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Abstract

This paper presents the design of a vision-based con-
troller for an underactuated, unmanned aerial vehicle
(UAV) equipped with a pan-tilt camera unit (PTCU) to
achieve the objective of following a leader vehicle au-
tonomously. The relative position and orientation in-
formation is obtained from the monocular camera uti-
lizing homography-based techniques. The proposed con-
troller, built upon Lyapunov design methods, achieves
uniform ultimate bounded (UUB) tracking. As an ex-
tension, it is also demonstrated that the approach used
in the development of the control strategy for the leader-
follower problem can be applied, with a few modifica-
tions, to the problem of trajectory tracking, where the
desired trajectory is described as a sequence of images
taken, for example, by the on-board camera during a
previous flight.

1 Introduction

The advantages of employing UAVs in dangerous and un-
structured environments have already made them an es-
sential component in various civilian tasks such as disas-
ter related search and rescue, terrain mapping and aerial
surveillance, as well as in modern warfare. Fueled by the
recent availability of low-cost hardware such as remotely
radio-controlled electric and gas powered helicopters and
fixed-wing aircrafts, numerous research groups are currently
working towards developing novel applications and control
strategies for UAVs. Among the most popular is the quad-
rotor helicopter design, chiefly due to its design simplicity
and high maneuverability. New studies aimed at develop-
ing high-performance quad-rotor helicopters have appeared
in recent publications [22], and provides insights to vari-
ous stability problems and control challenges involved [18].
These vehicles are underactuated, i.e., they are not equipped
with sufficient actuators that allow independent translation
and rotation about any given direction. In [2], the authors
proposed a controller design based on feedback linearization
technique, where the performance of a hybrid controller ca-
pable of switching between multiple modes of UAV flight
(such as take-off, hover, landing, and so on) was demon-
strated. However, due to the coupled nature of the trans-
lational and rotational dynamics of a quad-rotor, the most

1This work was supported in part by two DOC Grants, an
ARO Automotive Center Grant, a DOE Contract, a Honda Cor-
poration Grant, and a DARPA Contract.

common control design technique employed, including in this
paper, is the backstepping approach.

In addition to control design challenges, there exists the
problem of accurate measurement of position and orienta-
tion in such machines. To this end, vision sensors are being
increasingly utilized within the feedback loop of such sys-
tems. An off-board vision system and a fixed camera were
used in [2] in order to estimate the position and orienta-
tion of the UAV by tracking artificially embedded visual
features on the UAV. In a subsequent work [3], the authors
also proposed the use of multiple cameras (a pan-tilt unit
on the ground and a camera on-board, in line of sight of
each other) in an effort to improve the accuracy of position
estimation. Experimental results for different approaches to
utilizing vision in position sensing in helicopters have also
appeared in [21, 23]. One of the difficulties associated with
visual servoing is to ensure that the target features remain
within the field of view of the camera at all times. Metni
et al. [20] proposed a controller with bounds imposed on
the UAV orientation using saturation functions, in an effort
to maintain the direction of the optical axis of the camera
fixed on the UAV as close as possible to the direction of the
visual targets, hence, keeping the targets within the field of
view. Active control of pan-tilt cameras have also been pro-
posed [9, 25] to help maintain view of targets. Visual servo
controllers usually fall into one of the following two classes
- image-based visual servoing (IBVS), and position-based
visual servoing (PBVS) [11], depending upon whether the
controller is designed to directly act on the visual informa-
tion (i.e., in image space), or whether the visual information
is first utilized in the estimation of the Euclidean pose, re-
spectively. An IBVS scheme was presented in [15] where
the dynamics of features in image space were formulated in
terms of their spherical projections (a spherical image sur-
face as opposed to planar). A relatively recent development
is the homography-based approach to visual servoing (also
called 2 1

2D visual servoing [17]), which utilizes a combina-
tion of partially reconstructed Euclidean information and 2D
image-space information in the control design, and has been
shown to have many practical advantages. As mentioned
in [17], this method does not require an accurate Euclid-
ean model of the environment, and potential singularities
in the image Jacobian are avoided. The homography ma-
trix is computed from two views - a reference image and
images captured online from a moving camera. Decomposi-
tion of the homography matrix provides information about
the motion of the camera between the two views in terms of
a rotation matrix and a translation vector that is scaled by



the distance between the targets and camera at the reference
position. Usually, this constant scale factor is unknown in
a visual servoing task, and hence, must be estimated online
if required in the control design. In [6], an adaptive estima-
tion technique was utilized to compensate for this unknown
depth information in the visual servoing of a wheeled mobile
robot. The idea presented in [6] was subsequently extended
to the problem of trajectory tracking for a UAV by other
researchers [19].

In a preliminary version of this work presented in [7], we uti-
lized the image information from a monocular camera fixed
to the body frame of a quad-rotor UAV to develop a con-
troller for landing the UAV autonomously. The position and
orientation errors were formulated by comparing the stream
of images captured from the on-board camera to a previously
acquired reference image taken by the camera when the UAV
was at the desired final position and orientation on the land-
ing pad. Hence, if the images from the camera match the
desired reference image, the control objective will have been
achieved. However, due to the underactuated nature of the
aircraft, the orientation of the UAV cannot always be con-
trolled to guarantee that both the images will match, since
two out of the three rotational degrees of freedom (d.o.f) are
lost in achieving the position objective. In this paper, we
utilize a pan-tilt camera on the UAV to eliminate this prob-
lem. With the two additional rotational d.o.f offered by the
PTCU, the combined UAV-PTCU system can be controlled
such that the desired and actual images from the camera
coincide. With this new modification to the vision system,
we extend our previous work towards the development of a
vision-based controller for a UAV to autonomously follow
a leader vehicle (e.g. another aircraft or a ground vehicle).
The relative position and orientation between the leader and
the camera frame on the follower are obtained by comparing
the images captured by the camera on the follower with a
reference image of the leader captured apriori. The error
signals are formulated such that the unknown scale factor,
resulting from the decomposition of the homography ma-
trix, is not directly utilized in the control design. Similar
to the approach followed in [1] and [7], a constant design
vector is integrated into the controller, resulting in an input
matrix that facilitates an advantageous coupling of transla-
tional dynamics of the UAV to the rotational torque inputs.
In Appendix I, it is shown that the leader-follower strat-
egy can also be adapted to vision-based trajectory track-
ing, where the desired trajectory of the UAV is defined in
terms of a sequence of images of stationary features on the
ground, captured, for example, during a previous flight of
the UAV. The approach proposed in this paper has many
advantages relative to similar work in the literature. Only
a single camera is utilized for visual sensing. The controller
on the follower UAV does not require any information from
the leader, such as leader velocity or acceleration. A model
describing the motion of the leader vehicle is not required.
Also, a camera mounted on a pan-tilt unit is more effective
in maintaining line of sight with feature points on the leader
vehicle compared to a body fixed camera with limited field
of view.

Figure 1: A ‘Draganflyer’ quad-rotor aircraft with an on-
board pan-tilt camera.

