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Abstract: 

Many methods exist for identifying modal parameters from experimental transfer function 
measurements. For frequency domain calculations, rational fraction polynomials have become the 
method of choice, although it generally requires the user to identify frequency bands of interest 
along with the number of modes in each band. This process can be tedious, especially for systems 
with a large number of modes, and it assumes the user can accurately assess the number of modes 
present in each band from frequency response plots of the transfer functions. When the modal 
density is high, better results can be obtained by using the singular value decomposition to help 
separate the modes before the modal identification process begins. In a typical calculation, the 
transfer function data for a single frequency is arranged in matrix form with each column 
representing a different drive point. The matrix is input to the singular value decomposition 
algorithm and left- and right-singular vectors and a diagonal singular value matrix are computed. 
The calculation is repeated at each analysis frequency and the resulting data is used to identify the 
modal parameters. In the optimal situation, the singular value decomposition will completely 
separate the modes from each other, so that a single transfer function is produced for each mode 
with no residual effects. A graphical method has been developed to simplify the process of 
identifying the modes, yielding a relatively simple method for computing mode shapes and 
resonance frequencies from experimental data. 
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INTRODUCTION 

Many methods exist for identifying modal parameters from experimental transfer function 
measurements. For frequency domain calculations, rational fraction polynomials 1 have become 
the method of choice, although it generally requires the user to identify frequency bands of interest 
along with the number of modes in each band. This process can be tedious, especially for systems 
with a large number of modes, and it assumes the user can accurately assess the number of modes 
present in each band from frequency response plots of the transfer functions. 

When the modal density is high, better results can be obtained by using the singular value 
decomposition to help separate the modes before the modal identification process begins 2,3. In a 
typical calculation, the transfer function data for a single frequency is arranged in matrix form with 
each column representing a different drive point. The matrix is input to the singular value 
decomposition algorithm and left- and right-singular vectors and a diagonal singular value matrix 
are computed. The calculation is repeated at each analysis frequency and the resulting data is used 
to identify the modal parameters. In the optimal situation, the singular value decomposition will 
completely separate the modes from each other, so that a single transfer function is produced for 
each mode with no residual effects. 

In practice, the modal transfer functions are never completely free from residual effects of 
nearby modes, but the resonance frequencies and damping loss factors can be accurately identified 
using simple one-degree-of-freedom models nonetheless. As an example, Figure 1 shows a plot of 
the singular values as a function of frequency for a typical case. Because the singular values are 
computed and output in order of descending magnitude, a single curve on the plot does not track a 
single mode. For example, just below 55 Hz, the top two curves switch the modes that they're 
tracking. However, by using the singular value decomposition at one frequency to decompose the 
coefficient matrix at nearby frequencies, it is possible to force the singular values to track only a 
single mode. The resulting functions were originally called "enhanced frequency response 
functions" 2, although we prefer the more descriptive name "modal transfer functions". Figure 2 
shows the modal transfer functions, as indicated by the thicker curves, overlaid on the original 
singular value plot from Figure 1. The curves are cut-off because the modal transfer functions are 
only calculated for a limited number of frequencies on either side of the peak to reduce the 
computational expense. 

Once the modal transfer functions have been calculated, all that remains is to identify peaks 
in the response and calculate the modal parameters. To demonstrate that it should be possible to 
identify modal parameters from the modal transfer function data using SDOF (single-degree-of
freedom) methods, Figure 3 shows Nyquist plots of the resulting modal circles for the two 
overlapping modes at 69.0 and 70.3 Hz. We will give a complete derivation of the algorithm for 
identifying the modal parameters in the next section. For now, we will only say that that the data 
resembles a transfer function for a single-degree-of-freedom system. 

