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Abstract

This technical report consists of an introductory paper and three techni-
cal papers presented at the session, “Al Application of Supercomputers: The
Vision Problem,” at the Fourth International Conference on Supercomputing,
Santa Clara, California, April 30 to May 5, 1986.
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A1 Application of Supercomputers:
| The Vision Problem

Oscar Firschein and Martin A. Fischler

Artificial Intelligence Center
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

February 21, 1989

Abstract

For the session “AIl Application of Supercomputers: The Vision Problem,” in the
Fourth International Conference on Supercomputing, the major problems in computer
wision are outlined, and the “signals to symbols” (S5) and the “monolithic comput-
ing”(MC) approaches to these problems are described.® We note that the availability
of parallel computation makes the MC approach feasible.

Introduction

Computer Vision, as a scientific endeavor, can be viewed as an attempt to solve
a set of specific problems concerned with deducing the nature of the surrounding
environment from imaged data. The most prominent of these problems are:

¢ Modeling scene geometry
¢ Detecting and delineating significant scene structures (perceptual grouping)

¢ Naming or labeling the detected scene structures

*Support for this work was provided by the Defense Advanced Research Projects Agency under
contracts DCAT6-85-C-0004 and MDA903-86-C-0084.
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Raw sensed data are transformed into a description of the scene by a series of inductive steps.

Figure 1: The signals-to-symbols paradigm for computational vision

A number of additional issues and problems must be addressed to build practical
and effective vision systems. These include the need for:

» An architectural concept for integrating the components of the system

o A way of internally representing prior knowledge and the instantiated models
(what knowledge do we store, and in what form do we store it)

* A way of communicating with the outside world and, especially, a way of allow-
ing a human operator to visualize the environmental model constructed by the
machine

Two major architectural paradigms have evolved for dealing with the first three
problems. The dominant paradigm, signals-to-symbols (§3), views the visual process
as the construction of a layered set of representations that describe the external
world with successively more semantically oriented and globally referenced concepts.
As shown in Figure 1, at the lowest levels of the “interpretation pyramid” (i.e., at
the levels closest to the sensor), “local” processes act on an image or image pair, to
delineate coherent regions and intensity events (e.g., edges), to find correlations (e.g.,
disparities) between points or regions in one or more of the images, and to provide
measurements over an image of such point properties as color and texture. Processes
at an intermediate level employ context and generic (world) knowledge to recover
geometric (e.g., surface depth and orientation, object boundaries) and photometric
(e.g., shadows, surface color) information about the scene. At the highest level, that
of semantic interpretation, either explicit names or class labels are assigned to the
delineated scene objects.



The second major architectural concept, which can be termed the monolithic
computation (MC) paradigm, is based on the idea that the relation between image
data and the scene model is best described by an objective function (to be optimized),
or by a set of constraints or equations (to be satisfied}; the intermediate states in the
computational process do not necessarily have any obvious semantic meaning (as they
do in the signals-to-symbols paradigm). Variants of the MC paradigm include signal
theory, statistical decision theory, connectionism, and neural-net approaches.

Neither SS nor MC has as yet allowed its adherents to construct a general-purpose
vision system that can successfully operate in the outdoor world. Some of the main
reasons for this state of affairs are given below (more detailed discussions are presented
elsewhere [3, 4]):

o Neither approach has evolved effective mechanisms for linking measurable image
attributes to the function, purpose, or intent of the scene objects to be identified.

Thus, recognition must be based on immediate appearance — which is too
restricted a base for identifying many of the objects we are typically interested
in,

o Neither approach has provided an effective way to describe or represent complex
objects or object classes (e.g., vegetation), the difference in appearance between
members of such classes (e.g., between cats and dogs), or flexible or articulated

.objects (people, water, a piece of string), or “formless” objects (a crumpled
piece of paper, a sweater lying in a heap, a rock). Thus, recognition is typically
limited to objects that can be described by simple or explicit shape models, or
that have relatively unique attributes (e.g., a distinguishing color).

o Neither approach offers a prescription for actively interacting with the surround-
ing environment in acquiring sensory information, or even for effectively using
the sequence of images returned by a sensor moving through its environment.
Thus, low-level analysis is usually based on the information contained in a single
image or, at best, the correlations between a pair of images.

One major difference between SS and MC is that SS is inherently “local” in its
processing of low-level information — it has no effective way of taking advantage of
context, and thus of being able to judge the “correctness” of the low-level decisions it
makes, or to properly set the inevitable parameters controlling the behavior of the low-
level analysis techniques. Theoretically, feedback from the higher levels (in SS) should
be able to deal with the above problems, but in practice, no such solution has yet been
demonstrated to be effective. A major advantage of MC is that it provides a natural
way of employing “context” because it deals with all of its information at once, rather
than partitioning the analysis into a series of relatively independent subproblems.
Partitioning, of course, is a way of dealing with computational complexity, and MC
techniques generally require immense computational resources for real-time operation.
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The Role of Parallel Computation in MC

QOur current work at SRI International addresses the above problems. A major
theme of our research is an attempt to understand how to effectively use various forms
of optimization and global analysis (at least within semantically coherent portions of
the modeling task) — i.e., a move toward the MC end of the spectrum. The three
papers presented at this session use an MC approach in the context of the stereo vision
problem, the scene partitioning problem, and the problem of recognizing cultural
features.

Stereo vision. Barnard [1] has developed a stereo algorithm (Hierarchical Stochas-
tic Stereo, or HSS) that embeds local matching of individual pixels in a global opti-
mization framework. The approach uses stochastic techniques to optimize an objec-
tive function that rewards correspondences between pixels that are similar in intensity
value and whose disparities are similar to those of their neighboring pixels. “Simulated
annealing” over a hierarchy of images is used to find the complete set of correspon-
dences that best satisfies the objective function. Because individual pixels (rather
than finite areas) are matched, projective distortion is no longer a problem and the
system can exploit the full resolution of the digitized image rather than the effectively
reduced resolution created by a correlation “patch.” Experiments show that this ap-
proach can successfully compile a dense depth model of natural three-dimensional
scenes. We have used this technique to produce dense elevation maps of a test site
outside of Denver — we can map on 0.3-meter centers as compared with 5 meters in
the best previously available digital terrain maps.

Scene partitioning. A paper by Leclerc [5] introduces and formalizes an optimization-
based approach, applicable to both image partitioning and subsequent steps in the
scene analysis process, which involves finding the “best” description of an image
in terms of some specified descriptive language. Leclerc employs a language that
describes the image in terms of regions having a low-order polynomial intensity varia-
tion plus white noise; region boundaries are described by a differential chain code. A
continuation method is used to find a best description, in the sense of least encoding
length, that is both stable (i.e., minor perturbations in the viewing conditions should
not alter the description) and complete (i.e., the image, including any noise or errors,
must be completely explained by the description).

Recognizing cultural features. Fua and Hanson [2] have proposed to extract
generic shapes from monoscopic and stereoscopic imagery based on generating shape
hypotheses and ranking them according to a model-based measure. As in the case of
Leclerc, they show that this process finds the “best” description of the scene in terms
of the shape models used, and can be understood as the optimization of an objective
function. Because the search space is extremely large, their implementation on a
conventional computer uses the SS paradigm to guide the search. Using a parallel
machine, they can now investigate methods for performing the optimization in the
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MC framework. In their recent work, they explore ways to outline object contours
automatically, given a very rough estimate of the location of the object. This is
done by modeling object boundaries as smooth curves and deforming the curves so as
to optimize the fit to the image data. The fit is based on a model requiring smooth
intensity variation within bounding contours, and preservation of contour shape when
multiple images are available. This technique is powerful because it uses the image
information to its full extent, but a large amount of computation is required at every
step of the optimization process.

All of these approaches are made practical only because of the availability of par-
allel computation. We expect fast parallel computers to exert an important influence
on the solution of some of the basic vision problems.

References

[1] Barnard, S.T., “Stochastic Stereo Matching Over Scale,” International Journal
of Computer Vision, 2(4), 1988.

[2] Fua, P.V. and A.J. Hanson, “Extracting Generic Shapes Using Model-Driven
Optimization,” Proceedings of the DARPA Image Understanding Workshop,
Cambridge, MA, pp.994-1001, April 1988.

[3] Fischler, M.A., and O. Firschein, Intelligence: the Eye, the Brain, and the Com-
puter, Addison-Wesley, Reading, MA, 1987.

[4] Fischler, M.A. and O. Firschein, Readings in Computer Vision, Morgan-
Kaufmann, Los Altos, CA, 1987.

