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The scalar bidirectional reflectance distribution function (BRDF) due to a perfectly conducting surface with
roughness and autocorrelation width comparable with the illumination wavelength is derived from coherence
theory on the assumption of a random reflective phase screen and an expansion valid for large effective rough-
ness. A general quadratic expansion of the two-dimensional isotropic surface autocorrelation function near the
origin yields representative Cauchy and Gaussian BRDF solutions and an intermediate general solution as the
sum of an incoherent component and a nonspecular coherent component proportional to an integral of the
plasma dispersion function in the complex plane. Plots illustrate agreement of the derived general solution
with original bistatic BRDF data due to a machined aluminum surface, and comparisons are drawn with pre-
viously published data in the examination of variations with incident angle, roughness, illumination wave-
length, and autocorrelation coefficients in the bistatic and monostatic geometries. The general quadratic au-
tocorrelation expansion provides a BRDF solution that smoothly interpolates between the well-known results
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of the linear and parabolic approximations. © 2006 Optical Society of America

OCIS codes: 030.5770, 290.5880.

1. INTRODUCTION

The bidirectional reflectance distribution function
(BRDF) describes one of the most basic optical phenom-
ena: the average angular distribution of intensity re-
flected by a macroscopically planar, generally random me-
dium or surface illuminated by a plane wave incident
from a specified direction. Under coherent laser illumina-
tion, provided that the illuminated area is much larger
than the scale of spatial inhomogeneities of the medium
or surface, the BRDF represents the radiant or angular
intensity envelope under which the speckle pattern oc-
curs. The BRDF is of fundamental importance in diverse
applications including data simulation and analysis in
both laser radar' ™ and passive photometry‘l_6 of solid tar-
gets, laser industrial process control,” high-energy laser
(HEL) control,® stray-light amalysis,9 illumination
design,10 and computer vision,u’12 animation,13 and vir-
tual reality.m_17

Theoretical models describe the dependence of the
BRDF on the physical properties of the reflector, which for
surfaces may include the surface height distribution,
height autocorrelation, slope distribution, and optical con-
stants. Models are typically valid over limited parameter
domains, with the most common delimiting surface pa-
rameter being the effective roughness

o= oy/\, (1)

where oy, is the standard deviation of the surface height
distribution and X\ is the illumination Wavelength.ls’19

1084-7529/06/020314-15/$15.00

Rigorous numerical models have been developed within
limited domains of the surface autocorrelation length a,
for instance in the limit 27a/\ —.2° Several recent re-
views survey surface BRDF models within their respec-
tive ranges of validity.m’22 The most widely used models,
which are all approximate analytical as opposed to nu-
merical models, are summarized below in order to provide
background for the developments of this paper.

Several surface BRDF models are well established in
the roughness domain o<1, which encompasses very
smooth, mirrorlike surfaces. The most widely used is the
Rayleigh—Rice model, which gives the BRDF as propor-
tional to the power spectral density of the random process
that describes the surface heights.?"?> Other prominent
models in the small-roughness domain are based on per-
turbation theory25 and on the Ewald—Oseen extinction
theorem,?>?® the latter of which is also applicable in nu-
merical studies of rougher surfaces.?”

Several analytical BRDF models have been developed
in the large-roughness domain o=1, although none has
enjoyed very wide application, presumably due to a com-
bination of limited accuracy and difficulty of implementa-
tion. Beckmann provided the seminal BRDF model in the
large-roughness domain by averaging the Kirchhoff dif-
fraction integral of a generalized surface over the statis-
tical ensemble of surface realizations.?® The Beckmann
model, which is also referred to as the Kirchhoff or
physical-optics model, specifies the surface field by using
the tangent-plane approximation, which assumes that
each point on the surface has a unique normal relative to

© 2006 Optical Society of America
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which a tangent plane can be assigned, and is therefore
generally applicable only to surface features with radii of
curvature sufficiently larger than the illumination wave-
length. In particular, surface profiles with discontinuous
derivatives are formally inadmissible under the tangent-
plane approximation, although pyramidal features with
facet dimensions ~10\ have been accurately described by
the Beckmann model.? Extensions of the Beckmann
model in the field of computer-graphic design have con-
tributed treatments of polarization and shadowing
effects.?’ The Stratton—Chu-Silver integral31 was applied
to optical scattering by Leader,?*3® with the surface fields
also determined under the tangent-plane approximation.
These models, as well as that developed in this paper, are
valid for large effective roughness o0=1 in the absence of
multiple scattering. For a specified o}, the restriction on
multiple scattering implies a proportional lower bound on
the autocorrelation length a.

Despite the development of diffractive BRDF models at
various levels of rigor, many applications still rely on scat-
tering models based on geometrical optics. The
stationary-phase solution of the physical-optics integral
leads to specular-point or microfacet BRDF models,>*7
which also rely on the tangent-plane approximation but
neglect diffraction, which, while affording simplicity of
application, also limits validity and flexibility. Microfacet
models cannot, for instance, consistently account for
BRDF variations with roughness or wavelength, nor
other diffractive effects.

In this paper a scalar diffractive BRDF model valid for
surfaces with large effective roughness o=1 is developed
from optical coherence theory and a reflective phase-
screen model. Departure from the tangent-plane approxi-
mation, enabled in this case by the phase-screen approxi-
mation, allows consideration of general surfaces with
large and/or discontinuous slopes. The tangent-plane ap-
proximation is shown to be actually incompatible with the
coherence approach to the scattering problem (see Sub-
section 2.A). Surfaces with large slopes and large effective
roughness fall outside of the ranges of applicability of the
most popular approximate analytical models as men-
tioned above.??3® The basis of the current model in coher-
ence theory provides a BRDF solution consistent and in-
terpretable within a classical framework, one result of
which is the clarification of the coherence properties of
scattered fields (see Subsection 2.B). A second benefit of
the coherence approach is compatibility with a variety of
results from coherence theory potentially relevant to scat-
tering analysis, for instance with recent developments in
electromagnetic coherence theory.sgf41

