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Preface

This report is part of the second phase of a project titled “Measuring the Value of High-Level 
Fusion, Intelligence Preparation of the Battlefield, and Robust Operational Command and 
Control Capabilities for the Army Objective Force.” The project aims to understand the quan-
titative effects of better command, control, communication, computer, intelligence, surveil-
lance, and reconnaissance (C4ISR) capabilities on battle outcome. This report describes the 
representation of the fusion process and, specifically, its implementation in a combat simula-
tion. It should be of interest to those concerned with the analysis of C4ISR issues and their 
representations in combat simulations.

This research was supported through the Army Model and Simulation Office (AMSO) 
C4ISR Focus Area Collaborative Team (FACT). It was sponsored by the Office of the Deputy 
Chief of Staff for Intelligence (U.S. Army G-2) and funded by the Army Model Improve-
ment Program (AMIP) and the Army’s Simulation Technology (SIMTECH) program. The 
research was conducted in RAND Arroyo Center’s Force Development and Technology Pro-
gram. RAND Arroyo Center, part of the RAND Corporation, is a federally funded research 
and development center sponsored by the United States Army.

For comments or further information, please contact the authors: Christopher G. Pernin 
(Chris_Pernin@rand.org) and Louis R. Moore (Louis_Moore@rand.org).

The Project Unique Identification Code (PUIC) for the project that produced this docu-
ment is DAMIIX001.
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For more information on RAND Arroyo Center, contact the Director of Operations (tele-
phone 310-393-0411, extension 6419; FAX 310-451-6952; email Marcy_Agmon@rand.org), 
or visit Arroyo’s Web site at http://www.rand.org/ard.

mailto:Marcy_Agmon@rand.org
http://www.rand.org/ard


�

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ChAPTer One

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

ChAPTer TwO

The “Knowledge Matrix” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Generating an Observation: Level 0 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Combining Two Observations: Level 1 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Aging the COP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Are the Observations Close Enough? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Are the Observations Consistent? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Are the Observations Good Enough? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Combination of Two Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Incorporating Intelligence “Nuggets” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

ChAPTer Three

Convoy example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ChAPTer FOur

higher-Level Fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ChAPTer FIve

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39





�ii

Figures

 1.1. Joint Directors of Laboratories Data Fusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
 2.1. Some Factors Affecting Observation Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
 2.2. Overview of the Generation of an Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
 2.3. Steps Involved in Populating the COP: Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
 2.4. Steps Involved in Populating the COP: Compare Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
 2.5. Generation of Two Observations of One Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
 2.6. Example of Consistency of Two Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
 2.7. Observation Qualities Must Be Good Enough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
 2.8. Steps Involved in Populating the COP: Combine Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
 2.9. Combining Two Observations into a Combined Observation Matrix . . . . . . . . . . . . . . . . . . . . . 20
 2.10. Combining Two Knowledge Matrixes Along with Uniform Random Vectors . . . . . . . . . . . 22
 2.11. Nuggets May Occur Infrequently, but They Combine Easily . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
 3.1. Complex Example with Three Tanks and Two Trucks in a Convoy . . . . . . . . . . . . . . . . . . . . . . . . 25
 3.2. Forming the COP at Time Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
 3.3. COP at Time Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
 3.4. Forming the COP at Time Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
 3.5. COP at Time Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
 3.6. Populating the COP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
 3.7. Changes in the COP Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
 3.8. Increased Location Errors Result in Extraneous Observations on the COP . . . . . . . . . . . . . . . 32
 4.1. Steps Involved in Populating the COP: Higher-Level Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
 4.2. Sensors Can Generate Both Entity and Aggregate Detections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34





ix

Tables

 2.1. Quantitative Assessment of Observation Quality as a Probability of Achieving  
Quality Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

 2.2. Metrics for Describing Levels of Knowledge Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
 2.3. Qualitative and Quantitative Descriptions of the Quality Levels for Each  

Knowledge Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
 2.4. Capturing Sensor Capabilities in a Knowledge Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
 2.5. Example Portion of a Knowledge Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
 2.6. Two Examples of Knowledge Matrix Computation for Location from Explicitly 

Generated Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
 2.7. Half-Lives and R-Values for Some Vehicle Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
 2.8. Location and Identification Knowledge Matrix Entries for a Ground Target . . . . . . . . . . . . . . 13
 2.9. Example Combination of the Uniform Random Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
 2.10. Example of Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24





xi

Summary

As the military transforms into an information-based force, it will need processes and meth-
ods to collect, combine, and utilize the intelligence that is generated by its assets. The process 
known as fusion will play an important role in determining whether this intelligence is used in 
the most beneficial manner to support the military’s vision of an information-centric force.

The process of fusion, combining pieces of information to produce higher-quality infor-
mation, knowledge, and understanding, is often poorly represented in constructive models and 
simulations that are used to analyze intelligence issues. However, there have been efforts to 
rectify this situation by incorporating aspects of information fusion into combat simulations. 
This report describes one approach to capturing the fusion process in a constructive simula-
tion, providing detailed examples to aid in further development and instantiation.

The analytical method proposed here is a sequential process of determining the quality 
of a piece of information and the likelihood that two pieces of information concern the same 
entity1 or, indeed, two separate entities. The process entails putting the observations through 
a sequence of operations to determine whether they (1) are close enough geographically2 with 
respect to their separate errors in location to be of the same entity, (2) have consistent identities 
that would not prevent them from being considered the same entity, and (3) contain informa-
tion content of high enough quality to warrant the combination.

Once two observations have passed these three tests, a combination process determines 
the fused product. In cases in which additional information about an entity is generated—for 
example, knowledge of the location of a superior unit gleaned from knowing where the subor-
dinate is—the process is able to capture the information in the common operational picture 
(COP). Higher-level fusion, such as the generation of aggregates, is also captured in the fusion 
process.

The fusion process provides a means of adding information to the COP and, in doing so, 
quantifies the quality of individual and combined intelligence, as well as higher-order fusion 
products. The fusion process described in this report is, for the most part, an implicit represen-
tation of the generation of battlefield intelligence and can be used in a constructive simulation 
or fusion model to better understand the dynamics of intelligence-gathering systems and their 
effect on intelligence metrics. Where explicit representations of fusion also exist, such as in the 
case of the generation of location information, both representations are included. The process 
includes descriptions of stochastic as well as deterministic representations. The representations 

1 Entity is used loosely in this report. We include in this definition all common entities, such as vehicles and buildings, as 
well as more nebulous entities, such as events and relationships.
2 Close enough can also include temporality for moving objects.
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in this report are largely reflective of intelligence fusion in the physical domain; other aspects 
of the human and information domains (e.g., intent) are included, though in-depth explora-
tion of these is outside the scope of this work. 

The approach described in this report is largely reflective of the work of Keithley (2000), 
and our research group has incorporated it into a stochastic, agent-based simulation to help 
with the analysis of C4ISR systems and concepts for the Army. However, we describe here 
much of the method and calculus involved to aid in further development and inclusion into 
future military simulations.
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ChApTer One

Introduction

As the military transforms into an information-based force, it will need processes and meth-
ods to collect, combine, and utilize the intelligence that is generated by its assets. The process 
known as fusion will play an important role in determining whether this intelligence is used in 
the most beneficial manner to support the military’s vision of an information-centric force.

The process of fusion, combining pieces of information to produce higher-quality infor-
mation, knowledge, and understanding, is often poorly represented in the constructive models 
and simulations used to support the analysis of intelligence issues. However, there have been 
efforts to rectify this situation by incorporating aspects of information fusion into combat sim-
ulations. This report describes one approach to representing the fusion process in a constructive 
simulation, and it provides detailed examples to aid in further development and implemen-
tation. The approach is largely reflective of the work of Keithley (2000), which our research 
group has incorporated into a stochastic, agent-based simulation to facilitate the analysis of 
command, control, communication, computer, intelligence, surveillance, and reconnaissance 
(C4ISR) systems and concepts for the Army. Here, we describe much of the method and cal-
culus involved to aid in further development and inclusion into future military simulations.

This report describes an implicit representation of the fusion process. We are not propos-
ing a solution to the problem of combining information from multiple sensors or across mul-
tiple time steps that may represent incomplete, incoherent subsets of data. Thus, our represen-
tation does not attempt to replicate the actual method used in military intelligence systems, 
nor does it aim to explicitly model every facet of the actual fusion process. We are propos-
ing a characterization of a process that may be incorporated into a simulation. This report is 
intended to provide a platform to further the thinking of the fusion process as a whole.