[5] Leclerc, Y.G., “Constructing Simple Stable Descriptions for Image Partition-
ing,” International Journal of Computer Vision, 2(4), 1988.






Stochastic Stereo Matching
on the Connection Machine

Stephen T. Barnard

Artificial Intelligence Center
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Abstmqt

A stochastic approach to stereo matching is presented.* A microcanonical version
of stimulated annealing is used to approzimate the ground states of a thermodynamic
model system. The potential energy of the system combines two measures of the quality
of a dense, two-dimensional disparity map: (1) the photometric error belween corre-
sponding points, and (2) the first-order variation (the “flatness”) of the map. The
method operates over a series of increasingly finer spatial scales. The implementation
of this method on the Connection Machine'™ is discussed.

Introduction

Compared to other modes of depth perception, stereo vision seems relatively
straightforward. The images received by two eyes are slightly different due to binoc-
ular parallax; that is, they exhibit a disparity that varies over the visual field, and
that is inversely related to the distance of imaged points from the observer. If we can
determine this disparity field we can measure depth and mimic human stereo vision.
Few problems in computational vision have been investigated more intensively.

*Shpport for this work was provided by the Defense Advanced Research Projects Agency under
contracts DCAT76-85-C-0004 and MDA903-83-C-0084.



We describe an approach to stereo in which the matching problem is posed as
computational analogy to a thermodynamic physical system. The state of the system
encodes a disparity map that specifies the correspondence between the images. Each
such state has an energy that provides a heuristic measure of the “quality” of the
correspondence. To solve the stereo matching problem, one looks for the ground
state, that is, the state (or states) of lowest energy. This paper is a condensation and
revision of an earlier paper [1] and emphasizes some aspects of the implementation
on the Connection Machine.!™

Several features of the Connection Machine naturally fit computational vision
problems of this type:

» The most important feature is its massive parallelism — up to 64K individual
processors, each with 64K bits of memory. Many vision tasks are most natu-

rally expressed as optimization problems on two-dimensional lattices of typically
256 x 256 = 64K pixels.

¢ The Connection Machine architecture is flexible. It does not restrict the user
to a fixed lattice size, or even to one- or two-dimensional lattices. In general,
n-dimensional lattices are supported, with n a power of 2 and greater than some
bound that depends on the system’s configuration.

o Another attractive feature of the Connection Machine is its general method of
interprocessor communication. Two varieties of message-passing networks are
provided: a boolean n-cube router for general communication and a “NEWS”
grid for communication between processors arranged in regular lattices.

¢ Finally, and not to be underestimated, is the excellent user interface of the
Connection Machine, including language processors that are straightforward
extensions of standard languages! and a graphic display system that provides a
high-speed “window” into the system’s memory.

The Stereo Matching Problem

Most approaches to stereo matching can be divided into three classes: correlation,
feature-matching, and lattice models. Correlation, in its basic form, is the most
obvious. Intensity patches in one image are matched to patches in the other image
with search, typically using a normalized cross-correlation as a measure of similarity or
a normalized mean-square-difference as a measure of dissimilarity. Many variations
of this basic theme have been explored. The feature-matching approach matches

1We use *Lisp, which is an extension of Common Lisp. Parallel versions of Fortran and C are
also available.



directly between discrete sets of points — typically, the output of an edge detector,
such as zero-crossing contours. Both suffer from similar difficulties:

¢ The size of the correlation patch or the support of the feature operator affects
the likelihood of false matches. A correlation patch must be large enough to
contain the information necessary to specify another patch unambiguously or,
failing this, some additional means of disambiguating false matches must be
used. Similarly, feature operators with small support will detect many features.

+ At the same time, the correlation patch or the feature-operator support must
be small compared to the variation in the disparity map. If either is too large,
the system will be insensitive to significant relief in the scene.

e In typical images much of the area consists of uniform or slowly varying intensity
where neither correlation nor feature matching will be effective.

Lattice models pose the stereo matching problem in terms of optimizing a measure
that is usually interpreted as the energy of a lattice of interacting elements. To take
one example, Julesz proposed a model consisting of two lattices of spring-loaded
magnetic dipoles, representing the two images of a random-dot stereogram [2]. The
polarity of the dipoles represents whether pixels in the left and right images are black
or white. A state of global fusion is achieved in the ground state, with the attraction
or repulsion of the dipoles balanced by the forces of the springs.

A Scaled-Lattice Model

The Stereo Energy Equation

Consider the foliowing equation:

£= [ [1tl~2.9)~ Rls+ 5,9)7 + N(VD)}dzdy , (1)

where £ and R are piecewise-continuous intensity functions of the left and right visual
fields, D = D(x,y) is a cyclopean disparity map, and A is a constant. Each value of
D specifies two corresponding points: (z — D/2,y) and (z + D/2,y).

If we assume that £ and R are commensurate, the first term in the integrand
represents the photometric error associated with D. The second term is the first-
order variation of D, or a measure D’s “fatness.” By minimizing £ with respect to
D, therefore, we should find the simplest disparity map (in the sense of flattest) that
adequately explains the image data.
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vertical springs: spring constant ky, rest length 5,

horizontal springs: spring constant kj, rest length 53 = f;

Figure 1: A spring model

Notice that disparity is a scalar field. Corresponding points may have different
z coordinates, but they will always have the same y coordinate. This is a common
assumption and involves no loss of generality: if the relative positions and orien-
tations of the two cameras are known, as well as the internal camera parameters,
correspondences are restricted to a family of epipolar lines. If the epipolar lines are
not horizontal the images can easily be mapped into a normal stereo pair in which
they are. We can write the 3D coordinates of the scene in the coordinate frame of
the left camera as: 5

B
p(:l:, y) = B(I - E')y:f):

where B is the baseline separation and f is the focal length.

Because we will refer to £ as the energy of our system, it is helpful to have a picture
of why this interpretation makes sense. One can readily see [1] that £ corresponds
to the potential energy of a system of coupled springs illustrated in one dimension in
Figure 1.

The model consists of two surfaces, R(z,y) below and L(z,y)+S5) above. Midway
between these surfaces is a lattice of pivot points, and at each such point is an elastic
lever arm, with rest length 5, and spring constant &,. The lever arms are free to rotate
in the (z, z) plane (i.e., in epipolar planes), while their endpoints are constrained to
lie on the two surfaces. The lever arms are connected to their neighbors by other
springs with spring constant k; that exert torques over moment arm A. The angles
of the lever arms represent disparity on an M? cyclopean lattice.



It is easy to show that the energy of this system is proportional to £, with
k 2
A= (2 (i) .
k1) \5
Approaches to Minimizing E

Minimizing &£ directly is difficult because it is nonlinear. Witkin et al. described a
method for optimizing a generalization of Eq. (1) that is essentially a sophisticated
form of gradient descent that tracks the solution over increasingly finer scales [3].
The hope is that £ is convex at a coarse scale and that relatively coarse intermediate
solutions will place the system in the correct convex region at finer scales. They report
that the method is prone to error when it encounters bifurcations in its trajectory.
As the scale becomes finer, the system must “choose” which path to follow, and it
cannot recover from a mistake because £ may never increase. The solution is therefore
critically dependent on initial conditions.

Another approach would be to simulate the dynamics of the spring model. A
physical realization of the spring model would be a dynamic system of oscillators
that would follow a trajectory through a 2M? dimensional phase space. (Each lever
arm has two degrees of freedom: 4 and 9) We could flesh out this model by specifying
the moments of inertia and damping coefficients of the lever arms. We could also add a
periodic forcing function to add energy to the system, balancing the energy dissipated
by damping. Having done this, we could could write the differential equations of
motion describing the model’s deterministic dynamic behavior. In principle, we could
trace the trajectory of the system through its phase space, gradually reducing the
amplitude of the forcing function while keeping the system in dynamic equilibrium.
There is little point in simulating the dynamics in such detail, however, because we
know that even low-dimensional forced oscillators have chaotic attractors [4]. The
dynamics will be effectively stochastic.

The remainder of this paper describes an alternative and much less expensive
approach. Instead of modeling the full dynamics of the system, it models only the
thermodynamics. Kinetic energy is modeled as heat.

A Discrete Model

At this point, we will discretize the problem by defining the lattices D, L, and R on
D, £, and R. D now has integer values and is interpreted as:
L;_ [ﬂ“"—j.j corresponds to Ri+|'p- .]’j .

—ul
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Eq. 1 becomes

B L[5, Rafg) S #1007 ) @

J 5

where

AD;; = \/ 2 (Dij—Dya)*.
kAEN; 5
N ; denotes the four nearest neighbors of (7,7). In terms of the spring model, the

ends of the lever arms are now constrained to lie on a finite number of positions on
the two surfaces.