A general quadratic expansion of the surface autocorre-
lation function near the origin is used to derive an inte-
gral solution for the general BRDF due to a perfectly con-
ducting surface with arbitrary two-dimensional isotropic
roughness 0= 1. The general solution consists of an inco-
herent component that varies with the scattered elevation
angle as cos 6,, irrespective of the incident angle, plus a
nonspecular coherent component proportional to the azi-
muthal integral of the Faddeeva or plasma dispersion
function over the surface. The plasma dispersion function
is related to the complex error function and the Voight
profile and arises in many areas of mathematical
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physics.42744 When evaluated with representative auto-
correlation types, the general solution yields the Cauchy
and Gaussian BRDFs, which are forms commonly em-
ployed in empirical fitting routines.?® The general solu-
tion is seen to smoothly interpolate between these well-
known forms. The large majority of BRDF models that
rely on expansion of the surface autocorrelation function
use the parabolic approximation, which forces a Gaussian
BRDF solution. While several models have been based on
the linear app1~oxima11;ion,46’47 this paper is apparently the
first to derive the BRDF on the assumption of an autocor-
relation arbitrary to second order. Inclusion of the gradi-
ent in the autocorrelation expansion generally improves
agreement with data due to surfaces with large slopes, in-
cluding planetary surfaces®®®" and machined surfaces
(see Subsection 3.A). It is argued in Subsections 2.B and
3.A that the general solution overcomes long-standing ob-
jections to the well-known BRDF forms provoked by en-
ergy conservation and the linear autocorrelation
approxima‘cion.25’51’52

For practical reasons only surfaces in the so-called
resonant domain a ~\ are examined in detail. Due to the
restriction on multiple scattering, the surface roughness
is therefore likewise limited as o~ 1. The surface statis-
tics are on the scale of the wavelength. The integral for
the general BRDF solution is evaluated and plotted by us-
ing Mathematica 5. Plots illustrate the agreement of the
general solution with original bistatic specular-plane
BRDF data due to a machined aluminum surface, and its
variation with incident angle, surface roughness, illumi-
nation wavelength, and autocorrelation coefficients in the
bistatic and monostatic geometries. Out-of-plane scatter-
ing is illustrated in full-hemisphere plots for several sur-
faces. The plots are, where possible, compared qualita-
tively with previously published data due to surfaces with
similar statistics.

2. DERIVATION

In this section the general scalar surface BRDF solution
is derived in the limit o=1. The requisite theoretical
background is summarized, including Goodman’s deriva-
tion of the coherence function on a random reflective
phase screen.”® A general quadratic series expansion of
the surface autocorrelation appropriate for c=1 is ap-
plied, and the BRDF integral is specified for anisotropic
roughness. Under the assumption of isotropic roughness,
with two representative autocorrelation types, this inte-
gral is shown to produce BRDF forms commonly observed
in measurements. The general BRDF integral for the iso-
tropically rough surface is cast as an integral of the Fad-
deeva or plasma dispersion function, several plots of
which are given as encountered in scattering calculations.
The units of the BRDF are sr~!. The BRDF is related to
the ensemble-average radiant intensity distribution by

BRDF(k,, k;) = (I(k,,k;))/P; cos 6, 2)

where kg is the reflected/scattered or incident wave vec-
tor, respectively, P; is the uniform incident power, and 6,
is the elevation of the scattered wave vector measured
from the average surface normal. The units of (I(kg,Kk;))
are W/sr.>* Equation (2) specifies the BRDF as an average
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Fig. 1. Geometry and notation relevant to derivation of the
BRDF at point P from the coherence between the surface points
x; and Xy. AX=X;—X,.

over an ensemble of independent, identically distributed
(IID) rough surfaces, which is typically realized in prac-
tice under the ergodic criterion as an average over a mea-
surement parameter such as in-plane surface displace-
ment or rotation. In this paper the average radiant
intensity is referred to simply as the BRDF, although the
conversion of Eq. (2) must be applied to the results to re-
cover the conventional radiometric quantity. Plotted re-
sults are given as radiant intensity with specified normal-
izations.

A. Coherence-Theory Background

The application of coherence theory to the description of
radiometric properties of certain types of primary radia-
tion sources has been well described.’" In the treat-
ment of qualified illuminated surfaces as secondary
sources, statistical moments of scattered fields over en-
sembles of surfaces are applied as coherence functions for
general analyses.58 The present derivation utilizes the
second moment of the field scattered by a random, per-
fectly conducting phase screen with a Gaussian distribu-
tion of surface heigh‘cs.53 This approach has been applied
recently to the derivations of BRDF solutions for several
surface types.5*

The surface illumination is idealized as a quasi-
monochromatic plane wave, which allows application of
the generalized Van Cittert—Zernike (VCZ) theorem to the
mutual intensity (coherence) function on the surface. The
generalized VCZ theorem relates the BRDF to the mutual
intensity through a Fourier transform, provided that the
surface field is quasi-homogeneous.’®*%6! The quasi-
homogeneous assumption is satisfied when the spatial
scale of amplitude variations is much larger than the spa-
tial scale of coherence variations of the field, as will occur
on a surface with large effective roughness o =1 when the
size of the illuminated area is much larger than the scale
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of spatial inhomogeneities. As demonstrated in Appendix
A, the average scattered radiant intensity as a function of
wave vector is then given by the generalized VCZ theorem
as

_ AM, cos? 6, _
<I(ks)>=_—2ffV(AX)GXP(—jks‘AX)dAX,
N

(3)

where k, is the wave vector associated with scattered
quasi-monochromatic light of center wavelength X, A is

the illuminated area, M, is the average reflected emit-
tance (also known as exitance) over the surface, and y(Ax)
is the normalized mutual intensity on the surface as a
function of directed spatial separation.®® Dependence of

M, and y(Ax) on the incident wave vector is implicit in
Eq. (3). For application of Eq. (3) the average surface is
taken to be coincident with the xy plane, and the scat-
tered wave vector is restricted to the xz plane. Equation
(3) provides the BRDF over the entire reflected hemi-
sphere by rotation of the surface and the vector argument
Ax=%Ax+yAy of the mutual intensity function about the
z axis. The geometry of Eq. (3) is illustrated in Fig. 1.

The derivation places several restrictions on the sur-
face in addition to o= 1, primarily that neither shadowing
nor multiple scattering can occur. Following Goodman,
the field at the surface is expressed as a function of the
surface height h(x) as

_ 2mj
u(x) = a(x)exp(k; - x)exp| —(1 + cos 6,)h(x)
A

= a(x)exp(ik; - x)exp[ja(x)], (4)

where a(x) is the scattered amplitude and l_(i is the center
wave vector incident at the elevation angle 6; relative to
the average surface normal. Figure 2 illustrates the ge-
ometry of Eq. (4).

Sip ¢ \

Fig. 2. [Illustration of the phase-screen approximation of the
scattered field on the rough surface. The field is specified on the
virtual surface S, just above the actual surface, in contrast with
the tangent-plane approximation in which the field is specified
on the surface facets S,,, where the radius of curvature is suffi-
ciently larger than the wavelength. The phase difference due to a
lateral separation of surface points is k;-x, while the phase dif-
ference due to the surface height h(x) is kh(x)(1+cos 6;). The
angle 6, is not relevant in the phase-screen approximation as it is
in the tangent-plane approximation.
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As shown in Fig. 2, the surface on which the scattered
field is specified under the phase-screen approximation
(Sps) differs from that under the tangent-plane approxi-
mation (S;,). Both approximations are based on applica-
tion of the Helmholtz integra128 but differ in the boundary
surface on which the field is specified. Under the tangent-
plane approximation the term 1+cos 6; in Eq. (4) is re-
placed by cos 6,+cos 6;, a distinction that affects not only
the model solution but also the fundamental interpreta-
tion of the scattering process. Since it depends on both
surface position x and scattering direction 6,, the second
moment of the field under the tangent-plane approxima-
tion is a radiance function and therefore inadmissible as a
coherence function in Eq. (3).>” The implications of this
fundamental incompatibility should be fully appreciated
through further investigations.

