both normal and anomalous dispersion phenomena from published general solution of this problem, it is addressed

the infrared through the optical regions of the electro- in this paper.

magnetic spectrum. This model is based on the micro-
scopic Lorentz force relation

1 2. MODIFIED LORENTZ MODEL OF
f(r,t) = p(r,t)e(r,t) + X-(r,t) X b(r,t), (1) DIELECTRIC DISPERSION

With the complete Lorentz force relation given in Eq. (1)
where p(r,t) is the microscopic change density and j(r,t) as the driving force, the equation of motion of a harmoni-=p(r,t)dr/dt the microscopic current density of the clybudeeto sgvnb

charged particle at the space-time point (r,t) and where

f(r,t) is the microscopic force density exerted on the
charged particle by the electromagnetic field with micro- d2ri dr+ 2r q e 1drj
scopic electric intensity vector e(r,t) and magnetic induc- d + 2, = - M E*,(rt) + - x B_
tion vector b(r,t). The quantity * appearing in the double /

brackets 11*11 in any equation here is used as a conversion (2)
factor between cgs and MKS units.6 '8 If that factor is in-
cluded in that equation, then the equation is in cgs units, where E.#(rt) is the effective local electric field intensitywhile if the factor is omitted from that equation, then it is and Ber, t) is the effective local magnetic induction fieldin MKS units. If no such factor appears in a given equa-de-
tion, then that equation is correct in either system of scribes the spceime point (r,t) and where r-r t e -units. rib t displacement of the electron from its equilib-

The magnetic field contribution appearing on the right- rium position. Here q denotes the magnitude of the
hand side of Eq. (1) is typically assumed to be negligible charge and m the mass of the harmonically bound elec-
in comparison with the electric field contribution for suf- tron with undamped resonance frequency and phenom-
ficiently small field strengths and values of the relative enological damping constant j. The temporal Fourier in-
velocity v/c of the charged particle, where v= ldr/dtl. This tegral representation of the electric and magnetic field
assumption then leads to the classical Lorentz theory of vectors of the effective local plane electromagnetic wave is
dielectric dispersion in which electric field effects alone given by8

are considered. The question then remains as to what ef-
fects are introduced by the inclusion of the magnetic field
contribution in the Lorentz theory. The solution of this EeR(r,w) = Efl(r,t)ei1dt, (3)
important problem has been partially addressed9" l for
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when magnetic field effects are neglected, and undefined; the estimate given by Eq. (21) yields an ap-

3/M2) -2 proximate value of 7.5 x 1011 V/m. Notice that E,,.,,-- at
(qem (Eff both of the near-resonance values w' as well as when ei-

'f) 2 -o +2i - mc)2E2f ther w-0 or w-d. Notice also that since megavolt per
0 (qe~~ emeter electric field strengths are produced by ultrashort

is defined here as the parallel component of the atomic po- pulsed terawatt laser systems, the minimum critical field
larizability, where aj(t1o, 0) = 0. strength for this example is at least five orders of magni-

tude greater than that which is currently available.

The angular frequency dependence of the relative cor-
3. CRITICAL FIELD STRENGTH rection factor a.2)(w,E e)/aO)(w) for the perpendicular

The atomic polarizability is then seen to be nonlinear in atomic polarizability given in Eq. (17) is illustrated in Fig.
the local electric field strength when magnetic field effects 3 for the near-infrared resonance line of triply distilled

are included. The nonlinear term a 2
(U & ,eff) appearing in water for several values of the relative local electric field

Eq. (17) will be negligible in comparison with the linear intensity about unity. Notice that this correction factor

term aJ°)(w) when the local electric field strength is suffi- reaches its peak value at the resonance frequency wo

ciently smaller than the critical field strength Ecrit when IFeff/(Ecr,)min < 1 and that this peak value bifur-
=E,,r,(w) defined by the condition cates into a pair of symmetric peaks about this resonance