Scaling

Disparity scales linearly with the size of the image. This suggests that a stereo
matching system can begin its search at a coarse scale, find an approximate result,
use this result to initialize its search at a finer scale, and so on. This has two benefits:
it improves the efficiency of search by allowing the system to work initially in smaller
phase spaces, and it reduces the false target problem by using a range of spatial scales.
Large features are first detected at coarse scales, and their locations in finer scales
are constrained. '

We can construct a sequence of n lattices, {D*} for & = 0,n — 1, which represent
disparity maps of increasing precision, defined by the following rule:

SN ¢ '
D%, =L PP |_D_;J'J ; corresponds to R cyneked [D_;q s (3)

Suppose the maximum range of disparity between a pair of images is [-2*~1+41,2"1].
The D° that matches these images must be binary, and it should be relatively easy
to find the best D° because the phase space is relatively small. We can then use 2D*
as the initial condition of a search for D**!, until finally D™~! will match the images
with single-pixel precision. :

When using this scaling method it is necessary to filter L and R to avoid alias-
ing. We use a difference-of-Gaussians (DOG) approximation to the Laplacian of a
Gaussian. This transform can be computed efficiently by recursively applying a small
generating kernel [5] to create a low-pass Gaussian sequence, and then differencing
successive low-pass images to comstruct the bandpass DOG sequence. Low-pass fil-
tering alone is adequate to avoid aliasing, but the bandpass filtering is useful for
eliminating low-frequency error.



Stochastic Optimization'

Standard (Canonical) Annealing

Simulated annealing is a fairly new technique for solving combinatorial optimiza-
tion problems. The next section presents a new variety of simulated annealing (called
microcanonical annealing) that has several advantages for computer implementation.
In this section the basic principles of the standard form of simulated annealing are
described to set a context for the introduction of microcanonical annealing.

The most fundamental result of statistical physics is the Boltzmann (or Gibbs)
distribution

P - exp(—E;/kT)
YT Y exp(—E,JET) ]
which gives the probability of finding a system in state ¢ with energy F;, assuming
that the system is in equilibrium with a large heat bath at temperature ¥T. (The
constant k (Boltzmann’s constant) converts temperature to units of energy. In the
following discussion we will assume that T = k7".) The normalizing quantity in the
denominator, called the partition function, is a sum over all accessible states.

Physicists would like to be able to calculate macroscopic equlibrium properties of
model systems. In 1953 Metropolis et al. [6] described a Monte Carlo algorithm that
generates a sequence of states that converges to the Boltzmann distribution in the
limit. This method, which simulates the effect of allowing the system to interact with
a much larger heat bath, samples what is called the canonical ensemble. Macroscopic
parameters can then be calculated without knowledge of the partition function by
averaging over long sequences.

The Metropolis algorithm begins in an arbitrary state-and then successively gen-
erates candidate state transitions {v — v’} at random. A transition is accepted with
the following probability:

1 if AE <0

’ no__
Pr(v = Vv = { exp(—AE/T) otherwise (4)

where AE = E,» — E,. Asymptotic convergence of the Metropolis algorithm to the
Boltzmann distribution is guaranteed if the process for generating candidate state
transitions is ergodic.

Kirkpatrick et al. [7] and Cerny [8] independently recognized a connection between
the Metropolis technique and combinatorial optimization problems. If the energy of
a state is considered as an objective function to be minimized, the minimum can
be approximated by generating sequences at decreasing temperatures, until finally a
ground state, or a state with energy very close to a ground state, is reached at ' = 0.
This is analogous to the physical process of annealing.
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There are results showing the existence of annealing schedules (i.e.; the rate of
decrease of temperature) that guarantee convergence to ground states in finite time
[9], but these schedules are too slow for practical use. Faster ad hoc schedules have
been used in many problems with good average-case performance. While these faster
schedules may not find an optimal state, they can converge to states that are very
close to optimal. '

Microcanonical Annealing

Creutz [10] has described an interesting alternative to the Metropolis algorithm. In-
stead of simulating the effect of a large heat bath, the Creutz algorithm simulates
a thermally isolated system in which energy is conserved. Samples are drawn from
the microcanonical ensemble. One can imagine the difference between the Metropolis
algorithm and the Creutz algorithm as follows. The Metropolis algorithm generates
a “cloud” of states, each with, in general, different energies, which fills a volume of
phase space. As temperature decreases this volume contracts to one or more ground
states. The Creutz algorithm, by contrast, generates states on a constant-energy sur-
face in a somewhat larger phase space. As energy decreases these surfaces shrink to
the same set of ground states.

The simplest way to accomplish this is to augment the system with one additional
degree of freedom, called a demon, which carries a variable amount of energy, Ep.
This demon holds the kinetic energy of the system and, in effect, replaces the heat
bath. The total energy of the system is now

Etotal = Epotential + Ek:'nctic
= E+ Fp

The demon energy, being kinetic, is constrained to be nonnegative. The algorithm
accepts all transitions to lower energy states, adding —AFE (the energy given up) to
Ep. Transitions to higher energy are accepted only when AFE < Ep, and the energy
gained is taken away from FEp. Total energy remains constant.

Microcanonical annealing simply replaces the Metropolis algorithm with the Creutz
algorithm. Instead of explicitly reducing temperature, the microcanonical annealing
algorithm reduces energy by gradually lowering the value of Ep. Standard arguments
can be used to show that at equilibrium Ep assumes a Boltzmann distribution over
time [10]:

Pr(Ep = E) «x exp(—E/T) .

Temperature therefore emerges as a statistical feature of the system:

T = (Ep) . (5)
Microcanonical annealing has several advantages over standard annealing:

8



e It does not require the evaluation of the transcendental function exp(z). Of
course, in practice this function can be stored in a table, but we would like our
algorithm to be suited to fine-grained systems with very limited local memory,
like the Connection Machine.

e It is easily implemented with low-precision integer arithmetic — again, a sig-
nificant advantage for simple hardware implementation.

¢ In the Metropolis algorithm a state transition is accepted or rejected by com-
paring exp(—AE/T) to a random number drawn from a uniform distribution
over [0, 1], and these numbers should be accurate to high precision. The Creutz
algorithm does not require high-quality random numbers.

Implementation Details

The program is implemented in Release 5.0 *LISP and is fully compiled with the
*LISP compiler. The Connection Machine at SRI is one-eighth of a full machine (8K
vs. 64K processors). We have two Symbolics Lisp Machine front ends.

The input to the program is two images, L and R, and a number n that specifies
how many levels of scaling are used. The images are assumed to satisfy the horizontal-
epipolar condition and to have dimensions of the form (2™ 2V), M,N > 6. The
Connection Machine is assumed to be booted into the same configuration.?

The program then DOG filters L and R to create the sequences of bandpassed
images {L*}, {R*} for k =0,n — 1.

Next, beginning with zero disparity at level 0, the program executes a series of n
heating and cooling cycles, using the result at level £k — 1 to initialize D¥, generating
a sequence of states:

(53...5&)...(53—1 . 5pTh),

ln—l

A transition between levels amounts to doubling the disparity values and updating
the rule for interpreting D (see Eq. 3).

The value of T = {Ep) of each state of a typical run is plotted in Figure 2. Notice
that this run has four levels of scaling. We raise the temperature to T' = 300 by
successively adding 10 units to each demon on each iteration. The system is allowed
to dwell at T = 300 for awhile, and is then cooled by removing three units from each
demon on each iteration. Except for the last cycle, cooling below about T = 150 is
wasted effort because the fine structure “frozen in” below this temperature will be
destroyed in the next heating cycle.

2The Connection Machine allows the user to have more than one configuration simultaneously,
but this feature is not required here.



Figure 2: 7' = {Ep)

Let r,, be the ratio of the observed average demon energy to the standard deviation
of the same observed distribution:

)
re'i' - J(ED) . (6)

At equilibrium Ep will have a Boltzmann distribution, which implies that 7., =1 .
Figure 3 shows a plot of r., for the same run as in Figure 2. Note that the plot
of re, indicates that the system moves away from equilibrium during the relatively
fast heating cycles, but relaxes quickly back to equilibrium after cooling starts. The
system appears to drop away from equilibrium at low temperatures according to
the r,, plot, but this effect is actually because there are relatively few energy levels
available to the demons near the ground state.