2 System Model

Our development platform is a quad-rotor helicopter. The
vehicle, shown in Figure 1, is a four rotor aircraft capable of
vertical take-off and landing (VTOL). In the figure, the pan-
tilt camera unit (PTCU) is shown mounted on the forward-
looking limb of the aircraft. However, for the sake of simplic-
ity in the subsequent development, we will assume that the
optical center of the camera coincides with the origin of the
body fixed frame on the UAV. The camera is mounted such
that the optical axis of the camera points down along the z
axis of the UAV body fixed frame when pan and tilt angles
are zero. We will adhere to the following convention, bor-
rowed from Fossen [5], throughout the paper: vector quan-
tities denoting UAV position and velocity are specified as
vneb, which denotes the vector quantity v associated with the
b frame defined relative to the e frame, and expressed in n
frame. We use ‘x’, ‘v’, and ‘ω’ to denote position, transla-
tional velocity and angular velocity, respectively. Rotation
matrices are specified as Rtf ∈ SO(3) denotes a 3× 3 matrix
that transforms coordinates defined in f frame to t frame.

2.1 Dynamic Model of a UAV
The UAV that we are considering is fully actuated with re-
spect to orientation but underactuated with respect to trans-
lation (i.e., the UAV is equipped with only one control input
(the thrust force) to facilitate translational motion). The
control development is focused on the rigid body dynam-
ics of the UAV (i.e., actuator dynamics are not considered
within the scope of the design). After denoting I and F as
the inertial frame and the follower UAV body fixed frame,
respectively, the rigid body dynamics are described by the
following equations [10]

ẋFIF = RIF v
F
IF , (1)

mv̇FIF = −mS
³
ωFIF

´
vFIF +N1(·) + FFf , (2)

ṘIF = RIFS
³
ωFIF

´
, (3)

M ω̇FIF = −S
³
ωFIF

´
MωFIF +N2(·) + FFt (4)

where S(·) ∈ R3×3 denotes a skew-symmetric matrix defined
in [24], M ∈ R3×3 denotes the constant moment of inertia
around the center of mass expressed in body frame F , and
m ∈ R1 represents the constant mass of the UAV. The term
N1

¡
vFIF , R

I
F , t

¢ ∈ R3 represents the sum of gravitational



forces and additional time varying unmodeled bounded dy-
namics such as aerodynamic resistance. Similarly, the term
N2

¡
vFIF ,ω

F
IF , R

I
F , t
¢ ∈ R3 includes unmodeled, bounded dis-

turbances within the rotational dynamics. The forces and
torques on the rigid body due to the actuators are denoted
by FFf (t), F

F
t (t) ∈ R3, respectively, expressed in the body

frame F , and given as follows

FFf =
£
0 0 u1

¤T
, (5)

FFt =
£
u2 u3 u4

¤T
(6)

where ui(t) ∈ R1 denote the four scalar signals that are used
to control the UAV.

Remark 1 The four rotor velocities $i ∈ R1 of a quad-
rotor UAV are related to the rigid body forces FFf (t) and
torques FFt (t) via the following relationship [10]⎡⎢⎢⎣

u1
u2
u3
u4

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−b −b −b −b
0 db 0 −db
db 0 −db 0
k −k k −k

⎤⎥⎥⎦
⎡⎢⎢⎣
$2
1

$2
2

$2
3

$2
4

⎤⎥⎥⎦ (7)

where d ∈ R1 denotes the displacement of each rotor rela-
tive to the center of mass of the airframe, and k, b ∈ R1
are constant parameters that depend on the construction and
aerodynamic properties of the rotor blades.

2.2 Kinematics of the Pan-Tilt Camera Unit
The PTCU is mounted on the UAV such that the camera
frame, denoted by C, coincides with the UAV frame F when
the pan and tilt angles, denoted by θp(t), θt(t) ∈ R, respec-
tively, are zero. At this configuration, the optical axis of
the camera points down along the z axis of the UAV. Based
on this geometry, the standard Denavit-Hartenberg proce-
dure [24] can be applied to compute the camera kinematics
relative to the UAV as follows

RFC =

⎡⎣ c(θt) 0 s(θt)
s(θp)s(θt) c(θp) −s(θp)c(θt)
−c(θp)s(θt) s(θp) c(θp)c(θt)

⎤⎦ , (8)

ωFFC =

⎡⎣ 1 0
0 c(θp)
0 s(θp)

⎤⎦ ∙ θ̇p
θ̇t

¸
= Jcθ̇c, (9)

ṘFC = S
³
ωFFC

´
RFC . (10)

where c(θ), s(θ) ∈ R1 represent the sine and cosine, respec-
tively, and Jc(t) ∈ R3×2 denotes the Jacobian for the PTCU.

Remark 2 In the subsequent development, we will assume
that the dynamics of the PTCU can be ignored (i.e., the
pan and tilt angular velocities, denoted by θ̇c(t), are directly
related to the respective actuator inputs by proportionality
constants only).

2.3 Vision System Model
The geometric relationships between the leader and the fol-
lower vehicles are shown in Figure 2. As mentioned previ-
ously, the origins of the camera frame C and the follower

L
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Figure 2: Coordinate frame assignments and geometrical
relationships.

UAV frame F coincide; however, these frames are shown
separate in the figure for the sake of clarity. The leader
vehicle, whose body fixed frame is denoted by L, is aug-
mented with coplanar features whose image coordinates can
be easily tracked by processing the video stream from the
camera mounted on the follower UAV. Let the constant vec-
tor si ∈ R3 expressed in the leader frame L define the co-
ordinates of the ith feature on the leader vehicle, and let
mi(t) =

£
xi(t) yi(t) zi(t)

¤T ∈ R3 denote the Euclid-
ean coordinates of the same feature defined in the follower
UAV’s camera frame C. The frame L∗ in Figure 2 denotes
the leader at the desired position and orientation relative to
the camera frame on the follower, denoted by xCCL∗ ∈ R3
and RCL∗ ∈ SO(3), respectively, and m∗i ∈ R3denotes the
constant Euclidean coordinates of the ith feature point rel-
ative to the camera at this position. Based on geometry of
Figure 2, the expressions for mi(t) and m∗i are as follows

mi = xCCL +R
C
Lsi, (11)

m∗i = xCCL∗ +R
C
L∗si. (12)

After solving (12) for si and then substituting the resulting
expression into (11), we have

mi = x̄+ R̄m
∗
i (13)

where R̄ (t) ∈ SO (3) and x̄ (t) ∈ R3 are defined as follows

R̄ = RCLR
L∗
C , (14)

x̄ = xCCL − R̄xCCL∗ . (15)

In Figure 2, n∗ ∈ R3 denotes the constant normal to the
plane of features on the leader at desired relative position,
expressed in the camera frame C, and the constant d∗ 6= 0 ∈
R1 denotes the distance of this plane from the camera. It
can be seen from Figure 2 that the projection of m∗i for all
features along the unit normal n∗ is given by

d∗ = n∗Tm∗i . (16)

Using (16), the relationship in (13) can be written in terms
of a Euclidean homography H(t) ∈ R3×3 [14] relating the



coordinates mi(t) and m∗i as follows

mi =

µ
R̄+

1

d∗
x̄n∗T

¶
| {z }m∗i .

