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Abstract

Unbiased Cramér-Rao lower bound (CRB) theory can be used to calculate lower bounds to the variances of
unbiased estimates of a set of parameters given only the probability density function of a random vector conditioned
on the true parameter values. However, when the estimated parameter values are required to satisfy inequality
constraints such as positivity, the resulting estimator is typically biased. To calculate CRBs for biased estimates of
the parameter values, an expression for the bias gradient matrix must also be known. Unfortunately, this expression
often does not exist. Because expressions for biased CRBs are preferable to sample variance calculations, alternate
methods for deriving biased CRB expressions associated with inequality constraints are needed. Here we present an
alternate approach that is based upon creating the probability density function associated with a given biased
estimate of these parameters using the available knowledge of the estimator properties. We apply this approach to
the calculation of biased CRBs for estimators that use a positivity constraint with and without a support constraint

for a specific measurement model and discuss the benefits and limitations of this approach.
0

1. Introduction

When seeking to estimate a vector of unknown parameters from a set of measurements, it can be useful to
be able to calculate lower bounds to the variances of any estimates of these parameters. One potential use of these
bounds is to determine, a priori, whether or not the desired estimation accuracy can be achieved for a given
measurement model. Another use is to employ them in designing an experiment for which it is known that the
desired accuracy can be achieved. A third use for these types of bounds is to check the accuracy of a software
implementation of an estimation algorithm by comparing its results to the lower bounds.

One well-known theory, called the unbiased Cramér-Rao lower bound (CRB) theory,' provides algorithm-
independent lower bounds (called unbiased CRBs) to the variances of any unbiased estimates of a vector of
parameters obtained from a set of measurements. These bounds can be calculated using only the probability density
function (PDF) of the measurements that is a function of the true parameter values. The unbiased CRBs may not be
achievable, but often they can be achieved or at least approached closely. However, in many cases, unbiased
parameter estimates are not possible (non-invertible system models) or desirable (excessive noise amplification in
the unbiased estimates). For biased parameter estimates, biased CRBs can be calculated.! In addition to the
measurement PDF, the bias gradient matrix of the parameter estimates is needed to calculate biased CRBs. We note
that an alternate approach to biased CRB theory is available that generates biased CRBs (called uniform CRBs) that
depend upon only the norm of the bias gradient and not its direction.

Our interest in CRB theory is to use these lower bounds to quantify how the various types of knowledge
included in parameter estimation algorithms affect the quality of the parameter estimates. There exists a large
number of possible types of knowledge that can be included in the estimation process (c.f. Ref.[3]), depending upon
the type of input signal and the system through which it passes prior to measurements being taken. Two types of
knowledge that have been used extensively in parameter estimation algorithms are the support constraint (restricting
the solution set to parameters that are only non-zero in a specified region) and the positivity constraint (also known
as non-negativity; i.e., restricting the solution set to parameters that are not negative). The support constraint is a
specific example of a more general class of constraints known as equality constraints, where functions of the noise-
free parameters are known to be zero. Similarly, the positivity constraint is a specific example of a class of
constraints known as inequality constraints, where functions of the noise-free parameters are known to be greater
than zero.

In previously-published seminal work,* a detailed CRB theory was developed that quantified the ability of
equality and inequality constraints to reduce noise in parameter estimates for estimators with a given bias gradient
matrix. One key finding in this work is that imposing equality constraints on the parameters to be estimated can
produce lower CRBs than without the equality constraints. A second key finding is that inequality constraints on the
parameters to be estimated cannot produce lower CRBs as long as the bias gradient matrix remains unchanged. This
second finding is at first perplexing, because it is well known to signal processing practitioners that a positivity
constraint often produces less noisy signal reconstructions than possible without a positivity constraint. The answer
to this conundrum is that the variance reduction brought about by inequality constraints on the parameters is
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where In denotes the natural logarithm and E[] denotes the expected value of the quantity in the brackets. Here we
assume that the FIM is invertible; if not, either a subset of or functions of the parameters may be estimable in an
unbiased way.® As can be seen from Eq.(1), the FIM is a function only of the measurement PDF and thus so are the
unbiased CRBs.

Biased CRBs can be calculated in terms of the FIM defined in Eq.(1) using the following expression

CRB,,,.,(6)=diag{[T+ V,b0)F " @) + V,b(0)] }. @)

where b(8) is the bias and V,b(8) is the bias gradient matrix associated with a given estimator that is a function of

6, and I is the identity matrix of appropriate dimension. Obviously, an expression for V,b(0) is needed to carry out
the calculations in Eq.(2) in addition to the measurement PDF.