Our representation, therefore, incorporates many of the specific aspects of intelligence 
generation, fusion, and outputs and measures of effectiveness of the process, but without 
having to explicitly represent the actual generation and fusion of intelligence. The advantage 
of this representation of fusion relative to explicit representations of fusion lies in its ability to 
represent many diverse fusion processes and in its execution speed. It is driven by and heav-
ily dependent on data describing the quality of the output of the underlying fusion process. 
Thus, our approach is only as good as the underlying data. The representations in this report 
are largely reflective of intelligence fusion in the physical domain; other aspects of the human 
and information domains (e.g., intent) are included, though in-depth exploration of these is 
outside the scope of this work.
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Figure 1.1 shows the levels and the interrelationships among the various fusion levels.1
Th e Joint Directors of Laboratories (JDL) Data Fusion Model was fi rst proposed in 1985 under 
the guidance of the U.S. Department of Defense (DoD).2 Th e model partitioned fusion into 
six (not necessarily sequential) levels that described the diff erent products and activities associ-
ated with the use and manipulation of intelligence data. Th e JDL model is a functional model 
that clarifi es many of the fusion processes currently being discussed and implemented in the 
military intelligence community. It has evolved and expanded over the years to accommodate 
the improved understanding of the data-fusion processes necessary to manage joint intelli-
gence requirements.

In the JDL fusion model, level 0 involves the organization and normalization of the data 
in an observation. Levels 1, 2, and 3 correlate, aggregate, and interpret observations, and they 
are the main emphasis of this report. Level 4 assesses and controls the fusion process to drive 
improvements in the process. It also allocates resources to satisfy collection needs. Level 5 
provides the process with customer feedback and control through visualization of the fusion 

Figure 1.1
Joint Directors of Laboratories Data Fusion Model
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1 Various models have been created to aid and describe data fusion. See, for example, Dasarathy (1997), Bedworth and 
O’Brien (2000), Salerno (2002), Endsley (1995, 2000), Blasch and Plano (2003), and U.S. Army Intelligence Center 
(2004).
2 Th e original JDL model included only levels 1 through 4; levels 0 and 5 were subsequently added.
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products and determination of PIRs. The last two levels are beyond the scope of this project, 
though they remain a challenge to practitioners.

The method described in this report is concerned with fusion levels 0 through 3. The first, 
level 0, organizes data into forms that can be used by the process. In our case, we will focus 
on sensor data that are produced on the battlefield. However, the process and implementation 
are not contingent on this. The data are assumed to come from a variety of sources, whether 
a sensor on a platform; a person seeing, reading, or hearing something; or some other source 
in the battlespace, all of which can be incorporated into the operational picture. In the next 
chapter, we describe the generation of the data from an observation and how the data are rep-
resented implicitly through the use of a knowledge matrix. Later chapters describe the subse-
quent three levels of fusion.





�

ChApTer TwO

The “Knowledge Matrix”

This report walks through three areas of the fusion process: the generation of an observation, 
the combination of two (or more) observations, and the representation of higher-level fusion. 
These steps in the fusion process are described with examples and some of the specific math-
ematical formulations embedded in the representations. This report also describes both sto-
chastic and deterministic routes to implementing the method.

First, however, we address the issue of how to describe the quality of an observation. Fac-
tors affecting observation quality are shown in Figure 2.1.

Several factors contribute to the quality of an observation. The environment and ter-
rain directly impact whether a sensor is able to observe a given object on the battlefield and 
how good that observation is. The amalgamation of the factors involved in observing an 
object can be described loosely as the error in the perception. The quality of the observation is 

Figure 2.1
Some Factors Affecting Observation Quality
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a function of how close the perception is to ground truth: In a high-quality observation, the 
perception of the object is close to ground truth, and in a low-quality observation, the object 
perceived is far from ground truth.

Four types of battlefield entities are considered and represented in this fusion model:

infrastructure and facilities (e.g., buildings, roads, bridges)
pieces of equipment (e.g., tanks, trucks)
aggregates (e.g., units, collections, organizations)
structured relationships (such as an order of battle [OOB]).

In addition, two types of entities are modeled for non–major combat operation (MCO) 
intelligence:

significant events occurring
persons forming a network.

The first three—infrastructure and facilities, pieces of equipment, and aggregates (col-
lections of the previous two types)—are easily understood. The fourth type (structured rela-
tionships) and the two others now being developed (namely, events and networks) are much 
more abstract. They have to do with higher levels of information that cannot be sensed in a 
traditional sense but may require analysis to identify. Representing the fourth type of entity 
in intelligence-collection methods and fusion schemes affords an opportunity to go beyond 
analysis of operations other than MCOs to include the full spectrum of operations (Headquar-
ters, U.S. Department of the Army, 2001). Relationships, events, and networks are not directly 
discussed in this report.

One method of quantitatively characterizing the quality of an observation is the approach 
described by Keithley (2000). The knowledge matrix approach quantifies the quality of an 
observation according to six knowledge types: location (Loc), identification (ID), track, activ-
ity (Act), capability (Cap), and intent. The levels range from low to high quality, and each level 
has associated with it a probability that the observation meets or exceeds a given level. This 
information is collected into a table called the knowledge matrix.

Table 2.1 illustrates this quantitative approach to observation quality. 

Table 2.1
Quantitative Assessment of Observation Quality 
as a Probability of Achieving Quality Levels

Quality Level Loc ID

� (high) 0.�0 0.70

4 0.20 0.80

� 0.�0 0.90

2 0.80 0.9�

� 0.90 0.99

0 (low) �.00 �.00

•
•
•
•

•
•
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In Table 2.1, only two columns are shown: those for location and identification. More 
columns can be added as necessary. In each of these two columns are the likelihoods that an 
observation will meet or exceed the quality listed in the leftmost column. The qualities range 
from low to high. In this particular example, the likelihood of meeting or exceeding a quality 
level of high for each location and identification type is 0.10 and 0.70, respectively, meaning 
that it is likely that this observation produced high-quality knowledge of identification and 
rather low-quality knowledge for location.1

Table 2.2 gives examples of qualitative (identification) and quantitative (location) metrics 
for describing the varying levels of knowledge quality. Each of the qualities can have either a 
qualitative or a quantitative description. For example, a low-quality observation of an object 
might indicate only that detection occurred, with little information about the object that was 
detected. As the quality improves (moving from bottom to top in Table 2.2), more informa-
tion about the object or entity is obtained. For example, the information distinguishes whether 
the object is a vehicle or a structure (quality level 2); if it is a vehicle, whether it is wheeled or 
tracked (quality level 3); and finally, at the highest quality level, what the object is, as well as 
its parent or group membership. We note that, if an observation of a given quality has been 
obtained, it naturally implies that information associated with the lower quality levels has  
been obtained as well. In other words, if an object can be classified as wheeled or tracked (qual-
ity level 3), it is also known whether this object is a vehicle or a structure (quality level 2).

A quantitative description of quality level is also possible. In the case of knowledge regard-
ing location, the quality level might correspond to location errors. A low-quality observation 
might be a location error of 10 km (quality level 0), whereas a high-quality observation might 
be a location error of 5 m (quality level 5).

Keithley (2000) developed descriptions, shown in Table 2.3, of the quality levels asso-
ciated with six different knowledge types: location, track, identification, activity, capability, 
and intent. The qualities for location are continuous and quantitative. In comparison, for the 
remaining types of knowledge, the quality descriptions are qualitative and discrete.