H

(17)

The measurable 2D homogeneous image coordinates of the
features, denoted by pi(t), p∗i ∈ R3, expressed in the coordi-
nates of frame C, are related to the normalized Euclidean
coordinates mi(t)

zi(t)
and m∗i

z∗i
, respectively, by the pin-hole cam-

era model [14] such that

pi = A
mi

zi
, p∗i = A

m∗i
z∗i

(18)

where A ∈ R3×3 is a known, constant, upper triangular and
invertible intrinsic camera calibration matrix, and zi(t), z∗i ∈
R1 are the third coordinate elements in the vectorsmi(t) and
m∗i , respectively. Hence, the relationship in (17) can now be
expressed in terms of image coordinates of the features as
follows

pi =
z∗i
zi|{z} A

µ
R̄+

1

d∗
x̄n∗T

¶
A−1| {z } p∗i

αi G

(19)

where αi(t) ∈ R1 denotes the depth ratio z∗i
zi(t)

and G(t) ∈
R3×3 is a full rank homogeneous collineation matrix [14].
Given pairs of correspondences (pi(t), p∗i ) for a minimum of
four coplanar non-collinear features on the leader, the set of
linear equations in (19) can be solved to compute a unique
G(t) up to a scale factor [14]. When more than four fea-
ture point correspondences are available, G(t) can also be
recovered (again, up to a scale factor) using techniques such
as least-squares minimization. G(t) can then be used to
uniquely determine H(t), taking into account the fact that
the intrinsic camera calibration matrix A is assumed to be
known [14]. By utilizing the algorithms described in [4, 14],
H (t) can be decomposed to recover the rotational compo-
nent R̄(t) and the scaled translational component 1

d∗ x̄(t).
The signals R̄(t) and 1

d∗ x̄(t) are the measurable quantities
from the vision system that we will exploit to design a con-
troller for the follower UAV.

Remark 3 If all the features on the leading vehicle are not
coplanar, the collineation matrix in (19) can still be devel-
oped by employing the virtual parallax algorithm described
in [17]. However, in this case, at least eight non-coplanar
features must be utilized.

Remark 4 Decomposition of the Homography matrix H(t)
results in four unique solutions, two of which are physically
impossible. From the remaining two solutions, the right one
can be selected by utilizing some additional information, such
as a guess for the normal vector n∗.

3 Control Formulation

The control objective is to ensure that the follower UAV and
the PTCU are controlled such that the images of the features

on the leader, seen by the camera on the follower, matches
the reference image of the same features captured by the
camera when the leader is at a desired relative position and
orientation. Based on Figure 2 and the development in the
previous section, this can be stated as the desire to control
the follower UAV such that the following control objective
is achieved

xCCL → xCCL∗ , R
C
L → RCL∗ as t→∞. (20)

An examination of equations (14) and (15) reveals that the
control objective stated above can be achieved if the follower
UAV and the PTCU can be controlled such that R̄(t)→ I3×3
and x̄(t) → 0 as t → ∞, where the notation In×n denotes
an n × n identity matrix. To achieve the stated objective,
we make the following assumptions

Assumption 1: The velocities vFIF (t) and ω
F
IF (t) are mea-

surable from inertial sensors on-board the follower
UAV.

Assumption 2: The uncertain nonlinearties in the UAV
translational and rotational dynamics, denoted by
N1(·) and N2(·) in (2) and (4), respectively, can be
upperbounded in the following manner

kN1k ≤ ψ1

³°°°vFIF°°°´ (21)

kN2k ≤ ψ2

³°°°vFIF°°° , °°°ωFIF°°°´ (22)

where ψi(·) ∈ R1 are positive, scalar, non-decreasing
functions of their arguments.

Assumption 3: The pan and tilt angles of the camera are
measurable from the resolvers in the PTCU. We also
assume that the dynamics of the PTCU can be ig-
nored, i.e., the angular velocities of the pan and tilt
angles of the PTCU can be directly controlled.

Assumption 4: The pan angle of the camera is confined
to the region −π2 < θp(t) <

π
2 .

Assumption 5: The scaled position and orientation vari-
ables 1

d∗ x̄(t) and R̄(t) are available from the vision
system.

Assumption 6: The position and velocities of the leader
vehicle are bounded, i.e., xIIL(t), v

I
IL(t),ω

I
IL(t) ∈ L∞.

However, these signals are not available to the con-
troller on the follower UAV, i.e., there is no commu-
nication between the vehicles.

Assumption 7: The features on the leader are in front of
the camera on the follower (i.e., zi > γ for every fea-
ture point, where γ ∈ R1, is a positive scalar con-
stant), and the features on the leader remain within
the field of view of the camera on the follower.

3.1 Orientation Error Formulation
The axis-angle representation [24] of the rotation matrix
R̄(t) defined in (14) is utilized to define the orientation error,
denoted by eθ(t) ∈ R3, as follows

eθ , µφ (23)



where µ(t) ∈ R3 represents a unit axis of rotation, and φ(t) ∈
R1 denotes the rotation angle about µ(t) (confined to the
region −π < φ(t) < π), explicitly defined as follows

φ = cos−1
µ
1

2

¡
tr(R̄)− 1¢¶ , S (µ) =

R̄− R̄T
2 sin(φ)

(24)

where the notation tr(·) denotes the trace of a matrix. After
taking the time derivative of the orientation error system
in (23), and utilizing the PTCU kinematics from (9), the
open loop dynamics for the orientation error system can be
expressed as follows

ėθ = Lωω
C
CL

= −LωRCFωFIF − LωRCF Jcθ̇c + LωωCIL (25)

where Lω(t) ∈ R3×3 is a Jacobian-like matrix given by the
following expression

Lω = I3×3 − φ

2
S (µ) +

⎛⎜⎜⎝1− sinc (φ)

sinc2
µ
φ

2

¶
⎞⎟⎟⎠ S (µ)2 ,

sinc (φ) , sin (φ)

φ
.

(26)

The development of the expression for Lω(t) is presented in
detail in [8] and [16], and utilizes the time derivative of (14),
which provides an expression for the time derivative of R̄(t)
as follows .

R̄= S
³
ωCCL

´
R̄ (27)

where the following property was utilized in its derivation

ṘCL = S
³
ωCCL

´
RCL . (28)

Remark 5 By exploiting the fact that µ(t) is a unit vector
(i.e., kµk2 = 1), the determinant of Lω (t) can be derived as
follows [16]

det {Lω} = 1

sinc2
µ
φ

2

¶ . (29)

From (29), it can be seen that L−1ω (t) is only singular for
multiples of 2π, which is outside the assumed range for φ(t).
Lω(t) is assumed invertible in the subsequent development.

3.2 Position Error Formulation
The position error is denoted by x̄h(t) ∈ R3, and defined as
follows

x̄h ,
1

d∗
x̄. (30)

The open loop dynamics of the position error system can be
obtained by taking the time derivative of (15) as follows

d∗
.
x̄h= ẋ

C
CL−

.