When it is known that the true parameter values satisfy a set of equality constraints, the FIM can be
modified to include this additional information and improve the accuracy of both unbiased and biased CRBs. The
general theory on how to modify the FIM to include equality constraints can be found in Ref. [4]. For the special
case of a support constraint, the constrained FIM is obtained by zeroing out the rows and columns of the
unconstrained FIM corresponding to the elements of 8 outside the known support. Then F' in Eq.(2) is replaced by
its pseudoinverse. No changes need to be made to V,b(8).

When it is known that the true parameter values satisfy a set of inequality constraints, the FIM remains
unchanged; however, the estimator bias gradients are altered when the inequality constraints are active. In this case,
VGb(B) must be modified to have the biased CRBs reflect the inequality constraint. Unlike for equality constraints,

no general theory is available that describes how to modify an existing VBb(G) to include the inequality constraints.

Finally, when both equality and inequality constraints are jointly known about the true parameter values, the

associated CRBs are calculated by separately modifying the unconstrained FIM to reflect the equality constraints
and the bias gradient matrix to reflect the inequality constraints.

3. Estimation PDF creation

In this section, we describe first how estimation PDFs can be used to obtain CRB expressions that are
equivalent to the standard CRB expressions that are obtained using measurement PDFs. Second, we show how to
create estimation PDFs for three different estimators: (1) one that employs a positivity constraint, (2) one that
employs a support constraint, and (3) one that employs both a positivity and a support constraint. For all three cases,
we assume that the FIM is invertible. Third, we describe conceptually how to extend the estimation PDF creation
method to more general inequality and equality constraints as well as to non-invertible FIMs. Finally, we use our
method to create estimation PDFs for a simple measurement model and the three different estimators described in

this section in order to demonstrate how to apply the estimation PDF creation process. In Section 4, these
expressions will be used to calculate and evaluate CRBs.

3.1 CRB calculations using estimation PDFs

To motivate the benefits and validity of creating a estimation PDF for CRB calculations, consider first a
standard result from probability theory.” Let y be a random vector and g(y) be an arbitrary vector function of y. The
expected value of g can be calculated in one of two equivalent ways:

Ela(y)]= [e(y)f(y;0)dy

= jzf(z;e)dz

3)

where z=g(y) and f(z;0) is the PDF of z that is a function of 8. Because z is the independent set of variables in z
space, no knowledge of g(y) is necessary for calculating the desired expected value when using the second integral
expression in Eq.(3). In other words, f(z;0) incorporates all the information contained in g(y). When a

mathematical expression for g(y) is available, f(z;0) can be calculated from f(y;0) using standard PDF
transformation methods.”®

This same principle can be used to create a biased CRB expression that is equivalent to the expression
given in Eq.(2). To use Eq.(2), an expression for the bias gradient matrix Veb(ﬂ) must be available. In practice,




3.2.1 Positivity-constrained estimation PDF creation

Let 6 , be a positivity-constrained estimator of 8 with PDF £ (ép;e). We define ép, element by element,

as follows: we set the j™ element of 0, épj , equal to the j™ element of éu, éuj, if O, is non-negative, otherwise

we set ém equal to zero. Of course, this is not the only way that positivity can be enforced. Other ways include

replacing negative numbers with their absolute values or adding a positive constant that is larger than the absolute
value of the largest-magnitude negative number. The use of one of these alternate ways to enforce positivity will
change the PDF of the positivity-constrained estimator and thus change the CRBs. This issue is not explored further
here because the focus of this paper is on the PDF-creation process, not on the optimal way to enforce positivity. In

addition, we require that the statistical properties of ép be consistent with the statistical properties of éu as much as

possible while satisfying the positivity constraint. The latter requirement can be understood by realizing that a
constrained estimate of a set of parameters is chosen to be as consistent as possible with the unconstrained estimate

while also satisfying the known constraints. We will now create f (ﬁp;ﬁ) based upon this description of the
estimator. When all the elements of éu are non-negative, the positivity constraint is not active and thus L. (ép;e) =

