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Abstract 

 
In this paper, we hypothesize that the performance of a supervisory control 

operator that must process tasks recommended by a system task manager is analogous to 
the performance of a vacationing server, M/Er/1 queue. Thus, we assume that the input 
process is Markovian and that service consists of r- stages of processing each of which is 
exponentially distributed.   In addition, we assume that when there are no tasks in the 
queue to process, the operator “takes a vacation,” i.e., goes off and performs other duties. 
The model assumed vacation time was exponentially distributed. We derive the queueing 
statistics for this system. These statistics include (1) the average number of customers, 
tasks, in the queue, (2) the average time a task spends in the queue, and (3) the average 
waiting time in the queue. We extend this model to a two-class priority M/Er/1 
vacationing server system. The results of these predictions were compared to actual 
operator performance. This operator was also modeled using GOMSL.  Both the GOMSL 
and queueing models provided effective prediction of actual operator performance. 

 
Approach 
 

The goal of our research program is to develop quantitative models of operator 
and system performance that will form the basis of a scientific design approach that can 
be utilized by future Combat System Design Engineers. These models are being 
developed for Air Defense and Land Attack combat systems, and are being incorporated 
into prototypes of the future Multimodal Watchstation (MMWS) and Land Attack 
Weapons Systems (LAWCS).  Several projects (e. g., MMWS, LAWCS, and Combat 
Supervisory Support Systems, see Osga, Van Orden, Campbell, Kellmeyer & Lulu, 2002) 
have demonstrated tools that form the foundation for further development of interface 
concepts that will enable operators to plan and execute complex tasks within dynamic 
and multiple warfare areas.  There is a growing need to model these interface concepts so 
that future interface designs may evolve in a principled and systematic fashion.   

Currently, the method of evaluating interface design alternatives is through 
usability testing.  There are several drawbacks to this approach. Proposed design 
alternatives contain information that is deemed to support critical cognitive processes for 
each task domain.   There is no precise method to prescribe a display layout or design 
based upon the task information requirements, thus the iterative testing of hypothesized 
best layouts is required.  The "size" of the design space and the constraints of the design 
space are unclear and unbounded.  Another problem is that the proof of the value of these 
design hypotheses lies solely in usability testing and data collection.  The degree to which 
this testing can be effectively done is debatable since time constraints pose various 
limitations - for example, a small number of test subjects and prototypes with limited 
fidelity are typical drawbacks for these studies.  At best this design process can produced 
a heuristic set of "lessons learned" and hopefully a usable interface.  As viewed from the 
most negative perspective, this design process may require many cycles of empirical 
testing of ad hoc systems that is only terminated when project resources are expended or 
when performance results are finally achieved.   Unfortunately if resources are expended, 
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a design that is just “good enough” may be accepted vs. one that is optimal for task 
conditions. 

Our research approach supports model-based design as opposed to creative 
engineering.  We believe that the latter approach lacks the ability to predict human 
performance.  Performance predictability is essential to good design.  The goal of model-
based design is to establish a "true engineering method for interface design" (Kieras, 
2002).   
 In previous research (DiVita, Osga & Morris, 2004), performance for two Air 
Defense Warfare (ADW) Teams was analyzed using queueing theory statistics. This 
analysis revealed that task allocation, work- flow and the internal dynamics of the two 
teams were very different (DiVita, Osga & Morris, 2004).  Queuing theory provides 
formulas - quantitative predictions for these statistics.  These formulas are based on 
assumptions of input and output task flow and task prioritization.  Our research develops 
a predictive model for the ADW team viewed as a queueing network. This paper focuses 
on the performance of one operator – one node – in the network.  Our ultimate goal is to 
use these formulas to predict and evaluate operator and system performance.  These 
quantitative models may then be used to simulate and quantify the effects of increasing 
and decreasing team size and will provide a model of manning and automation 
requirements.  The nature of task allocation and dynamic task reallocation schemes 
among team members and autonomous agents may be tested with these models.   
 
I. Queueing Theory 
 

The increased automation of combat weapon systems is radically changing the 
role of the human operator from that of controller to supervisor.  As a supervisor, the 
operator is responsible for monitoring and performing multiple tasks.  In order to support 
the multitasking activity associated with supervisory control, a Task Manager (TM) 
Display is being incorporated into future combat weapon systems such as the Multimodal 
Watchstation (MMWS) and the Land Attack Combat System (LACS) (Osga, Van Orden, 
Campbell, Kellmeyer & Lulu, 2002).  As pictured in Figure 1, the TM Display represents 
tasks, in the form of icons on a display screen, which the system has determined 
actionable given the current tactical information and Rules of Engagement (ROE).  

The posting of tasks to the TM display for operators to perform, is analogous to 
service calls arriving at a Help Desk or calls to any telephone system.  Other examples 
include: “jobs” arriving at a computer processing system and customers waiting in line 
for some service or other such as at a bank, a post office or grocery checkout counter.  In 
the area of supervisory control we are interest in the flow of tasks – work - through a 
system that is comprised of both human servers and automated servers- computers.  
Quantitative models and methods that analyze dynamic systems of flow have been 
developed in the domain of Queuing Theory.   We briefly review some critical aspects 
and results of Queueing theory.  For a thorough introduction to the topic the reader is 
referred to Kleinrock  (1975 & 1976, Volumes I and II).   
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A queueing system is comprised of three main components: 