R̄ xCCL∗ . (31)

From the geometry in Figure 2, it can be seen that

xCCL = R
C
FR

F
I

³
xIIL − xIIF

´
(32)

and the time derivative of (32), after simplification, can be
expressed as follows

ẋCCL = −RCF vFIF − S
³
ωCIC

´
xCCL + v

C
IL (33)

where (3) and (10) have been utilized. After substituting
(33) in (31), and utilizing (27) for the time derivative of
R̄(t), the following expression for the open loop position
error dynamics can be obtained

d∗
.
x̄h = −RCF vFIF − S

³
ωCIC

´
d∗x̄h

−S
³
ωCIL

´
R̄xCCL∗ + v

C
IL. (34)

Based on the subsequent Lyapunov stability analysis, an
auxiliary signal r(t) ∈ R6 is defined as follows

r ,
£
rTp eTθ

¤T
(35)

where eθ(t) is the orientation error defined in (23), and
rp(t) ∈ R3 is defined in the following manner

rp , kpx̄h −RCF vFIF +RCF δ (36)

where kp ∈ R1 denotes a positive, scalar constant, and
δ =

£
δ1 δ2 δ3

¤T ∈ R3 represents a constant design vec-
tor. The constant δ introduced in (36) facilitates an advan-
tageous coupling between the translational and rotational
dynamics of the UAV. Upon substituting (36) in (34), the
following alternate expression for the open loop position er-
ror dynamics is obtained

d∗
.
x̄h = rp − kpx̄h −RCF δ − S

³
ωCIC

´
d∗x̄h

−S
³
ωCIL

´
R̄xCCL∗ + v

C
IL. (37)

After taking the time derivative of (35), and substituting
(34) for

.
x̄h (t), the dynamics in (2) for v̇FIF (t), (10) for Ṙ

C
F (t),

and (25) for ėθ(t), the following expression for the open loop
dynamics of r(t) can be developed after some mathematical
manipulation and simplification

ṙ =

∙ −S ¡ωCIC¢ rp
03×1

¸
+

∙
RCFS

¡
ωFIF

¢
δ − 1

mR
C
FF

F
f

−LωRCFωFIF − LωRCF Jcθ̇c
¸

+N11 +N12 (38)

where 0n×m denotes a n × m zero matrix, and
N11(t), N12(t) ∈ R6 groups the following terms in (38)

N11 ,
∙ − kp

d∗R
C
F v

F
IF − 1

m
RCFN1

03×1

¸
, (39)

N12 ,
∙ − kp

d∗ S
¡
ωCIL

¢
R̄xCCL∗ +

kp
d∗ v

C
IL

Lωω
C
IL

¸
. (40)

The second term in (38), after re-arrangement, can be writ-
ten as the product of a matrix B̄(t) ∈ R6×6 and a vector
Ū(t) ∈ R6, where

B̄ = B1B2, (41)

B1 =

∙ −RCF 03×3
03×3 −LωRCF

¸
, (42)

B2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 −δ3 δ2 0 0
0 δ3 0 −δ1 0 0
1
m −δ2 δ1 0 0 0
0 1 0 0 1 0
0 0 1 0 0 c(θp)
0 0 0 1 0 s(θp)

⎤⎥⎥⎥⎥⎥⎥⎦ , (43)

Ū =

⎡⎣ u1
ωFIF
θ̇c

⎤⎦ . (44)



Hence, from (38), and (41) through (44), it can be shown
that

ṙ =

∙ −S ¡ωCIC¢ rp
03×1

¸
+ B̄Ū +N11 +N12. (45)

Remark 6 The matrix B2(t) is invertible if δ3 6= 0 and at
least one of δ1 or δ2 is non-zero. Since B1(t) is invertible,
it follows that B̄(t) is invertible if δ is selected to satisfy the
above mentioned constraints.

4 Control Design

The control design is based on the backstepping technique.
An auxiliary control signal Ūn(t) ∈ R6 and an angular veloc-
ity backstepping error signal η(t) ∈ R3 are defined as follows

Ūn =
h
u1 ωTn θ̇

T
c

iT
, (46)

η =
h
ωn − ωFIF

iT
(47)

where ωn(t) ∈ R3 represents a desired angular velocity sig-
nal. From (44), (46) and (47), the following relationship can
be observed

Ū = Ūn −ΠT η (48)

where Π ∈ R3×6 denotes the following constant matrix

Π =

⎡⎣ 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎤⎦ . (49)

The auxiliary control input Ūn(t) is designed in the following
manner

Ūn = B̄
−1U (50)

where U(t) ∈ R6 is a subsequently designed control input.
From (45), (48) and (50), the open loop dynamics for r(t)
can now be expressed as follows

ṙ =

∙ −S ¡ωCIC¢ rp
03×1

¸
+ U + B̄ΠT η +N11 +N12. (51)

Similarly, after differentiating (47) and substituting for
ω̇FIF (t) from the UAV rotational dynamics given by (4), the
open loop dynamics for the angular velocity error signal η(t)
are obtained as follows

M η̇ =MΠ ˙̄Un1 + S
³
ωFIF

´
MωFIF −N22 − FFt (52)

where the measurable and unmeasurable terms have been
grouped into ˙̄Un1(t) ∈ R3 and ˙̄Un2(t) ∈ R3, respectively
(See Appendix II for explicit derivations), and finally, all
unmeasurable terms in the rotational dynamics have been
combined into a single term N22(t) ∈ R3 defined in the fol-
lowing manner

N22 , N2 −MΠ ˙̄Un2. (53)

From Assumption 2, (39) and (53), it is easy to see that the
uncertain terms N11(t) and N22(t) can be upperbounded in
the following manner

kN11k ≤ ζ1

³°°°vFIF°°°
s

´
(54)

kN22k ≤ ζ2

³°°°vFIF°°° , °°°ωFIF°°°´ (55)

where ζi(·) ∈ R1 are positive, scalar, non-decreasing func-
tions of their arguments. The subsequent control design
requires that ζ1(·) be differentiable, and hence, it is con-
structed as a function of a modified norm, denoted by k·ks,
which is defined in the following manner

kyks ,
p
yT y + σ, ∀y ∈ R3 (56)

where σ ∈ R1 represents a small positive constant. Based
on the stability analysis presented in the next sub-section,
the control inputs U(t) and FFt (t) are designed as follows

U = −krr −
∙
x̄h
03×1

¸
− r ζ

2
1

ε1
, (57)

FFt = MΠ ˙̄Un1 + S
³
ωFIF

´
MωFIF

+kηη −ΠB̄T r + η
ζ22
ε2

(58)

where kr, kη ∈ R1 are positive, scalar control gains, ε1, ε2 ∈
R1 are positive, scalar constants.

Remark 7 The function in (56) is utilized in (54) instead
of the standard Euclidean norm to ensure that the time deriv-
ative of ζ1(·), which appears in ˙̄Un1(t), is well-defined. The
time derivative of k·ks is expressed as follows

d

dt
kyks =

yT ẏp
yT y + σ

, ∀y ∈ R3. (59)

4.1 Stability Analysis

Theorem 1 Given the error dynamics of (37), (51) and
(52), the translational force input and the rotational torque
input developed in (57) and (58), respectively, guarantees
uniform ultimate boundededness (UUB) in the position er-
ror signal x̄h(t) and the orientation error signal eθ(t) in a
neighborhood about zero, in the sense that

kx̄h(t)k , keθ(t)k ≤ α1 exp (−α2t) + α3 (60)

where α1,α2,α3 ∈ R1 are adjustable, positive constants.