(q,mc)2 E2ittw2  frequency when IEef(Ecrt)minI > 1, a local minimum now
--- 1,

-2 + 2i 8) 2 
_ (q Jmc)2

2 .r0
2  

.o

with solution I

Mc (W2 ?) 2 + 4,I(I

E rit(W _ 2 2y) _ (19)

When I4 Eeru, the linear term in Eq. (17) dominates

the nonlinear term so that aj,(w,Eeff)a()(fw). Notice
that this critical electric field strength depends on the
value of the applied angular frequency w of the electro- -
magnetic wave field. Furthermore, notice that this critical 0 ----------------

field strength in undefined in the angular frequency band
w e [wj , wo], where

W - (w? + 2 J ± 2,j )V2 (20)

for each resonance featurej, where oj i [w-7, w7]. Finally, a2 3 o 1 '

rough estimate of the minimum value for this critical field A Frequecy (6)"

strength is seen to be given by Fig. 1. Real (solid curve) and imaginary (dashed curve) parts of
the linear atomic polarizability for the near-infrared resonance

mc hwj line in water.
(Eqe \),,,B _ ______,____-_-_-________

=
_______(21)

10, 8

for each resonance feature, where Apif-qeh/2mc is the
Bohr magneton. The quantity hwj is recognized as the en-
ergy level state of the harmonically bound electron.

4. NUMERICAL EXAMPLE I°"

Consider a single resonance Lorentz model dielectric (j
= 0) with material parameters representative of the near-
infrared line in triply distilled water at 25 °C, where wo
=6.19 x 1014 r/s and 8=2.86x 1013 r/s. The angular fre- ,o"

quency dependence of the real and imaginary parts of the
linear atomic polarizability a.--t= aj(w) for this single reso-
nance line is presented in Pig. 1, and the angular fre-
quency dependence of the critical field strength described
by Eq. (19) is illustrated in Fig. 2, where to- -5.91 1 J00

t  
10 W " W* 10

*  
10-

*

X 1014 r/s and w* - 6.48 X 101 r/s. The minimum critical 10,1jW)
electric field strength (E 1,r)j 5 1.38 x 10"11 V/ m is seen Fig. 2. Angular frequency dependence of the critical local elec-
to occur at the two points just below and above the fre- tric field strength (in volts per meter) for the near-infrared reso-
quency band [wo, to] where the critical field strength is nance line in water.
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•Io ... resonance about the undamped resonance frequency wo
when the local electric field strength is equal to or less
than the minimum critical field strength (Ecrdmi given

Ea.(E,,.-, '1 in Eq. (21). However, as the local field strength exceeds

this minimum critical value, this single resonance peak is
found to split into a pair of resonance structures, one
downshifted and the other uphifted in angular frequency
from the characteristic resonance frequency w0 of the Lor-

, EA - o. 1entz model dielectric.

5. DISCUSSION
• , The results presented here show the precise manner in

which the magnetic field influences the atomic polariz-
• _ __........ ......... ability in the Lorentz model of resonance polarization. In-
,o" 10" we ,o" ,o" clusion of the magnetic field in the Lorentz force relation

bgNM results in a microscopic polarization density that contains
Fig. 6. Angular frequency dependence of the real part of the lon- both perpendicular and parallel components relative to
gitudinal atomic polarizability for critical and subcritical values the plane wave propagation vector of the local driving
of the local electric field strength. field that are both nonlinear in the local electrical field

strength. This nonlinearity becomes significant when the
local applied electric field strength exceeds a minimum

critical field strength whose value increases linearly with
Uthe resonance frequency. Numerical calculations show

that these nonlinear terms are entirely negligible for ef-
EWE" - 0.'1fective field strengths that are typically less than