From Eq. (4) the phase variance and phase autocorre-
lation of the scattered field are

o? =[2mo(1 + cos 6)2, (5)
R, (Ax)=| —(1+cos 6;) | R;(Ax), (6)
A

respectively, where R, (Ax) is the autocorrelation of the
two-dimensional random process that describes the sur-
face heights. In Eq. (4) the amplitude a(x) and the phase
a(x) are assumed to be uncorrelated, allowing the nor-
malized mutual intensity to be expressed as

3 wx)u"(x - Ax)) exp(ik; - Ax)
@) uix- A%y (@*(x)
- Ax)Xexp{jla(x) - a(x - Ax)]}), (7)

Y(Ax)

(a(x)a(x

where the quasi-homogeneous assumption allows simpli-
fication of the denominator. Under the conventional
phase-screen approximation the scattered amplitude a(x)
varies with x much more slowly than does the phase a(x),
in which case the normalized mutual intensity on the
rough surface becomes

Y(Ax) = exp(k; - Ax)(exp{j[a(x) — a(x - AX)]}).  (8)

Because the conventional phase-screen approximation as-
sumes that every point on the surface responds identi-
cally to the incident field, it should be more accurate in
specifying an electromagnetic scattered field component
perpendicular to the incident plane (s polarization) than a
component parallel to the incident plane (p polarization).
This is an important consideration in comparison of the
results of the scalar model with data.

The ensemble average in Eq. (8) can be evaluated by
using the second-order characteristic function with a
Gaussian distribution of surface heights to yield

AAx) = exp(k; - Ax)exp{~ o[1-p(Ax)]},  (9)
where p;,(Ax) =R, (Ax)/0% is the normalized surface auto-

correlation function.®® Substitution of this result into the
VCZ theorem of Eq. (3) provides the BRDF as
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_ AM,. cos? 6,
(kg k) = = f f exp{- o5[1- p,(Ax)]}
xexplj(k; - k,) - Ax]dAx. (10)

With Ak=k;-k,, Ak-Ax represents the scattered wave-
vector distance from the direction of specular reflection.
In circular polar coordinates the BRDF expression be-
comes

_ AM, cos® 6, (* (27
(kg k) = _—J f
A2 0o Jo

X exp{— 0?[1 - p,(Ax)]}

xexp[j(Ak - Ax)|rdedr, (11)

with the integration understood to cover the plane of co-
ordinate differences on the surface. In the coordinate sys-
tem (r,¢) we have

Ak - Ax = - kr(A cos ¢ + B sin ¢), (12)

with A =sin 6, cos ¢,+sin 6; cos ¢; and B=sin 6, sin ¢;, the
subscripts i and s referring to the incident and scattered
wave vectors. The azimuth angle ¢ of the incident
(scattered) plane wave should be distinguished from the
surface azimuth ¢. The ranges of § and ¢; are [0, 7/2] and

(=, ], respectively, and ¢,=0 or m, with k, confined to
the xz plane. These are standard notations in the descrip-
tion of BRDF instrumentation.®

B. Large-Roughness Approximation

Series expansion of the surface autocorrelation py(Ax) in
the limit of large effective roughness o=1 allows the in-
tegral of Eq. (11) to be developed for an arbitrary autocor-
relation and evaluated for a general isotropic autocorrela-
tion. With reference to Eq. (9), since for large oﬁ the
mutual intensity falls off rapidly as p,(Ax) decreases from
pn(0)=1, an approximation valid for large effective rough-
ness is provided by expansion of p,(Ax) for small argu-
ments. The dependence of the mutual intensity on pj,(Ax)
is, however, generally not entirely evident in an expan-
sion centered on the origin Ax=0, since by definition
pn(AX) is an even function with p,(0)=1, which for a gen-
eral surface implies that the gradient Vp, vanishes in a
point singularity at the origin. Due largely to this singu-
larity, the autocorrelation expansion has been controver-
sial among scattering theorists,5* which may explain why
the general quadratic expansion has apparently not ap-
peared earlier. Our position that the singularity can be ig-
nored is based less on mathematical than on physical in-
tuition. To avoid the singularity, we expand the
autocorrelation about the vector ¢éAx in the limit ¢ — 0.

1. Anisotropic Roughness
The normalized surface autocorrelation is expanded in
two dimensions as®®
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pp(Ax) = 1+ lm|[ Ax - Vp,loax+ ;5 (AX - V)(AX - Vpp) g

e—0

(13)

Application of the gradient operator in circular polar co-
ordinates and adoption of the shorthand notation d,p;,
=lim,_o( dpp/ds].ax), Where s=r or ¢, leads to

I'2 2

(4 [
pr(AX) =1 +7(d,py) + ;(0¢Ph) + E(ﬁrrph) + ﬁ(ﬁwph)
+ @(Fropp) - (14)

The derivatives d,pp,,d,pp,. .. are functions of the azimuth
angle ¢ in the case of general anisotropic roughness. Sub-
stitution from Eq. (12) and relation (14) into Eq. (11) pro-
vides an integral expression for the BRDF of a general an-
isotropically rough surface with o=1. Evaluation of this
integral is generally difficult due to the mixed terms in re-
lation (14) and the azimuthal dependence of the deriva-
tives, although it might be simplified by approximation of
the autocorrelation by planar wedges over azimuthal in-
tervals. The prevalence of anisotropic roughness in pro-
cessed surfaces should motivate future investigation of
the general theory; however, in this paper subsequent at-
tention is limited to isotropic roughness.