Proof : We choose the following non-negative scalar function
as the Lyapunov candidate to prove the above theorem

V , 1

2
d∗x̄Th x̄h +

1

2
rT r +

1

2
ηTMη. (61)

After taking the time derivative of (61), substituting the
dynamics for

.
x̄h (t), ṙ(t) and η̇(t) from (37), (51) and (52),

and substituting the expressions for U(t) and FFt (t) from
(57) and (58), the following expression can be obtained

V̇ ≤ −kp1 kx̄hk2 − kr1 krk2 − kη kηk2

+

µ
krk ζ1 −

krk2 ζ21
ε1

¶
+

µ
kηk ζ2 −

kηk2 ζ22
ε2

¶
+
¡kx̄hk |β1|− kp2 kx̄hk2¢

+
¡krk |β2|− kr2 krk2¢

(62)



where, based on Assumption 4, β1, β2 ∈ R1 are two positive,
bounding constants chosen such that

β1 ≥
°°°RCF δ°°°+ °°°S ³ωCIL´ R̄xCCL∗°°°+ °°°vCIL°°° , (63)

β2 ≥ kN12k (64)

and kp1, kr1, kp2, kr2 ∈ R1 are positive, scalar constants such
that kp = kp1 + kp2 and kr = kr1 + kr2. After applying the
non-linear damping argument from [12], the bracketed terms
in the above expression can be upper-bounded as follows

krk ζ1
µ
1− krk ζ1

ε1

¶
≤ ε1,

kηk ζ2
µ
1− kηk ζ2

ε2

¶
≤ ε2,

kx̄hk (|β1|− kp2 kx̄hk) ≤ |β1|
kp2
,

krk (|β2|− kr2 krk) ≤ |β2|
kr2
.

(65)

From (62) and (65), V̇ (t) can be upper bounded in the fol-
lowing manner

V̇ ≤ −kp1 kx̄hk2 − kr1 krk2 − kη kηk2 + ε (66)

where ε , ε1+ε2+
|β1|
kp2
+ |β2|

kr2
∈ R1. The solution to the above

differential equation allows us to upper-bound the tracking
errors in the following manner

kx̄h(t)k , keθ(t)k ≤ V (t) ≤ α1 exp (−α2t) + α3 (67)

where α1 = V (0), α2 =
min (kp1, kr1, kn)

max

µ
1

2
, d∗,λmax (M)

¶ , and α3 =
ε

α2
are positive scalar constants, and λmax(M) ∈ R1 denotes

the largest eigenvalue of the inertia matrix of the follower
UAV.

From (61) and (66), it can be seen that x̄h(t), r(t), η(t) ∈
L∞. From (35) and (36), it follows that vFIF (t), eθ(t) ∈ L∞,
and consequently, from the UAV translational dynamics in
(1), ẋFIF (t) ∈ L∞. Since x̄h(t) is bounded, from (15) and Fig-
ure 2, it can be seen that xIIF (t) ∈ L∞. From (39), N11(·) ∈
L∞, and hence, from (54), ζ1(·) ∈ L∞. It follows from
(57) and (54) that U(t) ∈ L∞. Consequently, it is easy to
show that Ūn(t), Ū(t) ∈ L∞ from (50) and (48), respectively;
therefore, ωn(t),ωFIF (t), θ̇c(t), u1(t) ∈ L∞. The PTCU Ja-
cobian Jc(t) is a bounded function of pan/tilt angles θc(t)
and hence, from (9) it can be inferred that ωFFC(t) ∈ L∞,
which leads us to the observation that ωIIC(t) ∈ L∞. We
have now demonstrated that every term in the expressions
for the time derivatives of r(t), x̄h(t) and eθ(t), as shown in
(45), (37) and (25), are bounded. As a result, U̇(t), ˙̄Un(t)
∈ L∞ (see (57)), and the follower translational acceleration
v̇FIF (t) ∈ L∞ (as revealed by taking the time derivative of
rp(t) in (36)). Hence, from (53) and (55), N22(·), ζ2(·) ∈ L∞.
From the preceding signal chase, and from (58), we can con-
clude that FFt (t) ∈ L∞, and hence, from (4), ω̇FIF (t) ∈ L∞.
Therefore, all signals remain bounded during closed loop op-
eration.

Remark 8 The control objective is formulated as the desire
to control the follower UAV such that the images obtained

from the PTCU and a reference image of the features on
the leader vehicle coincide. Since the origins of the follower
UAV frame and the camera frame coincide, it can be seen
from (20) and (67) that the controller developed in Section
4 will maintain the follower at a fixed position behind the
leader. However, the orientation objective in (20) is formu-
lated as the desire to control the PTCU orientation RCL (t)
relative to the leader, and hence, we cannot state how the
orientation of the UAV (RIF (t)) will evolve with time.

5 Simulation Results

The following UAV parameters were used for simulation of
the follower control algorithm

m = 0.6 (kg), (68)

M =

⎡⎣ 0.4 0 0
0 0.4 0
0 0 0.6

⎤⎦ (kg-m2). (69)

The simulated leader vehicle is a mobile robot moving in
a circular trajectory on the ground plane (XY). The per-
spective camera on the follower was simulated to track eight
coplanar feature points that formed the corners of two con-
centric squares on top of the leader vehicle. In a practi-
cal implementation, a real-time implementation of an auto-
matic feature tracking algorithm such as the Lucas-Kanade
tracker [13] could be utilized to track features on the leader.
The homography matrix was computed from the image co-
ordinates of the features relative to the camera frame using
the least-squares technique. An implementation of the algo-
rithm given in [4] was utilized to decompose the homography
matrix in order to compute the error signals given in (23)
and (30). The initial position of the UAV was set to 5 meters
above the leader vehicle (i.e., z = −5 m), and the desired
time varying position of the follower UAV was selected to be
10 meters above the leader vehicle. The initial and desired
orientation of the UAV were

£
0.01 0.01 1.57

¤T
radians

and
£
0 0 0

¤T
radians, respectively. The trajectories

of the leader and follower vehicles are shown in Figure 3,
while the time evolution of position and orientation error
signals are shown in Figure 4. The UAV control effort and
the PTCU angular velocity input remains bounded within
reasonable values, as shown in Figures 5 and 6 respectively.
For a realistic simulation, the UAV thrust force u1(t) was
saturated at 20 N and torques u2(t) to u4(t) were saturated
at 5 N-m to restrict initial spikes in the control signal. The
following control gains were used, selected based on trial and
error

kp = 20, kr = 10, kη = 100, (70)

ε1 = 1, ε2 = 0.1, (71)

δ =
£
0.1 0 0.5

¤T
. (72)

The nonlinearities N1(·) and N2(·) in (2) and (4) were as-
sumed to be of the following form

N1 = −0.5Tanh(vFIF ) (73)

N2 = −0.5Tanh(ωFIF ) (74)

where Tanh(v) ∈ Rn is a vector whose elements are defined
as the hyperbolic tangent of elements of the vector v(t) ∈
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Figure 3: The leader ( ) and follower (4) trajectories.