Choosing parameters of this procedure — heating and cooling rates, termination
conditions, and so on — remains an art, as in virtually all applications of simulated
annealing. The results in Section 0.4 were generated with a common parameter set
that was determined empirically from tests on a wide variety of images. A value of
A = 64 works well for typical images quantized into 8 bits.

As with the Metropolis algorithm, the Creutz algorithm converges to the Boltz-
mann distribution in the limit for any ergodic process generating candidate state
transitions. Of course, different state-transition schemes will affect the rate of con-
vergence. We have found the following simple method to be adequate:

} _— .5 if ld—d’|—_—1.
Pld—d)= { 0 otherwise.

In other words, the disparities increase or decrease by one lattice position, or remain
unchanged if the transition is rejected, as the system follows a Brownian path on its
phase-space surface of constant energy.
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Figure 3: 7, = {Ep).

Boundary conditions can be troublesome. Nonzero disparities near the edge of
the lattice can match image points off the lattice. When this occurs we assign the
photometric term in Eq. 2 a value equal to the current temperature, effectively placing
an energy barrier at the boundary.

Annealing in Parallel

The essential inner loop of the algorithm, called a “full-pass”, tries exactly one
random transition for each lattice site. It is important to realize that we cannot
update all sites in parallel. One full-pass should leave the total energy £ + Ep
unchanged, but this is not ensured if two neighbors are updated simultaneously. This
presents no problem for four-neighbor interactions: the lattice can be split into two
“checkerboard” subsets that are updated sequentially. More complex neighborhoods
would require more subsets, reducing parallelism.

The basic version of microcanonical annealing, using only one demon, is not suited
to a parallel implementation. Each decision to accept or reject a state transition
depends on the value of Ep and, therefore, on the previous decision. Instead, we
use a lattice of demons. Temperature is still measured with Eq. 5, but using the
distribution of Ep over space rather than time. Statistics can be sampled over both
time and space, if desired.

There is a minor complication in using a lattice of demons. The single-demon algo-
rithm visits sites at random and the demon allows energy to be transferred throughout
the lattice. Similarly, in the lattice-of-demons algorithm the demons must be mixed
throughout the lattice. We use a complete random permutation of the demons after
every lattice update, but more local methods are also adequate.
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lattice computer VP ratio time factor-speedup
SLM n.a. 19.4 sec. n.a.
]282 4K 4 .28 sec 69
8K 2 26 sec. 74
SLM n.a. 76.7 sec. n.a.
2 4K B 54 142
256 54 sec.
4 36 sec. 213
8k

Table 1: Symbolics 3600 vs. Connection Machine

Experimental Results

This section presents experimental results for two distinct cases: an aerjal stereo
pair (Figure 4) and a ground-level scene with prominent occlusions (Figure 5}.

The figures show the two original images (both are 128 x 128} and the disparity
map at the end of each cooling cycle. Each example. required about 4 minutes of
processing time.

Table 1 indicates how different Connection Machine configurations compare to
a Symbolics 3600 Lisp Machine. The timings are for one full-pass. Note that the
efficiency of the Connection Machine depends strongly on the VP ratio, which is the
ratio of the number of virtual processors to physical processors. This is because the
overhead of the front end is too large to keep up with the Connection Machine at low
VP ratios.

Conclusions

The method fits the Connection Machine architecture very well and was quite
easy to implement. The processing is still too slow for real-time applications, but
is adequate for cartography. By using a new feature of the Connection Machine
software that allows the user to define virtual processor sets of different sizes, the
implementation will be able to process 1 X x 1K images in a reasonable time.

The use of a scale hierarchy dramatically increases the efficiency of the method,
especially for large problems such as those illustrated in Figures 4 and 5. An addi-
tional benefit of using a scale hierarchy is that the solution is less sensitive to small
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Figure 5: Ground-level stereogram results
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amounts of vertical disparity, which is eliminated at coarser scales. (Uncertainty in
the camera model will usually cause some vertical disparity in high-resolution im-
ages.) A Gaussian low-pass hierarchy works as well as the Laplacian hierarchy if the
images are recorded with equivalent sensors. The benefit of bandpass filtering is to
eliminate the low-frequency variation caused by uncalibrated photometry. Annealing
provides a way to bridge the gap between scales. The microcanonical annealing algo-
rithm appears to be an improvement over canonical annealing for reasons discussed
in the section on that algorithm.

Canonical annealing and “pure” single-demon microcanonical annealing are at
opposite ends of a spectrum. In canonical annealing the heat bath is much larger
than the model system, and is not represented explicitly. In pure microcanonical
annealing the heat bath — that is, the single demon — is much smaller than the
system, and it is represented explicitly. The lattice-of-demons algorithm is midway
between these extremes, with the heat bath and the model system having comparable
sizes. In a sense, this is a classical space/time tradeoff. By representing the heat bath
explicitly we can avoid the evaluation of complicated functions.
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Abstract

In real-world imagery, segmentation methods that rely on local image properties of-
ten fail to extract semantically meaningful features. We propose an objective function
that ezploits all the available photometric information. We take advantage of paral-
lelism to effectively compute and optimize this objective function in order to find object
outlines. We present our Connection Machine'™ implementation and show how this
technique can be used to delineate complez objects in aerial imagery and determine
their elevation when using stereo pairs of tmages.

Introduction

In real-world imagery, object boundaries cannot be detected solely on the basis of
their edge photometry because of the presence of noise and photometric anomalies.
Thus, methods for delineating objects based on purely local statistical criteria are
bound to make mistakes; no single parameter setting can be effective over different
areas of a single image, much less for multiple images.

We address this problem by introducing “score optimizing curves” that describe
objects as smooth or polygonal curves that enclose an area in the image. A global

*This research was supported in part by the Defense Advanced Research Projects Agency under
contracts DCAT6-85-C-0004 and MDA9S03-83-C-0084.



score is formed from these curves utilizing both edge information on the curve itself
and the photometric information in the entire delineated area. A parallel optimization
procedure deforms the curves to maximize the score and conform to object outlines.

Parallelism provides the computational power for performing the optimization in
real time: at every iteration of the optimization procedure, one must recompute the
photometric characteristics of the curve and its enclosed area. While this procedure
could be implemented on a serial machine, the computational burden increases with
the size of the enclosed area, making the optimization unacceptably slow for large
objects.

Such “score optimizing curves” were originated by Terzopoulos, Kass, and Witkin
as “snakes” [8, 14]. In their approach, boundaries are described as polygonal curves
with a score that includes geometrical constraints and a measure of edge strength.
“Snakes” do not take into account any photometric evidence outside the edge; they
yield good results only if the initial position of the curve is close enough to the
boundary of the object to be influenced by its edges. Because we also use interior
area information, our curves can easily grow or shrink if the initial position is very
inaccurate. By integrating more information, our algorithm also becomes more stable
and less sensitive to photometric anomalies. Furthermore, in this framework, we can
also take advantage of depth information and determine the elevation of an object
when working with stereo pairs of images.

In this paper, we first introduce our objective function. We then describe a parallel
implementation of the optimization procedure on a Connection Machine™ and show
how this technique can be used to delineate complex objects in aerial imagery and
determine their elevation.

Objective Function

Our goal is to extract objects that conform to a particular photometric model.
To discriminate among competing hypotheses, we need an objective function that
measures the goodness of fit to feature models including such characteristics as area,
edge, and stereo photometry, as well as shape or semantic relationships.

Because we must be able to combine corresponding measures for these models in
a commensurate fashion, we choose an information-theoretic approach that enforces
compatibility of the various measures. For each photometric model, we compute what
we call the effectiveness F' of the model that we define as the difference between the
number of bits needed to encode the photometry of a scene patch without the model
versus with the model. F is largest for patches that conform well to the model and
can therefore be described effectively in terms of it; F' measures the goodness of fit to
the model. For a theoretical justification of this approach, we refer the reader to the



Minimal Description Principle introduced by Rissanen [10, 11]. Our method shares
many basic concepts with the information-theory approach to segmentation described
by Leclerc [9] in these proceedings; however, because our goal is to extract objects of
interest rather than to segment the whole scene, many additional issues arise.

Two of the main characteristics of an object in an 1mage are its interior texture
and its contrast with the background, which produces edges. Here we explore simple
models for the textured area and for the edges of an object that have proven useful in
analyzing aerial imagery. The photometric evidence relevant to the edges comes from
background pixels that are independent of pixels interior to regions. Therefore, these
two measures are independent and we take the complete objective function F' to be
the sum of area and edge components, F' = Fy + Fg. When analyzing stereo pairs
of images, we also use a stereoscopic model and compute the elevation parameters of
an object in the scene by optimizing the corresponding stereo effectiveness Fs.