 
A) The input or arrival process.   The arrival of customers to a queue is often 

unpredictable.  In this case, arrival is modeled as a random or stochastic 
process.  The arrival process is often assumed to be Poisson in nature in which 
case the arrival rate, λ,  is simply the reciprocal of the mean inter-arrival time 
of customers.   For the Poisson distribution with parameter λ, the probability, 
Pk, that k arrivals occur in the time interval (0,t) is given by: 

        t
k

k e
k
ttP λλ −=
!
)()(  

 
B) The service mechanism.  Service refers to the number of "servers" and the 

lengths of time the customers hold servers.  In our case this is the number of 
operators and the distributions of reaction times it takes operators to perform 
various tasks. This is often modeled by a continuous random variable, x,  
exponentially distributed with parameter µ :  

     xexf µµ −=)(  
The negative exponential is uniquely suited to describe the behavior of the 
human server because there is a considerable body of evidence demonstrating 
that human reaction time to various tasks, and task components, are in fact 
exponentially distributed (see Townsend & Ashby, 1984).  As discussed 
below, service time may be viewed as a process composed of several serial 
stages each of which is expontentially distributed (see the section entitled, The 
Method of Stages – the M/Er/1 Queue),.  In this case an Erlang distribution is 
used to model service time. 

 
C) The queueing policy entails the method by which the system selects 

customers: first-come-first-served (FCFS), last-come-first-served (LCFS), by 
priority, or at random.  Initially we will consider a FCFS policy.  Later we will 
derive the appropriate queueing statistics for a queueing system that prioritizes 
customers into classes of high and low priority.    

Figure 1.  Task Manager TM display.  The posting of tasks to the display is analogous to 
customers arriving for service at a help desk.   
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 A Queueing system with a single server and Markovian input and output is 
referred to as an M/M/1 queue.  In this notation, the first field refers to the nature of the 
input process (Markovian), the second field, the nature of the output process (Markovian) 
and the last field the number of servers.  Often queueing systems describe non-
Markovian stochastic processes.  For example, service time distribution may be 
Erlangian, in which case we have a M/Er/1 queueing system.  For our purposes, assuming 
exponential service time does not pose a problem; however, we are on shakier ground 
when assuming that the arrival of tasks follow a Poisson process.  Our research has 
shown that, during the course of a scenario, the arrival rate varies as a function of time.  
This requires a more sophisticated model of the arrival process (for example, the 
Markov-modulated arrival process, see Hock, 1996) that we do not address in this paper.    

 
Vital Statistics of a Queueing System. 

 
The load or intensity, ρ, to a queueing system is defined to be the ratio of the rate 

of arrivals λ to the rate of service µ.  Thus we have: 

(1)    
µ
λρ =  

Various distributions and statistics can be derived for a queueing system.  Most of these 
expressions involve the quantities ρ, λ and µ. For example in analyzing the performance 
of a system, one may be interested in 1) The average number of customers in the system 
at any time, 2) the average time a customer spends waiting for service, and 3) The total 
average time spent in the system by a customer.  This time includes both service and 
waiting time. One useful result that relates several of these quantities, is Little’s theorem 
which states that the average number of customers to the system, N, is equal to the 
product of the rate of flow of customers, λ, and the average time spent in the system, T: 
 

(2)     TN λ=  
 

  Another useful characterization of the system is the probability distribution for 
the number of customers in the queue.  For example, what is the probability that a visitor 
to the queue finds n customers in the queue?  Below, we list four essential formulas for 
an M/M/1 system: 

 
a)  The probability, Pk, of having k customers in the system is given by: 
 
(3)    k

kP ρρ)1( −=  
 
Thus the probability of having n or more customers in the queueing system is given 
by: 

     ∑
∞

=

=≥
nk

kPnNp ][  

                       nρ=  
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b)  The average number of customers, N, or the expected length of the queue, 
E[L], is given by the equation: 

 

(4) N = 
ρ

ρ
−

=
1

][LE   
λµ

λ
−

=  

 
c) Using Little’s Theorem, the average Time, T, spent in the queue, (including 

both service and waiting time) is: 
 

(5)    
λµρλ

ρ
λ −

=
−

==
1

)1(
NT   

 
d) Lastly, the average waiting time, W, spent in the queue equals: 
 

(6)    
λµ

ρ
µ −

=−=
1TW  

 
The Vacationing Server 
 

One critical difference between the queueing system described above and an 
operator engaged in supervisory control, is that when no tasks are present, the server is 
idle; however, this hopefully is not the case with human operators.  When there are no 
tasks on the TM display, operators should go off and examine other information sets 
available on their workstation.  For example, in the arena of air defense warfare there is a 
tactical map referred to as the TACSIT display that is continually examined.   

Thus, there are “tasks” that the servers may perform that fall outside the flow of 
tasks represented on the TM display.  These non -TM tasks must be taken into account in 
order to quantify system performance because they clearly will have an impact on the 
queueing statistics.  For example, if the operator is evaluating information on a tactical 
display and a task arrives on the TM display, the operator may finish his analysis (non-
preemptive service) before beginning the task on the TM display.  Thus the waiting time 
and overall time the task on the TM display spends in the system will be affected by the 
operator’s extra activity.    

Fortunately, a queue with “service vacations” can be adapted to model our 
situation (Tadecki, 1984).   The idea behind such queues is as follows: if there are no 
customers in the queue that need to be served, the server takes a vacation.   No 
assumptions about the distribution of vacation times need to be made.  If upon 
completion of a vacation, the server returns only to find that there are still no more 
customers, the server takes another vacation.  The application of this queue to our 
situation is straightforward.  If the operator has no tasks on the TM display he “takes a 
vacation” by analyzing information on other displays.  When he completes this task he 
“returns from vacation” to see if there are any tasks on the TM display.  For our case, we 
will assume that the operator’s ‘vacation times’ and service times are both exponentially 
distributed however the parameters v and µ for vacation time and service time, 
respectively, are not necessarily equal.  
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We have shown (DiVita & Morris, 2005) that the average number of customers to 
a M/M/1 vacationing server is given by: 

v
N λ

ρ
ρ

+
−

=
1

 

Τhus the average number of customers is equal to the sum of the average number to the 

non-vacation server, 
ρ

ρ
−1

 plus a factor that is proportional to the build or “loading-up” 

of customers while the server was away -  
v
λ

.  The 
v
λ  term is very similar to 

µ
λρ = .  It 

represents a “load” in the sense of customer build up.   We can continue from here to 
derive all the other usual queueing statistics.  A pattern emerges in the sense that in all 
cases we get the standard result for the non-vacationing server plus a factor associated 
with the server taking a vacation.   