-1012 V/m and that they begin to have a significant con-
tribution for field strengths that are typically greater
than -101 V/m for a highly absorptive material. Fortu-
nately, this critical field strength is at least five orders of
magnitude greater than that which is currently available

in ultrashort pulsed terawatt laser systems. Although
-2 this magnetic field effect is negligible in most practical

situations, it has been shown to be significant in materi-
4als exhibiting chirality,9- 11 and it may also become impor-

tant for artificial materials. Nevertheless, seemingly ex-
" I cessive electric field strengths commonly occur in nature;

for example, it is estimated1 2 that the critical field
Fig. 7. Angular frequency dependence of the imaginary part of strength for the alignment of water molecules for crystal-
the longitudinal atomic polarizability for critical and subcritical lization into polar ice crystals is greater than 109 V/m.
values of the local electric field strength.

tUj 
2

jA. Ia'

+ -Ef, (24)

fW
2

a _ -- (25) -
2 iA5E~ff "IS10

.+
,

are obtained.
Similar results are obtained for the frequency depen-

dence of the nonlinear character of the parallel atomic po- £ °
larizability given in Eq. (18). Although this parallel com-

ponent of the atomic polarizability vanishes as Eeff--+ 0, it 10

can exceed the strength of the transverse component of

the atomic polarizability when Eeff exceeds the minimum
critical field strength. The frequency dependence of the 'o ..
real part of the longitudinal (parallel) component is pre- IooI0 )

sented in Fig. 6 and the imaginary part in Fig. 7 for two Fig. 8. Angular frequency dependence of the relative phasor ve-
values of the local electric field strength. Both the real locity magnitude of the harmonically bound electron in the Lor-
and the imaginary parts are seen to exhibit a pronounced entz model.
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Uniform Asymptotics Applied to
Ultrawideband Pulse Propagation*

Natalie A. Cartwrightt
Kurt E Oughstunt

Abstract. A canonical problem of central importance in the theory of ultrawideband pulse propaga-
tion through temporally dispersive, absorptive materials is the propagation of a Heaviside
step-function signal through a medium that exhibits anomalous dispersion. This prob-
lem is rich in the use of asymptotic theory. Sommerfeld and Brillouin provided the first
(qualitatively accurate but quantitatively inaccurate) closed-form approximations of the
dynamic evolution of this waveform through a single-resonance Lorentz model dielectric
based upon Debye'a method of steepest descent. An improved approximation has since
been provided by Oughatun and Sherman using modern, uniform asymptotic methods
that rely upon the saddle-point method. An accurate, uniform asymptotic approxima-
tion describing the dynamical evolution of the unit atep-function modulated sine wave
signal through a single-resonance Lorentz model dielectric is presented here besed upon
their work. This refined asymptotic description results in a continuous evolution of the
propagated field for all space-time points.

Key wordL asymptotic methods, dispersive attenuative wave propagation

AMS subject classfficados 78M35, 7aA40, 3OE15
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I. Introduction. Asymptotic analysis is widely used in the study of pulse prop-
agation in electromagnetics, optics, and acoustics. Typical applications include the
study of the propagated pulse evolution as either the propagation distance or the
wavelength becomes either large or small. Here, we study two-dimensional (space and
time) electromagnetic pulse propagation through an unbounded dielectric material
and show that many facets of uniform asymptotic theory are drawn upon in order to
provide a continuous asymptotic approximation to the propagated pulse.

Consider a linearly polarized plane-wave electromagnetic pulse traveling in the
positive z-direction. The material through which the pulse travels is a linear di-
electric whose relative magnetic permeability p is unity and whose relative dielectric
permittivity e(w) is given by the single-resonance Lorentz [18] dielectric model so that
the complex index of refraction n(w) = vl is given by

(1.1)n(w ) = i -1/2(W2z - w_2 + W-
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Brillouin found two sets of saddle points: the contributions from the distant saddle
points are responsible for the first forerunner, which had been evaluated for small
9 _ 1 by Sommerfeld; the contributions from the near saddle points give rise to a
second forerunner which begins after the arrival of the first forerunner. Brilluin also
identified the main signal, characterized by its harmonic oscillation at the carrier fre-
quency w, of the input pulse, which arrives after the second forerunner. Sommerfeld
and Brillouin mistakenly concluded that both forerunners are of negligible amplitude
in comparison to the amplitude of the main signal.