A more robust objective function would also include a term that measures the
geometric quality of a given curve and its conformity to a geometric model [3]. We
have not yet incorporated such a measure in our Connection Machine implementation,
and a complete discussion of a geometric term is therefore beyond the scope of this
paper. However, optimizing F' by itself is impractical because the “score optimizing
curve” would lose its shape during the optimization. As suggested by Terzopoulos,
Kass, et al. [14], we address this problem by introducing a deformation energy D
that increases when the curve becomes irregular and optimizing F' — D instead of F
this point is discussed in detail in the implementation section.

Essential Parameters of the Objective Function

We introduce two fundamental parameters, the scale and the shape coefficient:

e Scale, The scale is interpretable as the unavoidable dimensional factor that
converts dimensional quantities like area or length into dimensionless probabil-
ities. Area units are thus scaled down by two powers of the dimensional unit,
while boundary lengths are scaled down by a single power. The scale parameter
thus controls whether or not area signature dominates edge signature.

e Shape Coefficient. Because we introduce the deformation energy D in our
optimization, we must weigh its contribution using a shape coefficient. In our
implementation

D= )L?

where L is the squared length of the boundary of the patch and X the shape co-
efficient. [} is a smoothing term required to enforce regularity of the boundaries
because F' is a highly nonconvex function that would be difficult to optimize by
itself; A controls the amount of smoothing.
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We know of no a priori way to determine the scale and shape coefficient, because
they characterize the fundamental balance of influences that must be specified for
each application. Nevertheless, our approach provides a clear way to justify and
understand the essential roles of these two parameters in feature extraction.

Area Model for Homogeneous Regions

We model a homogeneoué region with area A, such as a building roof, as a pla-
nar intensity surface with a Gaussian distribution of deviations from the plane, plus
anomalous pixels whose values lie outside the peak of the distribution.

Figure 1: A stereo pair of images containing a large
building

Figure 1 shows a stereo pair of images, Figure 2 a the outline of the main rooftop
in the left image, and Figure 2 b the corresponding histogram of deviations from
the planar fit to the intensity surface along with the left and right bounds of the
main Gaussian peak. In Figure 2 c, the solid white area indicates the location of the
pixels within the peak. Black areas within the outline lie outside the peak and are
considered anomalous.

In an 8-bit image, it would take 8A bits to encode the pixel values if we did not
take advantage of dependencies among pixels. Simularly it would take k4 A bits to
encode the same information using our region model, where

kaA =n(logo +¢) + 87 — [nlog%+ﬁlog%} . (1)
Here o is the variance of the Gaussian distribution, n is the number of pixels in the
Gaussian, and = A —n, and ¢ = 1log(2me)*. Note that in the computation of the

*All logarithms in this paper are base 2 logarithns.
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Figure 2: (a) Outline of the main rooftop in the left im-
age of Figure 1 (b) Histogram of deviations
from the planar fit with left and right bounds
of the Gaussian peak. (c¢) The solid black ar-
eas within the contour indicate the location
of the pixels that do not belong to the main
Gaussian peak and are considered anomalous.

encoding cost, we have not included the cost of encoding the internal parameters of
the model, such as the slopes and intercept of the plane. It can be shown [10, 13]
that these costs are proportional to the logarithm of the area A and are therefore
very small compared to k4 A.

We weight all areas and lengths using the scale parameter s, so that the area
effectiveness becomes

F4 = bits(area without model) — bits(area with model)

8- k4. ©

Effect of anomaly discounting. In the left-hand graphs in Figure 3, we plot the
area effectiveness F4 as a function of the radius of a square-shaped patch at the center
of the images shown in the left column: a good but noisy synthetic image of a square,
the same image with edge jitter, and with gross area anomalies. When we compare
the results obtained aefter discounting anomalies (solid lines) with those found without
anomaly discounting (dotted lines), we see that anomaly discounting can easily be
entirely responsible for generating the local extrema (i.e., the desired shape) perceived
by human observers. This is potentially a critical factor in the practical application of
this approach because, as we see in Figure 2, real images nearly always have significant
anomalous components.



Paralle]l computation of the score. The score can be efficiently evaluated on
a Connection Machine because the computation only involves fitting a plane over a
patch, computing the deviations histogram, and finding for the Gaussian peak the
left and right bounds that yield the best value of F4. The planar fit requires a small
number of paralle] summations, and the histogram can be computed in one parallel
operation. All possible choices of the left and right bounds of the peak are then
evaluated simultaneously, and only the best are retained.

Edge Model

We adopt the definition [2, 7, 12] of edge pixels as maxima of the local image deriva-
tive. To enforce this criterion in our information theoretic framework, we propose the
following scheme.

We take the edge gradient to be g = (8I/8z)% + (8I/8y)® where I is the image
intensity. Assuming that g ranges between 0 and M, it would take logM bits per
pixel to encode gradient intensities of boundary pixels in the absence of a model.
The gradient of boundary pixels is expected to be higher than that of other pixels;
we model this fact by describing the edge strength in terms of a vocabulary that
favors high gradients. We assume that a pixel with gradient g can be described using
—log(g/c) bits where ¢ = M*/2 is a normalizing constant {(g/c is a probability density
that must sum to 1 over all possible values of g). :

We then weight all lengths by the scale factor s and estimate the edge effectiveness
to be, for a boundary of length L,

Fg = bits(edge without model) — bits(edge with model)
L 1 g
= -;10gM+;Zlog—c-
1

8

where v = M /2 and ¥ represents a summation over the boundary pixels.

In practice -y is computed as a percentage of the edge strength and treated as a
threshold value for the edge strength under which log(g/) is taken to be 0. It can
be shown [4] that all the points along a curve that maximizes Fg are maxima of the
edge gradient in the direction normal to the curve and therefore satisfy our definition
of an edge pixel.

The right-hand graphs in Figure 3 show the edge effectiveness of the boundaries of
the square patches discussed in the previous section, as a function of their radius. In
Figure 4, we plot the area and edge scores (with anomaly discounting) as a function
of size when square patches (solid lines) are compared to circular ones (dotted lines),
as applied to the images of Figure 3. In the case of the perfect square, the edge
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score clearly provides excellent discriminating power. However, in the case of the
square with edge jitter, the optimum of the edge effectiveness is much less distinct;
the combination of edge effectiveness and area effectiveness has more discriminating
power than either alone. Also note that the differences in effectiveness between the
squares and circles are much less marked in the noisy image than in the noise-free
one. This is an intuitively satisfactory behavior because the square shape is much
less perceptible in the noisy image.

Parallel computation of the score. The image gradients can be precomputed
using Gaussian convolution operators. The computation of the score then reduces to
a global summation of the gradient intensities over the boundary pixels, Wthh can
be achieved in one parallel step.

Stereography

The simplest stereo model assumes that corresponding pixels have the same grey-
levels in both images [1]. In practice, one finds deviations from this model that we
encode again as a Gaussian distribution, excluding anomalies arising from such causes
as occluding structures.

As in the area-encoding case, we can now determine the number of bits required to
encode the area in the second image by histogramming the deviations of the intensities
from their predicted values. We also want to take into account the edge quality of
the contour in the second image and its edge effectiveness.

We therefore take the stereographic effectiveness term Fs to be the sum of an edge
and area term:

|

Fs Fus+ Fgs (4)

A
Frs = (8—k)7 2
Fgs = gzlog;

where A, is the area of the projected patch in the second image, k, is the average num-
ber of bits/pixel needed to encode the deviation histogram, and g the edge gradient
in the second image. -

We can use the effectiveness measure Eq. 5 to optimize the elevation parameters of
a two-dimensional delineation found in the first image. The search space is extremely
constrained because the projected shape is known and the only degree of freedom is
epipolar motion in the second image.

Let us consider the stereo pair of images shown in Figure 1 and the rooftop outlined
in Figure 5a. Assuming that it is horizontal, we plot in Figure 5b the value of Fs
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as a function of the assumed disparity between the outline in the left image and the
outline in the right image. We note that Fs presents a sharp peak for the correct
match shown in Figure 5c.

Implementation and Applications

Deformable Models in Two Dimensions

To find local maxima of the objective function F — D, where F = Fg + F4 and
D = AL? is the deformation energy introduced in Section , we describe object con-
tours as deformable closed curves defined by an ordered list of contiguous points C
represented by the vector X of their integer x coordinates and the vector ¥ of their
y coordinates. During each iteration of the optimization procedure described below,
X and Y are updated. C is then recomputed by drawing scan lines between points
that are not contiguous anymore and merging points that have identical coordinates,
thereby generating new vectors X and Y. The edge effectiveness F is computed us-
ing those new boundary pixels and the area effectiveness F4 of the pixels enclosed by
the boundary but not belonging to it. In this way the contour can shrink or expand
as required to optimize the objective function.