A. Finding the Resonances 

Because it is easy to search a string of numbers for a peak, it may not seem like the process 
of identifying modal peaks should be especially difficult. However, it is undoubtedly the most 
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difficult part of the modal identification process. The basic problem is that noise is always present 
in the transfer function measurements, even for carefully controlled experiments. Also, the 
frequency resolution for the resonance peaks changes depending on the damping levels and 
location of the peak within the spectrum. For example, resonance peaks at the lower end of the 
frequency spectrum often have low damping and are not sufficiently resolved in frequency while 
peaks at the higher end of the spectrum typically have larger damping levels and are overly 
resolved. This is primarily a consequence of the uniform frequency-spacing required by the FFT 
algorithms. It might be possible to use phase information for the transfer function data to help in 
finding the modes, but in practice the phase information generally has higher noise levels than the 
transfer function magnitudes. One way to avoid this difficulty is to require the user to identify the 
locations of the modes by hand, usually with some sort of graphical interface, which is both tedious 
and time consuming. In our implementation, we have tried to reduce the user-input requirements 
by dividing the process into two stages. In the first stage, an automatic mode finding routine is 
executed. The routine has been designed with rather loose requirements so that it does not exclude 
valid modes. Consequently, the routine inevitably finds a number of extraneous modes. In the 
second stage, an interactive MATLAB-based program is used to edit out the extraneous peaks 
based on user input. A balance is thus struck between the accuracy of the mode finding algorithm 
and the amount of user input required. Hopefully, in the future the algorithm can be refined, thus 
eliminating more of the extraneous peaks and making the process less reliant on the user's 
subjective judgment. 

In the mode finding algorithm, a number of enhancements have been implemented to make 
the process somewhat immune to noise. The first and most important way to reduce noise levels is 
to pass the data through the SVD algorithm. The output from the singular value decomposition 
consists of three matrices U, V, and S. The U and V matrices are unitary (i.e. U UH = 1, where the 
superscript H indicates a Hermitian transpose), and the S matrix contains the singular values on its 
diagonal and is real-valued. The three matrices form a decomposition of the original matrix as 

(1) 
A plot of the singular values versus frequency for a typical example was given in Figure 1. We 
note that the topmost curve has the lowest noise levels and the bottommost curve has the largest, 
providing some confirmation that the singular value decomposition helps to reduce noise levels 
(assuming, of course, that we are primarily interested in the top few curves). As discussed in the 
previous section, the singular values are output in order of decreasing magnitude, so that they 
switch the modes they're tracking whenever two singular values cross. This problem is avoided by 
computing modal transfer functions, which force the singular values to track a single mode. The 
modal transfer functions are computed by using the singular value decomposition at an initial 
frequency to decompose the transfer function matrix at nearby frequencies as 

S(m) = U� H(m) V0 • (2) 
The overbar on the matrix S indicates that it is no longer real-valued or diagonal. At the initial 
frequency, the modal transfer function yields S 0 because pre-multiplying by U� and post
multiplying by V0 yields 
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(3) 
A plot of the modal transfer functions versus frequency was given in Figure 2. Even after passing 
the data through the SVD algorithm, it is not uncommon for the noise levels in the modal transfer 
function data to be too high for a simple peak finding algorithm to work reliably. 

To further reduce the noise levels in the modal transfer function data, it is passed through a 
smoothing filter before searching for peaks in the response. Savitz-Golay filters were implemented 
using the basic subroutines given by Press, et al. 4 . The parameters for the smoothing filter were 
chosen such that the peaks in the response do not shift significantly during the smoothing process. 
This requires the filter to preserve higher order moments, yielding results with minimal changes in 
the height and width of the peaks. A more thorough discussion is given in the reference. Figure 4 
shows the input to, and output from, the smoothing function filter for a noisy peak. Despite using 
appropriate smoothing filters, the peaks in the response still can shift frequencies and may even 
shift as the input data to the smoothing filter changes. This means that the same resonance may 
possibly be identified several times, thus requiring a method for finding and eliminating duplicate 
modes. 