2. Isotropic Roughness

A surface with isotropic roughness is described by a sur-
face autocorrelation with azimuthal symmetry, for which
all derivatives with respect to ¢ vanish. In this case sub-
stitution from Eq. (12) and relation (14) into Eq. (11) pro-
vides the BRDF as

_ AM, cos® 6, [~ (27
<I(ksvk1)> = _—f f
A2 0 Jo

X exp[—jkr(A cos ¢ + B sin ¢)]de
o
Xexp| oa(d,pp)r + 5 Gpn)r? |rdr, (15)

with A and B as defined following Eq. (12). Note that the
derivatives d,.p, and d,,.py are constants on an isotropically
rough surface. The integral over azimuth is evaluated by
introducing the variables £ and  such that A=¢cos ¢ and
B=¢sin o, which leads £0%

21
f exp[—jkér cos(p— )]de = 2mJo(kér),  (16)
0

where o/ is the zeroth-order Bessel function and

¢=\sin? 6, + sin® 6, + 2 sin 6, sin 6, cos ¢; cos ¢, (17)

is the bidirectional independent variable of the BRDF.
Substitution of the result of Eq. (16) into relation (15)
leaves the BRDF expression

B. G. Hoover and V. L. Gamiz

_ 27w AM, cos? 0, ” _
(I(ky,k;)) = ——————exp(Bv?) f rdo(kér)
N2 0
xexp[- B(r +v)?]dr (18)

after completing the square in the exponent and setting

U= ﬁrph/(;rrph’ (19)

B= 02 d,.pil/2. (20)

The integral in relation (18) is the Fourier—Bessel or
zeroth-order Hankel transform of a shifted Gaussian
function.®” The radial derivatives of the isotropically
rough surface are hereafter represented in the simplified
notation p;=d,.p;, and py=d,.pp.

It is instructive to examine the representative forms of
the BRDF solution as the derivatives p; and py individu-
ally go to 0. With p;=0 the solution of relation (18) leads
transparently to the Gaussian BRDF%

1k NwAJ_W,cosz 0, (k&)?
(kg i)>=TeXp a5 | (21)

which is consistent with models that neglect the role of
the gradient Vp;, by assuming a Gaussian surface autocor-
relation function. With py=0 the variable v cannot be
used. Returning in this case to relation (15) and Eq. (16)
yields the Cauchy BRDF®’

27 AM, cos? 6, o|p4|

Ik, k) = ——— —.
N Lot + (ROPPP

The Cauchy BRDF is commonly observed in data due to
surfaces with large slopes®®®° and as a result is com-
monly employed in empirical fitting routines.*®

The results of relations (21) and (22) suggest a useful
classification, according to the shape of the surface auto-
correlation, of isotropically rough surfaces that satisfy the
assumptions of the model. Such surfaces with |pg|>|p;|
will be referred to as Gaussian-like surfaces, while those
with |p1|>|pg| will be referred to as Cauchy-like surfaces,
although the actual functional form of the general BRDF
solution will generally differ significantly from the repre-
sentative forms of relations (21) and (22).

General BRDF solution for isotropic roughness in terms
of the plasma dispersion function. The integral of relation
(18) can be recast as an integral of the Faddeeva or
plasma dispersion function over a horizontal contour in
the complex plane. The resulting solution suggests a de-
composition of the BRDF into coherent and incoherent
components as well as a mathematical analogy between
wave scattering from rough surfaces and wave propaga-
tion in hot, underdense plasmas.70 The integrals consid-
ered are also similar to those encountered in the analysis
of generalized Bessel-Gauss beams.”

The Fourier—Bessel or zeroth-order Hankel transform
of an arbitrary circularly symmetric function g(r) igb773
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Big(r)} = G(R) = J rdo(Rr)g(r)dr. (23)
0

Expressing the Bessel function in its integral form, as in
Eq. (16), and changing the order of integrations in rela-
tion (18) gives

Blexp[- B(r +v)*]} = G(R)

1 27 e
= —f f r exp(—jRr cos ¢)
TJo Jo

xexp[— B(r +v)?]drde
1 2
= —f G1(R cos ¢)d o, (24)
2 0

where the subscript 1 denotes the one-dimensional trans-
form and R=k¢ from relation (18). With the use of the

shorthand notation X=Zké&cos ¢, standard substitution
methods with ¢t=\8(r+v+jX/2p) lead to

1 o
G1(X) = — exp(- fo® ~T?) { f t exp(- 2)dt + | B
B iy
(o5a) [, e
X|lv+— exp(—t9)dt |, (25)
26/ ) _;
where

X
I'=jvg-——=. 26
JU\B ZV/[_-E ( )

The contour of integration in Eq. (25) is a line parallel to
the real axis in the right half of the complex plane. The
first integral in Eq. (25) produces % exp(I'?), the terms in
X of which cancel with the prefactor, while the second in-
teg‘ral is the complementary complex error function
Varerfe(—jT")/2. 42 Slight rearrangement leads to

et
G1X) = e |17 7Bl v+ 28 exp(- I)erfe(- /1)
exp(- Bv?) JX
=T|:1—\/’7T_B<U+%)LU(F):|, (27)

where w(z)=K(z)+jL(z) is the Faddeeva or plasma disper-
sion function.****7%"™ Ingerting the expression for G,
back into Eq. (24), we express the Fourier—Bessel trans-
form as

exp( ,sz) ka cos ¢
GR)=—— f w)de

eXP( Bv?) ) ké

+
2p 2\mBJ

L(F)(COS ede |, (28

where the final equality follows because w(I') is analytic
and Hermitian along the horizontal contour in the upper
half of the complex plane.‘m’70

Inserting Eq. (28) into relation (18) gives the general
BRDF solution for the isotropically rough surface as
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_ wAM, cos? 0, ké &
Ik, k) = - 1+—=| L(I)(cos p)d¢
A28 2\mBJ,

(29)

The solution of relation (29) is a sum of incoherent and
coherent terms. The incoherent term produces an average
radiant intensity proportional to cos? 6, (not cos 6,, as for
a Lambertian source),”* which leaves the integral of the
plasma dispersion function to represent the BRDF due to
coherence on the surface. Calculations of L(z) have been
plotted in several references.**"° L(z) tends to 0 as the
real part of its argument goes to 0 in the upper half of the
complex plane [Im(z)>0]. With ReT"«1/ a'h\e“w, relation
(29) therefore implies that the derived BRDF converges to

the incoherent solution (mAM, cos? 6,)/N\2B for surfaces
with sufficiently narrow autocorrelation or sufficiently
large roughness. Referring to Eq. (9), the mutual inten-
sity associated with the incoherent solution is quite nar-
row as expected. Coherence theory reveals that associated
with a general coherence function are both propagating
(low-frequency) and nonpropagating or evanescent (high-
frequency) components.”*"® It has been demonstrated
that the partition of energy between propagating and eva-
nescent components varies smoothly between the incoher-
ent and coherent limits of a Gaussian coherence
function.” Since the BRDF solution accounts for the
propagating component only, these results from coherence
theory imply that the BRDF should not be expected to
conserve energy. The factor 8 in the denominator of rela-
tion (29) ensures that the BRDF solution does not con-
serve energy with variations in roughness or autocorrela-
tion width. Relation (29) specifically predicts that the
incoherent BRDF solution vanishes, i.e., that the field
scattered from such a surface is purely evanescent, due to
the limit B— o as pp(Ax) — 5(Ax).”" To reiterate, contrary
to objections in the scattering literature,’®? the BRDF
does not conserve energy in general, and the energy in the
solution derived here varies smoothly with the parameter
B.