At every iteration, we compute the derivative of the F’ with respect to deformations
of the contour C:

oF OF, + OFg

axX oxX = 0X

oF _ OF,  OF

oYy ay oy
In the appendix we derive expressions for these derivatives and show that they can
be easily evaluated on a Connection Machine.

To perform the optimization we could use a simple gradient descent technique,
but it would be extremely slow for curves with a large number of points. Instead, we
modify the standard gradient procedure in two ways:

1. Treat C as a physical system. As in the work by Terzoupolus [14], we
consider C as a “snake” that is, a physical curve defined by the vector (X,Y),
embedded in a medium of viscosity o = 1/A, and moving under the influence
of the potential V = L? — oF. L2, the square length of the boundary, can be

computed as:
L? = %XKX + %YKY (5)



where K is the tridiagonal matrix with coefficients —1,2, —1. At -every iteration
of the optimization, we then solve the equation of dynamics:

—t+a—=0 (6)
where dV/0C is the vector (9V/0X,0V/3Y). Because the deformation energy

L?in Eq. 5 is quadratic, its derivatives with respect to X and Y are linear. Thus,
each iteration of the optimization amounts to solving the two linear equations:

i oF
I{At + C!(Xt - Xt—l) = « ﬁ; ol
ar
KitalYi-Yin) = agy| )

Letting M = (I + 21 K)~!, Eq. 7 can be rewritten as:

oF
X, = MXpq+ — )
! 1 X .
oF
Y, = MYior+ 5o ) - (8)
i t BY Cos

For o large enough (typically @ > .01), the matrix M can be approximated
with excellent accuracy by an n-diagonal matrix. We can therefore solve Eq. 8
simultaneously for X and Y by convolving the right-hand terms X + 0F/0X
and Y + §F/0Y with the appropriate mask. In this formulation, the value of a
determines the width of the mask and how much X and Y are smoothed - the
smaller &, the more smoothing.

It is worth noting that approximately the same result can be achieved by a faster
although slightly less accurate procedure. Instead of solving the equations of
the dynamics, we can increment X and Y by 0F/8X and 8F/0Y as in a stan-
dard gradient procedure and then recursively smooth the resulting coordinate
vectors using the mask [.25,.5,.25]. This procedure is fast because it can be
implemented using only integer additions and left shifts but no floating point
operations or multiplications. In practice, the results produced by these two
procedures are almost indistinguishable. The results presented in this paper
have been generated using recursive smoothing; at each iteration, the X and Y
vectors are convolved 10 times with the mask [.25,.5,.25) except in the example
shown later in Figure 7d.

. Normalize the derivatives of the score. The magnitude of the derivatives
is not related to the current distance of the contour to its optimal location.
Therefore, for every iteration, we pick a step size and retain only the sign of the
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derivatives that indicates in which direction the contour should move, resulting
in a string FX of ~1,0 and 1 for the X coordinates and a string F'Y for the ¥
coordinates. We then normalize the string so that (||FX|* + || FY||?)/n = 6%,
where n is the number of boundary points and é the current step size, and
replace @F/0X and F/3Y by FX and FY in Eq. 8. This ensures that the
displacement of each point is on the average of magnitude 6.

Because of the presence of the linear terms in the dynamics equation (Eq. 6),
deformations are propagated along the whole curve at every iteration, making this
procedure considerably faster than ordinary gradient descent.

Because the objective function is highly nonconvex, after each iteration we recom-
pute the score and verify that it has increased. If, instead, it has decreased, the curve
is reset to its previous position and the step size reduced.

The optimization proceeds until the curve stabilizes. For example, going from the
initial estimates of the closed curve shown in Figure 6a to the final result shown in
Figure 6d took only 10 iterations. Figure 6b and 6¢ show the position of the curve
after three and five iterations respectively.

We now turn to the aerial image in Figure 7a. The four initial contours shown
in Figure Tb yield, after optimization, the final outlines of Figure 7c. Note that the
corners of the house are slightly rounded due to the presence of the smoothing term.
To delineate the house more accurately, we can reoptimize the corresponding curve
using less smoothing, generating the result shown in Figure 7d.

Timing considerations. Aslong as there are fewer points in the “score optimizing
curve” ' than there are Connection Machine processors, most of the computation
can be performed with a virtual processor ratio of 1, with the possible exception of
the planar fit and the computation of the deviation histogram required for estimating
F,, which must refer directly to the image. In the following table, we indicate the
average times required to perform the various operations when dealing with either a
a 64 x 64 1mage or a 128 x 128 image on the 8K machine we are using.

| Time 1n seconds to: [ 64 x64 [128x128]
Compute Fj 165 185
Compute Fg 011 011
Compute 3F/0X and OF/3Y .055 055
Update X and Y .180 195
Perform a complete iteration “ 42 45

If we were using a full 64K machine, the times would be the same for 256 x 256
and 512 x 512 images respectively. Note that these times are independent of the
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length of the contour or its interior area. If this algorithm were implemented on a
serial computer, the time required to compute Fr would grow as the length of the
boundary, and the time required to compute F4 would grow as the area, which would
slow down the algorithm unacceptably for any large object.

Polygonal Models in Two and Three Dimensions

The “score optimizing curves” described in the previous section behave like rubber
bands that attempt to shrink-wrap the contours of an object and yield a smoothed
outline. When attempting to extract polygonal objects, we can explicitly include a
polygonal constraint by fitting line segments to the curve after each iteration of the
optimization procedure.

We now consider the left image of the stereo pair shown in Figure 1. In Fig-
ure 8a we show three initial polygonal contours, and in Figure 8b the result of the
optimization assuming that the number of vertices in the contours does not change.
In the presence of corners, the polygonal constraint yields better results, provided
that the location of the polygon vertices can be computed. In practice, this can be
achieved by first performing the optimization with a simple rubber band, finding the
high curvature points, and using these as candidate vertices for a polygonal “score
optimizing curve”.

After the contour outlines shown in Figure 8b are found, their elevation can be
determined by optimizing the value of the stereo effectiveness from Eq. 5. Assuming
that the rooftops are planes, the matching contours in the right image are shown in
Figure 8c. These contours and their elevation can then be fed to a system such as
the SRI cartographic modeling system [5, 6] to generate synthetic three-dimensional
views of the scene.

Conclusion

We have presented, for automatically outlining object boundaries, a technique
that integrates area, edge, and stereographic information with geometric models,
given a very rough initial estimate of the boundary. The constraints are incorporated
by defining, for curves, an objective function that is maximal when the models are
satisfied exactly. The initial estimate is used as the starting point for finding a
local maximum of this objective function by embedding the initial curve in a viscous
medium and solving the equations of dynamics.

The strength of this “score maximizing curve” approach is that all the available
photometric information is taken into account simultaneously with geometric con-
straints.
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Parallelism is essential for a successful implementation of this technique because it
provides the computational power required to perform the optimization in real time.
We plan to apply this technique to investigate more sophisticated constraints, includ-
ing more sophisticated geometric models than the one described in this paper, and to
better understand their relevance to the feature extraction problem. Our Connection
Machine implementation and our optimization scheme will allow us to quickly exper-
iment with such constraints on numerous examples and decide their value. Such an
investigation would be impractical without the possibility of performing such experi-
ments rapidly.

This technique can also be used for semiautomated data acquisition: a photo-
interpreter provides a very rough estimate of the location of an object and lets the
computer determine the object’s precise outline and elevation. In future work, there-
fore, another goal will be to provide the user with means of interactively guiding the
optimization when necessary and to introduce geometric constraints that objects of
interest must satisfy.

Appendix: Derivatives of the Effectiveness

Derivatives of the Area Term

To estimate the derivatives of F4, we first compute the contribution dF4 of every
point {z,y) in the image when added to the patch defined by C. As shown in Eq.2

Fy, = (8—1:,;)% where :

ky = n(loga—i—c)—l—Sﬁ—l—[nlog%—l—ﬁlog%]

1
c = §log(27re),

which we can rewrite as:

log v

2

ks = nlc - )+nlogn +7logh — Alog A,

where ¢; = 8.0 — ¢ and v = ¢%. To evaluate the contribution of an individual pixel
we must distinguish two different cases:

1. The pixel belongs to the main gaussian peak if its deviation from the planar
fit d is between the left and right bounds defined in section . In that case, n
and A must be incremented by 1 while the the overall variance v is modified by
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dv =~ (d&* — v)/n. Therefore dF, can be computed as follows:

log v dv

dFy = (a1 — 5 )——%n?—l—logn—logz’l
log v d*
= (a~ °§ )—923(?—1)+1ogn—1ogA

where ¢; = log, 2.

