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Abstract
The problem of localization in wireless sensor networks

where nodes do not use ranging hardware, remains a chal-
lenging problem, when considering the required location ac-
curacy, energy expenditure and the duration of the localiza-
tion phase. In this paper we propose a framework, called
StarDust, for wireless sensor network localization based on
passive optical components. In the StarDust framework,
sensor nodes are equipped with optical retro-reflectors. An
aerial device projects light towards the deployed sensor net-
work, and records an image of the reflected light. An image
processing algorithm is developed for obtaining the locations
of sensor nodes. For matching a node ID to a location we
propose a constraint-based label relaxation algorithm. We
propose and develop localization techniques based on four
types of constraints: node color, neighbor information, de-
ployment time for a node and deployment location for a
node. We evaluate the performance of a localization system
based on our framework by localizing a network of 26 sen-
sor nodes deployed in a 120× 60 f t2 area. The localization
accuracy ranges from 2 f t to 5 f t while the localization time
ranges from 10 milliseconds to 2 minutes.

Categories and Subject Descriptors: C.2.4 [Computer
Communications Networks]: Distributed Systems; C.3 [Spe-
cial Purpose and Application Based Systems]: Real-time and
embedded systems
General Terms: Algorithms, Measurement, Performance,
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1 Introduction
Wireless Sensor Networks (WSN) have been envisioned

to revolutionize the way humans perceive and interact with
the surrounding environment. One vision is to embed tiny
sensor devices in outdoor environments, by aerial deploy-
ments from unmanned air vehicles. The sensor nodes form
a network and collaborate (to compensate for the extremely
scarce resources available to each of them: computational
power, memory size, communication capabilities) to accom-
plish the mission. Through collaboration, redundancy and
fault tolerance, the WSN is then able to achieve unprece-
dented sensing capabilities.

A major step forward has been accomplished by devel-
oping systems for several domains: military surveillance [1]
[2] [3], habitat monitoring [4] and structural monitoring [5].
Even after these successes, several research problems remain
open. Among these open problems is sensor node localiza-
tion, i.e., how to find the physical position of each sensor
node. Despite the attention the localization problem in WSN
has received, no universally acceptable solution has been de-
veloped. There are several reasons for this. On one hand,
localization schemes that use ranging are typically high end
solutions. GPS ranging hardware consumes energy, it is rel-
atively expensive (if high accuracy is required) and poses
form factor challenges that move us away from the vision
of dust size sensor nodes. Ultrasound has a short range and
is highly directional. Solutions that use the radio transceiver
for ranging either have not produced encouraging results (if
the received signal strength indicator is used) or are sensitive
to environment (e.g., multipath). On the other hand, local-
ization schemes that only use the connectivity information
for inferring location information are characterized by low
accuracies: ≈ 10 f t in controlled environments, 40−50 f t in
realistic ones.

To address these challenges, we propose a framework for
WSN localization, called StarDust, in which the complex-
ity associated with the node localization is completely re-
moved from the sensor node. The basic principle of the
framework is localization through passivity: each sensor
node is equipped with a corner-cube retro-reflector and pos-
sibly an optical filter (a coloring device). An aerial vehi-
cle projects light onto the deployment area and records im-
ages containing retro-reflected light beams (they appear as
luminous spots). Through image processing techniques, the
locations of the retro-reflectors (i.e., sensor nodes) is deter-
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mined. For inferring the identity of the sensor node present
at a particular location, the StarDust framework develops a
constraint-based node ID relaxation algorithm.

The main contributions of our work are the following. We
propose a novel framework for node localization in WSNs
that is very promising and allows for many future extensions
and more accurate results. We propose a constraint-based
label relaxation algorithm for mapping node IDs to the lo-
cations, and four constraints (node, connectivity, time and
space), which are building blocks for very accurate and very
fast localization systems. We develop a sensor node hard-
ware prototype, called a SensorBall. We evaluate the perfor-
mance of a localization system for which we obtain location
accuracies of 2− 5 f t with a localization duration ranging
from 10 milliseconds to 2 minutes. We investigate the range
of a system built on our framework by considering realities
of physical phenomena that occurs during light propagation
through the atmosphere.

The rest of the paper is structured as follows. Section 2
is an overview of the state of art. The design of the Star-
Dust framework is presented in Section 3. One implemen-
tation and its performance evaluation are in Sections 4 and
5, followed by a suite of system optimization techniques, in
Section 6. In Section 7 we present our conclusions.

2 Related Work
We present the prior work in localization in two major

categories: the range-based, and the range-free schemes.

The range-based localization techniques have been de-
signed to use either more expensive hardware (and hence
higher accuracy) or just the radio transceiver. Ranging tech-
niques dependent on hardware are the time-of-flight (ToF)
and the time-difference-of-arrival (TDoA). Solutions that use
the radio are based on the received signal strength indicator
(RSSI) and more recently on radio interferometry.

The ToF localization technique that is most widely used is
the GPS. GPS is a costly solution for a high accuracy local-
ization of a large scale sensor network. AHLoS [6] employs
a TDoA ranging technique that requires extensive hardware
and solves relatively large nonlinear systems of equations.
The Cricket location-support system (TDoA) [7] can achieve
a location granularity of tens of inches with highly direc-
tional and short range ultrasound transceivers. In [2] the lo-
cation of a sniper is determined in an urban terrain, by us-
ing the TDoA between an acoustic wave and a radio beacon.
The PushPin project [8] uses the TDoA between ultrasound
pulses and light flashes for node localization. The RADAR
system [9] uses the RSSI to build a map of signal strengths
as emitted by a set of beacon nodes. A mobile node is lo-
cated by the best match, in the signal strength space, with a
previously acquired signature. In MAL [10], a mobile node
assists in measuring the distances (acting as constraints) be-
tween nodes until a rigid graph is generated. The localization
problem is formulated as an on-line state estimation in a non-
linear dynamic system [11]. A cooperative ranging that at-
tempts to achieve a global positioning from distributed local
optimizations is proposed in [12]. A very recent, remarkable,
localization technique is based on radio interferometry, RIPS
[13], which utilizes two transmitters to create an interfering

signal. The frequencies of the emitters are very close to each
other, thus the interfering signal will have a low frequency
envelope that can be easily measured. The ranging technique
performs very well. The long time required for localization
and multi-path environments pose significant challenges.