Computer routines for the numerical calculation of L(z)
are readily available,**7® although the variable depen-
dences implied by Eq. (26) and relation (29) must be care-
fully specified. The most suitable routine will depend on
the application, in particular on whether the solution of
the forward or the inverse scattering problem is required.
In the forward problem the BRDF is computed for speci-
fied surface parameters, while the inverse problem re-
quires a search algorithm to find surface parameters that
provide the best fit to data. A comparison of algorithms
available for L(T") is beyond the scope of this paper—here
the built-in complex error function routine in Math-
ematica 5 (Ref. 78) is utilized for calculation of the plasma
dispersion function and the BRDF integral of relation
(29). Figures 3 and 4 illustrate results of the Mathematica
5 routine in contour plots of the integrand ¢£L(IN)
X (cos ¢)/ \573 of the coherent component of the general so-
lution [relation (29)] for two scattering geometries and
two sets of surface parameters. In these figures white cor-
responds to 0, black corresponds to the minimum inte-
grand value, and contours are drawn at consistent inte-
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Fig. 3. Contour plots of the integrand of the coherent compo-
nent of the general BRDF solution, which is proportional to the
imaginary part of the plasma dispersion function, for two sur-
faces, for scattering in the specular plane at two incident angles,
as functions of the scattering angle 6, and the azimuthal corre-
lation variable ¢. The coherent component of the BRDF at 6, is
proportional to the integral over the corresponding horizontal

-/

N

N

-Tu

line. Fixed parameters for these plots are A=1um, p;
=-0.005 um™, py=—0.005 um=2, and o=2 [(a), (b)] or =3 [(c),
(d)]. White represents 0, and dark shades represent negative val-
ues in gray-scale coding.

grand values across all of the plots. At a particular
scattering angle 6, the coherent component of the BRDF
solution is proportional to the integral over thg corre-
sponding horizontal line. Note that £L(I")(cos ¢)//B8<0 for
I' in the upper half of the complex plane.44’70

The characteristics of the general BRDF solution of re-
lation (29) are illustrated in Section 3 through plots rel-
evant to several applications of the forward and inverse
scattering problems. Applications to the inverse problem
are representative of the derived solution and do not uti-
lize a search/optimization algorithm. The general solution
is examined with variations of incident angle, surface
roughness, illumination wavelength, and autocorrelation
coefficients in the specular-plane bistatic and monostatic
geometries, and over the full scattered hemisphere. Plots
relevant to the forward problem are, where possible, com-
pared qualitatively with published data due to surfaces
with similar statistics.

3. RESULTS

The general BRDF solution given by relation (29) is de-

pendent on eight parameters: the source (6;, ¢;, and \),
the surface (o3, p1, and py), and the observation param-
eters (6, and ¢,). Practical considerations and the math-
ematical assumptions of the model place restrictions on
the surface parameters as follows: Referring to Eq. (9),
without introducing higher derivatives of the surface au-
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tocorrelation, the assumption of large effective roughness

can be approximately imposed as ¢;,>M\/47=0.08\. For
the following (other than Figs. 7 and 10) the wavelength

is fixed at A=1 um. The second derivative of the surface
autocorrelation is fixed at py=—0.005 um~2, and the first
derivative is limited to the range —0.05 um~!<p;<0,
which places a conservative lower bound on the autocor-
relation width of @¢=25 um. Multiple scattering, for
which the model does not account, has been shown
through the appearance of coherent backscattering to oc-
cur on surfaces for which the ratio ;,/a =0.2.” Imposing
the upper bound o, <5 um should therefore avoid sur-
faces with significant multiple scattering. The surface cor-
responding to the plots in Figs. 7 and 10 below is specified
in the literature and has a larger autocorrelation width
and larger roughness for which the assumptions of the
model still hold. Computations of the two-dimensional
plots of specular-plane bistatic scattering with /100
resolution take approximately 30 s in Mathematica 5 un-

91 = 7E/3, q)i =mn/2
/2
/4
0,
0
-n/4
-Tt/2
¢
(@)
/2
/4
0
0
-n/4
-1/2
0 /2 T
¢
(b)

Fig. 4. Contour plots of the integrand of the coherent compo-
nent of the general BRDF solution, which is proportional to the
imaginary part of the plasma dispersion function, for the two
surfaces specified in Fig. 3, for scattering normal to the specular
plane, as functions of the scattering angle 6, and the azimuthal
correlation variable ¢. Fixed parameters for these plots are (a)

2

A=1 um, p;=-0.005 um™, p,=-0.005 um2, and ¢=2 or (b) &

=3.
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der the Microsoft Windows XP operating system on a 1.6
-GHz Intel Pentium 4 Mobile CPU with 512 Mbyte RAM.

The relatively little published data due to surfaces with
wavelength-scale statistics against which the results of
the model can be compared are summarized as follows,
with the illumination wavelength and reported surface

parameters given in the format (\,0;,,a) um. The much-
cited paper of O’'Donnell and Méndez provides plots of the
radiant intensity measured in the specular plane due to
illumination at several angles 6; of a gold surface with the
well-defined statistics (0.6328, 2.3, 21) (Ref. 79); the auto-
correlation of this surface is, however, almost exactly
Gaussian, which relegates comparisons with the results
of the current model to the pure Gaussian BRDF solution
of relation (21). Several authors have reported measured
backscattered or monostatic BRDFs due to surfaces with
statistics in the range of interest, specifically Renau et al.
for two aluminum surfaces characterized by (0.6328, 7,
50) and (0.6328, 1, 10) (Ref. 80) and Cheo and Renau for
the former surface at the illumination wavelengths
0.6328, 3.39, and 10.6 ,um.81 Other data due to surfaces
with wavelength-scale statistics are marginally relevant
because the surfaces are either one-dimensionally rough®?
or nonconducting.19 Considerably more data due to sur-
faces in this range are clearly needed.

A. Variation with Incident Angle

1. Specular-Plane Bistatic

The specular-plane variation with the incident angle 6; of
the general BRDF solution is illustrated in Fig. 5 for
three surfaces. For the effective roughness 0=0.75 fixed
in Fig. 5, the radiant intensity due to the Gaussian-like
surface of Fig. 5(a) maintains a nearly Gaussian form
symmetric about the specular direction for small 6;, which
is consistent with the data reported by O’Donnell and
Méndez.” The maximum intensity scattered by the sur-
faces considered in Fig. 5 decreases with 6;, although the
opposite behavior, maximum scattered intensity increas-
ing with 6;, is predicted by the model (but not shown) for
surfaces with the fixed parameters of Fig. 5 and larger
|p1]. A familiar feature of the scattered intensity of suffi-
ciently rough surfaces is the so-called off-specular peak,
which is a shift of the mode or the angle of maximum in-
tensity away from the specular direction toward the sur-
face normal. In the coherence interpretation of the BRDF
the off-specular peak occurs naturally as the coherent
component decreases. Figure 5 suggests that the shift of
the mode is dependent on the functional form of the sur-
face autocorrelation. For instance, at §;,=30° the mode due
to the Gaussian-like surface of Fig. 5(a) is in the specular
direction, while the mode due to the Cauchy-like surface
of Fig. 5(c) is shifted by more than 5°.