£ (éu;B) for these values. However, when one or more elements of éu are negative, the positivity constraint is
active and this equality does not hold. When the vector 8 is N-dimensional, there are 2"-1 possible combinations of
the elements of @, for which the positivity constraint is active. As a result, there are 2™ terms in the expression for

f, (ép;B). We will first create an expression for the term in f, (ép ;G) that corresponds to the case where only the first

A

element of éu » 8., is negative. Based upon this result, we will then present a general expression that can be used
to generate any term in f (ép ;B) except for the case where all the elements of éu are negative. This last case can be
obtained by subtracting the integral of the sum of all the other terms of f, (6P;e) from one since PDFs integrate to

one. We note that the number of terms in £, (ép ;0) can become quite large. In Section 5, we address potential ways
to deal with this problem. : '
The PDF creation process can be achieved with the help of the PDF form of Bayes’ theorem.” When only

the first element of ép has been set equal to zero because of the positivity constraint, Bayes’ theorem can be used to

express the constrained joint PDF f, ((:)pl = O,épz,...,épN;G) in terms of its associated constrained conditional PDF

fp(épz,...,épN ép, = O;B) and constrained marginal PDF I pr (ép, = O,épz,...,6PN;B)dép2---déPN as follows:’

-0 -0

a w0
~

£, = 0,8,5,..,8,0:0)=1, (epz,...,epN

8, = o;e)j--- f, 6, = 0,0,,,...,6,:6) de,,dé . )

—x -2

~

Based upon Eq.(7), we can create fp(ep, =0,épz,...,épN;B) by creating separately fp(é

o L)

Pz,...,épN ép, =0;9) and

~

J' jfp (ép, = O,épl,...,éPN ;B)dép2 -+d8  and then multiplying the two expressions together.

-~ -

From a closer look at Eq.(7), we can see that the constrained conditional PDF carries the statistical
information about ép when épl =0 while the constrained marginal PDF is the integral over all the values of ép for

which épl =0. We desire to have the constrained joint PDF be as consistent with the unconstrained joint PDF as

possible while satisfying the known constraints. Because the unconstrained conditional PDF describes the statistical
properties of the unconstrained estimate of 0, we satisfy the unconstrained PDF consistency desire by setting

fp(épz,...,épN 0 8, =0,0). The difference
between the constrained and unconstrained joint PDFs is thus carried in the marginal PDFs. We obtain the

0, =O;B) equal to the unconstrained conditional PDF fu(éuz,...,é

uN



fp(ep, =0,..,0,, =0,6
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p“\M),...,(-}PI\E;9) 0, =0,..,0 ;= 0;9)

" i ) =1
5 5 (11)

~ ~ ~ A

mjwjf (éul ,...,éuN;e) A0, 5.+ d0 }deul-.-dem
& 8(ép, ) 5( pM ) “+(ép<M+n)"'“+ (épw)

Because M is arbitrary and the elements of éu can be arbitrarily reordered, Eq.(11) can be used to calculate all the

terms that are part of L, (éP;B) except for the cases of no negative elements and all negative elements. The term

~ A

corresponding to no negative elements in é i i, (Gpl ,...,BPN;B), is given by
£ 0,100,1:0)= £,(8,,6,0:8) 6, ) "6, ). (12)
and the term corresponding to all negative elements éu s Eg (épl = 0,...,épN = O;B), is given by

£,6, =0...6,, = 0;0)= {1 - Tj'[;um of allthe other termsin f, 6, ;0 |46, ---dépN}a(épl J-s6,). (3
0 o

Equations (11)-(13) completely define i (ép;B).

3.2.2 Support-constrained estimation PDF creation
Let és be a support-constrained estimator of ® with PDF £, (és;e). Unlike for the positivity constraint, the

support constraint is independent of the measurement values. As a result, for a given support region, f, (és;e)

consists of only one term that will now be created. Let there be M elements outside of the support region, where 0 <
M <N. We require that M be strictly less than N; otherwise, there are no elements in the support region and thus
no parameters to estimate. As before, without loss of generality we assume that the first M elements of 6 are the

constrained elements. Following the same approach to create fs((:}s;e) as we used to create f, (ép;B), we first

decompose fs(és;e)zfs(ésl=01"'$65M=Oiés(M+i)="'!ésN;9) into a product of its conditional PDF

f‘s (Bs{M-'!)?""BsN

a

0, = 0,...,65M = O;B) and marginal PDF _f J-fs (ésl = 0,_“,ésM - O:és(M+1)=--wésw;9)dés(mg"'dé

sN *

Mathematically, we have
f. (951 =0,...,0,, = 0,9s(M+1),...,95N§9)= t (BS(MH),...,BSN 0, = 0,..,0,, = 0;9)
x -] L, . N ) . ) (14)
x J' ‘[fs(esl =0,...,0,, = O’QS(MHJ""’esN;e)desm*l,“'dem