Sensor capabilities can be captured in the knowledge matrix. The knowledge types and 
associated likelihoods of reaching a given quality level can be indicative of the type of sensor

Table 2.2
Metrics for Describing Levels of Knowledge Quality

Quality Level ID Loc

� (high) Specify object and parent � m

4 Specify object �0 m

� Classify (e.g., wheeled or tracked �ehicle) 20 m

2 Distinguish (e.g., �ehicle or structure) �00 m

� Discriminate � km

0 (low) Detect �0 km

1 The reader should keep in mind that these levels are not necessarily precise and are left to the analyst to determine what 
is appropriate.
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Table 2.3
Qualitative and Quantitative Descriptions of the Quality Levels for Each Knowledge Type

Quality

Knowledge Type

Loc Track ID Act Cap Intent

highest 
�

� m Vectors and 
patterns

Specify object 
and parent

precise 
actions

All elements All long- and 
short-term 
objecti�es

high 
4

�0 m Vectors Specify object Many specific 
actions

Many details Major objecti�es

Medium 
�

20 m General speed 
and direction

Classify (e.g., 
wheeled,  
tracked �ehicle)

Identifiable 
actions

Some details primary 
objecti�es

Medium-
low 
2

�00 m Toward or away Distinguish 
(e.g., �ehicle, 
structure)

Single 
identifiable 
action

General 
information

General 
objecti�es

Low 
�

� km Stationary or 
not

Discriminate Unidentifiable 
action

Minimal 
information

Single objecti�es

Lowest 
0

�0 km Detect Detect Detect Detect Detect

and target being observed. For example, as shown in Table 2.4, a synthetic aperture radar 
(SAR) sensor might have a particularly good identification capability (i.e., a 0.70 probability 
of reaching high-quality identification knowledge in the example on the left) and a rather low 
probability of providing a track of an object (in this case, a 0.0 probability of anything other 
than the lowest quality for track). This capability can be compared with that of a ground 
moving target indicator (GMTI) sensor, which might be just the opposite: very high prob-
ability of tracking an object and low probability of identification. The exact likelihoods in 
the knowledge matrixes may be determined primarily by the type of sensor and target being 
observed, but they will also depend on the terrain and environmental factors present when a 
given observation occurred.

Table 2.4
Capturing Sensor Capabilities in a Knowledge Matrix

Quality

SAR Sensor GMTI Sensor

Track ID Track ID

highest 0 0.70 0 0.00

high 0 0.80 � 0.�0

Medium 0 0.90 � 0.80

Medium-low 0 0.9� � 0.8�

Low 0 0.99 � 0.90

Lowest � �.00 � �.00
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Generating an Observation: Level 0 Fusion

Having established how to describe an observation across multiple types of knowledge, we now 
turn to the process of generating an observation as is done in a combat model or simulation, 
illustrated in Figure 2.2. The generation of the observation is part of level 0 and level 1 fusion, 
as described earlier.

Three key factors affect the quality of a sensor’s observation of a given target: environmen-
tal effects, such as weather and clutter; terrain effects; and the type of sensor used to generate 
the observation.2 A sensor can generate various types of knowledge about a target, such as its 
location and its identity. The quality of this knowledge will vary from one instance to the next, 
depending on the factors involved. In each particular case, the quality of a sensor’s observation 
is captured in its knowledge matrix.

The quality of a particular sighting can be deduced from its corresponding knowledge 
matrix. The deduction can occur in one of two ways. In a stochastic simulation, the observa-
tion quality for a particular knowledge type is generated from a random variable (U) uniformly 
distributed between 0 and 1. The quality reported for that instance is the highest quality with 
a likelihood greater than U.

Table 2.5 gives an example for a single knowledge type, identification (ID). If the uni-
formly distributed random variable3 for identification ( )U ID  is 0.23, which is greater than 
0.0 and not greater than 0.3, the observation would generate an identification quality level 
of 4. This quality level corresponds to knowing the “object specification.” Since attaining a 

Figure 2.2
Overview of the Generation of an Observation

RAND TR416-2.2

Each observation has an
associated knowledge matrix. . .

Sensor

Environment

Terrain

Target

. . .that is based on sensor coverage patterns, 
probability of detection, weather, foliage, 
target activity, and other factors.

Quality  Loc  ID ...

 5 0.0 0.0 ...

 4 1.0 0.30 ...

 3 1.0 0.80 ...

 2 1.0 0.85 ...

 1 1.0 0.90 ...

 0 1.0 1.0 ...

2 Others include enemy countermeasures, such as jamming and deception.
3 To generate a random variable in the model, we started with a uniform distribution and inverted the distribution func-
tion (which is contained in the knowledge matrix).
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Table 2.5
Example Portion of a 
Knowledge Matrix

Quality ID

� 0.00

4 0.�0

� 0.80

2 0.8�

� 0.90

0 �.00

quality level of 4 indicates that lower quality levels are also known, the observation has indi-
cated whether the object is a vehicle or a structure, and (if it is a vehicle) whether the object is 
tracked or wheeled, in addition to what specific object it is. With a quality level of 4, the obser-
vation might have indicated that the object is a T-72 (e.g., a vehicle, tracked, Russian T-72).

If U ID = 0 84. ,  which is greater than 0.8 and not greater than 0.85, the observation 
would have generated a quality level of 2 for identification. In this case, only whether the object 
was, for example, a vehicle or a structure could have been deduced from the sighting.

The second way to deduce the actual quality level of information in a given knowledge 
matrix is to calculate the mean of each column.4 The mean quality of a knowledge category is 
the sum of the column entries in the category minus 1. This number is rounded up to deter-
mine the quality level reported. In the example shown in Table 2.5, the average of the identifi-
cation column is 2.85, which, rounded up, equates to a quality level of 3. In this case, whether 
the object, if it is a vehicle, is wheeled or tracked could have been deduced from the obser-
vation. This particular method of determining the reported quality from a given knowledge 
matrix is useful in a deterministic simulation in which random variables are not used.

The knowledge matrix method can also capture implicit representations of the quality of 
the knowledge types that may be associated with a given observation. In some cases, it may be 
possible to generate explicit representations of knowledge. One example of this is the represen-
tation of location.

Stochastic simulations typically apply errors to ground truth locations of the form

( , ) ( , ) ( , ),x y x y Z Zgt gt x x y y= + σ σ

where ( , )x ygt gt  is the ground truth location, Z Zx yand  are standard normal variables, and σ x  and σ y  are the standard deviations of the location error.
The reported location (perception) is (x, y), and the perceived standard deviations are 

( ),σ σx yand  which may not equal the actual standard deviations. A deterministic simula-
tion might report the actual ground truths, ( ),x ygt gtand  along with the standard deviations, 

4 Use of the median can be considered, but no analysis has been done to determine which is better (or whether either is, 
in fact, more appropriate). 
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( ).σ σx yand  Various specific processes for location fusion have been documented in the lit-
erature on the subject.5

Once the new locations and standard deviations are explicitly calculated in the simula-
tion, it is possible to generate the knowledge matrix from the explicitly generated observation. 
The probability that the distance between the observed location and ground truth location is 
less than d is given by

1
2

2

2−
−









exp ,
d
σ

where

d x y= − + −[( ) ( ) ] .σ σ2 2 0 5
 

σ = ground truth location, assuming that  
σ σ σx y= = .

Two examples are shown in Table 2.6. In example 1, the knowledge matrix has been 
calculated for an explicit standard deviation of 10; in example 2, the standard deviation is 
100. As expected, the knowledge matrix in example 1 has a much higher probability (0.12) of 
achieving a quality level of 5 than the knowledge matrix in example 2 (0.001). The likelihood 
of achieving other quality levels is similarly skewed.

Table 2.6
Two Examples of Knowledge Matrix Computation for 
Location from Explicitly Generated Observations

Quality d

Example 1:
σ =10

Example 2:
σ =100

Loc Loc

� � 0.�2 0.00�

4 �0 0.�9 0.00�

� 20 0.87 0.020

2 �00 �.00 0.�90

� �,000 �.00 �.000

0 �0,000 �.00 �.000

5 See Washburn (2004) for a discussion of a more general process.
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Combining Two Observations: Level 1 Fusion

Now that an observation has been generated and an associated knowledge matrix and qual-
ity level have been established, we turn to combining multiple observations. The combination 
of multiple sensor outputs conforms to level 1 fusion, wherein we have identified that discrete 
entities or events have been observed, and it is time to correlate and combine information and 
resolve any conflicts in the data.

A series of steps determines whether two observations should be combined. The first step 
involves aging the new observations (as well as those that have already been processed on the 
COP) and expunging observations that are deemed too old. This process is illustrated in Figure 
2.3. It should be noted that each intelligence domain executes such a series of steps in parallel 
with other domains, producing a COP for each domain. This is known as single-source process-
ing. Then, an integrating sequence, all-source processing, unifies the separate COPs into one.