Significant features of the general BRDF solution evi-
dent in Fig. 5 are the lobes or wings that persist far from
the specular direction in scattering by the intermediate to
Cauchy-like surfaces. This feature, which is most relevant
at low relative intensities far from the specular direction,
is commonly observed in measurements, for instance in
the (s-polarized) specular-plane intensity, plotted loga-
rithmically in Fig. 6, due to a milled, black-anodized alu-

minum plate illuminated with N\=1.06 um (s-polarized) at
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6’,»:30".83 In Fig. 6 the squares represent the measured
data points, which are fitted without optimization by the
derived BRDF solution for the intermediate surface given
by the solid curve. Some popular models’*3° account for
the wings observed in many BRDF measurements by add-
ing to the Gaussian BRDF a so-called diffuse or Lamber-

0; (degrees) 0.
————— 60
------- 30
0 0.
'y
0 I
/ .\
i .\
/ \
1 . \ )
) /o N
-75 -50 -25 50 75
9; (degrees)

6; (degrees)

9, (degrees) (©)

Fig. 5. Variation with incident angle 6; of the general solution
for the radiant intensity in the specular plane due to (a) a
Gaussian-like (p;=-0.0001 um™), (b) an intermediate (p;
=-0.005 um™), and (c¢) a Cauchy-like (p;=-0.02 um™!) surface.
The units on the vertical axes are normalized across the plots,
and py=—0.005 um~2, ¢3,=0.75 um, and A=1 um are fixed. The
vertical dashed lines mark the specular direction for 6,=30°.
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————— (-0.045, -0.001) -
(-0.005, -0.005) s
------- {-0.0001, -0.0055) -

-3
Fig. 6. Derived solution for the radiant intensity (solid curve) fit
to data (squares) due to a milled, black-anodized aluminum sur-
face with the illumination at §,=30° and the detection both in the
s-polarization component. The dotted and dotted—dashed curves
represent the derived radiant intensities due to Gaussian-like
and Cauchy-like surfaces, respectively, with the same autocorre-
lation lower bound as that for the surface corresponding to the
solid curve. Logarithms of the measured and derived radiant in-
tensities are plotted following independent normalizations, and

0,=0.35 um and A=1 um are fixed. The results imply that the
surface autocorrelation function is non-Gaussian.

tian term, which is commonly ascribed to multiple scat-
tering. Our results suggest that the wings observed in
many BRDF measurements are due not necessarily to
multiple scattering but rather to non-Gaussian surface
autocorrelation functions with nonvanishing gradients
near the origin.

A significant feature of the general BRDF solution il-
lustrated by Fig. 6 is the considerable variation in the an-
gular energy distribution among surfaces with similar
statistics o and a but different autocorrelation coeffi-
cients. Specifically, the three model curves in Fig. 6 have
the same effective roughness 0=0.35 and the same auto-
correlation lower bound a =19 um, yet the corresponding
BRDFs differ by up to 3 orders of magnitude. This behav-
ior of the general solution may explain the large discrep-
ancies in the predictions of earlier models applied to the
inverse problem of topographical mapping from BRDF
data. The fits of models based on the linear autocorrela-
tion approximation to lunar radar returns radically over-
estimate the size of lunar surface features.’! The solution
of the current model that most closely resembles the so-
lutions of earlier models based on the linear autocorrela-
tion approximation is that due to the Cauchy-like surface
[see relation (22)]. With reference to Fig. 6, the solution
due to the Cauchy-like surface with the correct statistics
is in poor agreement with the data. If the current model
were restricted to only Cauchy-like surfaces, as are mod-
els based on the linear autocorrelation approximation,
then agreement with the data in Fig. 6 could be achieved
only by assuming a much smaller coefficient |p;| (with p
=0), which implies a surface autocorrelation much larger
than 19 um, i.e., the fit of the solution due to the Cauchy-
like surface overestimates the size of the surface features.
The addition of a possibly small Gaussian component,
made possible by the general quadratic autocorrelation
expansion, may therefore provide significant improve-
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ments over previous results in topographical mapping of
such surfaces.

2. Monostatic

The backscattered or monostatic BRDF is most relevant
in laser-radar applications, where the source and detector
are usually collocated on the same platform. The mono-
static BRDF' gives the backscattered cross section as a
function of the orientation of the target planar reflector.2

The monostatic geometry is specified notationally as l_(s=

-k;, or 6,=6; and ¢,=;=0. Figure 7 illustrates the mono-
static radiant intensities due to three surfaces according
to the general solution of relation (29) with fixed illumi-
nation and surface parameters corresponding to those re-
ported by Renau et al.®° As in Fig. 6, logarithmic plots re-
veal dramatic differences among the BRDFs due to
surfaces with similar statistics (60=7 um and ¢ =58 um)
but different autocorrelation coefficients, particularly in
the backscattered intensities far from the specular direc-
tion. The monostatic BRDF due to the surface correspond-
ing to the solid curve in Fig. 7 is in qualitative agreement
with the previously published data® for incident angles
up to around 40°, beyond which the derived solution for
this surface underestimates the backscattered intensity.
All of the surfaces corresponding to the plots in Fig. 7 are
Gaussian-like (|ps|>|p;|); however, the monostatic BRDF
due to the purely Gaussian surface (p;=0) compares very
poorly with the published data. The previously published
data against which the model curves are compared in Fig.
7 have been previously fitted to about the same level of
accuracy by a model based on parabolic perturbation of a
set of Gaussian-distributed microfacets using an appar-
ently large, albeit undisclosed, number of arbitrary
coefficients.®*

The results of Fig. 7 demonstrate the extremely sensi-
tive dependence of the monostatic BRDF's due to surfaces
with large effective roughness on the surface autocorrela-
tion coefficients and emphasize the need to allow for even
minuscule deviations from the Gaussian autocorrelation
in the development of credible scattering models. It is also
worth noting that the general monostatic BRDF solutions

6, (degrees)

T~ 20 40 34 80

~ Py, P} (o', pm?)