Real environments create additional challenges for the
range based localization schemes. These have been empha-
sized by several studies [14] [15] [16]. To address these chal-
lenges, and others (hardware cost, the energy expenditure,
the form factor, the small range, localization time), several
range-free localization schemes have been proposed. Sensor
nodes use primarily connectivity information for inferring
proximity to a set of anchors. In the Centroid localization
scheme [17], a sensor node localizes to the centroid of its
proximate beacon nodes. In APIT [18] each node decides its
position based on the possibility of being inside or outside of
a triangle formed by any three beacons within node’s com-
munication range. The Gradient algorithm [19], leverages
the knowledge about the network density to infer the average
one hop length. This, in turn, can be transformed into dis-
tances to nodes with known locations. DV-Hop [20] uses the
hop by hop propagation capability of the network to forward
distances to landmarks. More recently, several localization
schemes that exploit the sensing capabilities of sensor nodes,
have been proposed. Spotlight [21] creates well controlled
(in time and space) events in the network while the sensor
nodes detect and timestamp this events. From the spatio-
temporal knowledge for the created events and the temporal
information provided by sensor nodes, nodes’ spatial infor-
mation can be obtained. In a similar manner, the Lighthouse
system [22] uses a parallel light beam, that is emitted by an
anchor which rotates with a certain period. A sensor node
detects the light beam for a period of time, which is depen-
dent on the distance between it and the light emitting device.

Many of the above localization solutions target specific
sets of requirements and are useful for specific applications.
StarDust differs in that it addresses a particular demanding
set of requirements that are not yet solved well. StarDust is
meant for localizing air dropped nodes where node passive-
ness, high accuracy, low cost, small form factor and rapid lo-
calization are all required. Many military applications have
such requirements.

3 StarDust System Design
The design of the StarDust system (and its name) was in-

spired by the similarity between a deployed sensor network,
in which sensor nodes indicate their presence by emitting
light, and the Universe consisting of luminous and illumi-
nated objects: stars, galaxies, planets, etc.

The main difficulty when applying the above ideas to the
real world is the complexity of the hardware that needs to
be put on a sensor node so that the emitted light can be de-
tected from thousands of feet. The energy expenditure for
producing an intense enough light beam is also prohibitive.

Instead, what we propose to use for sensor node local-
ization is a passive optical element called a retro-reflector.
The most common retro-reflective optical component is a
Corner-Cube Retroreflector (CCR), shown in Figure 1(a). It
consists of three mutually perpendicular mirrors. The inter-
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Figure 1. Corner-Cube Retroreflector (a) and an array of
CCRs molded in plastic (b)

esting property of this optical component is that an incoming
beam of light is reflected back, towards the source of the
light, irrespective of the angle of incidence. This is in con-
trast with a mirror, which needs to be precisely positioned to
be perpendicular to the incident light. A very common and
inexpensive implementation of an array of CCRs is the retro-
reflective plastic material used on cars and bicycles for night
time detection, shown in Figure 1(b).

In the StarDust system, each node is equipped with a
small (e.g. 0.5in2) array of CCRs and the enclosure has
self-righting capabilities that orient the array of CCRs pre-
dominantly upwards. It is critical to understand that the up-
ward orientation does not need to be exact. Even when large
angular variations from a perfectly upward orientation are
present, a CCR will return the light in the exact same direc-
tion from which it came.

In the remaining part of the section, we present the ar-
chitecture of the StarDust system and the design of its main
components.

3.1 System Architecture
The envisioned sensor network localization scenario is as

follows:

• The sensor nodes are released, possibly in a controlled
manner, from an aerial vehicle during the night.

• The aerial vehicle hovers over the deployment area and
uses a strobe light to illuminate it. The sensor nodes,
equipped with CCRs and optical filters (acting as col-
oring devices) have self-righting capabilities and retro-
reflect the incoming strobe light. The retro-reflected
light is either ”white”, as the originating source light,
or colored, due to optical filters.

• The aerial vehicle records a sequence of two images
very close in time (msec level). One image is taken
when the strobe light is on, the other when the strobe
light is off. The acquired images are used for obtaining
the locations of sensor nodes (which appear as luminous
spots in the image).

• The aerial vehicle executes the mapping of node IDs to
the identified locations in one of the following ways: a)
by using the color of a retro-reflected light, if a sensor
node has a unique color; b) by requiring sensor nodes
to establish neighborhood information and report it to
a base station; c) by controlling the time sequence of
sensor nodes deployment and recording additional im-
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Figure 2. The StarDust system architecture

ages; d) by controlling the location where a sensor node
is deployed.

• The computed locations are disseminated to the sensor
network.

The architecture of the StarDust system is shown in Fig-
ure 2. The architecture consists of two main components:
the first is centralized and it is located on a more powerful
device. The second is distributed and it resides on all sen-
sor nodes. The Central Device consists of the following: the
Light Emitter, the Image Processing module, the Node ID
Mapping module and the Radio Model. The distributed com-
ponent of the architecture is the Transfer Function, which
acts as a filter for the incoming light. The aforementioned
modules are briefly described below:

• Light Emitter - It is a strobe light, capable of producing
very intense, collimated light pulses. The emitted light
is non-monochromatic (unlike a laser) and it is char-
acterized by a spectral density Ψ(λ), a function of the
wavelength. The emitted light is incident on the CCRs
present on sensor nodes.

• Transfer Function Φ(Ψ(λ)) - This is a bandpass filter
for the incident light on the CCR. The filter allows a
portion of the original spectrum, to be retro-reflected.
From here on, we will refer to the transfer function as
the color of a sensor node.

• Image Processing - The Image Processing module ac-
quires high resolution images. From these images the
locations and the colors of sensor nodes are obtained.
If only one set of pictures can be taken (i.e., one loca-
tion of the light emitter/image analysis device), then the
map of the field is assumed to be known as well as the
distance between the imaging device and the field. The
aforementioned assumptions (field map and distance to
it) are not necessary if the images can be simultaneously
taken from different locations. It is important to remark
here that the identity of a node can not be directly ob-
tained through Image Processing alone, unless a spe-
cific characteristic of a sensor node can be identified in
the image.

• Node ID Matching - This module uses the detected lo-
cations and through additional techniques (e.g., sensor
node coloring and connectivity information (G(Λ,E))
from the deployed network) to uniquely identify the
sensor nodes observed in the image. The connectivity
information is represented by neighbor tables sent from



Algorithm 1 Image Processing

1: Background filtering
2: Retro-reflected light recognition through intensity filter-

ing
3: Edge detection to obtain the location of sensor nodes
4: Color identification for each detected sensor node

each sensor node to the Central Device.

• Radio Model - This component provides an estimate of
the radio range to the Node ID Matching module. It
is only used by node ID matching techniques that are
based on the radio connectivity in the network. The es-
timate of the radio range R is based on the sensor node
density (obtained through the Image Processing mod-
ule) and the connectivity information (i.e., G(Λ,E)).

The two main components of the StarDust architecture
are the Image Processing and the Node ID Mapping. Their
design and analysis is presented in the sections that follow.

3.2 Image Processing
The goal of the Image Processing Algorithm (IPA) is to

identify the location of the nodes and their color. Note that
IPA does not identify which node fell where, but only what
is the set of locations where the nodes fell.

IPA is executed after an aerial vehicle records two pic-
tures: one in which the field of deployment is illuminated and
one when no illuminations is present. Let Pdark be the pic-
ture of the deployment area, taken when no light was emitted
and Plight be the picture of the same deployment area when a
strong light beam was directed towards the sensor nodes.