Aging the COP

Information becomes less accurate over time. If an object moves or if an event changes the 
circumstances, something that may have been true at one time becomes less certain later. To 
that end, it is important to incorporate a method for aging the knowledge matrix based on a 
set of circumstances. Some types of information may age more quickly than other types. The 
accuracy of a bit of information will depend not only on the target but also on environmental 
effects. In this section, we explain one method of incorporating this effect into the knowledge 
matrix approach.

Figure 2.3
Steps Involved in Populating the COP: Age

NOTE: Diamonds signify observations.
RAND TR416-2.3
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The aging method we use relies on the concept of data half-life—namely, the time it takes 
for half the quality of the information to be lost (see Table 2.7 for examples). To calculate the 
value of the aged knowledge matrix entry, GAged ,  we must determine the decay constant, R. 
The half-life time for each type of OOB object is calculated through expert opinion and cor-
responds to the time it takes for the knowledge of the sighting to decay to one-half its original 
value. Representative values for three OOB objects—foot mobile, vehicular, and fixed-wing 
aircraft—are shown in Table 2.7. We define exponential decay as

G G eAged
R t= − ×∆

0 .

From this equation, we see that R t×∆ = =0 693 2. ln( )  when ∆t  equals the half-life 
of the data. We know ∆t  for each object and therefore can calculate R. The results are shown 
in Table 2.7.

Table 2.8 shows an example of the aging process for a 10-minute-old ground target. The 
original matrix is on the left; the aged-observation matrix is on the right. Values are shown for 
location and identification. We see that a quality level of 3 for location and identification has 
been reduced over a period of 10 minutes to quality levels of 2 and 0, respectively. After 10 
minutes, the information that was available on its identification is rendered almost completely 

Table 2.7
Half-Lives and R-Values for Some Vehicle Types

Vehicle Type Speed (km/hr) Half-Life (min) R

Foot �–4 �0 0.02�

Ground �–49 �0 0.0�9

Aircraft �,000 0.� �.�8�

Table 2.8
Location and Identification Knowledge Matrix Entries for a Ground Target

Quality

Ground-Target Observation Aged Ground-Target Observation

Loc ID Loc ID

� 0.0� 0.42 0.0� 0.2�

4 0.�� 0.7� 0.0� 0.�7

� 0.2� 0.90 0.�2 0.4�

2 0.90 0.9� 0.4� 0.48

� 0.99 0.98 0.49 0.49

0 0.99 0.99 0.49 0.49

Uniform 0.20 0.84 0.20 0.84

nOTe: Values are gi�en both at inception (“Ground-Target Obser�ation”) and after 
being aged for �0 minutes (“Aged Ground-Target Obser�ation”). The reported 
quality le�el generated from a uniform random draw (“Uniform”) is indicated by 
shading. The uniform random draw stays the same throughout the aging process.
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useless. Note that, in each of these cases, the uniform random variables listed below the matrix 
are unchanged after aging.

Observations should be dropped from the COP when they are too old. An observation 
that has sat on the COP and not been updated or changed for a certain period of time may 
be deemed unnecessary. In this case, each observation or class of observations may be given a 
maximum time on the COP before it has to be either updated or dropped.

Aging the knowledge matrix is an implicit means of determining the effects of time on 
an observation’s quality. Some of the knowledge columns in the matrix, however, may be ame-
nable to explicit calculation of the effects of time on quality. For example, the location can be 
aged by updating the position based on the initial location and velocity, assuming a straight 
path (better known as dead reckoning).6 In this case, given the position, velocity, and associated 
errors in each, we can explicitly calculate an expected position at some time in the future. To 
determine the dead-reckoning location after ∆t  time, the location (x, y) is

( , ) ( , ) ( , ) (x y Z Z t x y Zgt gt x x y y gt gt x x+ +∆ ∆ ∆ + ∆ ∆σ σ σ ,, ) ,Z y y∆ ∆




σ

where ( , )x ygt gt  is the ground-truth location; ( , )∆ ∆x ygt gt  is the ground-truth velocity; Zx ,
Z Z Zy x y, ,∆ ∆and  are standard normal variables; σ σx yand  are the standard deviations of 
the location error for (x, y); and σ σ∆ ∆x and y  are the standard deviations of the velocity error 
for (x, y).

In the case of knowledge about a potential track, an offline model might be used to 
determine average (or the distributions of) fused track durations and errors that can be applied 
directly to knowledge quality (Steinberg and Rosen, 1997). We do not discuss such a model 
here.

Once an observation has been aged, we determine whether it will be combined with an 
observation already on the COP.7 The information on the COP should similarly be aged, either 
explicitly or implicitly, before any combination criteria are assessed. (Intelligence preparation 
of the battlefield [IPB] information, which is discussed later, is handled during this process 
in a slightly different manner from that for handling standard observations on the COP.) The 
process starts by taking a new observation and comparing it with an observation on the COP. 
There are three criteria that need to be assessed to determine whether the two observations 
should be combined. They are to check whether the observations are close enough, whether 
they have consistent identifications, and whether the knowledge matrixes are good enough, as 
illustrated in Figure 2.4.

Figure 2.5 illustrates the necessary fusion conditions that must be met before two obser-
vations can be combined. It shows a sample knowledge matrix for each of two observations. 
Beneath each knowledge matrix is a set of numbers (uniformly distributed random variables, 
Ui ),  which are used to generate the perception. As can be seen, we have two observations with 
two reported locations and standard deviations based on an explicit representation of loca-
tion knowledge. (Because the location was explicitly generated, the uniform random variable

6 We are using the limited, though oft-used, dead reckoning as an example of an explicit movement capture. Other meth-
ods might be integrated and just as easily incorporated into the overall knowledge matrix representation.
7 Combining the observations is typically referred to as the process of correlation in standard fusion terminology.
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Figure 2.4
Steps Involved in Populating the COP: Compare Observations
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Figure 2.5
Generation of Two Observations of One Target

+
+

Quality  Loc*  ID ...

 5 0.118 0.00 ...

 4 0.393 0.30 ...

 3 0.865 0.80 ...

 2 1.00 0.85 ...

 1 1.00 0.90 ...

 0 1.00 1.00 ...

Quality  Loc*  ID ...

 5 0.001 0.70 ...

 4 0.005 0.80 ...

 3 0.020 0.90 ...

 2 0.393 0.95 ...

 1 1.00 0.99 ...

 0 1.00 1.00 ...

U1 = (—, 0.84, ...)

Reported location: (x1, y1)
With standard deviation: ( x1

, y1
) = (10,10)

U2 = (—, 0.22, ...)

Reported location: (x2, y2)
With standard deviation: ( x2

, y2
) = (100,100)

*Assumes explicit representation of location knowledge.
RAND TR416-2.5
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is not generated and is replaced in the picture with a hyphen.) The case on the left has one-
tenth (standard deviation = 10) the standard deviation of the sighting on the right (standard 
deviation = 100). Only two columns of the knowledge matrix are shown, for the sake of 
simplicity.

There is no reason to assume that the two example observations are of a single entity on 
the ground (in these examples, a tank). The two observations could easily be of two or more 
separate entities on the battlefield. The criteria for combining the observations will include 
heuristics to determine whether the observations are of the same entity. In addition, it may be 
the case that a single sensor observed one or multiple entities on the ground to generate the 
two observations being considered (an example later in this report addresses this scenario). In 
that case, once again, the following criteria can be used to determine whether the observations 
are of the same entity and should be combined or whether they are from different entities and 
should remain separate in the operational picture. That a certain sensor or set of sensors made 
the initial observation will drive only the order in which observations are considered for com-
bination. In general, single-source fusion is performed before multisource fusion. However, 
the specific logic behind the choice in order, while important, is typically left to subject-matter 
experts (SMEs).

Are the Observations Close Enough?

The first test to determine whether two observations should be combined is to check whether 
they are close enough. This entails using information about the error in the locations and relat-
ing it to how far apart the two sightings are. The observations should be close enough rela-
tive to the errors in the sighting to be considered for combination. The standard deviations in 
location are assumed, in this case, to be explicitly generated in the simulation. To determine 
whether the two observations are close enough, we check whether the square of the standard-
ized distance is less than the critical value of a chi-squared random variable with two degrees 
of freedom (Zelen and Severo, 1972, pp. 940–943; Kenney and Keeping, 1951, pp. 98–100).8

Are the Observations Consistent?