~_ == {-0.00031, -0.00059)
(-0.00002, -0.00060)
N (9,-0.000601)

-3
Fig. 7. Derived monostatic radiant intensities due to three sur-
faces with the same autocorrelation lower bound and o;,=7 um
illuminated with A=0.6328 um. The logarithms of the derived ra-

diant intensities are plotted following independent
normalizations.
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due to Cauchy-like surfaces with large autocorrelation
widths (not shown) agree qualitatively with previously
published radar data due to planetary surfaces.*®>°

B. Variation with Surface Roughness

1. Specular-Plane Bistatic

Figure 5 indicates the dependence of the mode angle of
the general BRDF solution on the surface autocorrelation
coefficients at fixed surface roughness. The mode shift is
expected to increase as the coherent component of the
BRDF solution decreases due to increasing roughness.
Figure 8 illustrates this effect as well as the dramatic de-
pendence of the mode shift on the autocorrelation coeffi-
cients. For 0=2 the radiant intensity due to the Cauchy-
like surface in Fig. 8(c) is centered near the surface
normal, resembling the incoherent solution, while the in-
tensity due to the Gaussian-like surface in Fig. 8(a) is
centered less than 10° from the specular direction 6,
=45°. We emphasize that the phenomenon of the off-
specular peak is not necessarily reliant on shadowing, as
has been claimed based on microfacet analyses,35 but is
rather the result of coherence loss in the ensemble-
average scattered surface field. As discussed in Subsec-
tion 2.B, coherence loss is accompanied by an increasing
evanescent component that removes energy from the
BRDF, an effect also evident in Fig. 8.

2. Full Hemisphere

Figure 9 illustrates the logarithmic variation over the full
scattered hemisphere of the model radiant intensities due
to intermediate surfaces at two roughness values. The
surface corresponding to Fig. 9(a) is the same as that
which generates the BRDF solution fit to the specular-
plane data due to the aluminum surface in Fig. 6. The
longitudinal lines in the plots of Fig. 9 correspond to the
azimuth ¢, in 10° increments, the latitudinal lines corre-
spond to the elevation 6, in 0.9° increments, and the inci-
dent direction (6,=30°) is indicated by the vertical ar-
rows. The ripple at 6,~20° in the backscattered radiant
intensity due to the smoother surface [Fig. 9(a)] is likely a
numerical artifact.

C. Spectral Variation

Wavelength scaling of the BRDF is important for many
applications. For instance, for HEL applications the
BRDF is usually measured in a laboratory at wavelengths
different from those used in the field, in which case the
accuracy of radiometric simulations and analyses are
squarely dependent on an understanding of the spectral
variations of the BRDF. For broadband applications such
as passive photometry, illumination design, and computer
graphics and vision, wavelength-scaling algorithms pre-
clude time-consuming tabulations of the BRDF over the
source spectrum.

Certain of our results provide insights into the diffrac-
tive spectral variation of the BRDF. In particular, with
reference to Egs. (1) and (5) and relation (21), the pure
Gaussian BRDF solution is found to be diffractively ach-
romatic or independent of wavelength except for the re-

flected emittance M,, which is a result that has been
noted before.>? By contrast, the Cauchy solution of rela-
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Fig. 8. Variation with roughness o;, of the general solution for
the radiant intensity in the specular plane (6,=45°) due to (a) a
Gaussian-like (p;=-0.0001 um™1), (b) an intermediate (p;
=-0.005 um™), and (c¢) a Cauchy-like (p;=-0.02 um1) surface.
The units on the vertical axes are normalized across the plots,

and py=-0.005 um2 and A=1 um are fixed.

tion (22) is highly dispersive and nonmonotonic, with

wavelength dependence proportional to A2/[1+(cén)2]3/2
with ¢=1/870%|p;| and a maximum intensity at the wave-

length Npax(&)= \E/ cé. These results suggest that the dif-
fractive spectral variation of the BRDF is strongly depen-
dent on the surface autocorrelation coefficients. Figure 10
depicts the diffractive spectral variation of the BRDF so-
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Fig. 9. Full-hemisphere plots of the derived general solution for the radiant intensity due to two surfaces. The longitudinal lines cor-
respond to scattered azimuth angle ¢,, the latitudinal lines correspond to scattered elevation angle 6,, and the incident direction (6;

=30°) is indicated by the vertical arrows. Fixed parameters are A=1 um, p;=—0.005 um™, py=—0.005 um=2, and ¢,=0.35 um (a) or
o,=1 pum (b). The logarithms of the radiant intensities are plotted over the range [-3,0] following coupled normalization.
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Fig. 10. Derived monostatic radiant intensities due to a surface
illuminated at three wavelengths. Fixed surface parameters are
0,=7 um, p;=—-0.00002 um™', and p,=-0.0006 um=2. The loga-
rithms of the derived radiant intensities are plotted following
coupled normalizations.

lution in monostatic plots at three wavelengths, moti-
vated by previously published data due to an aluminum
surface.’! The autocorrelation coefficients used to gener-
ate the model curves in Fig. 10 are those determined in
Fig. 7, although as in Fig. 7 the fits are representative
without use of an optimization routine. The spectral trend
of the solution agrees with that of the data, although as in
Fig. 7 the solution somewhat underestimates the data.
Cheo and Renau noted that the measured monostatic
BRDF at normal incidence is independent of wavelength
provided that o,/\=0.25. The general BRDF solution is
consistent with this observation, as evidenced by the nor-
malization of all of the curves in Fig. 10 by the solution at

normal incidence for A=0.6328 um. In fact, relation (29)
reveals that the diffractive portion of the general BRDF
solution is achromatic in the specular direction irrespec-
tive of the illumination and surface parameters. We
should, however, emphasize that the general solution and
the plots in Fig. 10 do not include spectral variation of the

reflected emittance M, that occurs due to surfaces of non-
perfect conductors.

4. CONCLUSIONS

In this paper some established concepts from the theories
of scattering and coherence are utilized to develop a
model for the description of scattering from perfectly con-
ducting surfaces with wavelength-scale statistics. The
model holds in principle for surfaces with any value of
large effective roughness provided that shadowing and
multiple scattering are negligible. Previously published
models and measurements of surface scattering have con-
centrated primarily on either very smooth surfaces, for
which theory is well developed and verified,® or rougher
surfaces that exhibit multiple-scattering effects such as
coherent backscattering.””% 58 Despite the ubiquity of
surfaces with statistics on the scale of the wavelength in
many of the applications noted earlier, progress in the de-
scription of scattering from such surfaces has been lim-
ited. Perhaps as a consequence, relatively few measure-
ments of scattering from such surfaces have been
reported.