Rn. The scalar functions ζ1(·) and ζ2(·) in (54) and (55),
respectively, were selected as follows

ζ1 = 0.1
°°°vFIF°°°

s
, (75)

ζ2 = 0.1
°°°vFIF°°° + 0.1 °°°ωFIF°°° . (76)

6 Conclusions

This paper presented the design of a vision-based controller
for an underactuated UAV equipped with a pan-tilt cam-
era to achieve the objective of following a leader vehicle au-
tonomously. The development of the relative position and
orientation error signals employed homography-based tech-
niques, and the controller design was developed using the
backstepping approach. The proposed controller was shown
to achieve uniform ultimate bounded (UUB) tracking. Six
control inputs (u1(t) to u4(t) and θ̇c(t)) were utilized to con-
trol the six d.o.f combined UAV-PTCU system to achieve
the objective of matching the images captured by the cam-
era with a reference image of the leader. This would not be
possible without the two additional d.o.f. provided by the
PTCU to compensate for the two rotational d.o.f. in the
UAV lost towards achieving the position control objective.
It should be noted that if the PTCU is removed, we can fol-
low the approach outlined in our previous work [7] to design
a controller that achieves 3 d.o.f position tracking and yaw
(rotation about UAV vertical axis) tracking.
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Appendix I: Extension to Vision-Based
Trajectory Tracking

With a few modifications in geometric modeling, the leader-
follower strategy described in the paper can be adapted to a
vision-based trajectory tracking strategy, where the desired
trajectory of the UAV is defined in terms of a sequence of
images of stationary features on the ground, captured, for
example, during a previous flight of the UAV. Along this
line of reasoning, we follow an approach similar to that pre-
sented in [6]. At every instant of time, the image captured
from the UAV in flight, and a corresponding image from the
previously obtained desired video sequence are compared to
a reference image of the ground features in order to com-
pute the relative position and orientation tracking errors.
The geometrical relationships between the various coordi-
nate frames are shown in Figure 7. As before, the origin
of the camera frame is assumed to coincide with the UAV
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Figure 7: Geometrical relationships for vision-based tra-
jectory tracking.

frame, and they are shown separate from each other in Fig-
ure 7 for the sake of clarity. The optical axis of the PTCU is
pointed downwards by default, along the z axis of the cam-
era frame and the UAV. The PTCU kinematics are given
in expressions (8) to (10). Let the constant vector si ∈ R3
expressed in the inertial frame I define the coordinates of
the ith visual feature on the ground, and let mi(t) ∈ R3 de-
note the Euclidean coordinates of the same feature defined in
the UAV’s camera frame C. The objective is to control the
UAV, denoted by coordinate frame F , such that the images
of the visual features on the ground obtained from the cam-
era on the UAV (denoted by C), coincide with the images of
the same visual features captured by the camera when the
UAV is at the desired location, denoted by the coordinate
frame Fd shown in Figure 7. Let mid(t) ∈ R3 denote the
3D Euclidean coordinates of the ith visual feature as seen
by the camera on the UAV at the desired position, and let
m∗i ∈ R3denote the constant Euclidean coordinates of the
same feature point relative to the camera frame when the
UAV is at its reference position F ∗. Based on the geometry
in Figure 7, the Euclidean coordinates of the same visual fea-
ture, as seen by the on-board camera from the three camera
locations denoted by C,Cd and C∗ are related as follows

mi = x̄+ R̄m
∗
i

mid = x̄d + R̄dm
∗
i

(77)

where the new position and orientation variables are defined
in the following manner

R̄ = RCFR
F
I R

I
F∗R

F∗
C∗ , (78)

R̄d = RCdFdR
Fd
I R

I
F∗R

F∗
C∗ , (79)

x̄ = RCFR
F
I

³
xIIF∗ − xIIF

´
, (80)

x̄d = RCdFdR
Fd
I

³
xIIF∗ − xIIFd

´
. (81)

After defining the relationship between the normalized
Euclidean coordinates and the 2D homogeneous image co-
ordinates of the visual features as shown in (18), the rela-
tionships in (77) can be expressed in terms of their image
coordinates as follows

pi = αiA

µ
R̄+

1

d∗
x̄n∗T

¶
A−1p∗i ,

pid = αidA

µ
R̄d +

1

d∗
x̄dn

∗T
¶
A−1p∗i

(82)

where αid(t) =
z∗i

zid(t)
, pid(t) = Amid(t)

zid(t)
∈ R1, n∗ ∈ R3

denotes the normal vector to the ground plane defined in
the frame C∗, and d∗ ∈ R1 is the distance to the ground
plane from the frame C∗. If four or more visual features on
the ground can be continuously tracked by the on-board vi-
sion system on the UAV, the homography matrices shown in
brackets in (82) can be computed, which can be subsequently
decomposed utilizing the algorithms previously mentioned in
order to calculate the rotation matrices R̄(t) and R̄d(t), and
the scaled translation vectors x̄(t)

d∗ and x̄d(t)
d∗ .

Control Formulation: In addition to Assumptions 1 to 4
stated for the leader-follower case, we utilize the following
additional assumptions in the control development

Assumption 5: The scaled position and orientation vari-
ables R̄(t), R̄d(t), 1

d∗ x̄(t) and
1
d∗ x̄d(t) are available

from the vision system.

Assumption 6: The desired position and velocity signals
are bounded, i.e., xIIFd(t), v

I
IFd
(t),ωIIFd(t) ∈ L∞.

Assumption 7: All the visual features tracked by the vi-
sion system are always within the field of view of the
camera, and are in front of the camera (i.e., zi > γ for
every feature point, where γ ∈ R1, is a positive scalar
constant).

The position error signal, denoted by ep(t) ∈ R3, is defined
in the following manner

ep ,
1

d∗
RFI

³
xIIF − xIIFd

´
. (83)

After some mathematical manipulation, it can be shown that
the position error signal defined in (83) can be written in
terms of measurable signals from the vision system as follows

ep = R
F
CRex̄dh −RFC x̄h (84)

where

Re = R̄R̄Td , (85)

x̄dh =
1

d∗
x̄d, (86)

x̄h =
1

d∗
x̄. (87)

Analogous to the leader-follower case, the objective of ori-
entation tracking is achieved if Re(t) → I3×3 as t → ∞;
hence, the orientation error signal, denoted by eθ(t) ∈ R3,
is defined in terms of the axis-angle representation of the
rotation matrix Re(t) as follows

eθ , µφ (88)

where

φ = cos−1
µ
1

2
(tr(Re)− 1)

¶
, S (µ) =

Re −RTe
2 sin(φ)

. (89)

After taking the time derivative of the error signals in (83)
and (88), the following open-loop error dynamics are ob-
tained

d∗ėp = vFIF − S
³
ωFIF

´
d∗ep −RFI ẋIIFd (90)

ėθ = −LωωCCdC
= −LωRCFωFIF − LωRCF Jcθ̇c + LωωCICd . (91)



Based on the subsequent Lyapunov analysis, an auxiliary
signal r(t) ∈ R6 is defined as follows

r ,
£
rTp eTθ

¤T
(92)

where rp(t) ∈ R3 is defined in the following manner
rp , kpep + vFIF + δ (93)

and the constants kp ∈ R1 and δ ∈ R3 have the same defi-
nitions as in the leader-follower case. After substituting for
vFIF (t) from (93) in (83), the following alternate expression
for the open-loop position error dynamics can be obtained

d∗ėp = rp − kpep − δ − S
³
ωFIF

´
d∗ep

−RFI ẋIIFd . (94)

The time derivative of (92) is complex, but it can be shown
that, after substituting (90) for ėp(t), the dynamics in (2)
for v̇FIF (t), (10) for Ṙ

C
F (t), and (91) for ėθ(t), the following

simplified expression for the open loop dynamics of r(t) can
be developed

ṙ =

∙ −S ¡ωFIF ¢ rp
03×1

¸
+ B̄Ū +N11 +N12 (95)

where

B̄ = B1B2, (96)

B1 =

∙
I3×3 03×3
03×3 −LωRCF

¸
, (97)

B2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 −δ3 δ2 0 0
0 δ3 0 −δ1 0 0
1
m −δ2 δ1 0 0 0
0 1 0 0 1 0
0 0 1 0 0 c(θp)
0 0 0 1 0 s(θp)

⎤⎥⎥⎥⎥⎥⎥⎦ , (98)

Ū =

⎡⎣ u1
ωFIF
θ̇c

⎤⎦ , (99)

N11 ,
∙ kp

d∗ v
F
IF +

1
m
N1

03×1

¸
, (100)

N12 ,
∙ −kp

d∗R
F
I ẋ

I
IFd

Lωω
C
ICd

¸
. (101)

Remark 9 After utilizing Assumption 4, it can be shown
that B2(t) ∈ R6×6 is full-ranked if δ3 6= 0. Since it can be
easily verified that B1(t) ∈ R6×6 is invertible, it follows from
(96) that B̄(t) is invertible.