Using Little’s theorem equation (2), we can now derive the expected amount of 
time, T, a customer will spend in the system: 

   
v

T 11
+

−
=

λµ
 

This time, T, includes both waiting and service time.  If we subtract out the average 

service time, x , (where 
µ
1

=
−

x ), we obtain W, the average waiting time for a customer to 

the queue:  

   
v

W 1
+

−
=

λµ
ρ  

 
An M/M/1 Non-preemptive Priority Queue with Vacation Time. 

Our next topic introduces the prioritization of customers (tasks) for the 
vacationing server queuing system.  A server whose queueing policy prioritizes tasks 
allows tasks with a higher priority to be served before those with a lower priority.  Thus 
higher priority customers have “bumping” or “cutting ahead in line” privileges.  This 
server may preempt service to a lower priority customer when a higher priority customer 
appears, or the server may complete service– a non-preemptive priority queueing policy.  
We studied this latter queueing policy.  Thus the server completes service to the current 
customer regardless of the priority class of customers that may have arrived to the queue 
while the current customer is being serviced.   “Bumping rights” apply only to tasks 
waiting in line.    

Hock (Queueing Modeling and Fundamentals, pages 142 – 143, 1996) derives the 
waiting time, W, for a M/G/1, non-preemptive Priority Queueing System.  Once the 
waiting time is derived, the average time spent in the queue, T, may be computed by 

simply adding the average service time, x , to W.  In other words, 
−

+= xWT .  Once T is 
known, Little’s theorem can be use to compute N, the average number of customers to 
the queue.  Hock argues that the waiting time of a typical customer of class i, who arrives 
at the system, is made up of four components: 1) The mean residual service time for a 
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customer currently being served upon the arrival of the new customer. 2) The mean total 
service time of customers in the same class as the new customer found in the waiting 
queue at the time of arrival. 3) The mean total service time of customers of class j , j < i, 
found in the queue at the time of arrival. 4) The mean total service time of those 
customers of class j, j < i, arriving to the system while the “new” customer of class i is 
waiting for service.   

It can be shown that the mean residual service time (1) is equal to: 
 

∑∑∑
=

−

=
−

−

=

==
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µ
ρλρ  

Combining  this formula with the other three factors mentioned above we obtain the 
average waiting time for a customer of class i: 

   ij

i

j
j

j
q

i

j
j

i
qii WxNxNxRW λ∑∑

−

=

−−

=

−−

+++=
1

1

1
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For a class 1 customer, the third and fourth components are not a factor. If we 

note that 11
1 WNq λ= , and that 

−

= 111 xλρ , then we may solve for W1 to obtain: 
  111 WRW ρ+=  

  
1

1 1 ρ−
=

RW  

Using these results we can determine the average waiting time for class 2 
customers: 

 
           

   2111222 WWWRW ρρρ +++=  

  
)1)(1( 211

2 ρρρ −−−
=

RW  

  
It is a straightforward matter to extend this model to the case of the vacationing 

server.  We first note that factors 2, 3 and 4 discussed above remain unchanged for the 
vacationing server.  This is because once a customer arrives, we are assuming that the 
server will not take another vacation until this customer and all the customers ahead of 
the new customer are served.  Thus the only component to the model that has to be 
modified is residual service time (1).  A new customer to the queue may experience either 
residual service time or residual vacation time, Rv, that is the time they must wait for the 
server to come back from vacation and resume service.  In order to compute this residual 
time we need to know 1) the probability of a customer entering the queue to find the 
server on vacation, and 2) the average time left for the server’s vacation.  If we assume 
that the server’s vacation time is exponentially distributed, that is, memoryless then (2) 
poses no problem.  Given that there are n classes of customers, the probability that a new 
customer arrives to find the server on vacation is nρρρ −−−− ...1 21 .  The reason behind 
this is as follows.  The probability that a new arrival finds a customer of class i in service 



 Page 9 of 19

is iρ .  Thus the probability that a customer of any class is in service upon arrival to the 

queue is ∑
=

n

i
i

1
ρ , and the probability that the server is on vacation i.e. not serving is 

∑
=

−
n

i
i

1

1 ρ .  We will consider a queueing system that prioritizes customers into two 

classes.  Thus if we let R̂ equal the new residual time associated with waiting for service 
or vacation time completion we obtain : 

 
   vRRR )1(ˆ

21 ρρ −−+=  
With this we can compute the waiting time for a class 1 customer to a queue with 

a vacationing server, vW1 : 
   vv WRW 111

ˆ ρ+=  

   
1

1 1

ˆ

ρ−
=

RW v  

Making the substitution for R̂ we obtain: 
 

   vv WRW 11211 )1( ρρρ +−−+=  

   
1

21

1
1 1

)1(
1 ρ

ρρ
ρ −

−−
+

−
= vv RRW  

We see the same pattern emerge for the vacationing server as above.  That is, the 
new waiting time is equal to the original waiting time formula for Class 1 customers,  

11 ρ−
R , plus a factor associated with the vacationing server, 

1

21

1
)1(

ρ
ρρ

−
−− vR . 