The second criterion that is evaluated when considering the combination of two observations 
is whether the information on the identity of the entities is consistent. Consistency does not 
require that the perception of identity be the same for both observations but, rather, that the 
perception of identity does not conflict. For example, perceiving one entity to be a vehicle, but 
not knowing what type of vehicle, would be consistent with an observation that indicated that 
the entity was a T-72 (a specific type of vehicle).

In the example in Figure 2.6, the observation on the left (with a uniform random variable 
of 0.84) produces information indicating that the entity is a vehicle. The observation on the 
right (with the uniform random variable of 0.22) indicates that it is a T-72 tank from the Fifth 
Guard. While the observation on the left has considerably less information about the identity 
of the object, it is consistent with the observation on the right because it does not contradict 
the knowledge that it is a specific tank from a specific unit—a T-72 from the Fifth Guard is 
also a vehicle.

8 In the examples in this report, we use a 95-percent confidence level for the chi-squared test. This can be set by the user, 
depending on tolerance for redundant observations.
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Figure 2.6
Example of Consistency of Two Identities

Quality   ID

 5 0.00

 4 0.30

 3 0.80

 2 0.85

 1 0.90

 0 1.00

Quality  ID

 5 0.70

 4 0.80

 3 0.90

 2 0.95

 1 0.99

 0 1.00

NOTE: The two observations are consistent but not identical.
RAND TR416-2.6

UID = 0.84 Vehicle

Fifth Guard
T-72

UID = 0.22

In the absence of any ambiguity in misidentification or other effects that may cause a 
false identification (and not just an identification of lower quality), individual observations of 
a specific entity will always have consistent knowledge of identity and, therefore, will always 
pass this test.

Are the Observations Good Enough?

The third criterion that must be measured before two observations can combine is the ade-
quacy of the quality of the observation itself. This entails calculating a quality score for each 
knowledge type and an overall quality score, which indicates the average overall quality of a 
given observation.

For all knowledge types (i.e., columns of the knowledge matrix), the quality score is 
1
6 1( ).mean quality for the type+  The overall quality of the observation is the average of all 
the individual quality scores calculated from the columns of the knowledge matrix. This score 
is multiplied by the score of another observation, and the resulting fraction is considered the 
likelihood that the two observations are of the same entity on the battlefield. In a stochastic 
simulation, this probability can be used as the likelihood that the two observations can be 
combined. In a deterministic simulation, this number can be used in an absolute manner: If 
it is above 0.5, the two observations are combined; if it is below, the two observations are con-
sidered too poor to combine.

Figure 2.7 shows the individual and overall qualities of two observations for three knowl-
edge types (location, track, and identification).9 For each observation, the quality score is cal-
culated and a combined average over all knowledge types is determined. In this case, the three 
mean qualities of the first observation (4.4, 4.0, 3.9) are averaged over the 18 knowledge matrix 
entries to generate an overall quality of 0.68. This can be multiplied by the result from the 
second observation (0.65, in this case) to get the probability that the two observations would 
be good enough to be combined. This method will bias good observations being combined 
with other good observations and limit the number of bad-overall-quality observations from 
being combined.

9 These three are typically used for correlating observations.
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Figure 2.7
Observation Qualities Must Be Good Enough

RAND TR416-2.7

Obs #1 Loc  Mean = 3.4 4.4

Obs #1 Track  Mean = 3.0 4.0

Obs #1 ID Mean = 2.9 3.9

Obs #2 Loc  Mean = 1.4 2.4

Obs #2 Track  Mean = 3.0 4.0

Obs #2 ID Mean = 4.3 5.3

Quality score per
category

Overall quality
of observation

12.3/18 = 0.68

11.7/18 = 0.65

0.68 0.65 = 0.44

There are alternative approaches to generating quality scores from an individual observa-
tion. The location quality can be calculated as the minimum of 1 and 1

3 1( ).mean quality+  
This alternative scoring technique will favor observations with good target-location quality 
and poor identification quality. It creates a quality score that takes into consideration different 
types of sensors, for example. To favor the observations generated by an moving-target indica-
tion (MTI) sensor over a signals intelligence (SIGINT) sensor, one would want a scoring tech-
nique that favors observations with good target-location quality and poor identification quality 
so as not to inappropriately degrade the quality score.

When calculating whether two observations should be combined in the manner described 
here, some columns may not be used in certain circumstances. If one sensor is known not to 
have a capability in one knowledge type, it can be assumed that it will not match or be in line 
with another sensor that does. To ensure that the sensors are judged on their own capabilities, 
certain columns may be left out when generating the overall quality score. This is easily seen by 
considering an observation from a SAR sensor. The information generated from a SAR image 
is not expected to produce reasonable-quality intelligence on tracks, and, indeed, an analyst 
looking at a SAR image will not expect to find information on a moving target. The quality  
of the other columns—in this case, knowledge of identity—is the focus of the intelligence. 
When the overall quality score is calculated in this step, the column for track would be left out 
of the calculation so as not to degrade what is otherwise a good piece of intelligence.

An alternative scoring method is to base the quality score on the percentile rather than 
the mean of the column distribution. This may be considered a risk evaluation wherein a risk-
averse evaluation might take the 90th percentile quality and use that as the score. Alternatively, 
any percentile, such as the median or 50th percentile, may be used.

Regardless of which scoring technique is used, the output of this criterion is that either 
the two observations are combined (discussed next) or one of them—usually the one with 
lower overall quality—is discarded. The motivation behind expunging the worse observation 
is as follows. The two observations at this point have been deemed to be close enough and have 
consistent identities. At this point, we are implicitly evaluating whether the observations are 
any good to the analyst in maintaining a good overall operating picture. If the quality is quite 
low compared to that of the current observation on the COP, there is no need to combine them 
and potentially reduce the overall quality of the observation or add unnecessary uncertainty 
to the current picture. If they are not being combined, the process might as well discard the 
observation. In the example shown in Figure 2.7, if a uniform random variable did not indicate 
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that the two observations should be combined, the second one (quality score = 0.65) would be 
discarded.

Combination of Two Observations

If all three fusion criteria are satisfied, it is possible to combine the two observations into a 
single observation (see Figure 2.8). This involves two steps. The first is to combine the two 
knowledge matrixes, and the second is to combine the uniform random variables (U) that are 
associated with each observation (in the case of the stochastic simulation).

Once the observations have been aged appropriately, and if all three criteria have been 
met, the two observation matrixes can be combined (see Figure 2.9). The combined matrix, K, 
formed from observation matrixes G and H, is given by

K G Hi j i j i j, , ,( )( ),= − − −1 1 1

where knowledge matrixes G and H are taken from the two observations and K is the new 
matrix. It has been suggested that this equation is an extension of the Dempster-Shafer theory 
of evidence (Shafer, 1976). Alternatively, this equation may be derived by assuming indepen-
dence between the two observations and computing the distribution of the maximum quality 
of the two.

Figure 2.8
Steps Involved in Populating the COP: Combine Observations

Age

Too old

Close enough?

Consistent ID?

Garbage Combine

Good enough?

Higher-level
fusion

No

No No

No

COP

Yes

Yes

Yes

NOTE: Diamonds signify observations.
RAND TR416-2.8
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Figure 2.9
Combining Two Observations into a Combined Observation Matrix

*Using explicit representation.
RAND TR416-2.9

Quality    Loc* Track   ID Act Cap Intent

 5 0.118 0.00 0.0 0.00 0.00 0.00

 4 0.393 0.00 0.30 0.00 0.00 0.90

 3 0.865 0.00 0.80 0.00 0.00 0.90

 2 1.0 0.70 0.85 0.00 0.00 0.90

 1 1.0 0.90 0.90 0.00 0.90 0.90

 0 1.0 0.95 1.0 1.0 0.92 0.90

Quality  Loc* Track   ID Act Cap Intent

 5 .121  0.00 0.70 0.30 0.00  0.00

 4 .403  0.00 0.86 0.40 0.00  0.90

 3 .873  0.00 0.98 0.50 0.70  0.90

 2 1.00  0.91 0.99 0.60 0.80  0.93

 1 1.00  0.98 1.00 0.70 0.99  0.94

 0 1.00  1.00 1.00 1.00 0.99  0.95

Quality     Loc* Track   ID Act Cap Intent

 5 0.001 0.00 0.70 0.30 0.00 0.00

 4 0.005 0.00 0.80 0.40 0.00 0.00

 3 0.020 0.00 0.90 0.50 0.70 0.00

 2 0.393 0.70 0.95 0.60 0.80 0.30

 1 1.00 0.80 0.99 0.70 0.90 0.40

 0 1.00 0.90 1.00 0.80 0.92 0.50
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Where Ki, j = 1 – (1 – Gi, j)(1 – Hi, j)