While the ultimate value of coherence theory in scatter-
ing analysis is perhaps yet to be determined, several for-
malisms and interpretations introduced in this paper ap-
pear to extend the understanding of surface scattering.
The BRDF solution is derived as the sum of an incoherent
and a coherent component, the latter of which is propor-
tional to an integral of the plasma dispersion function.
Such a decomposition allows for the interpretation of
scattering phenomena such as nonspecular maxima and
energy conservation in the context of coherence theory,
where analogous phenomena of primary radiation sources
have been thoroughly investigated. The solution also sug-
gests an analogy between surface scattering and wave
propagation in plasmas that may prove useful. It is noted
that the standard tangent-plane approximation for the
scattered field is incompatible with the coherence ap-
proach, and the alternative phase-screen approximation
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allows for the consideration of surfaces with large and/or
discontinuous slopes. The general BRDF solution interpo-
lates between the well-known Gaussian and Cauchy solu-
tions, behavior previously derived apparently only on the
assumption of fractal surfaces.®®

Several effects that the current model does not describe
should motivate future investigations. Preliminary com-
parisons with data suggest that shadowing may be rel-
evant at large incident angles. It may be possible to incor-
porate shadowing and other effects into the model
through specification of the amplitude moment in Eq. (7),
effectively extending the phase screen to an amplitude—
phase screen. Efforts are under way to extend the model
to the description of anisotropic roughness and electro-
magnetic (vector)-wave scattering through application of
recent developments in electromagnetic coherence
‘cheory.41 Throughout the development of this paper the

reflected emittance M, has remained a free parameter, al-
though it obviously depends on the wavelength and the
optical constants of the surface material. It may be pos-

sible to determine M, by using the results of the current
model with global constraints such as Helmholtz
reciprocity.”’ Such an approach would effectively deter-
mine the reflected emittance from surface correlations, in
contrast to conventional attempts to determine emittance
from surface slopes, which typically rely on the dubious
application of the Fresnel formulas to reflection from tan-
gent planes.

APPENDIX A

This appendix demonstrates the derivation of Eq. (3), the
generalized Van Cittert—Zernike (VCZ) theorem in the
form applicable to BRDF model development. We begin
with the expression for the scalar optical field u at a point
P inside a volume bounded by a known surface S, which is
given by the Rayleigh—Sommerfeld (R-S) diffraction for-
mula as®’

. 7
u(P)=JXff uw(ﬁ-f-)ds, (A1)
s

where rr is the vector from the surface to the point P and
n is the surface normal. The R-S diffraction formula al-
lows derivation of the propagation law for the mutual in-
tensity, which for a common class of coherence states is
known as the generalized VCZ theorem. Goodman pro-
vides a thorough reference on the VCZ theorem.®!

In temporally stationary, narrowband light, i.e., Av<7,
if the time delay 7is much less than the coherence time 7.,
the coherence function T'(x1,Xo,7) = (u(xy,t)u’ (Xg,t—7)
takes the form

F(xl9x27 T) = F(XDXZ,O)eXp(_ 277.]1_}7-) = J(XDXZ)
Xexp(- 2mjv7), (A2)

where J is known as the mutual intensity and describes
only the effects of spatial coherence. In regions where re-
lation (A2) is satisfied, the light is said to be quasi-
monochromatic with the center frequency 7.”! Using the
R-S formula of Eq. (A1), we express the propagation of the
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mutual intensity from a planar surface S to the pair of
points (P;,Py) as

J(Py,Py) = u(Pyu’ (Py))

1 . exp[jk(ri-ry)]
=_ f f f f wEu (x))——
)\2 S S rire

X (g - 1) (A - To)dx;dxy, (A3)

with x=xX+yy as the two-dimensional vector over the
planar surface S. Equation (A3) is reiterated as Good-
man’s Eq. 5.4-8.51

Several simplifications of Eq. (A3) occur in the context
of BRDF theory. First, only the propagated intensity is of
interest, and therefore P;=P,=P. The scattering surface
is assumed to be globally planar, and the surface S is
taken as a phantom planar surface just above the actual
surface, which implies that n;=f,=2. Also, the point P is
in the Fraunhofer, or far, zone of the illuminated portion
of the surface S, which leads to the usual Fraunhofer ap-
proximations. Specifically, with reference to Fig. 1, ;-1
=fy-Fy=cos 6, 1/riry=1/Z? in amplitude, and r=Z-5§-x
in phase, where § is the direction of the scattered wave
vector k,. With these simplifications the average irradi-
ance at the point P is derived from Eq. (A3) as

cos? 6
{I(P))=dJ(P,P) = —— ff ffJ(Xsz)
(ZN)2 s s

X expljk$ - (x5 — x;)]dx,dx,. (A4)

(I(P)) is the power per unit area on a small detector cen-
tered in the direction § at the distance Z from the surface.
It is convenient to eliminate Z by defining the radiant in-
tensity (I (Es)>EZ2(I (P)), which is the power per steradian
along 8. In the context of BRDF theory (-) in Egs. (A3) and
(A4) represents an average over both time and an inde-
pendent, identically distributed (IID) ensemble of sur-
faces or media.

Fields scattered by rough surfaces typically satisfy two
assumptions regarding the mutual intensity J(x;,x5) on
the surface. It is first assumed that the normalized mu-
tual intensity function y on the surface depends only on
coordinate differences, that is,

J (x4,
AAx) = (%1,%9)

=T (A5)
VI(x)I(xs)

which will be satisfied if the surface heights are described
by a stationary random process.92 The conventions x,
=x;—-Ax and Ax-%=>0 are adopted for mutual intensities
that satisfy Eq. (A5), which characterize sources known
as statistically homogeneous or shift invariant. The sec-
ond assumption is that the ensemble-average reflected ir-
radiance varies negligibly over the coherence area of the
scattered surface field, in which case

J(x1,%5) =I(X) 1(Ax), (A6)

where X is the average vector between x; and x,. A field
that satisfies relation (A6) is known as a quasi-
homogeneous field. In the context of BRDF theory the
quasi-homogeneous condition will be satisfied under flood
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illumination of a surface with spatially uniform rough-
ness on a scale greater than the illumination wavelength,
i.e., for o=1. Surfaces with specular reflection compo-
nents, for which o<1, do not satisfy the quasi-
homogeneous condition. Inserting the mutual intensity
under the quasi-homogeneous condition into Eq. (A4) and
changing to sum and difference surface variables pro-
duces

_ cos? 0 _
(I(ky)) =— fJ I(i)diff y(Ax)exp(-jk, - Ax)dAx
A2 S S

Al ” cos? 0 _
= _—zf f v(Ax)exp(-jKk, - Ax)dAx, (A7)
A S

where I, is the average reflected irradiance over the illu-
minated area A. Equation (A7), which is identical to Eq.
(3), is the generalized VCZ theorem as applicable to
BRDF model development. The reflected irradiance is dis-
tinguished from the irradiance on the detector by intro-
ducing the average emittance of the surface reflection as

M,=I,. In this context the emittance is averaged over
time, medium, and area.
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