 
Next we derive the formula for W2 the waiting time for customers of Class 2.  In 

this case all four components come into play: 
 
   222111212 )1( WvWWRRW vv

v
v ρρρρρ +++−−+=  

  
Substituting the term we obtained for W1 above and collecting like terms we obtain: 
 

    
)1()1)(1( 1211

2 ρρρρ −
+

−−−
= vv RRW   

 
 
Or equivalently: 
                         

    
)1)(1(

ˆ

211
2 ρρρ −−−

=
RW v  

 

_ 
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Again, we have the “original” formula plus a factor associated with the vacation. 
As mentioned above, from the waiting time v

iW , we can compute the average 
time in the system: i

v
ii xWT += , where ix is the average service time for Class i 

customers.  Thus the average number of Class i customers is given by iii TN λ= .  What is 
also of interest here is the average number of customers in the queue, N, the average 
waiting time, T, and the average time spent in the queue, W.   The average number of 

customers is given by: 21 NNN += .  If we let 21 λλλ +=  then 
λ
NT = .  Lastly 

µ
1

−= TW .   Using the formulas 21 ρρρ += and 
µ
λρ = , we obtain the average service 

time,  
21

12211
µλµ

µλµλ
µ

+
=  which allows us to compute W. 

 
The Method of Stages – the M/Er/1 Queue 
 
 The servicing of a task may be viewed as a process consisting of several serial 
stages.  The Erlang method of stages was designed to quantify this situation.  This 
method assumes that the distribution of service time for each stage is exponential.  The 
distribution of overall service time is thus given by the convolution of these functions.  
This distribution is no longer exponential; hence this method allows a more general 
service time distribution to be used in formulating predictions.  When dealing with 
convolutions it is easier to work with Laplace transforms.  Thus if we assume that there 
are r stages of processing each with identically distributed service times, the service time 
distribution is given by the Erlang distribution: 
 

   
)!1(

)()(
1

−
=

−−

r
exrrxb

xrr µµµ    

 
The Laplacian, B*(s), for b(x) is given by: 
 

    
r

rs
rsB 








+

=
µ

µ)(*  

 
We may generalize this situation by assuming that the various stages, although 
exponential, are not identical.  If each has a rate of aiµ then the Laplacian becomes: 
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+

=
µ

µ
µ

µ
µ
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The advantage with the Laplacian is that it is a straightforward process to obtain the nth 
moment of the distribution.  The nth moment is derived by taking the nth derivative of 
the Laplacian evaluated at s=0 and multiplying this by (-1)n , that is: 
 

k

k
kk

ds
sBdx )(*)1(−=  . 

 

In computing R, the residual service time, we used the second moment of the service 
distribution (see above).  If we assume a two-stage general Erlang service time 
distribution, where the rates of each stage is given by a1µ and a2µ, respectively,  then the 
second moment is given by: 
 

    22
2

2
1

2
221

2
12 )(2

µaa
aaaax ++

=   

 
This formula may easily be generalized to n stages of service.  The use for a two-stage 
Erlang service distribution arises in our research quite naturally since the operator first 
decides what task to select and then selects and performs the task.  Thus the set up time to 
select a task is modeled as the first stage of service, with its own average service time a1, 
and the time to perform the task as the second stage.    
    
Modeling Air Defense Teams with a Team of GOMSL Models 
 

Our approach is to formulate a "modeled-based evaluation" (Kieras, 2002) of the 
MMWS interface using Natural GOMS Language (NGOMSL), (Kieras, 1988, 1997; 
John and Kieras, 1996).  The Acronym GOMS (Card, Morgan & Newell, 1983) stands 
for Goals, Operators, Methods, and Selection rules.  GOMS is an engineering model for 
interface design that attempts to explicitly represent the knowledge a user must have in 
order to perform certain tasks on a system.  The operator uses certain Methods to 
accomplish specific Goals.  The Methods utilize Operators in a series of steps that the 
user performs.  The appropriate Method is chosen by Selection rules that reflect the user's 
goals and current operating context.  NGOMSL is a natural structured language 
developed by Kieras and his colleagues, which represents user Methods and Selection 
rules.  NGOMSL can predict learning and execution time for accomplishing specific 
tasks performed on a system.  Santoro and Kieras (2002) have used GOMSL (an 
executable form of NGOMSL) to model a team of 4 operators performing an Air Defense 
Warfare (ADW) task with a team of GOMSL models.   

 
Summary of Approach 

 
Our goal is to integrate the team of GOMSL models with our Queuing theory 

model.  This two-fold approach provides a powerful analysis of a system.  On the one 
hand, Queueing theory quantifies large-scale aspects of system performance such as 
workload, input, output and work throughput, along with the dynamic flow of tasks 
among a team of operators.  These statistics represent emergent characteristics of a 
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system that are not directly modeled.  On the other hand, GOMSL modeling explicitly 
represents the strategies an individual operator and teams of operators may use to 
perform tasks and then quantifies operator performance based on these strategies.   

Both these models are generative, that is, neither depends on a particular scenario 
to work; rather, given any scenario they will predict and evaluate operator and system 
performance.  Together these two models are able to simulate and quantify the effects of 
increasing and decreasing team size and will provide a model of manning and automation 
requirements.  The nature of task allocation and dynamic task reallocation schemes 
among team members and autonomous agents may be tested with these models.   
 
Results 
 

Data from an ADW team consisting of four operators were collected from a one 
hour and thirty minute ADW scenario entitled the Sea of Japan (SOJ).  Data from this 
scenario were analyzed from the viewpoint of queueing theory.  There are three 
comparisons that may be made:  1) GOMSL model data versus actual data 2) Queueing 
model predictions versus actual data; 3) Queueing model predictions versus GOMSL 
model data.  