Fortunately, it is relatively easy to detect duplicate modes using the modal assurance criteria 
(MAC). First, we must rotate the modal transfer functions so that the resonance frequency occurs 
at a consistent phase angle. The different phase rotations occur because the singular value 
decomposition yields real singular values, such that zero phase is always referenced to the 
frequency used to generate the modal transfer functions. We will generally assume a single 
degree-of-freedom representation of the mode such that the modal transfer function can be 
represented as 

(4) 
Thus, our predictions will be more accurate if we can remove any lingering residual effects of 
nearby modes. To do this in a relatively simple way, we can use the basic circle fit procedure to 
remove a constant 5. The formula for the error in the circle fit is given as 

E= I {R�- [ (xv- x0)2+ (yv- y0)2]Y , xv= Re{H (wJ}, Yv= Im{H(wJ}, (5) 
V=l 

where the input data consists of modal transfer function data for N frequencies. This can be 
rewritten as 

N 

E = L { c - [ x� +a xv +byv +y� ] Y , c = R� - X� - y� (6) 
V=l 

Minimizing with respect to a, b, and c yields 
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N N N N I x� I xv Yv -Ixv 

m= 
-I(x�+xvy� ) 

V=l V=l V=l V=l 
N N N N 

Ixv Yv I Y� - I Yv - I (y� + Yv X � ) (7) 
V=l V=l V=( V=l 

N N N 

- I xv - I Yv N I (x� +y� ) 
V=l V=l V=l 

In the actual calculations, a weighting function is applied before solving the equation so that the 
data points near the resonance peak are more heavily weighted. This helps to reduce the residual 
effects of nearby modes in the circle fit algorithm. After solving for a, b, and c, the circle's center 
and its radius can be calculated as 

(8) 

If the modal circle's radius R0 is considerably smaller than the radial distance from the origin to its 
center Reenter , then the residual contribution from nearby modes is larger than that of the mode 
itself and the data likely represents an extraneous peak. Although there is no hard rule for when to 
filter out modes, we haye chosen to keep modes only when Reenter < 3 R0 , which provides a good 
balance between filtering out extraneous peaks and mistakenly filtering out actual modes. With the 
results from the circle fit algorithm, we can remove a constant representing the residual effects of 
nearby modes as 

H ( wJ = H ( wJ - (a I 2 + i b I 2). (9) 
We can also rotate the modal circle so that the resonance frequency is aligned with the positive y
axis and translate it by the radius in the y-direction so that it passes through the origin. The result is 

( 10) 

where ao is the reference phase angle for the resonance frequency, which can be computed using 
divided differences 5. Figure 5 shows Nyquist plots of modal transfer function data before and after 
the transformation is applied. Applying the same phase rotation to the associated left-singular 
vector gives it a consistent phase angle regardless of which U and V matrices are used to compute 
the modal transfer functions in Equation (2). Thus, when we compute the modal assurance criteria 
(MAC) to try to determine if any of the modes are duplicates, they all have the same phase 
reference. Using typical transfer function data, the resulting MAC values are consistently above 
0.98 for duplicate modes. 

Once we've determined that two modes are duplicates, we need a method of deciding which 
modal transfer function will yield better estimates for the modal parameters. Through trial and 
error, it was found that better predictions were obtained by retaining the modal transfer function 
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with the larger modal circle, as output from the least square fitting algorithm. In practice, there is 
little difference between the predictions if the resonance peaks are well resolved in frequency. 

As we noted previously, the SVD algorithm reduces noise in the largest singular values at 
the expense of the lowest singular values, which is desirable because most of the relevant modal 
peaks occur in the few largest singular values. Thus, the lowest singular values have relatively high 
noise levels and do not contain relevant information. To avoid identifying numerous extraneous 
peaks in the lowest singular values, the user can choose to apply the peak finding algorithm to only 
a few of the largest singular values. The parameter NP in the text input file in. txt, an example of 
which is listed in the appendix, is used to specify the number of singular values to search for peaks. 
As a general rule, the lowest singular value should always be excluded from the search. If the code 
stops because the array VSQ_MODE is out of bounds, the number of singular values to search to 
find response peaks must be reduced. 