2. The pixel does not belong to the main peak, its contribution to @ and dF can
be taken as:

dFy = log7 —log A.

Having computed dF,, we can now estimate 0F4/8X using finite differences. Let
us consider a boundary point P = (z,y). Our implementation assumes that the
boundary points themselves do not belong to the patch. There are four possible
patterns for the 3 x 1 horizontal neighborhood centered around P:

a: 1 x 0
b: 0 x 1
e 1 x 1
d 0 x 0

where 0 represents a point that does not belong to the patch and 1 represents a point
that does.

e Case a: If P moves to the right, the center point is added to the patch and
Fp becomes Fy + dF4(z,y); conversely if P moves to the left, the left point is
removed from the patch and the F4 becomes Fy — dFs(z — 1,y). 0Fa/0z is
therefore estimated to be:

aFA __+dFA($:y)+dFA($_1:y)

= -

Oz 2

¢ Case b: Similarly,
OFy  dFu(z,y)+dFa(z +1,y)

_ Oz 2
¢ (Case ¢ and d: The boundary is locally horizontal,
OF4
a—m b 0.

O0F,/8X is the vector of the F, /z for all the points in C. §F,/0Y is computed
similarly by replacing horizontal neighborhoods by vertical ones. Note that dF4
can be computed on a pixel-per-pixel basis and therefore in parallel for all pixels in
the image. The computation of 0F4/8X and 0F,/8Y involves only communication
with nearest horizontal and vertical neighbors — operations that are very fast on a
Connection Machine'™.
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Derivatives of the Edge Term

We have seen in Eq. 3 that Fg is computed as

1 :
Fe = 13 log?®Y,
S Claw) 7

In practice we precompute, once and for all, the quantity I defined by

¢ log(g(z,y)/v) ifs>~
T,y) =
y 0 otherwise .

We also precompute the derivative of T, BF/Bm.and OT/8y. At each iteration,
OFg/0X and 9Fg/0Y are simply the vectors whose components are the values of
OI' [0z and OT'/ Oy at the current boundary points.

References

{1] Barnard, S.T., “Stochastic Stereo Matching Over Scale,” Proceedings of the
DARPA Image Understanding Workshop, Boston, MA, pp.769-778, April 1988.

[2] Canny, J., “A Computational Approach to Edge Detection,” IFEFE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 8(6), pp.679-698, 1986.

[3] Fua, P.V.,and A.J. Hanson, “Extracting Generic Shapes Using Model-Driven Op-
timization,” Proceedings of the DARPA Image Understanding Workshop, Boston,
MA, pp.994-1004, April 1988.

[4] Fua, P.V., and Y.G. Leclerc, “Model Driven Edge Detection,” to be published in
the Journal of Machine Vision and Applications, 1989.

[5] Hanson, A.J., A.P. Pentland, and L.H. Quam, “Design of a Prototype Interac-
tive Cartographic Display and Analysis Environment,” Proceedings of the Image
Understanding Workshop, pp.475-482, February 1987.

[6] Hanson, A.J., and L. Quam, “Overview of the SRI Cartographic Modeling En-
vironment,” in Proceedings of the Image Understanding Workshop, Boston, MA,
pp-576-582, April 1988.

[7] Haralick, R.M., “Digital Step Edges from Zero Crossings of Second Direc-
tional Derivatives,” IEEE Transactions on Pattern Analysis and Machine Vision,
Vol. 6(1), pp-58-68, 1984.

14



[8] Kass, M., A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Models,”
International Journal of Computer Vision, Vol. 1(4), pp.321-331, 1988.

[9] Leclerc, Y.G., “Segmentation Via Minimal-Length Encoding on the Connection
Machine,” Proceedings. of the Fourth International Conference on Supercomput-
ing, Santa Clara, CA, April-May 1989.

[10] Rissanen, J., “A Universal Prior for Integers and Estimation by Minimum De-
scription Length,” The Annals of Statistics Vol. 5, pp.416—431, 1983.

[11] Rissanen, J., “Minimum-Description-Length Principle,” in Encyclopedia of Sta-
tistical Sciences, Vol. 5, pp.523-527, 1987.

[12] Rosenfeld, A., “A Nonlinear Edge Detection Technique,” Proceedings of the
IEEE, Vol. 58, pp.814-816, 1970.

[13] Schwarz, G., “Estimating the Dimension of a Model,” The Annals of Statistics,
Vol. 6, pp.461-464, 1978.

[14] Terzopoulos, D., “On Matching Deformable Models to Images,” Topical Meeting
on Machine Vision, Technical Digest Series, Optical Society of America, Wash-
ington, DC, Vol. 12, pp.160-167, 1987.

15



Images Area Effectiveness Edge Effectiveness
{dotted : no discounting)

B et %2693“4".?A e
20 25 3@ 35 4@ 45|20 25 3@ 35 4B 45
F{Area) F{Edoe)

i?BG? T BBBlg

=208 .0
28 25 38 35
F{Edge)

£80

% -GN,
28 257736773S

20 25
F{fArea) F{Edge)

Figure 3: Area and edge eflectiveness of a squared patch
as a function of their radius. The patches of
radius 20 and 45 are outlined on the top im-

age.
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Figure 4: Area and edge effectiveness of a squared patch
compared to that of a circular patch as a func-
tion of their radius. The circular patches of
radius 20 and 45 are outlined on the top im-
age.
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F{Disparity)

(b) (c)

Figure 5: (a) The main rooftop in the left image of
Figure 1 (b) Fs as a function of the as-
sumed disparity between left and right im-
age. (c) The projection of the contour in
the right image using the best disparity
value.
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() G (d

Figure 6: (a) A synthetic image of a circle and the initial
position of the curve. (b) (c) The position
of the curve after three and seven iterations,
respectively. (d) The final outline.
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(c) (d)

Figure 7: (a) An aerial image of a suburban scene. (b)
Interactively entered initial contours. (c) Fi-
nal outlines after optimization. (d) Qutline
of the house after reoptimization with less
smoothing.
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(c)

Figure 8: (a) Initial contours in the left image of the
pair from Figure 1. (b) Final polygonal
outlines after optimization. (c¢) Matching
outlines in the right image.
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Abstract

We present an optimization approach to the image partitioning problem: that of
finding a complete and stable description of an image, in terms of a specified de-
scriptive language, that is simplest in the sense of shortest description length.” We
show that a descriptive language limited to a low-order polynomial description of the
intensity variation within each region and a chain-code-like description of the region
boundaries yields intuitively satisfying partitions for a wide class of images. By using
a regular-grid finite-element representation for the image, the optimization technique,
called a continuation method, reduces to a simple, local, parallel, and iterative algo-
rithm that is ideally suited to the Connection Machine.'™ :

Introduction

Vision can be thought of as a process in which one attempts to infer a description
of the outside world, given one or more images of the world, prior information about

*The work reported here was partially supported by the Defense Advanced Research Projects
Agency under contract MDAS03-86-C-0084.



the world, and prior information about the image sensor. The particular kind of
inference process discussed in this paper might be called “inference to the simplest
explanation” or, more formally, “minimal-length encoding.” The basic idea is that
the prior information about the world and the sensor is incorporated in the language
used to describe the world and sensor, and the inference process is to find the simplest
(i.e.; shortest) description that exactly reproduces the images we are given (see earlier
papers [7, 17] for general discussions on this approach). For example, a complete
three-dimensional description of the shape and color of objects and light sources, plus
a description of the camera parameters would be an extremely eflicient description
of a large number of images because the only change required from one image to the
next would be changes in the camera parameters.

Finding such a three-dimensional description by direct search is impossible, how-
ever, because of the exponential number of possible descriptions. Instead, one can
imagine a hierarchical descriptive language where, at each level of the hierarchy, one
describes the previous level using a language that incorporates more of the three-
dimensional nature of the world. With an appropriate choice of incrementally more
sophisticated descriptive languages, one can then hope to compute a complete de-
scription in a reasonable amount of time.

In this paper, we present an implementation of what might be the first level in
such a hierarchy. Specifically, we describe an image as the sum of a piecewise-smooth
image and white noise. (A piecewise-smooth image is one that is composed of regions
whose attributes are continuous and differentiable up to some specified low order, and
for which the region boundaries correspond to discontinuities in these attributes. For
this paper, the only attribute we consider is intensity.)