In Table 1 we compare the GOMSL data to the actual Air Warfare Coordinator 
(AWC) data over the first 33 minutes of the scenario. The first 33 minutes of the scenario 
was selected because the arrival rate of tasks did not change over this period.  As 
mentioned above, if arrival rate varies as a function of time, then more sophisticated 
modeling of the arrival process is required.  During this time there were only 7 high 
priority tasks, thus we combined the queueing statistics for high and low priority tasks.   

In analyzing the actual data there are some decisions to be made as to when 
certain tasks ended.  Several of the AWC’s tasks entailed sending a text-to-speech 
message (new and update track reports).  This message was followed by an 
acknowledgement of receipt of the message. The question is when did this task end for 
the operator?  There are two extremes.  One may argue that the task ended when the 
AWC selected the send button and a text-to-speech message began; however, upon 
reviewing video of actual operator performance, it appeared that operator behavior was 
inconsistent.  What we found was that operators often waited to hear an 
acknowledgement on the part of the recipient of the text-to-speech message before 
beginning a new task.  Likewise, there appeared to be cases where the operators waited to 
a degree, that is, for some intermediate time between these two extremes.  In order to 
account for this inconsistent behavior, in the GOMSL model we have bracketed 
performance between these two extremes.  Thus there is a GOMSL short-send-time 
model where the GOMSL operator starts a new task immediately after the send button is 
pushed.  There is also a GOMSL long-send-time model where the GOMSL operator 
waits until an acknowledgement is received before starting a new task.    

In order to estimate the task time for the actual data, as a first pass, we added 9 
seconds to the time the operator selected the send button.  This number was determined 
by combining the average length of the text-to-speech message to an estimate of the 
average acknowledgment time obtained from the GOMSL model.  As can be seen in 
Table 1, the GOMSL models bracket actual operator performance. 
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AWC Server Node 

 N – ave # of tasks T – ave lifetime W-ave wait  

GOMSL high 1.232 54.06 28.27 

Actual 0.936 40.919 20.27 

GOMSL low 0.642 27.84 13.9 

Table 1:  GOMSL model data for the AWC compared to actual Team 1 AWC data.  
 
 In Table 2 we compare the queueing model predictions with actual data from the 

Team 1 Air Warfare Coordinator (AWC).  Estimating the set up and vacation time from 
the data was quite difficult.  Instead, we used estimates of these average times derived 
from the GOMSL model and assumed that the distributions were exponential. The 
GOMSL model gave an average set-up time of 3.56 sec and an average vacation time of 
8.46 sec.  In Table 2, the service time distribution was assumed to be a 2-stage Erlang 
distribution.  The first stage consisted of the set-up time – the average of which was 
estimated using the GOMSL model and the distribution was assumed to be exponential.  
The second stage represents the actual average reaction time of the AWC operator to 
perform tasks. Here again we assumed that the distribution for stage-two service times 
was exponential.  In Table 2, we also assumed the AWC prioritized tasks.  The model’s 
predictions are in error.  The source of the error is our assumption that the distribution of 
stage-two service times was exponential.  Comparing the second moment of the actual 
data, 2

Ox , to that of the assumed exponential, there is a large difference: 397.61 versus 
565.15.  One solution to this problem is to model the distribution of reaction times with 
an r-stage Erlang distribution that minimizes the error between 2

Ox , and the Erlang 

distribution’s second moment, 2
Ex  (Kleinrock, 1975).  That is, r is adjusted – stages are 

added or deleted- until the error is minimized.  
   

AWC Performance: M/E2/1 Model, Task Prioritization Queueing Policy 
 N – ave # of tasks T – ave lifetime W-ave wait  

Predicted Queueing 1.067 44.9 24.55 

Actual AWC  0.936 40.919 20.27 

% Error 12.24 8.86 17.42 

Table 2: Queueing Model predictions compared to actual AWC Team 1 data.         
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In Table 3 we show the queueing theory predictions when the distribution of 

AWC reaction times was modeled with a r-stage Erlang distribution that minimized the 
error between 2

Ox  and  2
Ex .  (The first moments of the actual and model distributions are 

set equal.)  Table 4 lists the second moments and the r obtained from this analysis. For 
high priority tasks this error was minimized when r = 1. Low priority tasks required a 4-
stage Erlang distribution, r =4.  As is illustrated in Table 3, the error of the model’s 
prediction was greatly reduced by refining our approximation of the service distribution. 
 

AWC Performance: M/Er/1 Model, Prioritization Queueing Policy 
 N – ave # of tasks T – ave lifetime W-ave wait  

Predicted Queueing 0.966 40.668 20.314 

Actual AWC  0.936 40.919 20.27 

% Error 3.11 0.62 0.21 

Table 3: Queueing Model predictions compared to actual AWC Team 1 data.      
 
 
 

Fitting Actual Service Time Data with r- stage Erlang Distributions 
 r 2

Ex  2
Ox  % Error N 

High Priority Tasks 1 126.34 159.77 26.47 7 
Low Priority Tasks 4 431.81 440.30 1.97 39 
FCFS Tasks Combined 3 383.86 397.61 3.58 46 
Table 4: Best fitting r-stage Erlang distributions that minimize seond moment error. 

 
 
 
In Table 5 we eliminated the assumption that the AWC prioritized tasks; that is, 

we assume that tasks were performed on a first-come-first-served (FCFS) basis.  The 
pooled data was modeled with a 3-stage Erlang distribution (see Table 4).  Thus in Table 
5, total service time is modeled as a 4-stage Erlang distribution (1 set-up stage + 3 service 
stages).  The percent error between the model’s predictions and the actual data is quite 
low. Eliminating the prioritization assumption did little to affect the overall predictions 
and the goodness of fit of the model.  In Figure 2 we present a histogram of the actual 
service data, collected over the entire scenario, compared to the 3-stage Erlangian 
approximation.  
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AWC: M/E4/1 Model, FCFS Queueing Policy 

 N – ave # of tasks T – ave lifetime W-ave wait  

Predicted Queueing 0.969 40.794 20.440 

Actual AWC  0.936 40.919 20.27 

% Error 3.41 0.31 0.83 

Table 5: Queueing Model predictions compared to Actual AWC Team 1 data.  
 