The proposed IPA has several steps, as shown in Algo-
rithm 1. The first step is to obtain a third picture Pf ilter where
only the differences between Pdark and Plight remain. Let us
assume that Pdark has a resolution of n×m, where n is the
number of pixels in a row of the picture, while m is the num-
ber of pixels in a column of the picture. Then Pdark is com-
posed of n×m pixels noted Pdark(i, j), i ∈ 1 ≤ i ≤ n,1 ≤
j ≤ m. Similarly Plight is composed of n×m pixels noted
Plight(i, j), 1≤ i≤ n,1≤ j ≤ m.

Each pixel P is described by an RGB value where the R
value is denoted by PR, the G value is denoted by PG, and
the B value is denoted by PB. IPA then generates the third
picture, Pf ilter, through the following transformations:

PR
f ilter(i, j) = PR

light(i, j)−PR
dark(i, j)

PG
f ilter(i, j) = PG

light(i, j)−PG
dark(i, j)

PB
f ilter(i, j) = PB

light(i, j)−PB
dark(i, j)

(1)

After this transformation, all the features that appeared in
both Pdark and Plight are removed from Pf ilter. This simplifies
the recognition of light retro-reflected by sensor nodes.

The second step consists of identifying the elements con-
tained in Pf ilter that retro-reflect light. For this, an intensity
filter is applied to Pf ilter. First IPA converts Pf ilter into a
grayscale picture. Then the brightest pixels are identified and
used to create Pre f lect . This step is eased by the fact that the
reflecting nodes should appear much brighter than any other
illuminated object in the picture.

Support: Q(λk)

ni

P1
...

P2
...

PN

λ1
...

λk
...

λN

Figure 3. Probabilistic label relaxation

The third step runs an edge detection algorithm on Pre f lect

to identify the boundary of the nodes present. A tool such as
Matlab provides a number of edge detection techniques. We
used the bwboundaries function. For the obtained edges, the
location (x,y) (in the image) of each node is determined by
computing the centroid of the points constituting its edges.
Standard computer graphics techniques [23] are then used
to transform the 2D locations of sensor nodes detected in
multiple images into 3D sensor node locations. The color of
the node is obtained as the color of the pixel located at (x,y)
in Plight .

3.3 Node ID Matching
The goal of the Node ID Matching module is to ob-

tain the identity (node ID) of a luminous spot in the im-
age, detected to be a sensor node. For this, we define V =
{(x1,y1),(x2,y2), ...,(xm,ym)} to be the set of locations of
the sensor nodes, as detected by the Image Processing mod-
ule and Λ = {λ1,λ2, ...,λm} to be the set of unique node IDs
assigned to the m sensor nodes, before deployment. From
here on, we refer to node IDs as labels.

We model the problem of finding the label λ j of a node ni

as a probabilistic label relaxation problem, frequently used
in image processing/understanding. In the image processing
domain, scene labeling (i.e., identifying objects in an im-
age) plays a major role. The goal of scene labeling is to
assign a label to each object detected in an image, such that
an appropriate image interpretation is achieved. It is pro-
hibitively expensive to consider the interactions among all
the objects in an image. Instead, constraints placed among
nearby objects generate local consistencies and through iter-
ation, global consistencies can be obtained.

The main idea of the sensor node localization through
probabilistic label relaxation is to iteratively compute the
probability of each label being the correct label for a sen-
sor node, by taking into account, at each iteration, the ”sup-
port” for a label. The support for a label can be understood
as a hint or proof, that a particular label is more likely to be
the correct one, when compared with the other potential la-
bels for a sensor node. We pictorially depict this main idea
in Figure 3. As shown, node ni has a set of candidate la-
bels {λ1, ...,λk}. Each of the labels has a different value
for the Support function Q(λk). We defer the explanation
of how the Support function is implemented until the sub-
sections that follow, where we provide four concrete tech-
niques. Formally, the algorithm is outlined in Algorithm 2,
where the equations necessary for computing the new proba-
bility Pni

(λk) for a label λk of a node ni, are expressed by the



Algorithm 2 Label Relaxation

1: for each sensor node ni do
2: assign equal prob. to all possible labels
3: end for
4: repeat
5: converged← true
6: for each sensor node ni do
7: for each each label λ j of ni do
8: compute the Support label λ j: Equation 4
9: end for

10: compute K for the node ni: Equation 3
11: for each each label λ j do
12: update probability of label λ j: Equation 2
13: if |new prob.−old prob.| ≥ ε then
14: converged← f alse
15: end if
16: end for
17: end for
18: until converged = true

following equations:

Ps+1
ni

(λk) =
1

Kni

Ps
ni
(λk)Q

s
ni
(λk) (2)

where Kni
is a normalizing constant, given by:

Kni
=

N

∑
k=1

Ps
ni
(λk)Q

s
ni
(λk) (3)

and Qs
ni
(λk) is:

Qs
ni
(λk) = “support for label λk of node ni” (4)

The label relaxation algorithm is iterative and it is poly-
nomial in the size of the network(number of nodes). The
pseudo-code is shown in Algorithm 2. It initializes the prob-
abilities associated with each possible label, for a node ni,
through a uniform distribution. At each iteration s, the algo-
rithm updates the probability associated with each label, by
considering the Support Qs

ni
(λk) for each candidate label of

a sensor node.
In the sections that follow, we describe four different tech-

niques for implementing the Support function: based on
node coloring, radio connectivity, the time of deployment
(time) and the location of deployment (space). While some
of these techniques are simplistic, they are primitives which,
when combined, can create powerful localization systems.
These design techniques have different trade-offs, which we
will present in Section 3.3.6.

3.3.1 Relaxation with Color Constraints
The unique mapping between a sensor node’s position

(identified by the image processing) and a label can be ob-
tained by assigning a unique color to each sensor node. For
this we define C = {c1,c2, ...,cn} to be the set of unique col-
ors available and M : Λ→C to be a one-to-one mapping of
labels to colors. This mapping is known prior to the sensor
node deployment (from node manufacturing).

In the case of color constrained label relaxation, the sup-
port for label λk is expressed as follows:

Qs
ni
(λk) = 1 (5)

As a result, the label relaxation algorithm (Algorithm 2)
consists of the following steps: one label is assigned to each
sensor node (lines 1-3 of the algorithm), implicitly having
a probability Pni

(λk) = 1 ; the algorithm executes a single
iteration, when the support function, simply, reiterates the
confidence in the unique labeling.

However, it is often the case that unique colors for each
node will not be available. It is interesting to discuss here the
influence that the size of the coloring space (i.e., |C|) has on
the accuracy of the localization algorithm. Several cases are
discussed below:

• If |C| = 0, no colors are used and the sensor nodes are
equipped with simple CCRs that reflect back all the in-
coming light (i.e., no filtering, and no coloring of the in-
coming light). From the image processing system, the
position of sensor nodes can still be obtained. Since
all nodes appear white, no single sensor node can be
uniquely identified.