B. Modal Parameter Identification 

The last step in the process is to actually determine the resonance frequencies and loss 
factors from the modal data. There are many methods for computing the modal parameters once 
the data for a single mode has been isolated. We have developed a simple least squares method for 
determining the parameters. The basic idea is to assume the modal transfer function for mode J.! 
can be represented in the form 

A (11) 

where A and B are complex constants. Then we can write the reciprocal of the modal transfer 
function as 

(12) 

In this form, the constant can be determined using linear least squares, making the solution much 
more reliable and efficient than an iterative nonlinear least squares solution. The error in the least 
square fit is calculated as 

(13) 

Taking the derivative with respect to the constants gives 
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(14) 

Setting the derivatives equal to zero and rewriting the equations to solve for the constants gives the 
normal equations as 

N 
N I w� 

V=J 
N N I w� I m� 

V=J V=J 

{ ::} = 

N L [ 1/ Hl1 ( wJ ] 
V=J 
N L [ w� / Hl1 ( wJ J 

V=l 

Solving for the constants yields the resonance frequency loss factor as 

(15) 

(16) 
As for the circle fit algorithm, a weighting function is applied before solving the equation system so 
that the data points near the resonance peak are more heavily weighted. Once the resonance 
frequency and damping loss factor have been determined, the modal transfer function can be 
synthesized and compared to the input data to assess the accuracy of the fit. To try to make the 
predictions more reliable and immune to noise, these calculations are performed for different 
numbers of input frequencies surrounding the resonance frequency, and the fit with the lowest 
average error is used for the predictions. If the modal transfer functions are relatively free of noise, 
the fit is typically better using only a few points near the peak, otherwise, better results are obtained 
using more data. 

C. Testing the Algorithm 

To test the curve-fitting algorithm, a finite element model was used to generate simulated 
experimental data with known resonance frequencies and damping loss factors. Along with our 
algorithm, several methods for computing damping in X-Modal 6 were also tested including 
rational fraction polynomials and the complex mode indicator function (CMIF). Table 1 gives a 
comparison of the computed resonance frequencies and damping loss factors. The complex mode 
indicator function in X-modal is similar to our algorithm in that it uses the singular value 
decomposition in a preliminary step to separate the modes from each other. The results show that 
our SVD algorithm with subtracted residuals performs much better than the CMIF algorithm, which 
is described in detail in the paper by Li, et al. 7. This is somewhat surprising because their 
algorithm is supposed to take residual effects of nearby modes into account. 
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D. Step-By-Step Analysis Procedure 

The following steps will yield predictions for the resonance frequencies and damping loss 
factors from a set of transfer function data. The optional steps should be performed if mode shapes 
are to be computed as well. 

( 1) Convert the experimental transfer function data to uff (universal file format) for dataset 58. 
An excerpt from a sample uff file is given in the appendix. If the data is in vna file format, the 
MA TLAB program UFF (included in the Siglab folder) can be used to perform the conversion. 
The resulting file should be named exp_data.txt. 

(2) (Optional) Generate a geometry file representing the surface locations where the transfer 
function data was taken. It should be in the standard format for input files to the boundary 
element program POWER and should be named geom. txt. An excerpt from a sa:nple 
geom. txt file is given in the appendix. 

(3) (Optional) Generate an in. txt file, which contains input values for the parameters. An 
excerpt from a sample in. txt file is given in the appendix. 

(4) Run the program CONV_EXPERIMENTAL to automatically identify the resonance frequencies, 
damping loss factors, and (possibly) mode shapes. As mentioned in the text, a number of 
extraneous modes are inevitably identified. 

NOTE: If the program crashes because it finds too many modes, the parameter NP in the 
in. txt file should be reduced such that fewer singular values are searched for peaks 
during the automatic identification process. 

(5) Run the MATLAB function siftSVD to edit out the extraneous peaks. 