Likelihood of quality of combined observation is
at least as great as that of either original observation.
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Deterministic simulations are finished at this point, since they will then have a new 
knowledge matrix and associated mean quality for each knowledge type. In a stochastic simu-
lation, it is necessary to also combine the uniform random variables (U) associated with the 
knowledge matrix for each observation. The uniform random variables are not redrawn for  
the new matrix. One approach to combining the random variables is to choose the random 
variable for each type of knowledge that yielded the maximum quality level for that type. 
Another is to combine the two random variables as follows. If U G U Hi i( ) ( )and  are the uni-
form sampling vectors associated with the knowledge matrixes G and H, respectively, the fused 
vector U K i( )  is defined as

U K U G U H U G Ui i i i( ) ( ) ( ) ln [ ( ) ][= − −[ ] −[ ] − − −1 1 1 1 1 1 (( ) ]H i( ) 

The advantage of the second approach is that the distribution of the resulting random variables 
is still uniform.10 Continuing the previous example, Table 2.9 presents the combined U(K ).

Some types of knowledge may be explicitly calculated. For locations in particular, through 
such means as Bayesian updating, it is possible to calculate errors and new locations from two 
observations.

10 This combination is drawn from the fact that, if a continuous random variable, x, has distribution function, F, then F(x) 
is a uniform random variable.
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Table 2.9
Example Combination of the Uniform Random Vectors

Observation Loc Track ID Act Cap Intent

First obser�ation 
U(G)

nA 0.84 0.84 0.20 0.�2 0.�0

Second obser�ation 
U(H)

nA 0.24 0.22 0.�2 0.48 0.�0

Combined obser�ation 
U(K)

nA 0.�2 0.�2 0.2� 0.40 0.��

nOTe: nA = not applicable.

In either a stochastic or deterministic model, if

σ σ σ σ σ σx y x y1 1 1 2 2 2= = = =and then,

( , )
( , ) ( , )

,x y
x y x y

new new =
+
+

σ σ
σ σ

2
2 1 1

2
1 2 2

2
1

2
2

annd

σ σ σ
σ σ

2
2
1

2
1

2
1

2
2

new = +
.

Once a new location and associated error are calculated from the two observations, it 
is possible to also calculate the knowledge matrix location column. The entry in the loca-
tion column is based on the equations described earlier and in the example in Table 2.6. In 
our example, we took two observations with errors of 10 and 100 units and generated a new 
knowledge matrix based on the combination of the two observations. The new knowledge 
matrix shows an 87-percent likelihood that at least 20-unit accuracy is generated in the new 
observation.

Figure 2.10 illustrates the resulting combination of knowledge matrixes for a stochastic 
simulation. On the left are the two knowledge matrixes and two uniform random variables 
associated with the observations being combined. On the right is the resulting knowledge 
matrix and vector. As we see, the reported quality of the combined observations of the two 
knowledge types (shown in shaded boxes) is never worse than the best input quality, and one 
of the knowledge types (activity) is actually better in the combined observation (quality level 
5) than in either of the individual observations (quality levels 0 and 2).

The overall quality, as measured by the average quality for each knowledge type, is also 
higher in the combined observation than that of either of the two input observations individu-
ally. For example, even though the reported knowledge level for track ( , )G Htrack track= =1 2  
is no better in the combined observation( ),K track = 2  the average track quality in the com-
bined observation (1.89) is better than that of the two input observations (1.55 and 1.4, 
respectively).
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Figure 2.10
Combining Two Knowledge Matrixes Along with Uniform Random Vectors

*Using explicit representation. Mean location quality = 3.38.
RAND TR416-2.10

Quality  Loc* Track ID Act Cap Intent

 5 0.118 0.00 0.0 0.00 0.00 0.00

 4 0.393 0.00 0.30 0.00 0.00 0.90

 3 0.865 0.00 0.80 0.00 0.00 0.90

 2 1.0 0.70 0.85 0.00 0.00 0.90

 1 1.0 0.90 0.90 0.00 0.90 0.90

 0 1.0 0.95 1.0 1.0 0.92 0.90

Quality  Loc* Track ID Act Cap Intent

 5 0.119 0.00 0.70 0.30 0.00 0.00

 4 0.397 0.00 0.86 0.40 0.00 0.90

 3 0.867 0.00 0.98 0.50 0.70 0.90

 2 1.00 0.91 0.99 0.60 0.80 0.93

 1 1.00 0.98 1.00 0.70 0.99 0.94

 0 1.00 1.00 1.00 1.00 0.99 0.95

Quality  Loc* Track ID Act Cap Intent

 5 0.001 0.00 0.70 0.30 0.00 0.00

 4 0.005 0.00 0.80 0.40 0.00 0.00

 3 0.020 0.00 0.90 0.50 0.70 0.00

 2 0.393 0.70 0.95 0.60 0.80 0.30

 1 1.00 0.80 0.99 0.70 0.90 0.40

 0 1.00 0.90 1.00 0.80 0.92 0.50
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U(K) = (—, 0.62, 0.62, 0.25, 0.40, 0.16)

U(G) = (—, 0.84, 0.84, 0.20, 0.52, 0.30)

U(H) = (—, 0.24, 0.22, 0.52, 0.48, 0.30)

Reported likelihood in gray cells.
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Notice that the quality level generated for the activity knowledge type has increased to 6 
even though the individual quality levels were 0 for G and 2 for H. This large jump in qual-
ity points out a drawback of the second approach to combining the uniform random vari-
ables. For this reason, the first approach is often preferred. Using that approach, the combined 
random vector would be U K( ) ( , . , . , . , . , . )= − 0 24 0 22 0 52 0 48 0 30  and the resulting quality 
level for activity would be 2. A general rule is to use the second approach when both observa-
tions come from the same intelligence domain—single-source fusion—and the first approach  
otherwise—all-source fusion.

Incorporating Intelligence “Nuggets”

A nugget is a piece of information acquired from a special source or process and usually has 
unparalleled quality (see Figure 2.11). Nuggets of information combine in the same way as 
other pieces of information do, and appropriate knowledge matrixes can represent the observa-
tion. In some simulations, a special procedure is used for nugget fusion, but this is not required 
in the knowledge matrix approach.
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Figure 2.11
Nuggets May Occur Infrequently, but They Combine Easily

*Observations obtained from special sources or processes.
**E(Q) is the mean quality for each column.
RAND TR416-2.11

Quality   ID Act Cap Intent

 5 0.4 0.3 0.2 0.1

 4 0.6 0.5 0.4 0.3

 3 0.7 0.6 0.6 0.5

 2 0.9 0.7 0.7 0.6

 1 0.95 0.8 0.8 0.7

 0 1.0 1.0 1.0 0.8
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O
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E(Q)** = (3.6, 2.9, 2.7, 2.0)

Quality   ID Act Cap Intent

 5 0.76 0.51 0.36 0.19

 4 0.82 0.75 0.64 0.58

 3 0.94 0.84 0.84 1.0

 2 0.99 0.91 0.91 1.0

 1 0.998 0.96 0.96 1.0

 0 1.0 1.0 1.0 1.0

E(Q)** = (4.5, 3.9, 3.7, 3.8)

Quality   ID Act Cap Intent

 5 0.6 0.3 0.2 0.1

 4 0.7 0.5 0.4 0.4

 3 0.8 0.6 0.6 1.0

 2 0.9 0.7 0.7 1.0

 1 0.95 0.8 0.8 1.0

 0 1.0 1.0 1.0 1.0

E(Q)** = (4.0, 2.9, 2.7, 3.5)

Updated COP has higher mean quality
for all knowledge categories
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N
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Inference

Table 2.10 shows an example of how to generate additional knowledge of one type from other 
types of knowledge. This process is known as inference: In possession of certain knowledge in 
a couple of areas, one can infer knowledge in a different area. The criteria for inference in this 
example have been derived from the Army’s All Source Analysis System (ASAS). There is a 
separate inference criterion for each type of entity on the battlefield. For example, there might 
be different tables for airplanes, small and large units, and fixed equipment.