For the same reasons as given in Subsection 3.2.1, we set the support-constrained conditional PDF equal to the
unconstrained conditional PDF f, 0

My s O [041500,0 5 = 0;0 ), where




given by Eq.(17), the support-only case. When the support region contains all the elements of éu, K =0 and
f. (B ps;B) is given by Eqs.(11)-(13) depending upon the actual values of the elements of éu .

3.3 Estimation PDF extensions

The estimation PDF creation method described in Subsection 3.2 was developed for estimators using every
combination of the positivity and support constraints. The essence of the positivity and support constraints is that
estimated parameter values are constrained to be zero if they are either non-zero (support) or less than zero
(positivity). However, the positivity constraint can be generalized to the situation where each parameter value is
known to be either bounded below, bounded above, or bounded both below and above by constants that can vary for
each parameter. Similarly, the support constraint can be generalized to the situation where some of the true
parameter values are already known exactly. The necessary modifications are to replace the zero values in the
conditional PDF expressions with the known equality values or the inequality boundary values and to replace the
integration limits in the marginal PDF expressions to be consistent with the known inequality boundary values.

Equality or inequality constraints that consist of combinations of true parameter values cannot be
accommodated using this estimation PDF creation method, though. To demonstrate why this is so, consider the case
where the sum of the true parameter values is known to be less than or equal to a known value. There are an
uncountably infinite number of combinations of estimated parameter values that satisfy this constraint. Because the
method described in Subsection 3.2 creates a separate expression for each possible combination of parameter values
that satisfy the known constraint, this inequality constraint obviously cannot be accounted for. For this reason, the
estimation PDF creation method can be used only when constraints on individual parameter values are known,

Finally, the estimation PDF creation method can be extended to non-invertible FIMs by recasting the
estimation problem to be invertible and carrying out the method on this recast problem. For example, consider the
case where the parameters to be estimated correspond to a discretized time signal and the measurements are a low-
pass-filtered and noisy version of the discretized time signal. The estimation problem can be recast by setting the
true set of parameters to be estimated to a low-pass-filtered version of the original true set of parameters. However,
the known equality and inequality constraints on the true parameter values must be able to be transformed to the
low-pass-filtered parameter set for this approach to be successful. For example, a positivity constraint on the
original set of parameters is still valid for a low-pass-filtered set of parameters if the low-pass filter is chosen to be
non-negative. A support constraint, on the other hand, will not be strictly valid for a low-pass-filtered version of a
set of parameters that have finite support. However, a broadened support region can contain virtually all of the low-
pass-filtered parameter energy and is often applied in this situation. '

3.4 Estimation PDF creation example

In this subsection we apply the estimation PDF creation method described in Subsection 3.2 to a specific
measurement model and three different estimators in order to demonstrate how to carry out the creation process.
First, the measurement model will be described. This model is chosen to be simple in order to make the concepts
described in the previous subsections straightforward to illustrate. Let the measurement vector y, the parameter
vector 6, and the noise vector n be two-dimensional and be related by the following equation

y=0+1q, (19)
where the noise PDF fy (1) is zero mean and Gaussian with a covariance matrix given by

2

2 2 2
Cc=|%1 *0; of-0c; 20)
ol-ol ol+ql

From Eq.(19), it can be seen that measurement PDF fy(y;ﬂ) is equal to f (1]=y—9), where the notation

fy(n= y»—e) denotes the PDF f (n) with n replaced with y-8. The relative values of o} and o! in Eq.(20)
define the measurement statistical correlation properties. When they are equal, the two components of the
measurement vector y are uncorrelated. When o3 =0, the two measurement components are perfectly correlated,
and when o =0, the two measurement components are perfectly anti-correlated. We note that this definition of C
is not conventional. The conventional way to define the covariance matrix of two correlated random variables, each
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_[fv(Y|sYz = O;G)dY|

-

va (Yl = épsl Y2 = O;B)dépsl
|_2

(23)
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Equations (21) — (23) can be used to calculate the FIMs for the three estimators using Eq.(1). The support-
constrained estimator is an unbiased estimator of 8, so the support-constrained CRBs are just the diagonal elements
of the inverse of the support-constrained FIM. However, both the positivity-constrained and positivity- and support-

constrained estimators are biased estimators of 8, so their bias gradient matrices must be calculated using Eq.(5) and
the corresponding constrained PDFs in order to calculate the biased CRBs using Eq.(6).