In step (5), the user must pick which modes to keep and which modes to edit out. To help make the 
process easier, each modal transfer function is plotted, one at a time, overlaid on a plot of the 
singular values. Also, a secondary plot shows the phase for the modal transfer function. The user 
is then prompted to choose, yes or no, if the mode should be retained. As a general guideline, if the 
red line in the figure marking the resonance frequency does not line up with a peak in the modal 
transfer function, then the data likely represents an extrane us peak. Similarly, if the phase does 
not go through a 180 shift through the resonance, it should also be omitted. While this technique 
works very well for modes with low damping, it can be somewhat subjective for highly damped 
modes, where the actual resonance frequency does not necessarily line up with the peak in the 
response. 

E. Future Work 

Although the program works very well as it is, there two main areas in which it could be 
improved. First, the automatic procedures for eliminating extraneous modes could be refined so 
that the subsequent manual elimination process would be less time-consuming and tedious. 
Second, a more sophisticated algorithm could be implemented to help reduce or eliminate residual 
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effects in the identification of the resonance frequencies and loss factors. For example, rational 
fraction polynomials might be used in place of the simple least square fitting algorithm. 
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Table 1. Comparison of various methods for computing resonance frequencies and damping loss factors 

Mode# 1 2 3 4 5 6 7 8 9 10 11 12 

Exact Frequency 10.0 16.9 26.0 50.8 130.6 226.0 238.4 272.3 373.6 412.6 417.4 431.2 

SVD with subtracted 9.9 17.1 25.9 50.9 130.7 226.0 272.2 373.5 412.8 417.4 431.2 
residuals 

SVD without 10.0 17.0 26.2 50.9 130.6 226.0 238.4 272.3 373.6 412.6 417.6 431.2 
subtracted residuals I 

X-Modal Rational 10.0 16.8 26.7 130.8 226.0 238.4 272.9 373.6 412.5 417.4 431.2 
Fraction Polynomial I 

....... X-Modal Complex 10.0 15.3 26.3 51.0 130.6 226.0 238.4 272.3 373.5 412.6 431.3 
� Mode Indicator Func. 

Exact Loss Factor 0.1 0.1 0.1 0.016 0.006 0.004 0.002 0.002 0.008 0.001 0.004 0.002 

SVD with subtracted 0.099 0.107 0.097 0.017 0.006 0.004 0.002 0.008 0.001 0.004 0.002 
residuals 

SVD without 0.104 0.119 0.135 0.017 0.006 0.004 0.002 0.002 0.008 0.001 0.006 0.002 
subtracted residuals 

X-Modal Rational 0.095 0.106 0.254 0.006 0.004 0.001 0.002 0.008 0.001 0.004 0.002 
Fraction Polynomial 

X-Modal Complex 0.083 0.063 0.051 0.014 0.006 0.004 0.002 0.002 0.008 0.001 0.002 
Mode Indicator Func. 
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Figure 3. Circle fits for two overlapping modes using modal transfer functions 
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APPENDIX 

Excerpt from a sample exp data. txt file: 