Suppose you have knowledge of track to quality level 3 and location to quality level 2. 
The ASAS inference tables show that we can infer knowledge for identity to quality level 3, 
activity to level 2, and capability to level 2. In the cases shown in Table 2.10, the left knowl-
edge matrix (before inference) has a location quality level of 2, a track quality level of 3, and 
rather poor qualities for the rest of the knowledge types. If we apply the inference criteria, we 
can infer that such knowledge of location and track will indicate knowledge in identification, 
activity, and capability. In this example, we set the likelihoods for the inferred knowledge to 
90 percent in the matrix on the right. The actual threshold used for the inferred knowledge 
can be set according to how tightly the information types are coupled. These thresholds are 
set by SMEs.
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Table 2.10
Example of Inference

Quality

Before Inference After Inference

Loc Track ID Loc Track ID Act Cap

� 0.0�0 0.00 0.�2 0.0�0 0.00 0.�2 0.0 0.0

4 0.0�0 0.00 0.2� 0.0�0 0.00 0.2� 0.0 0.0

� 0.��0 0.90 0.�9 0.��0 0.90 0.90 0.0 0.0

2 0.920 0.92 0.�0 0.920 0.92 0.90 0.9 0.9

� 0.970 0.9� 0.�� 0.970 0.9� 0.90 0.9 0.9

0 0.997 0.99 0.80 0.997 0.99 0.90 0.9 0.9

nOTe: In this example, the knowledge matrix before inference has 0 in all other fields.

Aggregates

Aggregates of entities on the ground may be incorporated into the COP in three ways. The first 
is through direct sensing of a unit. The second is through inference, wherein the observation 
of a number of individual entities provides knowledge of an aggregate. Both these means of 
generating aggregate observations are described later in this report. The third method of incor-
porating aggregate units into the COP is through IPB. In this case, intelligence gathered prior 
to an operation or campaign has indicated some knowledge of the enemy, and this information 
has been put into the operational picture to be used in generating the commander’s running 
estimate. The actual units involved might not have been sensed during the operation, but they 
are still contained in the situation map.

As aggregate entities are collected and integrated into the COP, they can combine with 
the units generated through the IPB. Because of the nature of the information contained in 
the IPB, the units may not be handled the same way as other bits of information generated 
during the campaign. Information contained in the IPB may have much longer hold times, 
may not age similarly to other entities, and may not be discarded when evaluating criteria for 
combination of two observations. In this regard, the IPB may be assumed to be very good and 
a significant factor in the commander’s running estimate.
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ChApTer Three

Convoy Example

Figures 3.1 and 3.2 provide a more complex example than the one given in Chapter Two. In 
this scenario, we have a convoy of fi ve targets arranged equidistantly in a line. Th e convoy has 
trucks on the outside positions and three tanks on the inside. Two sensors can observe two and 
three entities, respectively, at each time step.

Th e fusion process takes place as follows. We fi rst sort the sightings in the current COP 
based on their distance to the new observation, with the closest sighting fi rst. Next, we fi nd the 
fi rst sighting in the sorted list that is close enough to, has consistent identifi cation with, and is 
good enough to fuse with the current observation. If, during a fusion attempt, only the good-
enough criterion is not met, then the observation with the lesser overall quality is removed. It 
is also possible that sightings in the current COP are removed because of old age. Any remain-
ing sightings in either the new observation or the current COP that have not been previously 
removed or fused with another sighting are passed on to the next COP.

Figure 3.2 shows an example of how the COP is formed at time step 1 using the convoy 
scenario presented in Figure 3.1. Th e previous COP observations from time step 0 are indi-
cated by squares, and the new, incoming observations are indicated by circles. Th e ground 
truth locations of the fi ve targets are indicated by dots.

Figure 3.1
Complex Example with Three Tanks and Two Trucks in a Convoy

RAND TR416-3.1

Sensor 2

Sensor 1

Target 1

Target 2

Target 3

Target 4

Target 5
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Figure 3.2
Forming the COP at Time Step 1

RAND TR416-3.2

Close enough
Consistent ID
Good enough

Close enough
Consistent ID
Good enough

Close enough
Consistent ID
Good enough

Close enough
Consistent ID
NOT good enough
(New observation had
lesser overall quality.)

Close enough
Consistent ID
NOT good enough
(Previous observation
had lesser overall quality.)

New observation

Ground truth location

Previous COP

The rectangles around the pairs of sightings indicate those pairs that failed to fuse because 
of violation of at least one of the three required criteria. In this time step, three pairs of observa-
tions are shown inside the boxes. In each of the cases, the two observations were close enough 
and had consistent identities, but they were not good enough according to the criteria we 
established earlier in this report. In these cases, the observation with the lesser overall qual-
ity in each pair will be dropped. In the figure, both new and previous observations have been 
dropped because they are not good enough.

The ellipses around the remaining pairs of sightings indicate those pairs that did meet 
all three criteria and thus will be combined. Note that, in one circumstance, the closest circle-
square pair (of the four contained in the two ellipses in the upper right) are not combined. 
This may be an artifact of not coming up in the model as meeting the criteria or of the order 
in which incoming observations are checked against previous observations. Figure 3.3 shows 
the result of those combinations.

Here, we see the resulting COP at time step 1, shown by the dots within the large circles. 
The large circles centered at the COP locations denote the circular error probability (CEP) of 
the observation and correspond to a circle with radius equal to 1 18. .×σ  Next to each sight-
ing from both the previous COP and the new observation is either a D, C, or M to indicate 
whether this sighting was dropped from the new COP (D), combined (fused) with another 
sighting (C), or moved (copied) to the new COP (M), respectively. Note that the latter observa-
tions (those moved to the COP) are coincident in location with the previous observations and 
may not be readily seen in the figure.
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Figure 3.3
COP at Time Step 1

NOTE: Large circles show CEP for fused observation (radius of circle is 1.18 × σ of
fused observation).
RAND TR416-3.3
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Ground truth location
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Error in location

Dropped

Combined

Moved to COP

D

C

M

Figure 3.4 shows, for time step 2, how the new COP is formed for this same example. In 
this case, only the pair of sightings in the upper-right corner are close enough, of consistent 
identification, and good enough to combine. All other pairs fail to pass at least one of these 
three criteria. In particular, the new observation at the bottom center of the figure is not close 
enough to any sighting in the previous COP to pass the first criterion. Near the upper-right 
corner, two sightings are not of consistent identification. The remaining pairs are both close 
enough and of consistent identification but are not good enough.

In Figure 3.5, the resulting COP at time step 2 is shown by dots, with the location error 
as denoted by the CEP, shown by the large circles. As in the previous time step, we again label 
each sighting in the new observation and the previous COP to denote whether it was dropped 
from the new COP, combined with another observation, or moved directly to the new COP.

Figure 3.6 provides an animated demonstration of a how the COP changes over numer-
ous time steps as new observations arrive. It uses the convoy example with five targets on a 
diagonal line. The location errors (standard deviations) are approximately one-third of the 
distance between consecutive targets. At each time step, new observations are fused with  
the previous COP, dropped, or copied directly to the next COP.
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Figure 3.4
Forming the COP at Time Step 2

RAND TR416-3.4

Close enough
Consistent ID
Good enough

Close enough
NOT consistent IDs

NOT close enough
to any sighting in
previous COP

Close enough
Consistent ID
NOT good enough
(New observation was
lesser overall quality.)

New observation

Ground truth location

Previous COP

Error in location

Figure 3.6 shows six consecutive time steps. The first part of each time step shows the 
locations of the observations on the COP along with the locations of the new observations.  
The second part shows the results of any combinations that occurred.

The COP in this example contains either four or five unique observations at each time 
step—close to the total number of observations actually on the ground (ground truth). This 
may be a result of reasonable errors in location knowledge, which allows the process to dis-
cern between two different and two similar entities when new observations are added to the 
picture.

In addition, over the first five time steps, we see a movement of the COP toward the 
center line, where the ground-truth entities actually are. At time step 6, however, two observa-
tions show up toward the bottom left of the convoy, and a blank area is evident in the COP 
near the middle of the convoy. The former may be the result of a combination that did not 
happen as a result of a stochastic draw that did not favor combination (even though it seems 
that they should have been combined). The latter may be a result of dropping an observation 
on the COP that had aged past its threshold.