4. Biased CRBs for positivity and support

The CRBs corresponding to the measurement model and the three estimators described in Subsection 3.3
(positivity-constrained, support-constrained, and both positivity- and support-constrained) are analyzed in this
section as functions of the single-element signal-to-noise ratio (SNR) and the degree of correlation as determined by
the ratio o /c3. The SNR of an element is defined as the noise-free parameter value divided by the square root of
the noise variance. We compare the CRBs to sample variances obtained using computer simulation results and
show that the CRBs are either achieved or closely approached.

The computer simulation results presented in this section use Eq.(19) as the system model with the zero-

mean additive noise term having unit variance (i.e., 6} +o2 =1) and varying values of o} and ol that satisfy

o} +0; =1. The values of 6 were varied in order to vary the single-element SNR values. A cost-function-based
estimation scheme was used to estimate 8 from y based on the following cost function:

J(o)=(y-a*) C'(y-a?), (24)

where C is given by Eq.(20), 0=a » and the minimization was performed over a. This parameterization of 0
enforced the positivity constraint while still permitting an unconstrained (conjugate gradient) minimization routine
to be used. The unconstrained estimator corresponding to Eq.(24) is just the maximum-likelihood estimator
corresponding to the measurement PDF. When both positivity and support were used as constraints, one element of
6 was set to zero and the minimization was carried out over the element of o that corresponded to the non-zero
element of 8. When only support was used as a constraint, the a® term in Eq.(13) was replaced with o and the
minimization was carried out as before. Each sample variance value was calculated using 10,000 estimates of 6
generated from 10,000 statistically-independent measurements for a given set of values for o}, o7, and 6.

The results for the first set of cases to be presented were generated for © = [0.1, 0], [1, 0]", and [5, 017,
while varying o /o] from 0.01 to 100. Because the noise variance in each element is one regardless of the value of
o} /o}, the values for 8 are also the single-element SNRs. A positivity constraint was enforced but not a support
constraint. These choices of values and constraints correspond to estimating parameter values both inside and
outside a support region with the use of only a positivity constraint. The resulting biased CRBs and sample
variances for 8, (i.e., for values inside the support region) are plotted in Figure 1, where the CRBs would be unity
without the positivity constraint. Notice the good agreement between the sample variances and the biased CRBs. In
addition, when cf / 0'3 = 1, the noise values in the two measurement elements are uncorrelated, so the reductions in

the biased CRBs and sample variances corresponding to é, for this value of o} /o2 come entirely from zeroing out
the negative values in y,. Thus, when the SNR of Y1 is five, the probability of obtaining a negative value for y, is
quite small, so the biased CRB for é, in this case is essentially equal to the measurement variance. As the single-
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variety of measurement SNRs and noise covariances. Sample variances were generated for the same set of
measurement SNRs and noise covariances and shown to match closely the theoretical CRB values.

An important outcome of this work is the explicit recognition of the role that noise correlations play in
determining the effectiveness of additional knowledge such as positivity or support to reduce noise in the estimated
parameters. This result provides insight into how positivity and support will function to reduce the noise levels in
parameter estimates where deconvolution is part of the parameter-estimation algorithm. Positivity and support are
not effective in reducing noise levels in estimated parameters when the noises are spatially delta correlated, which
includes many standard noise sources such as amplifier and Poisson noise. However, the deconvolution operation
imposes correlations on delta-correlated noises, leading to the possibility of noise reduction in this case. For the
case of a support constraint, it has been shown that meaningful noise reduction is possible when the measurement
model includes non-negligible blurring.’

Future work includes extending the results in this paper to delta-correlated measurement noises and
deconvolution. Because the method presented in this paper is a function of the measurement noise values, this
extension is straightforward in concept but may result in calculations that are intractable. Therefore, future work
also includes developing variations to the method presented herein that are computationally friendly. One way to
significantly reduce the computational burden is to calculate the positivity-constrained PDF terms only for elements
whose SNRs are less than three. If the set of parameters to be estimated has finite support, this information should
always be included because the support-constrained PDF terms are easy to calculate.
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