Although Sommerfeld and Brillouin correctly predicted the existence of the first
and second forerunners, they did not accurately describe their behavior. It wasn't until
1975 when Oughstun and Sherman [25, 26] examined Sommerfeld's and Brillouin's
seminal works that an accurate description of these two forerunners (now known as
the Sommerfeld and Brillouin precursors) and the main signal was given based upon
uniform asymptotic expansion techniques. Of significant importance, Oughstun [22]
proved that the Brillouin precursor can be of significant amplitude when the rise time
of the pulse is faster than the relaxation time of the material. This analysis showed
that, asymptotically, the Brillouin precursor achieves a peak amplitude at the space-
time point ct/z = n(O), where n(O) is the static refractive index of the material, and
that the amplitude of this point decays only algebraically as x - 1/2 with propagation
distance z, whereas the amplitudes of the Sommerfeld precursor and the main signal
decay exponentially. The relatively slow decay rate of the peak amplitude point of
the Brillouin precursor has important practical applications to biomedical imaging as
well as to ground- and foliage-penetrating radar systems (see the proceedings series
titled Ultra- Wideband Short-Pulse Recbomagaetics [1, 2, 7, 19, 34, 35).

The exponential appearing in (1.2) may be written in terms of the complex phase
function defined'in (1.3) so that, with some algebraic manipulation, the integral rep-
resentation of the propagated pulse may be expressed as [29]

(1.4) E(z, t)= ~R~i exp w

for the input step-function modulated sine wave pulse with fixed carrier frequency
wc > 0. Because of the exponential appearing in the integrand of (1.4), the Fourier-
Laplace representation is ideally suited for analysis by asymptotic expansion tech-
niques that are valid as z -+ o (i.e., as the propagation distance becomes large),
as was originally done by Brillouin. In fact, this problem is much richer in asymp-
totic theory than the direct application of the method of steepest descent. In order
to find a continuous asymptotic approximation to the propagated field E(z, t), three
different uniform asymptotic theories are required: a method for two saddle points
symmetrically located about the imaginary axis whose real parts are located at plus
and minus infinity; a method for two first-order saddle points that coalesce into one
second-order saddle point at some fixed space-time point and then separate into first-
order saddle points again; and finally, a method for first-order saddle points in the
vicinity of a simple pole. These methods have been used extensively by Oughstun
and Sherman to study pulse propagation through Lorentz model dielectric materials
[21, 25, 26, 27, 28, 29]; their results form the basis of this paper.

The material parameters (too = 4.0xO10'1/s, w- = 20.0x1032 /s 2 , 6- 0.28x 10 16/s)
used here are the same as those used by Sommerfeld and Brillouin [6]. The real
and imaginary parts of the complex index of refraction n(w) for the single-resonance
Lorentz model dielectric with these parameters are illustrated in Figure 1.1. This
choice of medium parameters corresponds to an extremely absorptive medium. Nev-
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a maximum at. wsp and-this maximum becomes more. pronounced.-as z -4 oo. Hence; ..... ... - -
the integral appearing in (2,) -may be -approximated. by the contribution due to a- -

neighborhood of wsp, the accuracy of this approximation increMing in the sense of
Poincar6 [31] as z -- oo. This then forms the principle upon which the saddle-point
method is based. The saddle-point method may be directly extended to integrals of
the type (see Chapter 5 of [291) .. . . . . .

(2.2) I(z, 8) = jf(w) exp [zg(w, 0)] dw,

in which the position of the saddle- pain .of the exponential function g(w,f8) is .a
function of the real-valued parameter , is thie case i thi paper. This i chieved
by choosing a path of integration which moves in a continuous manner as 8 varies
continuously over some specified space-time domain.