• If |C| = m− 1 then there are enough unique colors for
all nodes (one node remains white, i.e. no coloring), the
problem is trivially solved. Each node can be identified,
based on its unique color. This is the scenario for the
relaxation with color constraints.

• If |C| ≥ 1, there are several options for how to parti-
tion the coloring space. If C = {c1} one possibility is
to assign the color c1 to a single node, and leave the re-
maining m−1 sensor nodes white, or to assign the color
c1 to more than one sensor node. One can observe that
once a color is assigned uniquely to a sensor node, in
effect, that sensor node is given the status of “anchor”,
or node with known location.

It is interesting to observe that there is an entire spectrum
of possibilities for how to partition the set of sensor nodes
in equivalence classes (where an equivalence class is repre-
sented by one color), in order to maximize the success of the
localization algorithm. One of the goals of this paper is to
understand how the size of the coloring space and its parti-
tioning affect localization accuracy.

Despite the simplicity of this method of constraining the
set of labels that can be assigned to a node, we will show that
this technique is very powerful, when combined with other
relaxation techniques.

3.3.2 Relaxation with Connectivity Constraints
Connectivity information, obtained from the sensor net-

work through beaconing, can provide additional information
for locating sensor nodes. In order to gather connectivity in-
formation, the following need to occur: 1) after deployment,
through beaconing of HELLO messages, sensor nodes build
their neighborhood tables; 2) each node sends its neighbor
table information to the Central device via a base station.

First, let us define G = (Λ,E) to be the weighted con-
nectivity graph built by the Central device from the received
neighbor table information. In G the edge (λi,λ j) has a
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Figure 4. Label relaxation with connectivity constraints

weight gi j represented by the number of beacons sent by λ j

and received by λi. In addition, let R be the radio range of
the sensor nodes.

The main idea of the connectivity constrained label re-
laxation is depicted in Figure 4 in which two nodes ni and
n j have been assigned all possible labels. The confidence in
each of the candidate labels for a sensor node, is represented
by a probability, shown in a dotted rectangle.

It is important to remark that through beaconing and the
reporting of neighbor tables to the Central Device, a global
view of all constraints in the network can be obtained. It
is critical to observe that these constraints are among labels.
As shown in Figure 4 two constraints exist between nodes ni

and n j. The constraints are depicted by gi2, j2 and gi2, jM, the
number of beacons sent the labels λ j2 and λ jM and received
by the label λi2.

The support for the label λk of sensor node ni, resulting
from the “interaction” (i.e., within radio range) with sensor
node n j is given by:

Qs
ni
(λk) =

M

∑
m=1

gλkλm
Ps

n j
(λm) (6)

As a result, the localization algorithm (Algorithm 3 con-
sists of the following steps: all labels are assigned to each
sensor node (lines 1-3 of the algorithm), and implicitly each
label has a probability initialized to Pni

(λk) = 1/|Λ|; in each
iteration, the probabilities for the labels of a sensor node are
updated, when considering the interaction with the labels of
sensor nodes within R. It is important to remark that the iden-
tity of the nodes within R is not known, only the candidate
labels and their probabilities. The relaxation algorithm con-
verges when, during an iteration, the probability of no label
is updated by more than ε.

The label relaxation algorithm based on connectivity con-
straints, enforces such constraints between pairs of sensor
nodes. For a large scale sensor network deployment, it is not
feasible to consider all pairs of sensor nodes in the network.
Hence, the algorithm should only consider pairs of sensor
nodes that are within a reasonable communication range (R).
We assume a circular radio range and a symmetric connec-
tivity. In the remaining part of the section we propose a
simple analytical model that estimates the radio range R for
medium-connected networks (less than 20 neighbors per R).
We consider the following to be known: the size of the de-
ployment field (L), the number of sensor nodes deployed (N)

Algorithm 3 Localization

1: Estimate the radio range R
2: Execute the Label Relaxation Algorithm with Support

Function given by Equation 6 for neighbors less than R
apart

3: for each sensor node ni do
4: node identity is λk with max. prob.
5: end for

and the total number of unidirectional (i.e., not symmetric)
one-hop radio connections in the network (k). For our analy-
sis, we uniformly distribute the sensor nodes in a square area

of length L, by using a grid of unit length L/
√

N. We use the

substitution u = L/
√

N to simplify the notation, in order to

distinguish the following cases: if u ≤ R ≤
√

2u each node

has four neighbors (the expected k = 4N); if
√

2u ≤ R ≤ 2u
each node has eight neighbors (the expected k = 8N); if

2u≤R≤
√

5u each node has twelve neighbors ( the expected

k = 12N); if
√

5u ≤ R≤ 3u each node has twenty neighbors
(the expected k = 20N)

For a given t = k/4N we take R to be the middle of the

interval. As an example, if t = 5 then R = (3 +
√

5)u/2. A
quadratic fitting for R over the possible values of t, produces
the following closed-form solution for the communication
range R, as a function of network connectivity k, assuming L
and N constant:

R(k) =
L√
N

[

−0.051

(

k

4N

)2

+ 0.66

(

k

4N

)

+ 0.6

]

(7)

We investigate the accuracy of our model in Section 5.2.1.

3.3.3 Relaxation with Time Constraints
Time constraints can be treated similarly with color con-

straints. The unique identification of a sensor node can be
obtained by deploying sensor nodes individually, one by one,
and recording a sequence of images. The sensor node that is
identified as new in the last picture (it was not identified in
the picture before last) must be the last sensor node dropped.

In a similar manner with color constrained label relax-
ation, the time constrained approach is very simple, but may
take too long, especially for large scale systems. While it
can be used in practice, it is unlikely that only a time con-
strained label relaxation is used. As we will see, by combin-
ing constrained-based primitives, realistic localization sys-
tems can be implemented.

The support function for the label relaxation with time
constraints is defined identically with the color constrained
relaxation:

Qs
ni
(λk) = 1 (8)

The localization algorithm (Algorithm 2 consists of the
following steps: one label is assigned to each sensor node
(lines 1-3 of the algorithm), and implicitly having a proba-
bility Pni

(λk) = 1 ; the algorithm executes a single iteration,
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when the support function, simply, reiterates the confidence
in the unique labeling.

3.3.4 Relaxation with Space Constraints

Spatial information related to sensor deployment can also
be employed as another input to the label relaxation algo-
rithm. To do that, we use two types of locations: the node lo-
cation pn and the label location pl . The former pn is defined
as the position of nodes (xn,yn,zn) after deployment, which
can be obtained through Image Processing as mentioned in
Section 3.3. The latter pl is defined as the location (xl,yl ,zl)
where a node is dropped. We use D

ni

λm
to denote the horizon-

tal distance between the location of the label λm and the loca-

tion of the node ni. Clearly, D
ni

λm
=

√

(xn− xl)2 +(yn− yl)2.