 
 

 
Figure 2.  Histogram of Actual data service times versus 3-stage Erlang distribution. 

 
 
Lastly, in Table 6 we list all the queueing parameters: λ1: arrival rate of high 

priority tasks, λ2: arrival rate of low priority tasks, λ: overall arrival rate of tasks; set-
up1: set-up rate of high priority tasks, set-up2: set-up rate of low priority tasks, set-
up: overall set-up rate of tasks; µ1: service rate of high priority tasks, µ2: service rate of 
low priority tasks, µ: overall service rate; v: vacation rate. (Note, taking the inverse of the 
rates, derives average times).  
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Queueing Parameters 
 GOMSL High GOMSL Low Actual Data  
λ1 1/252.57 1/252.57 1/252.65 
λ2 1/49.88 1/49.88 1/50.51 
λ 1/41.65 1/41.65 1/42.10 
set-up1 1/2.46 1/2.44 1/2.46 
set-up2 1/3.76 1/3.79 1/3.76 
set-up 1/3.56 1/3.58 1/3.56 
µ1 1/22.06 1/15.19 1/7.95 
µ2 1/21.58 1/9.47 1/18.59 
µ 1/21.66 1/10.41 1/16.81 
v 1/8.46 1/7.76 1/8.46 

Table 6:  Queueing parameters.  
 
We did not derive the queueing theory predictions for the GOMSL models 

because the distribution of service times for GOMSL tasks is somewhat arbitrary.  
Although the GOMSL mean reaction time may be representative of operator task 
performance, the distribution of service times is clearly not what one would expect from 
a human operator.  This is because service time for the GOMSL model is a sequence of 
steps each of which is temporally deterministic.  Thus, service time only varies in so far 
as the number of steps to accomplish a task varies.  In order to obtain meaningful 
predictions, we would have to model this arbitrary service distribution.   
 
 Conclusion 
 

In this paper, we hypothesize that operator performance may be modeled by a 
M/Er/1 queue whose server “takes vacations”. Thus, we assumed that the input process 
was Markovian and that service consisted of r- stages of processing each of which is 
exponentially distributed.   In addition, we assumed that when there are no tasks in the 
queue to process, the operator “takes a vacation,” i.e., goes off and performs other duties. 
The model assumed vacation time was exponentially distributed. We derived the 
queueing statistics for this system. These statistics included (1) the average number of 
customers, tasks, in the queue, (2) the average time a task spends in the queue, and (3) the 
average waiting time in the queue. The results of these predictions compared quite 
favorably to actual operator performance. The operator was also modeled using GOMSL, 
and the queueing statistics generated from the GOMSL model were also compared to the 
actual data.  Both the GOMSL models and the queueing models provided effective 
predictions of actual operator performance. 

Future work in this area will 1) extend the analysis to a team of operators – the 
other nodes of the queueing network.  Thus in addition, to predicting the performance of 
each operator in a manner similar to our AWC predictions, we will obtain a model with 
predictions of team/system performance. 2) The model will be modified to allow for a 
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more general arrival process of tasks. 3) Different team structures that alter the flow of 
tasks through the network will be tested with these models to see if they predict 
previously observed differences in team performance.      
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Decision Support Systems and Models for 
Intelligent Mission Management 

Background
•Multi-mission, multi-tasking, optimally 
manned CICs will require greater 
reliance on automation.
•Operators will require resource 
management tools and planning aids to 
meet mission requirements - these must
reduce workload in the planning and 
execution process

GOALS
1. Model individual operator and team 
performance.
2.  Simulate and quantify the effects of 
increasing and decreasing team size 
providing a model of manning and 
automation requirements.  
3. Test the nature of task allocation and 
dynamic task reallocation schemes among 
team members and autonomous agents.
4. Develop methods to dynamically predict 
team performance.
5. Develop displays to depict actual team 
performance dynamically to team leaders 
and methods to recommend changes 
towards optimization.
6. Discover behavioral results of team 
performance awareness with regard to 
team self-monitoring and correction.



Purpose of Modeling

• Predict impact of design on human performance - before 
system is built.

• Compare alternative designs.
• Compare alternative job structures, positions, team 

definitions.
• Predict and compare performance results for design 

reference missions.
• Reduce design risk.
• Identify design changes and corrections before costly 

mistakes made.



Modeling Approaches
1. GOMSL Modeling (Micro):

• Explicitly represents the strategies an individual operator 
and teams of operators may use to perform tasks.

• Quantifies operator performance based on these strategies. 

2. Queueing Modeling (Macro):

• Quantifies large-scale aspects of system performance: 
workload, input, output and work throughput

• Represents dynamic flow of tasks among a team of 
operators.  

• These statistics represent emergent characteristics of a 
system that are not directly modeled by GOMSL. 



Stepwise Model Approach
• GOMS = Goals Operators Methods Selection Rules
What is it?

A computational modeling approach developed by 
ONR research based on Visual, Cognitive, Auditory & 
Psychomotor VCAP “step-wise” human task definition.  

What does it do?
Defines human VCAP functions with respect to impact of 

a design on the performance of those functions -
predicting performance outcome.



Based upon Stepwise models as defined in: Psychology of Human-Computer Interaction, Card, 
Moran, and Newell (1983).

Goals: What Must be Accomplished

Operators: Elementary Perceptual, Motor, 
or Cognitive Acts.