3. Behavior of the Complex Phase Function; In order to apply the saddle-point-
method to the integral appearing in the integral representation (1.4) of the propagated
etectricfield oie -". ...-..-..

. - of the opei~w~ 1 ii&hxtj e--------------j
w-plane [6, 29, 36] as a function of the real parameter 0. For the single-resonance
Lorentz model dielectric [18], the complex phase function qO(w, 0) is analytic in the
w-plane formed by the two branch cuts in the lower half of the w,-plane symmetrically
located about the imaginary axis. In the right half plane, the branch cut extends
from w + = - to + =_ -W0 +Wr- -- i6.

The saddle points of 0 are solutions of the equation 0.(w,e) = 0, which need
only be solved for 0 > 1 since the field given by (1.4) identically vanishes for all
o <-1.- Brillouin [6-first-showed that 5 posesses-two sets -of saddle polite and pro-
vided first-order approximations of the locations'of these saddle points; more accurate
approximations have since been provided by Oughstun and Sherman [29]. The first
set, referred to as the distant saddk points and denoted by wspk (0), consists of two
first-order saddle points. As 8 -+ 1+,

(3.1) lir wSszo oo - i2,0-+i+

while in the opposite limit as 0 -+ 0o, the distant saddle points approach the outer
branch points

(3.2) lim ws1 , +  ;d W - 62 -2 = w,

respectively, so that IWS* (8)] Vw + W1 for all a > I.
The second set of saddle points, referred to as the near soddle points and denoted

by Wsp* (), consists of two first-order saddle points-that- lie on.the imaginary.aids
for values of 0 < 01, coalesce into a single second-order saddle point when 0 = 09, and
separate into two first-order saddle points symmetrically located about the imaginary
axis for 9 > 81, where 01 % 9o + 282wo/38owo, so that 81 s 1.502 for the material
parameters used here. As e -+ oo, the locations of the near saddle points approach

..77 . the inner branch points

(3.3) lira WSP* sz -±) too / =w

respectively. Of particular interest in this evolution is the space-time point 0 =

00 - n(O), where Go = 1.5 for the material parameters considered here, at which the
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-0

-1011

Fig- 3-2 Ortoar of R{O(w,98)) for 9 1.25 in the corplem w-plane alo tuit an Sacceptable
defo-ned path Of rtion P(w, 9).- Notice that the oriina and defomed contour, L,
on the same Ade of the pale.

-4

Fig. 3.3 Contous of IR{46(, 0)1 for 9 91 in the compli -~-plane along wth on acceptable de-
formed path of intqition '(w, 0). Notice that the original and defomed contours Iieo
the same Jude of the pole.
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introduced a change of variable such that the saddle points of the transformed phase

function retain the limiting values of the original saddle points and then expanded the

amplitude function as a finite number of terms plus a remainder term, the remainder

term being regular and equal to zero at the saddle points of the transformed phase

function. Here, the transformation that retains the essential behavior of the distant
saddle points is given by

(4.1) d(, 8) = , (e)s + /d(6) +

where cd(G) and Pd(e) are functions to be determined. The amplitude function is

then written as

(4.2) ="-w, ) +'Yo () + [+ (Y) (0 di2 Ho(s, ),- o =,roe)+ - ce~s j82)

where Ho(.s, 8) is regular and equal to zero at s = (±l/d). Substitution of (4.1)

and (4.2) into (1.4) results in the uniform asymptotic description of the Sommerfeld

precursor Es(z, t) for the step-function modulated sine wave [29],

(4.3) +2ad (8)e1 2-yl (0)j, (±ade)] }±R(z, 8)

as z -co for all 0 _> 1, where J3( ) denotes the Bessel function of the first kind of

integer order n. The magnitude of the remainder term is bounded as

(4.4) JR(z, 0)1 < KcI ( ) [131 (nkd(O) 0) -13,J Cd(e)-Z)]

for z > Z > 0 and 0 > 1, where K > 0 is a constant independent of 8 and z. The

coeffcients appearing in (4.3) are given by

(4.5a) ad (0) = v~ 8 ~o-~~s 8]= -! {q(WSP+,80)}

(4.5b) id (0) 0 ~Ws+ ) + O(WSp-3 8)] =~ {- 0(~ ) }

NO) . - 12 do

= + ( 2ad(8) iO (WpD.,)