At the time of a sensor node release, the one-to-one map-
ping between the node and its label is known. In other words,
the label location is the same as the node location at the re-
lease time. After release, the label location information is
partially lost due to the random factors such as wind and sur-
face impact. However, statistically, the node locations are
correlated with label locations. Such correlation depends on
the airdrop methods employed and environments. For the
sake of simplicity, let’s assume nodes are dropped from the
air through a helicopter hovering in the air. Wind can be de-

composed into three components ~X ,~Y and ~Z. Only ~X and
~Y affect the horizontal distance a node can travel. Accord-
ing to [24], we can assume that ~X and ~Y follow an indepen-
dent normal distribution. Therefore, the absolute value of
the wind speed follows a Rayleigh distribution. Obviously
the higher the wind speed is, the further a node would land
away horizontally from the label location. If we assume that
the distance D is a function of the wind speed V [25] [26],
we can obtain the probability distribution of D under a given
wind speed distribution. Without loss of generality, we as-
sume that D is proportional to the wind speed. Therefore,
D follows the Rayleigh distribution as well. As shown in
Figure 5, the spatial-based relaxation is a recursive process
to assign the probability that a nodes has a certain label by
using the distances between the location of a node with mul-
tiple label locations.

We note that the distribution of distance D affects the
probability with which a label is assigned. It is not necessar-
ily true that the nearest label is always chosen. For example,
if D follows the Rayleigh(σ2) distribution, we can obtain the

Probability Density Function (PDF) of distances as shown
in Figure 6. This figure indicates that the possibility of a
node to fall vertically is very small under windy conditions
(σ > 0), and that the distance D is affected by the σ. The
spatial distribution of nodes for σ = 1 is shown in Figure 7.
Strong wind with a high σ value leads to a larger node dis-
persion. More formally, given a probability density function
PDF(D), the support for label λk of sensor node ni can be
formulated as:

Qs
ni
(λk) = PDF(Dni

λk
) (9)

It is interesting to point out two special cases. First, if all
nodes are released at once (i.e., only one label location for
all released nodes), the distance D from a node to all labels
is the same. In this case, Ps+1

ni
(λk) = Ps

ni
(λk), which indicates

that we can not use the spatial-based relaxation to recursively
narrow down the potential labels for a node. Second, if nodes
are released at different locations that are far away from each
other, we have: (i) If node ni has label λk, Ps

ni
(λk)→ 1 when

s→ ∞, (ii) If node ni does not have label λk, Ps
ni
(λk)→ 0

when s→ ∞. In this second scenario, there are multiple la-
bels (one label per release), hence it is possible to correlate
release times (labels) with positions on the ground. These re-
sults indicate that spatial-based relaxation can label the node
with a very high probability if the physical separation among
nodes is large.

3.3.5 Relaxation with Color and Connectivity Con-
straints

One of the most interesting features of the StarDust archi-
tecture is that it allows for hybrid localization solutions to be
built, depending on the system requirements. One example
is a localization system that uses the color and connectivity
constraints. In this scheme, the color constraints are used for
reducing the number of candidate labels for sensor nodes,
to a more manageable value. As a reminder, in the connec-
tivity constrained relaxation, all labels are candidate labels
for each sensor node. The color constraints are used in the
initialization phase of Algorithm 3 (lines 1-3). After the ini-
tialization, the standard connectivity constrained relaxation
algorithm is used.

For a better understanding of how the label relaxation al-
gorithm works, we give a concrete example, exemplified in
Figure 8. In part (a) of the figure we depict the data structures
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Figure 8. A step through the algorithm. After initializa-
tion (a) and after the 1st iteration for node ni (b)

associated with nodes ni and n j after the initialization steps
of the algorithm (lines 1-6), as well as the number of beacons
between different labels (as reported by the network, through
G(Λ,E)). As seen, the potential labels (shown inside the ver-
tical rectangles) are assigned to each node. Node ni can be
any of the following: 11,8,4,1. Also depicted in the figure
are the probabilities associated with each of the labels. After
initialization, all probabilities are equal.

Part (b) of Figure 8 shows the result of the first iteration
of the localization algorithm for node ni, assuming that node
n j is the first wi chosen in line 7 of Algorithm 3. By using
Equation 6, the algorithm computes the ”support” Q(λi) for
each of the possible labels for node ni. Once the Q(λi)’s
are computed, the normalizing constant, given by Equation
3 can be obtained. The last step of the iteration is to update
the probabilities associated with all potential labels of node
ni, as given by Equation 2.

One interesting problem, which we explore in the perfor-
mance evaluation section, is to assess the impact the parti-
tioning of the color set C has on the accuracy of localiza-
tion. When the size of the coloring set is smaller than the
number of sensor nodes (as it is the case for our hybrid con-
nectivity/color constrained relaxation), the system designer
has the option of allowing one node to uniquely have a color
(acting as an anchor), or multiple nodes. Intuitively, by as-
signing one color to more than one node, more constraints
(distributed) can be enforced.

3.3.6 Relaxation Techniques Analysis
The proposed label relaxation techniques have different

trade-offs. For our analysis of the trade-offs, we consider
the following metrics of interest: the localization time (du-
ration), the energy consumed (overhead), the network size
(scale) that can be handled by the technique and the localiza-
tion accuracy. The parameters of interest are the following:
the number of sensor nodes (N), the energy spent for one
aerial drop (εd), the energy spent in the network for collect-
ing and reporting neighbor information εb and the time Td

taken by a sensor node to reach the ground after being aeri-
ally deployed. The cost comparison of the different label
relaxation techniques is shown in Table 1.

As shown, the relaxation techniques based on color and
space constraints have the lowest localization duration, zero,
for all practical purposes. The scalability of the color based
relaxation technique is, however, limited to the number of
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Figure 9. SensorBall with self-righting capabilities (a)
and colored CCRs (b)

unique color filters that can be built. The narrower the Trans-
fer Function Ψ(λ), the larger the number of unique colors
that can be created. The manufacturing costs, however, are
increasing as well. The scalability issue is addressed by all
other label relaxation techniques. Most notably, the time
constrained relaxation, which is very similar to the color-
constrained relaxation, addresses the scale issue, at a higher
deployment cost.

Criteria Color Connectivity Time Space

Duration 0 NTb NTd 0
Overhead εd εd + Nεb Nεd εd

Scale |C| |N| |N| |N|
Accuracy High Low High Medium

Table 1. Comparison of label relaxation techniques

4 System Implementation
The StarDust localization framework, depicted in Figure

2, is flexible in that it enables the development of new lo-
calization systems, based on the four proposed label relax-
ation schemes, or the inclusion of other, yet to be invented,
schemes. For our performance evaluation we implemented a
version of the StarDust framework, namely the one proposed
in Section 3.3.5, where the constraints are based on color and
connectivity.