Methods: Step by Step Procedure
for a Goal

Selection Rules: Basis for Choosing Methods

GOMS Components



How is Modeling Done…

• Models are constructed by creating “building 
blocks” of each subtask component.   

• Each subtask is used as a step in a task sequence.
• Connections of subtasks describe how operators 

interact with a given human-computer interface.
• When constructed the models can be used to 

predict performance and workload of a system.

To accomplish this a modeling language was developed… 



GLEAN: GOMS Language Evaluation and 
Analysis Tool (Kieras, 1997)

Simulated Interaction 
Devices

Auditory Input

Declarative and Procedural Knowledge in Long Term memory

Visual Input

Cognitive 
Processor

GOMS 
Language 
Interpreter

Working 
Memory

Auditory 
Processor

Visual 
Processor

Vocal Motor 
Processor

Manual 
Motor 

Processor

Task 
Environment



• Define the Goals:
• How are they accomplished ?
• How might they be accomplished?
• What are the alternatives?

2. Write The Methods in GOMSL

3. Build the HCI and Task Environment in C++

4. Run the Scenario(s) 

1. Do a Task Analysis

Modeling Procedure



•Multimodal Watchstation (MMWS) 
•Land Attack Weapons Systems (LAWCS)

The increased automation of combat weapon 
systems is changing the role of the human
operator from that of controller to supervisor.  

As a supervisor, the operator is responsible for
monitoring and performing multiple tasks.

Task Manager Display Supports multitasking 
activity associated with supervisory control.

Queueing Theory and Supervisory 
Control



Task 
Manager 
Task 
Queue

Task Task 
Manager Manager 
Task Task 
QueueQueue

Systems 
StatusCommunicationsCommunicationsCommunications

Task Manager & Status Display



Air Defense Warfare Task Monitoring

Representation of work in terms of tasks servers as a trace -
enables designers to track workload and flow of tasks among team
members.

Posting of Task analogous to customers arriving at a queue for 
service: Model Teams with Queueing Theory and Queueing 
Networks.



AWC

Operator

IQC1

Operator

AIC

Operator

Tasks 
performed -
Output Flow

General Network Queueing 
Model of Air Defense Warfare  

Team .

Tasks passed between 
operators 

Tasks passed between 
operators Tasks Entering

Input Flow

Tasks Entering

Input Flow



Components of Queueing Model

1. The Input or Arrival Process 

2. The Service Mechanism 

3. The Queueing Policy



Components of Queueing Model

The Input or Arrival Process:

• The arrival of customers to a queue is often unpredictable, so 
arrival is modeled as a random process.

• The arrival process is often assumed to be Poisson in nature 
where arrival rate, λ, is the reciprocal of the mean inter-
arrival time of customers.

• For the Poisson distribution with parameter λ, the probability, 
Pk, that k arrivals occur in the time interval (0,t) is given by:

t
k

k e
k
ttP λλ −=
!
)()(



Components of Queueing Model
The Service Mechanism:

• Service refers to the number of "servers" and the 
lengths of time the customers hold servers.  

• In our case this is the number of operators and the 
distributions of reaction times it takes operators to 
perform various tasks. 

• Service time is  modeled by a continuous random 
variable, x,  exponentially distributed with parameter µ : 

xexf µµ −=)(



Components of Queueing Model
The Service Mechanism:

• Human reaction time to various tasks, and task 
components, are exponentially distributed (see 
Townsend & Ashby, 1984).

• Service time may be modeled and shaped. For example, 
service may be viewed as composed of several serial 
stages each of which is expontentially distributed.

• In this case, an Erlang distribution is used to model 
service time (r represents the number of stages):
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Components of Queueing Model
The Queueing Policy

• Entails the method by which the system selects 
customers for service: 

• First-Come-First-Served (FCFS)
• Last-Come-First-Served (LCFS)
• Priority
• Random.

Queueing Policies for this research: FCFS and Priority



Vital Statistics of a Queueing System
• The Load or Intensity, ρ, to a queueing system is 

defined to be the ratio of the rate of arrivals, λ. to the 
rate of service, µ :

• Little’s Theorem: The average number of customers to 
the system, N, is equal to the product of the rate of flow 
of customers, λ, and the average time spent in the 
system, T:

µ
λρ =

TN λ=



Vital Statistics of a Queueing System
• Average number of customers, N:

• Average Time spent in the system, T:

• Average Waiting Time, W:
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Adventures of the Vacationing Server

• No tasks present - server is idle; hopefully, this is 
not the case with human operators.

• When there were no tasks on the TM displays, 
operators examined the map – the TACSIT display.

• Non -TM tasks must be taken into account in 
order to quantify system performance because they 
will have an impact on the queueing statistics.



• A queue with “Service Vacations” (Takagi, 1991) 
can be adapted to Supervisory Control.

• If the operator has no tasks on the TM display he 
“takes a vacation” by analyzing information on the 
TACSIT display.  When he is done looking at the 
TACSIT display he “returns from vacation” to 
see if there are any tasks on the TM display. 

• We assumed operator’s ‘vacation times’ and service 
times were both exponentially distributed however 
the parameters v and µ for vacation time and 
service time, respectively, are not necessarily equal.  

Adventures of the Vacationing Server



• Average number of customers, N:

• Average Time spent in the system, T:

• Average Waiting Time, W:

• These equations can be adapted to reflect Prioritization

Vital Statistics of a Queueing System 
with Vacationing Server
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• Four  5-member ADW teams were tested on a 2 hour Scenario - Sea of Japan (SOJ).
• Tactical Action Officer, Air Warfare Coordinator, Information Quality Control (2), 

Air Intercept Controller. 
• Operators were assigned Primary and Secondary Tasks.
• All system recommended tasks were presented on a Task Manager (TM) Display.
• All Teams “self-organized” - were “free” to allocate tasks amongst themselves - not 

told how or when to reallocate.
• Only support for allocation was visual - listing of tasks on the TM display.