(4.5c) + [WSP - 2 ( ) j) (W P j7 1/
S4.5d,1 c (. 21(8)) ( 4a4() 1/21

asymptotic 4 (P), 8)/]

For values of 8 bounded away from 1 such that (z/c)lad(e)j > 1, the large argument
asymptotic expansion of the Bessel function may be substituted into (4.3). This
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would be bounded by

(5.1) IRNI < Ajz -(2N+A)/ 12 + B exp [R{z[O(wj-, 0) - g(w,, 9)]}],
where A, B are some constants independent of z, and where wi is the dominant saddle
point while wy is the other saddle point, i.e., R{wj) <R {wj}. Because wj is the
dominant saddle point, the second term in (5.1) is negligible in comparison to the
first, for large enough Izi. However, as 0 -+ 0, R{w,) -+ Rwj} and Iz must increase
without bound in order for the second term in (5.1) to remain negligible compared to
the first.

A uniform expansion of the Brillouin precursor, valid for all 0 > 1, is obtained
through use of the theorem [9, 12, 29] originally due to Chester, Friedman, and
Ursell [9]. Here, the transformation that retains the behavior of the saddle points
about 0 = 01 is given by

(5.2) 1 - c(0)v - ao(e) - O(W, 9) = 0,

where ao, a, are functions to be determined. Note that there are three possible
branches of the inverse function. Chester, Friedman, and Urell [9] proved that only
one branch of the transformation defines a conformal mapping of some disc that
contains both saddle points. It is this branch which must be used, as shown by
Bleistein and Handelsman [4]. As before, the amplitude function is expanded as a
finite number of terms plus a remainder that is regular and equal to zero at the
transformed saddle points. This is obtained using the expansion

(5.3) W - Go(v, 6) = h1 (0) + h2 (o), + (v2 _ a(9))Ho(v, 0),

where hl, h2 , and Ho are to be determined. Substitution of (5.2) and (5.3) into (1.4)
results in the uniform asymptotic expansion of the Brillouin precursor Es(z,t) for
the step-function modulated sine wave [29]

EBzt =..Rexp [cto(#)] { /3 ) i1 ir/3 -Ai (ai(0) e' 2 i'/2 (C) 2/3)

i [ h+ (0) + '-

+(C) 2/3 e-iU/3Ai(l) a(O) e'i~w5 (C)2/3)

(5.4) { / +~ h+(O) - Wp h...(6)] + 0 () }
where Ai(C) denotes the Airy function and the coefficients appearing in (5.4) are given
by

(5.5a) ao(e) = [O(Ws.+" 6) + ,(sp- 0)]

(5.5b) a1/(9 4 { (WP + 0) - 4i(W"" 0)]}

(5.5c) h±(9) 0(2~~') ) 1/2 0
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total field evolution as z -+ oo. The instantaneous angular frequency of oscillation
of the Brillouin precursor starts at zero when 9 = 01 and monotonically increases to
approach the value 8 with increasing 0.

Previous work [29, 36] exhibited a discontinuity in the uniform asymptotic ap-
proximation of the Brillouin precursor about the space-time point 0 = 01, which the
authors attributed to numerical instabilities. These numerical instabilities are now
known to be caused by the use of an unnecessary approximation of the lower near
saddle-point location Wsp- (0) and incorrect phase values for the coefficients h± (0) for
all 0 > 01. Here, all saddle-point locations and coefficients are numerically determined
so that this approximation error is avoided, resulting in a continuous evolution of the
Brillouin precursor for all 0 > 1.