The Central device of the StarDust system consists of the
following: the Light Emitter - we used a common-off-the-
shelf flash light (QBeam, 3 million candlepower); the im-
age acquisition was done with a 3 megapixel digital camera
(Sony DSC-S50) which provided the input to the Image Pro-
cessing algorithm, implemented in Matlab.

For sensor nodes we built a custom sensor node, called
SensorBall, with self-righting capabilities, shown in Figure
9(a). The self-righting capabilities are necessary in order to
orient the CCR predominantly upwards. The CCRs that we
used were inexpensive, plastic molded, night time warning
signs commonly available on bicycles, as shown in Figure
9(b). We remark here the low quality of the CCRs we used.
The reflectivity of each CCR (there are tens molded in the
plastic container) is extremely low, and each CCR is not built
with mirrors. A reflective effect is achieved by employing
finely polished plastic surfaces. We had 5 colors available,
in addition to the standard CCR, which reflects all the in-
coming light (white CCR). For a slightly higher price (ours
were 20cents/piece), better quality CCRs can be employed.



 

Figure 10. The field in the dark

 

Figure 11. The illuminated field
 

Figure 12. The difference: Figure 10 -
Figure 11

Higher quality (better mirrors) would translate in more ac-
curate image processing (better sensor node detection) and
smaller form factor for the optical component (an array of
CCRs with a smaller area can be used).

The sensor node platform we used was the micaZ mote.
The code that runs on each node is a simple application
which broadcasts 100 beacons, and maintains a neighbor ta-
ble containing the percentage of successfully received bea-
cons, for each neighbor. On demand, the neighbor table is
reported to a base station, where the node ID mapping is per-
formed.

5 System Evaluation
In this section we present the performance evaluation of

a system implementation of the StarDust localization frame-
work. The three major research questions that our evaluation
tries to answer are: the feasibility of the proposed framework
(can sensor nodes be optically detected at large distances),
the localization accuracy of one actual implementation of the
StarDust framework, and whether or not atmospheric condi-
tions can affect the recognition of sensor nodes in an im-
age. The first two questions are investigated by evaluating
the two main components of the StarDust framework: the
Image Processing and the Node ID Matching. These com-
ponents have been evaluated separately mainly because of
lack of adequate facilities. We wanted to evaluate the perfor-
mance of the Image Processing Algorithm in a long range,
realistic, experimental set-up, while the Node ID Matching
required a relatively large area, available for long periods of
time (for connectivity data gathering). The third research
question is investigated through a computer modeling of at-
mospheric phenomena.

For the evaluation of the Image Processing module, we
performed experiments in a football stadium where we de-
ploy 6 sensor nodes in a 3×2 grid. The distance between the
Central device and the sensor nodes is approximately 500 f t.
The metrics of interest are the number of false positives and
false negatives in the Image Processing Algorithm.

For the evaluation of the Node ID Mapping component,
we deploy 26 sensor nodes in an 120× 60 f t2 flat area of
a stadium. In order to investigate the influence the radio
connectivity has on localization accuracy, we vary the height
above ground of the deployed sensor nodes. Two set-ups are
used: one in which the sensor nodes are on the ground, and

the second one, in which the sensor nodes are raised 3 inches
above ground. From here on, we will refer to these two
experimental set-ups as the low connectivity and the high
connectivity networks, respectively because when nodes are
on the ground the communication range is low resulting in
less neighbors than when the nodes are elevated and have a
greater communication range. The metrics of interest are:
the localization error (defined as the distance between the
computed location and the true location - known from the
manual placement), the percentage of nodes correctly local-
ized, the convergence of the label relaxation algorithm, the
time to localize and the robustness of the node ID mapping
to errors in the Image Processing module.

The parameters that we vary experimentally are: the an-
gle under which images are taken, the focus of the camera,
and the degree of connectivity. The parameters that we vary
in simulations (subsequent to image acquisition and connec-
tivity collection) the number of colors, the number of an-
chors, the number of false positives or negatives as input
to the Node ID Matching component, the distance between
the imaging device and sensor network (i.e., range), atmo-
spheric conditions (light attenuation coefficient) and CCR
reflectance (indicative of its quality).

5.1 Image Processing
For the IPA evaluation, we deploy 6 sensor nodes in a

3× 2 grid. We take 13 sets of pictures using different ori-
entations of the camera and different zooming factors. All
pictures were taken from the same location. Each set is com-
posed of a picture taken in the dark and of a picture taken
with a light beam pointed at the nodes. We process the pic-
tures offline using a Matlab implementation of IPA. Since we
are interested in the feasibility of identifying colored sensor
nodes at large distance, the end result of our IPA is the 2D
location of sensor nodes (position in the image). The trans-
formation to 3D coordinates can be done through standard
computer graphics techniques [23].

One set of pictures obtained as part of our experiment is
shown in Figures 10 and 11. The execution of our IPA algo-
rithm results in Figure 12 which filters out the background,
and Figure 13 which shows the output of the edge detection
step of IPA. The experimental results are depicted in Fig-
ure 14. For each set of pictures the graph shows the number
of false positives (the IPA determines that there is a node



 

Figure 13. Retroreflectors detected in Figure 12
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Figure 14. False Positives and Negatives for the 6 nodes

while there is none), and the number of false negatives (the
IPA determines that there is no node while there is one). In
about 45% of the cases, we obtained perfect results, i.e., no
false positives and no false negatives. In the remaining cases,
we obtained a number of false positives of at most one, and
a number of false negatives of at most two.

We exclude two pairs of pictures from Figure 14. In the
first excluded pair, we obtain 42 false positives and in the
second pair 10 false positives and 7 false negatives. By care-
fully examining the pictures, we realized that the first pair
was taken out of focus and that a car temporarily appeared
in one of the pictures of the second pair. The anomaly in
the second set was due to the fact that we waited too long to
take the second picture. If the pictures had been taken a few
milliseconds apart, the car would have been represented on
either both or none of the pictures and the IPA would have
filtered it out.

5.2 Node ID Matching
We evaluate the Node ID Matching component of our sys-

tem by collecting empirical data (connectivity information)
from the outdoor deployment of 26 nodes in the 120×60 f t2

area. We collect 20 sets of data for the high connectivity
and low connectivity network deployments. Off-line we in-
vestigate the influence of coloring on the metrics of interest,
by randomly assigning colors to the sensor nodes. For one
experimental data set we generate 50 random assignments
of colors to sensor nodes. It is important to observe that, for
the evaluation of the Node ID Matching algorithm (color and
connectivity constrained), we simulate the color assignment
to sensor nodes. As mentioned in Section 4 the size of the
coloring space available to us was 5 (5 colors). Through sim-
ulations of color assignment (not connectivity) we are able
to investigate the influence that the size of the coloring space
has on the accuracy of localization. The value of the param-
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Figure 15. The number of existing and missing radio con-
nections in the sparse connectivity experiment
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Figure 16. The number of existing and missing radio con-
nections in the high connectivity experiment

eter ε used in Algorithm 2 was 0.001. The results presented
here represent averages over the randomly generated color-
ings and over all experimental data sets.