Using the same scenario used in Figure 3.6, Figure 3.7 uses animation to show how the 
COP changes over time. Each frame shows the ground-truth locations of the targets, as well as 
the current COP and errors in their locations as given by the corresponding CEP circle. Over 
time, we see that the COP moves closer to the ground-truth locations as additional intelligence 
is built up. In addition, we see that the errors are reduced as more observations are added to the 
collective knowledge of each entity.
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Figure 3.5
COP at Time Step 2
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Figure 3.8 is similar to Figure 3.7 in that it uses animation to show the COP changing 
over time for the same scenario, but Figure 3.8 includes location errors (standard deviations) 
that are three times that of the previous example. As a result, we have numerous extraneous 
observations on the COP that are simply added to it from one time step to the next, rather than 
being combined with existing sightings. Not surprisingly, the resulting COP is further from 
ground truth than that in the previous example, due to the increased location errors. Indeed, 
the location errors have decreased the quality of the COP.
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Figure 3.6
Populating the COP

This demonstration shows changes in the COP over six consecutive time steps with the addition of new
observations using the convoy example with five targets on a diagonal line. (To view, please click on
the demonstration.)
RAND TR416-3.6

Animated Demonstration:

COP and New Observations

COP

New observation

R






Con�oy example    ��

Figure 3.7
Changes in the COP Over Time

Using the convoy example with five targets on a diagonal line, this demonstration shows how the COP
and location errors change over time with respect to the ground-truth locations. (To view, please click
on the demonstration.)
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Figure 3.8
Increased Location Errors Result in Extraneous Observations on the COP

This demonstration uses the convoy example with five targets on a diagonal line to show changes in
the COP with increased location errors, degrading the quality of the observation. (To view, please click
on the demonstration.)
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Higher-Level Fusion

This chapter describes some representations of higher-level fusion—namely, fusion levels 2  
and 3. Higher-level fusion can be thought of as part of the overall process of populating the 
COP (see Figure 4.1). Unlike the process of lower-level fusion, in which the COP is populated 
solely by observations coming into the system, in some of the higher-level fusion processes, the 
COP is populated by the operations performed directly on itself. Here, we discuss the genera-
tion of aggregates and higher-level units on the COP.

The output from level 1 fusion is a set of discrete, observed battlefield entities with infor-
mation about the type, location, movement, identity, status, and capability of each entity, 
along with an evaluation of the quality of this information. Based on the level 1 products, 
IPB OOB templates, and knowledge about the environment, level 2 fusion aggregates discrete 

Figure 4.1
Steps Involved in Populating the COP: Higher-Level Fusion
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entities into larger objects that are interacting. It interprets entity events and actions and hypoth-
esizes what events may occur next. The outputs from level 2 are aggregated, as are inferred 
entities, observed and derived events and actions, and a collection of hypotheses regarding 
events that might happen in the future. In addition, quality assessments of these products will 
be available. Level 3 fusion projects a current situation into the future to predict intent and 
courses of action.

There are three methods of detecting an aggregate. The first addresses the direct obser-
vation of an aggregate by a sensor. The next two methods are indirect methods of detecting 
an aggregate, either through the observation of one entity and inferring its parent or through 
observations of many entities, implying a larger collection. We describe each of these three 
methods.

One means of detecting an aggregate is through direct observation of the unit with a 
sensor (see Figure 4.2). Some sensors are much better at identifying aggregates than individual 
entities and, thus, can directly observe an aggregate without having “seen” the entities that 
make up the aggregate. The SIGINT sensor is such an example: Nodal analysis can produce a 
direct observation of an aggregate unit. The ability to make this observation is dependent on 
the processing time for the analyst to determine whether a unit has been seen and the prob-
ability that a certain type of unit can be discerned with the sensor.

An aggregate is a collection of units. For instance, a battalion is an aggregate of multiple 
companies, and a company is an aggregate of multiple platoons. Sometimes, if enough infor-
mation is obtained on a unit, its parent may be determined. For example, with enough knowl-
edge of the identity of a tank, the platoon of which it is a part may become evident. Likewise, 

Figure 4.2
Sensors Can Generate Both Entity and Aggregate Detections
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 5 0.118 0.00 0.0 0.00 0.00 0.00

 4 0.393 0.00 0.30 0.00 0.00 0.90

 3 0.865 0.00 0.80 0.00 0.00 0.90

 2 1.00 0.70 0.85 0.00 0.00 0.90

 1 1.00 0.90 0.90 0.00 0.90 0.90

 0 1.00 0.95 1.0 1.0 0.92 0.90

Quality  ID
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sampled, an observation of
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knowledge matrix.
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knowing enough about the identity of a platoon may allow inferred knowledge of the battalion 
to which it is subordinate.

The knowledge of identification is captured in the identification column of the knowl-
edge matrix. A quality level of 5 in the identification column implies enough knowledge to 
determine the identity of the parent unit. In the case in Figure 4.2, a random draw of less than 
0.7 would generate an observation of the parent in addition to the unit that has been seen. The 
parent would similarly have a knowledge matrix and vector associated with it from the sibling 
detection. This is one means of detecting aggregates. A final method of aggregate detection is 
the direct observation of an aggregate or some portion of it. We describe this method next.

Aggregate detections can sometimes be generated by a group of entity detections. To 
infer an aggregate from a group of entities, it is necessary to have templates for the various 
types of aggregates that may be present.1 These templates, which define both the number  
and types of entities that make up a specific aggregate, are defined by SMEs.

There are two methods by which an aggregate may be inferred from a group of entities. If 
a minimum percentage (defined by SMEs) of subordinate units is detected, then the superior 
unit (aggregate) is considered detected. This inference of the aggregate is an integral part of the 
planning process and helps to generate the commander’s running estimate of the enemy forces. 
An alternative but similar approach is to infer an aggregate by the type of subordinate entity. In 
other words, if a certain minimum percentage of each type of entity is detected within a given 
unit, then the superior unit is considered detected.

1 These templates are generated as part of the IPB task.
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Conclusions

The process of fusion, combining pieces of information to produce higher-quality information, 
knowledge, and understanding, is often poorly represented in constructive models and simu-
lations that are used to analyze intelligence issues. However, there have been efforts to rectify 
this situation by incorporating aspects of information fusion into combat simulations. This 
report describes one approach to capturing the fusion process in a constructive simulation, and 
it provides detailed examples to aid in further development and instantiation.

The method is a sequential process of determining the probability that two pieces of 
information generated on the battlefield are either from the same battlefield entity or are two 
separate observations. The process entails putting the observations through a sequence of oper-
ations to determine whether they (1) are close enough geographically with respect to their 
separate errors in location to be of the same entity, (2) have consistent identities that would not 
prevent them from being considered the same entity, and (3) contain information content of 
high enough quality to warrant the combination.

Once two observations have passed these three tests, a combination process determines 
the fused product and passes it on to the COP. In cases in which additional information about 
an entity is generated—for example, knowledge of the location of a superior unit gleaned from 
knowing where the subordinate is—the process is able to capture the information in the COP. 
Higher-level fusion processes, such as the generation of aggregates, are also captured in the 
fusion process.

In this report, we have described a method for incorporating a representation of fusion 
levels 0 through 2 into a constructive simulation. The method incorporates both explicit and 
implicit representations of the fusion of intelligence. The method as described is model inde-
pendent, and it may be integrated into other Army models as is seen fit.

The method described in this report is a new, nonparametric approach to the representa-
tion of intelligence fusion for simulations. Most other approaches use ground truth, are explicit 
(i.e., they try to replicate the actual procedures), or are not documented. To our knowledge, the 
approach herein may be the first workable approach that permits both explicit and implicit rep-
resentations of intelligence fusion and provides the execution speed and flexibility to be easily 
incorporated into Army simulations.

During the course of this research, we were challenged by the representation of higher-
level fusion. For instance, level 3 (predicting future situations) remains a challenge to opera-
tional practitioners and will continue to advance in simulations as research advances. 

The method described in this report is data intensive: Sensor and collector attributes 
need to be represented in terms of the knowledge types in the method and probabilities cal-
culated from experiments or available data. Discussions with Army experts have led us to 
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believe that the collection and use of such data is feasible, though the capability will need to 
be developed.
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