Remark 10 Note that the dynamics for eθ(t), ep(t) and
r(t), as given by the expressions in (91), (94) and (95), re-
spectively, are similar in form to the dynamics of the error
systems for the leader-follower case, given by (25), (37) and
(45). Hence, we follow the same approach as the leader-
follower problem in the subsequent control design.

Control Design: After defining the desired control sig-
nal Ūn(t) and the backstepping error signal η(t), and subse-
quently designing the desired control signal Ūn(t) as shown

in (46), (47), and (50), respectively, the dynamics of r(t) can
be expressed as follows

ṙ =

∙ −S ¡ωFIF ¢ rp
03×1

¸
+ U − B̄ΠT η +N11 +N12. (102)

The dynamics for η(t) is the same as before, and given by the
expression in (52). Based on the stability analysis provided
in the next sub-section, the control inputs are designed in
the following manner

U = −krr −
∙
ep
03×1

¸
− r ζ

2
1

ε1
, (103)

FFt = MΠ ˙̄Un1 + S
³
ωFIF

´
MωFIF

+kηη −ΠB̄T r + η
ζ22
ε2

(104)

where kr, kη ∈ R1 are positive, scalar control gains, ε1, ε2 ∈
R1 are positive, scalar constants, and ζ1(·), ζ2(·) ∈ R1 are
known positive, scalar, non-decreasing bounding functions
on N11(·) and N22(·), constructed like (54) and (55), respec-
tively. ˙̄Un1(t), ˙̄Un2(t) ∈ R6 are the known and unknown
terms, respectively, in the time derivative of Ūn(t), and their
expressions are given in Appendix II.

Theorem 2 Given the error dynamics of (94), (102) and
(52), the translational force input and the rotational torque
input developed in (103) and (104), respectively, guarantees
uniform ultimate boundededness (UUB) in the position er-
ror signal ep(t) and the orientation error signal eθ(t) in a
neighborhood about zero in the sense that

kep(t)k , keθ(t)k ≤ α1 exp (−α2t) + α3 (105)

where α1,α2,α3 ∈ R1 are adjustable, positive constants.

Proof : We choose the following non-negative scalar function
as the Lyapunov candidate to prove the above theorem

V , 1

2
d∗eTp ep +

1

2
rT r +

1

2
ηTMη. (106)

After taking the time derivative of (106), substituting the
dynamics for ėp(t), ṙ(t) and η̇(t) from (94), (102) and (52),
and substituting the expressions for U(t) and FFt (t) from
(103) and (104), the following expression can be obtained

V̇ ≤ −kp1 kepk2 − kr1 krk2 − kη kηk2

+

µ
krk ζ1 −

krk2 ζ21
ε1

¶
+

µ
kηk ζ2 −

kηk2 ζ22
ε2

¶
+
¡kepk |β1|− kp2 kepk2¢

+
¡krk |β2|− kr2 krk2¢

(107)
where, based on Assumption 5, β1,β2 ∈ R1 are two positive,
bounding constants chosen such that

β1 ≥ kδk+
°°°RFI ẋIIFd°°° , (108)

β2 ≥ kN12k (109)

and kp1, kr1, kp2, kr2 ∈ R1 are positive, scalar constants such
that kp = kp1 + kp2 and kr = kr1 + kr2. After applying the



non-linear damping argument from [12], the bracketed terms
in the above expression can be upper-bounded as follows

krk ζ1
µ
1− krk ζ1

ε1

¶
≤ ε1,

kηk ζ2
µ
1− kηk ζ2

ε2

¶
≤ ε2,

kepk (|β1|− kp2 kepk) ≤ |β1|
kp2
,

krk (|β2|− kr2 krk) ≤ |β2|
kr2
.

(110)

From (107) and (110), V̇ (t) can be upper bounded in the
following manner

V̇ ≤ −kp1 kepk2 − kr1 krk2 − kη kηk2 + ε (111)

where ε , ε1+ε2+
|β1|
kp2
+ |β2|

kr2
∈ R1. The solution to the above

differential equation allows us to upper-bound the tracking
errors in the following manner

kep(t)k , keθ(t)k ≤ V (t) ≤ α1 exp (−α2t) + α3 (112)

where α1 = V (0), α2 =
min (kp1, kr1, kn)

max

µ
1

2
, d∗,λmax (M)

¶ , and α3 =
ε

α2
are positive scalar constants, and λmax(M) ∈ R1 denotes

the largest eigenvalue of the inertia matrix of the UAV.

We now proceed to establish the boundedness of all sig-
nals in the system. As evident from (106) and (111),
ep(t), r(t), eθ(t), η(t) ∈ L∞. From Assumption 5 stated pre-
viously, and from (83), (88), (92), and (93), it follows that
xIIF (t), eθ(t), v

F
IF (t) ∈ L∞, and from (101), N12(t) ∈ L∞. It

can be observed from (1) that ẋIIF (t) ∈ L∞. From (100),
N11(·) ∈ L∞, and hence, from(54), ζ1(·) ∈ L∞. Therefore,
U(t) ∈ L∞ (see (103)), and consequently, Ūn(t) and Ū(t)
are all bounded signals. Hence, it is evident from (46) and
(99) that ωn(t),ωFIF (t) ∈ L∞, and u1(t), θ̇c(t) ∈ L∞. We
have now shown that all signals that define the time deriv-
atives of r(t), ep(t) and eθ(t) are bounded. Hence, it is easy
to see from an examination of the time derivatives of (93)
and (103) that v̇FIF (t), U̇(t) ∈ L∞. Hence, ˙̄Un(t) ∈ L∞. The
dynamics of η(t) is the same as in the leader-follower case,
and it is evident that N22(·) ∈ L∞. Hence, it follows from
(55) that ζ2(·) ∈ L∞. We therefore conclude from (104) that
FFt (t) ∈ L∞, and from the UAV rotational dynamics in (4)
that ω̇FIF (t) ∈ L∞. Hence, all signals in the system remain
bounded during closed loop operation.

Simulation Results: The UAV mass and inertial pa-
rameters were selected as given in (68) and (69), respec-
tively. The simulated vision system is similar to that de-
scribed for the leader-follower case, except that the feature
points were assumed static and located on the ground plane.
The desired trajectory was a 25 meters radius circular path
in the XY plane, 10 meters above ground (z = −10 m).
The UAV initial position and orientation angles were set to£ −1 1 −1 ¤T (meters) and £ 0.01 0.01 1.57

¤T
(ra-

dians), respectively. Through trial and error, the various
control gains were selected as follows

kp = 20, kr = 2, kη = 20 (113)
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Figure 8: The desired (¤) and actual trajectories (4).