We first investigate the accuracy of our proposed Radio
Model, and subsequently use the derived values for the radio
range in the evaluation of the Node ID matching component.

5.2.1 Radio Model
From experiments, we obtain the average number of ob-

served beacons (k, defined in Section 3.3.2) for the low con-
nectivity network of 180 beacons and for the high connectiv-
ity network of 420 beacons. From our Radio Model (Equa-
tion 7, we obtain a radio range R = 25 f t for the low connec-
tivity network and R = 40 f t for the high connectivity net-
work.

To estimate the accuracy of our simple model, we plot
the number of radio links that exist in the networks, and the
number of links that are missing, as functions of the distance
between nodes. The results are shown in Figures 15 and 16.
We define the average radio range R to be the distance over
which less than 20% of potential radio links, are missing.
As shown in Figure 15, the radio range is between 20 f t and
25 f t. For the higher connectivity network, the radio range
was between 30 f t and 40 f t.

We choose two conservative estimates of the radio range:
20 f t for the low connectivity case and 35 f t for the high con-
nectivity case, which are in good agreement with the values
predicted by our Radio Model.

5.2.2 Localization Error vs. Coloring Space Size
In this experiment we investigate the effect of the number

of colors on the localization accuracy. For this, we randomly
assign colors from a pool of a given size, to the sensor nodes.
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Figure 17. Localization error
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Figure 18. Percentage of nodes correctly localized

We then execute the localization algorithm, which uses the
empirical data. The algorithm is run for three different radio
ranges: 15, 20 and 25 f t, to investigate its influence on the
localization error.

The results are depicted in Figure 17 (localization error)
and Figure 18 (percentage of nodes correctly localized). As
shown, for an estimate of 20 f t for the radio range (as pre-
dicted by our Radio Model) we obtain the smallest localiza-
tion errors, as small as 2 f t, when enough colors are used.
Both Figures 17 and 18 confirm our intuition that a larger
number of colors available significantly decrease the error in
localization.

The well known fact that relaxation algorithms do not al-
ways converge, was observed during our experiments. The
percentage of successful runs (when the algorithm con-
verged) is depicted in Figure 19. As shown, in several sit-
uations, the algorithm failed to converge (the algorithm exe-
cution was stopped after 100 iterations per node). If the algo-
rithm does not converge in a predetermined number of steps,
it will terminate and the label with the highest probability
will provide the identity of the node. It is very probable that
the chosen label is incorrect, since the probabilities of some
of labels are constantly changing (with each iteration).The
convergence of relaxation based algorithms is a well known
issue.

5.2.3 Localization Error vs. Color Uniqueness
As mentioned in the Section 3.3.1, a unique color gives a

sensor node the statute of an anchor. A sensor node that is
an anchor can unequivocally be identified through the Image
Processing module. In this section we investigate the effect
unique colors have on the localization accuracy. Specifically,
we want to experimentally verify our intuition that assigning
more nodes to a color can benefit the localization accuracy,
by enforcing more constraints, as opposed to uniquely as-
signing a color to a single node.
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Figure 19. Convergence error
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Figure 20. Localization error vs. number of colors

For this, we fix the number of available colors to either 4,
6 or 8 and vary the number of nodes that are given unique
colors, from 0, up to the maximum number of colors (4, 6 or
8). Naturally, if we have a maximum number of colors of 4,
we can assign at most 4 anchors. The experimental results
are depicted in Figure 20 (localization error) and Figure 21
(percentage of sensor node correctly localized). As expected,
the localization accuracy increases with the increase in the
number of colors available (larger coloring space). Also, for
a given size of the coloring space (e.g., 6 colors available), if
more colors are uniquely assigned to sensor nodes then the
localization accuracy decreases. It is interesting to observe
that by assigning colors uniquely to nodes, the benefit of hav-
ing additional colors is diminished. Specifically, if 8 colors
are available and all are assigned uniquely, the system would
be less accurately localized (error ≈ 7 f t), when compared
to the case of 6 colors and no unique assignments of colors
(≈ 5 f t localization error).

The same trend, of a less accurate localization can be ob-
served in Figure 21, which shows the percentage of nodes
correctly localized (i.e., 0 f t localization error). As shown, if
we increase the number of colors that are uniquely assigned,
the percentage of nodes correctly localized decreases.

5.2.4 Localization Error vs. Connectivity
We collected empirical data for two network deployments

with different degrees of connectivity (high and low) in or-
der to assess the influence of connectivity on location ac-
curacy. The results obtained from running our localization
algorithm are depicted in Figure 22 and Figure 23. We var-
ied the number of colors available and assigned no anchors
(i.e., no unique assignments of colors).

In both scenarios, as expected, localization error decrease
with an increase in the number of colors. It is interesting
to observe, however, that the low connectivity scenario im-
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Figure 21. Percentage of nodes correctly localized vs.
number of colors
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Figure 22. Localization error vs. number of colors

proves the localization accuracy quicker, from the additional
number of colors available. When the number of colors be-
comes relatively large (twelve for our 26 sensor node net-
work), both scenarios (low and high connectivity) have com-
parable localization errors, of less that 2 f t. The same trend
of more accurate location information is evidenced by Fig-
ure 23 which shows that the percentage of nodes that are
localized correctly grows quicker for the low connectivity
deployment.

5.3 Localization Error vs. Image Processing
Errors

So far we investigated the sources for error in localiza-
tion that are intrinsic to the Node ID Matching component.
As previously presented, luminous objects can be mistak-
enly detected to be sensor nodes during the location detec-
tion phase of the Image Processing module. These false pos-
itives can be eliminated by the color recognition procedure
of the Image Processing module. More problematic are false
negatives (when a sensor node does not reflect back enough
light to be detected). They need to be handled by the lo-
calization algorithm. In this case, the localization algorithm
is presented with two sets of nodes of different sizes, that
need to be matched: one coming from the Image Processing
(which misses some nodes) and one coming from the net-
work, with the connectivity information (here we assume a
fully connected network, so that all sensor nodes report their
connectivity information). In this experiment we investigate
how Image Processing errors (false negatives) influence the
localization accuracy.

For this evaluation, we ran our localization algorithm with
empirical data, but dropped a percentage of nodes from the
list of nodes detected by the Image Processing algorithm (we
artificially introduced false negatives in the Image Process-
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Figure 23. Percentage of nodes correctly localized
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Figure 24. Impact of false negatives on the localization
error

ing). The effect of false negatives on localization accuracy is
depicted in Figure 24. As seen in the figure if the number of
false negatives is 15%, the error in position estimation dou-
bles when 4 colors are available. It is interesting to observe
that the scenario when more colors are available (e.g., 12 col-
ors) is being affected more drastically than the scenario with
less colors (e.g., 4 colors). The benefit of having more colors
available is still being maintained, at least for the range of
colors we investigated (4 through 12 colors).