6. The Signal Contribution. The signal contribution to the propagated field of
the step-function modulated sine wave is due to the simple pole singularity at w = w,
appearing in the integrand of (1.4). It is assumed here that we is real, positive,
and finite (as all physical frequencies must be). The simple pole located at wc may
influence the value of E(z, t) if the path P(w, 0) crosses the pole singularity, or if either
of the saddle points Wsp+ (9) comes within close proximity of the pole, or both.

Let the path P(w, 9) comprise the portions of the steepest descent paths em-
anating from wSp+ (9) and wsp+ (9) and continuing into the upper half plane. In
the deformation of the original path of integration appearing in (1.4) into the path
7.(w, 0), the simple pole located at we is crossed at some space-time point 9 0, 2! 1.
Hence, the original integral and the integral

(6.1) ESDP(Z,t) g 27 J)we icep[(-) ~J

along the deformed contour are related by

(6.2a) E(z, t) = ESDP(Z, t) for 8 < 0,,

(6.2b) E(z, t) = ESDP(Z, t) - irite(fIc)0 (- ,) for 9 = 0.,

(6.2c) E(z, t) = ESDP(Z,t) - 2wi-ye(z/C)C(W' 0,) for 0 > 80,

where
i

(6.3) Y = Jim (w- ) _

is the residue of the amplitude function at the simple pole w.. Direct application of
the saddle-point method to Esp(z, t) yields a uniform expansion. However, it does
not provide a uniform expansion for E(z, t). In order to see this, let 0, denote the
space-time point at which the pole becomes dominant over the saddle point wsp
in the sense that R{0(wc,8)} > R{4(wsp, 9)}. Because the path P(w, 9) lies in
the valleys of wsp, it necessarily follows that 0, < 0.. From (6.2), it is obvious
that E(z, t) changes discontinuously about 0 = 0. when the saddle-point method is
applied to ESDp(Z, t). However, because the simple pole lies in the valley of the
saddle point, the residue contributions appearing in (6.2) are exponentially smaller
than ESDp(z, t) and pose no problem in obtaining a uniform approximation to E(z, t).
This is not the case at 0 = 8. when the simple pole w,, becomes dominant over
the saddle point wsp. Here, R{j6(wsp, 9)} < R{ )(wc, 9)} for 9. < 9 < 0e and the
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while 0, and the appropriate residue.contribution are determined by the-saddle point
whose path of steepest descent crosses the simple-pole located.at wd.The spse-time.
point 0. at which the path P(w, 8) crosses the simple pole located at ta, is determined
by the equation

(6.7) Y(W, 0.) =Y(WSP,0.)

where Y -O{q} and wsp denotes either Wsp+ (0) or Wsp+ (0). We have found (by
inspection) that the deciding factor as to which saddle point determines the value
of.8 . is the value of Y(w0 , 8) at 0 = 1. If Y(w., 1) > 0, the s0eepe t descent path
emanating from the near saddlt point'w'p+(8) is used to determine'the value a..
If Y(wc, 1) < 0, the steepest descent path emanating from the distant saddle point
Wsp+ (9) is used to determine the value 9,. If Y(w,, 1) = 0, then 8. = 1. The value of
w, = wy which separates the two cases is given approximately by wy st 4.2925 x 1018
rad/s for the material parameters considered here. As a consequence, we have applied
the uniform theory to account for two first-order saddle points with a nearby- simple
pole singularity. As an example, for angular frequencies w, satisfying Y(w., 1) > 0,
the uniform signal contribution is given by

E©(z,") = -17u % [-'w erfc (tAD(e)aJ exp [c(wc' )]2

(6.8a) +i7l erfc Ne)/) exp ~ ~ 69)
E.(z, t) = -Rj-. [rercVtre)~ ex [(cG

+ i~y [ir erc (-AN(e8f) exp [±(w., 0)]