ε1 = 1, ε2 = 0.1 (114)

δ =
£
0.5 0 0.5

¤T
. (115)

The desired and the actual trajectories are depicted in Fig-
ure 8. The error signals ep(t) and eθ(t) are shown in Figure
9. From Figure 10, it can be seen that the control inputs to
the UAV remain bounded at all times. Similarly, the PTCU
angular velocity input is shown in Figure 11.

Appendix II: Time Derivative of Auxiliary
Control Signal Ūn(t)

From (50), the auxiliary control signal Ūn(t) is given as fol-
lows

Ūn = B
−1
2 B−11 U (116)

and the known and unknown components in its time deriv-
ative can be written as follows

˙̄Un1 = B−12 B−11 U̇1 +B
−1
2 Ḃ−111 U + Ḃ

−1
2 B−11 U, (117)

˙̄Un2 = B−12 B−11 U̇2 +B
−1
2 Ḃ−112 U (118)

where Ḃ−111 (t) and U̇1(t) denote the known terms in the time
derivatives of B−11 (t) and U(t), respectively, and similarly,
Ḃ−112 (t) and U̇2(t) denote the unknown terms. We will now
show the expressions for each of the terms in the equations
(116), (117) and (118) for the leader-follower case presented
in the body of the paper, and the trajectory tracking devel-
opment provided in Appendix I.

Leader-Follower Case: The inverse of B1(t) and B2(t)
defined in (42) and (43), respectively, can be expressed as
follows

B−11 =

∙ −RFC 03×3
03×3 −RFCL−1ω

¸
, (119)
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Figure 9: UAV position (ep(t), dimensionless) and orien-
tation (eθ(t), m-rad.) tracking errors.
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Figure 10: Control effort for the trajectory tracking UAV.
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Figure 11: PTCU angular velocity inputs.

B−12 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mδ1
δ3

mδ2
δ3

m
−sin(θp)δ1

δ3α1

1
δ3

0
−cos(θp)

α1
0 0

−sin(θp)
α1

0 0
sin(θp)δ1
δ3α1

-1
δ3

0
1
α1

0 0

0 0 0

0
−sin(θp)δ1

α1

cos(θp)δ1
α1

0
−sin(θp)δ2

α1

cos(θp)δ2
α1

0
−sin(θp)δ3

α1

cos(θp)δ3
α1

1
sin(θp)δ1

α1

−cos(θp)δ1
α1

0 δ3
α1

−δ2
α1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (120)

α1 = cos(θp)δ3 − sin(θp)δ2 (121)

where

L−1ω = I3×3 + φ
2 sinc

2 ¡φ
2

¢
S(µ) + (1−sinc(φ))S(µ)2. (122)

The time derivatives of B−11 (t) and B−12 (t) are as follows

Ḃ−111 =

"
−ṘFC 03×3
03×3 −RFCL̇−1ω1−ṘFCL

−1
ω

#
, (123)

Ḃ−112 =

"
03×3 03×3
03×3 −RFC L̇−1ω2

#
, (124)

Ḃ−12 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
−δ1
α21

0 0 0
−δ2
α21

0 0 0
−δ3
α21

0 0 0
δ1
α21

0 0 0
−α2
α21

0 0 0



0 0
−δ1δ3
α21

δ1δ2
α21

−δ2δ3
α21

δ22
α21

−δ23
α21

δ2δ3
α21

δ1δ3
α21

−δ1δ2
α21−δ3α2

α21

δ2α2
α21

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
θ̇p, (125)

α2 = −sin(θp)δ3 − cos(θp)δ2 (126)

where ṘFC(t) is given by (10), and the time derivative of
L−1ω (t) is expressed as the sum of known terms L̇−1ω1 (t) and
unknown terms L̇−1ω2 (t) as follows

L̇−1ωi = S(µµT ėθi)
£¡
sinc(φ)− 1

2 sinc
2 ¡φ

2

¢¢
I3×3

−
µ
cos(φ)−sinc(φ)

φ

¶
S(µ)

¸
− 1
2 sinc

2 ¡ φ
2

¢
S
¡
S(µ)2ėθi

¢
− (1−sinc(φ))

φ

³
µėTθiS(µ)

2

+S(µ)2ėθiµ
T
´
, (127)

where ėθ1 = −LωRCF
³
ωFIF + Jcθ̇c

´
, (128)

and ėθ2 = Lωω
C
IL. (129)

Similarly the time derivative for the control signal U(t) de-
fined in (57) can be obtained by substituting the time deriv-
atives for x̄h(t) and r(t) from (34) and (45), and expressing
them in terms of known and unknown terms U̇1(t) and U̇2(t),
respectively, as follows

U̇1 =

µ
kr +

ζ21
ε1

¶µ∙
S
¡
ωCIC

¢
rp

03×1

¸
− B̄Ū

¶
+

∙
S
¡
ωCIC

¢
x̄h

03×1

¸
− 2ζ1

ε1
ζ̇11r (130)

U̇2 =
1

d∗

³
RCF v

F
IF + S

³
ωCIL

´
R̄xCCL∗ − vCIL

´
−
µ
kr +

ζ21
ε1

¶
(N11 +N12)− 2ζ1

ε1
ζ̇12r (131)

where ζ̇11(t) and ζ̇12(t) are the known and unknown terms
in the time derivative of ζ1(t).

Trajectory Tracking Case: The inverse of B1(t) defined
in (97) can be expressed as follows

B−11 =

∙
I3×3 03×3
03×3 −RFCL−1ω

¸
(132)

where L−1ω (t) is defined in (122). The time derivative of
B−111 (t) is as follows

Ḃ−111 =

"
03×3 03×3
03×3 −RFC L̇−1ω1−ṘFCL

−1
ω

#
(133)

where ṘFC(t) is given by (10), the time derivative of L
−1
ω (t)

is shown in (127), and ėθ1(t) and ėθ2(t) are given as follows

ėθ1 = −LωRCF
³
ωFIF + Jcθ̇c

´
, (134)

ėθ2 = Lωω
C
ICd . (135)

The expression for B−12 (t) and its time derivative are given in
(120) and (125), respectively. Similarly the time derivative
for the control signal U(t) defined in (103) can be obtained
by substituting the time derivatives for ep(t) and r(t) from
(90) and (95), and expressing them in terms of known and
unknown terms U̇1(t) and U̇2(t), respectively, as follows

U̇1 =

µ
kr +

ζ21
ε1

¶µ∙
S
¡
ωFIF

¢
rp

03×1

¸
− B̄Ū

¶
+

∙
S
¡
ωFIF

¢
ep

03×1

¸
− 2ζ1

ε1
ζ̇11r (136)

U̇2 = − 1
d∗

³
vFIF −RFI ẋIIFd

´
−
µ
kr +

ζ21
ε1

¶
(N11 +N12)− 2ζ1

ε1
ζ̇12r (137)

where ζ̇11(t) and ζ̇12(t) are the known and unknown terms
in the time derivative of ζ1(t).