Air Def. Warfare MMWS Experiments

The results provide a basis for building team models.

Results show a contrast between team performance outcomes.



AWC

Operator

IQC1

Operator

AIC

Operator

Tasks 
performed -
Output Flow

Tasks 
performed -
Output flow

Network Queueing 
Model of Team 1 
Task Flow. Level I* & II*, 

ordered to send.

VID

Level I & II’s

Tasks Entering:

λ1High Priority
Level I Query  
l Level II Warning
VID
Cover
Engage
Illuminate

λ2 Low Priority
New track Report 
Update track Report

Tasks Entering:

λ1High Priority
Level I Query  
l Level II Warning
VID
Cover
Engage
Illuminate

λ2 Low Priority
New track Report 
Update track Report µ1 µ2



Queueing Parameters GOMSL and 
Actual Data

GOMSL 
High

GOMSL 
Low

Actual  
Data

λ1 1/252.57 1/252.57 1/252.65

λ2 1/49.88 1/49.88 1/50.51
λ 1/41.65 1/41.65 1/42.10
set-up1 1/2.46 1/2.44 1/2.46
set-up2 1/3.76 1/3.79 1/3.76
set-up 1/3.56 1/3.58 1/3.56
µ1 1/22.06 1/15.19 1/7.95
µ2 1/21.58 1/9.47 1/18.59
µ 1/21.66 1/10.41 1/16.81
v 1/8.46 1/7.76 1/8.46



Queueing Statistics 

AWC Server Node
N – Mean 
# of tasks

T – Mean 
lifetime

W – Mean 
wait time 

GOMSL 
high

1.232 54.06 28.27

Actual 0.936 40.919 20.27

GOMSL 
low

0.642 27.84 13.9

GOMSL model data for the AWC compared to actual Team 1 AWC data.



Queueing Statistics 
AWC Performance: M/E2/1 Model, Task Prioritization Queueing Policy

N – Mean # 
of tasks

T – Mean 
lifetime

W-Mean 
wait time 

Predicted 
Queueing

1.067 44.9 24.55

Actual 
AWC 

0.936 40.919 20.27

% Error 12.24 8.86 17.42

Queueing Model predictions compared to actual AWC Team 1 data.  



Queueing Statistics 
• Source of Error: the service time distribution was assumed to 

be a 2-stage Erlang distribution.

• The first stage consisted of the set-up time – estimated using the 
GOMSL model.  The distribution was assumed to be exponential.

• The second stage represents the actual average reaction time of 
the AWC operator to perform tasks. We assumed that the 
distribution for stage-two service times was exponential.

• Comparing the second moment of the actual data,  to that of the
assumed exponential, there is a large difference: 

• =  397.61 versus            = 565.15 or 42% error

• Solution: Model the distribution of reaction times with an r-
stage Erlang distribution that minimizes the error between, 
and the Erlang distribution’s second moment,  (Kleinrock, 1975).

• r is adjusted – stages are added or deleted- until the error is 
minimized. 

2
Ex2

Ox



Queueing Statistics 
Fitting Actual Service Time Data with r- stage Erlang Distributions

2
Ex 2

Oxr % 
Error

N

High Priority 
Tasks

1 126.34 159.77 26.47 7

Low Priority 
Tasks

4 431.81 440.30 1.97 39

FCFS Tasks 
Combined

3 383.86 397.61 3.58 46

Best fitting r-stage Erlang distributions that minimize second moment error.



Queueing Statistics 

Histogram of Actual data service times versus 3-stage Erlang distribution.



Queueing Statistics 
AWC Performance: M/Er/1 Model, Task Prioritization Queueing Policy

N – Mean # 
of tasks

T – Mean 
lifetime

W-Mean 
wait time 

Predicted 
Queueing

0.966 40.668 20.314

Actual 
AWC 

0.936 40.919 20.27

% Error 3.11 0.62 0.27

Queueing Model predictions compared to actual AWC Team 1 data.  



Queueing Statistics 
AWC Performance: M/Er/1 Model, FCFS Queueing Policy

N – Mean # 
of tasks

T – mean 
lifetime

W-Mean 
wait time 

Predicted 
Queueing

0.969 40.794 20.44

Actual 
AWC 

0.936 40.919 20.27

% Error 3.41 0.31 0.83

Queueing Model predictions compared to actual AWC Team 1 data.  



Conclusions

Queueing Statistics characterize operator and system 
performance.  Allows for summarization and 
quantification of system performance.

The GOMSL and Queueing Models, together, 
provided effective predictions of actual operator 
performance.



Conclusions
Lessons Learned: 

Why not compare Queueing theory predictions with GOMSL 
data? 

Distribution of reaction times in GOMSL model not realistic. Thus 
queueing analysis of GOMSL data becomes an exercise in modeling 
the GOMSL model’s arbitrary distribution of service times. 

The Constraints that modeling imposes reveals gaps in real time
operator data collection.  

Queueing theory requires an accountability of every aspect of the 
server’s (operator’s) time.  
GOMSL modeling provides that accountability - fills in those gaps in 
time not accounted for in the data.  



Work in Progress

Extend analysis to a team of operators – the 
other nodes of the queueing network.  
In addition, to predicting the performance of 
each operator in a manner similar to the AWC 
predictions, derive a model with predictions of 
team/system performance. 
Modify Model to allow for a more general 
arrival process of tasks ( Markov Modulated 
Arrival Processes)
Different team structures alter the flow of tasks 
through the network. 
Can queueing models predict previously 
observed differences in team performance?