-1 
58 

22-Nov-02 15:19:04 

NONE 
Data Source: DSPt vna_2 file 

22-Nov-02 15:19:04 
Channel 1 Channel 2 
NONE 

4 0 0 0 NONE 43 3 NONE 1 
5 

18 
12 
13 

3201 1 O.OOOOOE+OO 1.56250E-01 O.OOOOOE+OO 

0 
1. 73138E-02 
3.87860E-03 
1.25638E-03 

0 0 0 
0 0 0 
0 0 0 
0 0 0 

O.OOOOOE+OO 
-2 .13539E-03 
-1.35666E-03 

7.08637E-02 -9.17354E-03 
7.45084E-02 -4.43652E-03 
6.46172E-02 -1.51906E-02 

-1 
-1 
58 

NONE NONE 
NONE NONE 
NONE NONE 
NONE NONE 

7.91415E-03 -1.53991E-02 
2. 71964E-04 -9.14080E-04 
1.39712E-03 -2.15564E-03 

6. 75563E-02 -7.72947E-03 
8.05078E-02 -1.49483E-03 
6.05182E-02 1.79914E-03 

-6.67674E-03 -1.06145E-02 
2.18173E-03 -9.62644E-04 
1.37733E-03 -1.26802E-03 

6.81926E-02 -1.32550E-03 
7.32544E-02 -2.39376E-03 
6.63789E-02 4.58963E-03 

22-Nov-02 15:19:04 
NONE 

Data Source: DSPt vna_2 file 

22-Nov-02 15:19:04 
Channel 1 Channel 3 
NONE 

4 0 0 0 NONE 48 3 NONE 1 
5 3201 1 O.OOOOOE+OO 1.56250E-01 O.OOOOOE+OO 

18 
12 
13 

0 
4.48223E-03 
8.73688E-04 
7.07169E-04 

0 0 0 
0 0 0 
0 0 0 
0 0 0 

O.OOOOOE+OO 
-1.31413E-03 

1.16311E-04 

NONE 
NONE 
NONE 
NONE 

7.08740E-04 
4.80697E-05 

-6.57040E-04 

Excerpt from a sample geom. txt file: 

GRID 
GRID 
GRID 

GRID 
GRID 
GRID 

$ 
CQUAD4 
CQUAD4 
CQUAD4 
CTRIA3 

1 
2 
3 

128 
129 
130 

1 
2 
3 
4 

0 0.0938 1.59375 
0 0.0938 3.59375 
0 0.0938 5.59375 

0 24.0938 14.5938 
0 24.0938 16. 5938 
0 24.0938 18.5938 

0 1 11 
0 3 2 
0 4 3 
0 6 8 

NONE 
NONE 
NONE 
NONE 

-4.42584E-03 
4.87825E-04 

-9.21849E-04 

12. 
12. 
12. 

12. 
12. 
12. 

12 
12 
13 
10 

20 

-2.97309E-03 
1.28667E-03 
8.07705E-04 

0 

0 
0 

0 
0 
0 

2 
13 
14 

2. 
2. 
2. 
2. 

1.38174E-02 
-2.22795E-03 

4.08600E-04 

3 

3 



CTRIA3 

CQUAD4 
CQUAD4 
CQUAD4 
$END 

5 

106 
107 
108 

0 

0 
0 
0 

9 

117 
118 
119 

15 

127 
128 
129 

17 

128 
129 
130 

118 
119 
120 

2. 

2. 
2. 
2. 

Excerpt from a sample in. txt file: 

$ 
$ 
$ 
$ 
$ 

CF 
ss 
CI 
IB 
pp 
uv 
AG 
IO 
GF 
$ 
$ 
$ 

GN 
ND 
NP 
RS 

INPUT DEFAULT 

DATA USED BY ALL PROGRAMS (Defaults in parentheses) 

0.0254 
1500.0 
1.5E6 
1 
3 
1.0 0.0 
018 
-1 
18 

(1. 0) 
(343.0) 
(415.0) 
(1) 
(0) 

0.0 
(1) 
( -1) 
(1) 

Input conv. factor for nodal loc. & disp. 
Input the sound speed 
Input the characteristic impedance 
Input 0 for infinite baffle (z=O plane) 
Input 0, 1, 2, 3 for no ouput, Hypermesh, FEMAP mfr, or FEMAP modes 
Input the unit vector for the axis of rotational symmetry 
Input the number of angular sections 
Input the desired circumferential component 
Input the number of angular sections for part 1 

DATA USED BY CONV_EXPERIMENTAL, CONV_NASTRAN 

1.0 
1 
0 
1 

(1.0) 
(1) 
(0) 
(1) 

Input a gain (and/or sensitivity) for the exp. data 
Input the drive point number for the integrated squared velocity 
Input the number of singular values to search for peaks ( 0 = NM-1 
Input 1 to subtract residuals from the circle fits 

2 1  