5.4 Localization Time
In this section we look more closely at the duration for

each of the four proposed relaxation techniques and two
combinations of them: color-connectivity and color-time.
We assume that 50 unique color filters can be manufactured,
that the sensor network is deployed from 2,400 f t (neces-
sary for the time-constrained relaxation) and that the time
required for reporting connectivity grows linearly, with an
initial reporting period of 160sec, as used in a real world
tracking application [1]. The localization duration results, as
presented in Table 1, are depicted in Figure 25.

As shown, for all practical purposes the time required
by the space constrained relaxation techniques is 0sec. The
same applies to the color constrained relaxation, for which
the localization time is 0sec (if the number of colors is suf-
ficient). Considering our assumptions, only for a network of
size 50 the color constrained relaxation works. The localiza-
tion duration for all other network sizes (100, 150 and 200)
is infinite (i.e., unique color assignments to sensor nodes
can not be made, since only 50 colors are unique), when
only color constrained relaxation is used. Both the connec-
tivity constrained and time constrained techniques increase
linearly with the network size (for the time constrained, the
Central device deploys sensor nodes one by one, recording
an image after the time a sensor node is expected to reach the
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Figure 25. Localization time for different la-
bel relaxation schemes
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Figure 26. Apparent contrast in a
clear atmosphere

0 2000 4000 6000 8000
0

0.5

1

1.5

2

2.5

3

3.5

4

r [feet]

C
r

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 27. Apparent contrast in a
hazing atmosphere

ground).
It is interesting to notice in Figure 25 the improvement in

the localization time obtained by simply combining the color
and the connectivity constrained techniques. The localiza-
tion duration in this case is identical with the connectivity
constrained technique.

The combination of color and time constrained relax-
ations is even more interesting. For a reasonable localiza-
tion duration of 52seconds a perfect (i.e., 0 f t localization
error) localization system can be built. In this scenario, the
set of sensor nodes is split in batches, with each batch hav-
ing a set of unique colors. It would be very interesting to
consider other scenarios, where the strength of the space
constrained relaxation (0sec for any sensor network size) is
used for improving the other proposed relaxation techniques.
We leave the investigation and rigorous classification of such
technique combination for future work.

5.5 System Range
In this section we evaluate the feasibility of the Star-

Dust localization framework when considering the realities
of light propagation through the atmosphere.

The main factor that determines the range of our system is
light scattering, which redirects the luminance of the source
into the medium (in essence equally affecting the luminosity
of the target and of the background). Scattering limits the
visibility range by reducing the apparent contrast between
the target and its background (approaches zero, as the dis-
tance increases). The apparent contrast Cr is quantitatively
expressed by the formula:

Cr = (Nt
r−Nb

r )/Nb
r (10)

where Nt
r and Nb

r are the apparent target radiance and appar-
ent background radiance at distance r from the light source,
respectively. The apparent radiance Nt

r of a target at a dis-
tance r from the light source, is given by:

Nt
r = Na +

Iρte
−2σr

πr2
(11)

where I is the intensity of the light source, ρt is the tar-
get reflectance, σ is the spectral attenuation coefficient (≈
0.12km−1 and ≈ 0.60km−1 for a clear and a hazy atmo-
sphere, respectively) and Na is the radiance of the atmo-
spheric backscatter, and it can be expressed as follows:

Na =
Gσ2I

2π

2σr
Z

0.02σr

e−x

x2
dx (12)

where G = 0.24 is a backscatter gain. The apparent back-
ground radiance Nb

r is given by formulas similar with Equa-
tions 11 and 12, where only the target reflectance ρt is sub-
stituted with the background reflectance ρb. It is important
to remark that when Cr reaches its lower limit, no increase
in the source luminance or receiver sensitivity will increase
the range of the system. From Equations 11 and 12 it can be
observed that the parameter which can be controlled and can
influence the range of the system is ρt , the target reflectance.

Figures 26 and 27 depict the apparent contrast Cr as a
function of the distance r for a clear and for a hazy atmo-
sphere, respectively. The apparent contrast is investigated for
reflectance coefficients ρt ranging from 0.3 to 1.0 (perfect re-
flector). For a contrast C of at least 0.5, as it can be seen in
Figure 26 a range of approximately 4,500 f t can be achieved
if the atmosphere is clear. The performance dramatically de-
teriorates, when the atmospheric conditions are problematic.
As shown in Figure 27 a range of up to 1,500 f t is achiev-
able, when using highly reflective CCR components.

While our light source (3 million candlepower) was suffi-
cient for a range of a few hundred feet, we remark that there
exist commercially available light sources (20 million can-
dlepower) or military (150 million candlepower [27]), pow-
erful enough for ranges of a few thousand feet.

6 StarDust System Optimizations
In this section we describe extensions of the proposed ar-

chitecture that can constitute future research directions.

6.1 Chained Constraint Primitives
In this paper we proposed four primitives for constraint-

based relaxation algorithms: color, connectivity, time and
space. To demonstrate the power that can be obtained by
combining them, we proposed and evaluated one combina-
tion of such primitives: color and connectivity. An interest-
ing research direction to pursue could be to chain more than
two of these primitives. An example of such chain is: color,
temporal, spatial and connectivity. Other research directions
could be to use voting scheme for deciding which primitive
to use or assign different weights to different relaxation al-
gorithms.



6.2 Location Learning
If after several iterations of the algorithm, none of the la-

bel probabilities for a node ni converges to a higher value, the
confidence in our labeling of that node is relatively low. It
would be interesting to associate with a node, more than one
label (implicitly more than one location) and defer the label
assignment decision until events are detected in the network
(if the network was deployed for target tracking).

6.3 Localization in Rugged Environments
The initial driving force for the StarDust localization

framework was to address the sensor node localization in ex-
tremely rugged environments. Canopies, dense vegetation,
extremely obstructing environments pose significant chal-
lenges for sensor nodes localization. The hope, and our orig-
inal idea, was to consider the time period between the aerial
deployment and the time when the sensor node disappears
under the canopy. By recording the last visible position of a
sensor node (as seen from the aircraft) a reasonable estimate
of the sensor node location can be obtained. This would
require that sensor nodes posses self-righting capabilities,
while in mid-air. Nevertheless, we remark on the suitability
of our localization framework for rugged, non-line-of-sight
environments.

7 Conclusions
StarDust solves the localization problem for aerial de-

ployments where passiveness, low cost, small form factor
and rapid localization are required. Results show that accu-
racy can be within 2 f t and localization time within millisec-
onds. StarDust also shows robustness with respect to errors.
We predict the influence the atmospheric conditions can have
on the range of a system based on the StarDust framework,
and show that hazy environments or daylight can pose sig-
nificant challenges.

Most importantly, the properties of StarDust support
the potential for even more accurate localization solutions
as well as solutions for rugged, non-line-of-sight environ-
ments.
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