(6.8b) + , ex[ 8)] } < [ 8

as z - oo. Here, y = i is the residue of'the amplitude functi.n i(w - Wc) at we, ".....
erfc( ) is the complementary error function, and

(_9 ADN(G) e[p(WSP '0) -)]

A similar expression may be given for the uniform signal contribution for carrier
frequencies w satisfyig Y(w, 1) > 0 [8]. -

Questions about the accuracy of this uniform expansion as it applies to the clas-
sical problem of a step-function modulated sine wave signal have persisted because,
until now, it has been difficult to isolate the leading edge of the pole contribution
from the remainder of the field. For all values of w , either the Sommerfeld or the
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Fig. 6.2 Comparson of asymptotic (da&ad curve) and numerical (solid curve) pole contrib ons
for a step-functin modudated sine puave ith inntra-absorption band frequency we = 1.25wo
at an observation distance of z w 5.3Sz. The asymptotic approximation is made (a) uti-
lixing only the distant saddle point w~A(0), and (b) utilizing both saddle points w 8pt (9)
and wsp+ (9).

at a propagation distance of z s 5. 3 zd. In Figure 6.2 (b), the asymptotic approxi-
mation of the pole contribution (dashed curve) is calculated using both wsp+ (0) and
wsp+ (0). The open circle denotes the space-time value 0, when the path P(w, 0)
crosses w6 . A comparison of the two figures shows that the contribution from the near
saddle point wp+ (0) is minimal. However, these figures again confirm that the uni-
form asymptotic theory provides the correct approximation to the pole contribution.
This is in contrast to the previous hypothesis [29] that both saddle points wsp+ (0)
and w$+ (0) are sufficiently removed from we when we is within the absorption band
of the material so that E,(z, t) is composed solely of the residue term which abruptly
begins at 0 = 0..

7. Conclusions. The propagated electric field component of a linearly polarized,
plane-wave, step-function modulated sine wave signal of applied carrier frequency
w J traveling through a single-resonance Lorentz dielectric has been studied in this
paper. An analytic, asymptotic approximation of the propagated wave field requires
the application of three uniform theories in the subject of asymptotic expansions
of integrals. The results presented here provide the first correct description of the
pole contribution of the field (1.4) for applied carrier frequencies that lie within and
above the absorption band of the material. Previous attempts to isolate the pole
contribution from the rest of the field were unsuccessful due to inaccurate asymptotic
results for the Brillouin precursor about the space-time point 0 = 01 and an incorrect
asymptotic representation of the pole contribution for applied carrier frequencies in
the range we > VwO wT-W---

Four different carrier frequencies of the step-function modulated sine wave signal
were considered in this paper: the below-resonance carrier frequency we = 0.&.wo, the
intra-absorption band carrier frequencies we = wo and we = 1.25wo, and the above-
resonance carrier frequency we = 2.5w0 . The total asymptotic field, which is the
sum of the three asymptotic components, E(z,t) = Es(z, t) + EE(z, t) + Ee(z, t),
is presented for each applied carrier frequency as the dashed curves in the upper
plots of Figures 7.1-7.4. The solid curves appearing in these figures represent the
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Fig. 7.3 The toted aymptotic (dashed curv~e) and numerial (solid cue) fields of the step-
junction mnodulated awe we signal with intr-baorption band applied carrier frqguenc,

WC l .2 5wo rod/s at a distance of z - 3 x 10-9 m w 5.3zd into the single-meonance
Lorentx dielectric. Thie "ow figure show the difference between the tw rewrulia.
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Fig. 7.4 The total asyrmptotic (dashed curv~e) and numerical (solid curve) fields of the step-function
modulated sine tuae signed with above-absorption band applied carer frequency W, = 2.&,v
at a distance of s = 9 x 10-7 m FS 2.7zj into the single-resonance Lorents dielectric. The
"ow figure show the dsfference betwn the two results.
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