Intuitively, the underlying piecewise-smooth image is meant to model the image
we would have obtained if we had used a perfect pin-hole camera, and if the scene had
actually been composed of objects with piecewise-smooth surfaces and albedos. The
corruption is meant to model both deviations fromn this idealized piecewise-smooth
model of the scene and degradations inherent in image sensors. In particular, we
model the corruption as convolution with a known point spread function (to model the
point spread function of the lens of a real camera), followed by sampling, quantization,
and the addition of white noise (whose variance is unknown and which might also
vary in a piecewise-smooth fashion). The white noise is an approximate model of
both the deviations from the piecewise-smooth model due to small-scale texturing of
the objects (which is why we assume that the variance is not uniform) and sensor
noise.

Such a description effectively decomposes the original image into two independent
parts. The first part, the underlying image, represents the projection of the many
diverse components of the world onto an ideal image plane. Having thus removed the
second component, the “noise,” we can hope to describe this first part by decomposing
it further, using more sophisticated languages.
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In the next section, we present in more detail the motivation for posing the in-
ference process as that of finding the simplest description. Next, we present the
mathematics and implementation of the special case of a piecewise-constant under-
lying image. In short, the problem of finding the shortest description is posed as a
global optimization problem, wherein the objective function is directly related to the
description length. Because of the nonlinearities induced by the discontinuous nature
of the underlying image, the objective function is highly nonconvex, so that standard
optimization techniques cannot find the global minimum. Instead, a technique called
a continuation method is used. This technique uses a regular-grid, finite-element
representation for the underlying image. With this representation, the continuation
method reduces to a simple, local, parallel, and iterative algorithm that is ideally
suited to the Connection Machine." (Details of the general case are discussed in an-
other paper by this author [10].) Finally, results and timings of the implementation
are presented.

Motivation for Simplicity and Stability

Simplicity

The idea that simpler descriptions are better than more complex ones is a strongly
intuitive notion that was first enunciated as Occam’s razor, which counsels us “not
to multiply entities beyond necessity.” It reflects not only the intuition that simpler
descriptions are better because they are easier to use in many ways, but also the body
of scientific and personal experience that tells us there is almost always a simpler
description of a set of observations than their mere tabulation.

There are two important assumptions behind this notion. The first assumption is
that the data are observations of an underlying structured process, and that we could
describe these observations in a much simpler fashion by describing them in terms of
that process. The second assumption is that the simpler the description we find, the
- more likely we are to be describing that underlying process or, at least as far as the
observations are concerned, something equivalent to that process.

The idea that simpler is better is quite vague, however: what exactly does it
mean for one description to be simpler than another? One possible answer is that
the number of degrees of freedom, or of distinct and independent variables in the
description, should be the measure of simplicity. Take, for example, the classical
curve-fitting problem, in which one is presented with an ordered set of numerical
observations that can purportedly be described as points along some mathematically
defined curve. The simplest description, then, should be the one that requires the
fewest parameters to define the curve. But, even for such a simple problem, one
immediately sees that the definition, as stated, is still somewhat vague.



First, the number of parameters required to define a curve depends very much on
the vocabulary of curves one brings to bear. For example, if the observations were
actually equally spaced points on a quadratic curve, but one attempted to describe
them as the sum of sinusoids (as in a discrete Fourier transform), one would require
as many parameters as there are observations. However, a polynomial representa-
tion would require only six parameters (three specifying the number of observations,
spacing and order of the polynomial, and three specifying the coeflicients of the poly-
nomial), independently of the number of observations. Thus, one would be inclined
to say that the polynomial description is the simpler of the two for these observations.

If, however, one is allowed to use any possible mathematical curve, one must first
specify which of the infinite classes of curve the parameters refer to (polynomials
versus sinusoids versus ...). That is, we must first specify the language in which the
description is expressed. Because this clearly requires an infinite number of param-
eters, one is left with the inescapable conclusion that the vocabulary of curves (or,
more generally, the language in which the description is expressed) must be restricted
in some sense, or else more parameters than observations will always be needed.

A second fundamental problem posed by this definition of simplicity is that almost
all phenomena, and hence observations of them, have an inherent stochastic compo-
nent. At the very least, the observations will be corrupted in some stochastic manner,
even if the underlying phenomenon is purely deterministic. Thus, for our curve-fitting
example, even if we could specify the underlying curve with a few variables, we would
still need to describe the point-by-point deviations from the curve (either directly
or in some appropriate parameter space) to obtain a complete description, and this
would require at least as many variables as observations! Again we are left with more
variables than observations.

The information-theoretic answer to this quandary is to reduce the idea of an inde-
pendent variable to its simplest form — a bit. The measure of simplicity then becomes
the number of bits in the description that some computationally effective procedure
can use to reproduce the observations. This is known as the minimum-description-
length (MDL) criterion. This criterion, of course, demands prior specification of the
computationally effective procedure, which is equivalent to specifying the language in
which the description is expressed. Thus, in this formalism, the notion of simplicity
is a relative one that depends strongly on the choice of descriptive language.

The necessity of providing an e prior: descriptive language is a very important
and fundamental point. It means that, for a finite number of observations, there is
no such thing as an absolute measure of the simplicity of description; simplicity is
inescapably a function of one’s prior assumptions.

For example, suppose we assume that the underlying process generating the ob-
servations in our curve-fitting problem is the sum of a polynomial (of unknown order)
and zero-mean white noise (of unknown variance), and that we wish to find the poly-
nomial with the smallest number of nonzero coefficients compatible with this model.
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A good descriptive language might then have two components: the first to specify the
number of nonzero coefficients and each of their values, and the second to specify the
variance and point-by-point values of the added white noise. The curve-fitting prob-
lem then becomes that of finding the simplest description (the one with the fewest
bits) such that the two components add up exactly to the given observations.

One natural choice for the first component is to assign a fixed number of bits for
the specification of the order and for each nonzero coefficient of the polynomial. (The
number of bits required is a function of the logarithm of the number of observations,
their range, and their precision.) Thus, for this choice of language, polynomials of
lower order are simpler to describe than those of higher order.

Because there are provably optimal languages for describing stochastic processes
such as white noise, such a language is the natural choice for the second component.
With this optimal language, the number of bits required for the second component is
roughly proportional to the number of observations times the variance of the point-
by-point values.

Thus, with the above descriptive language, there is a natural trade-off between
the complexity of the deterministic component (the number of nonzero coefficients)
and the complexity of the stochastic component (the variance of the noise): a smaller
number of nonzero coefficients reduces the complexity of the first component, but
increases the variance of the noise and thus also increases the complexity of the
second component; conversely, a larger number of nonzero coefficients increases the
complexity of the first component while reducing that of the second.

The image-partitioning problem is similar to the above curve-fitting problem in
that each region is described as the sum of an underlying two-dimensional polynomial
of unknown order and white noise of unknown variance. Thus, similar languages can
be used for this component of the description. In addition, however, we must describe
the shape of each region. For this, we use a simple chain code, so that the number
of bits is directly proportional to the length of the region boundary. This will be
described in more detail in the next section.

The MDL criterion is a significantly more general approach than that of regu-
larization theory [15]. Regularization theory deals with so-called ill-posed problems
(inverse problems that do not have a unique solution} by adding a measure of the so-
lution’s smoeothness. In the MDL approach, smoothness is only one of many possible
measures of simplicity.

t An optimal descriptive language is one that minimizes the average number of bits of description
per bit of input. This will be discussed in detail shortly.



Stability

The MDL definition of simplicity above is ideal when the descriptive language is
optimal for a given class of data. (Formally, a descriptive language is optimal when
the sequence of bits in the description is incompressible, so that it is indistinguishable
from a completely random sequence of zeroes and ones.) However, describing an
image as the corruption of a piecewise-smooth image is clearly suboptimal because
we are not taking advantage of the three-dimensional information that gave rise to
that underlying piecewise-smooth image. Yet, we cannot go directly to a language
that describes the three-dimensional world because of the enormous search space that
would be involved.

. Because of this suboptimality, it is necessary to introduce an additional heuristic

criterion that we call stebility, by which we mean that certain parts of the description
should be unaffected by small changes in the input data. For the image-partitioning
problem, this would mean that the number of regions, their shapes, and the order
of the polynomials within each region should be unaffected by small changes in the
image. The algorithm we present in the next section balances simplicity of descrip-
tion against stability of description by first finding the most stable aspects of the
description.

The Piecewise-Constant Case

For this discussion, we shall only consider in detail the special case in which a real
image is the sum of an underlying piecewise-constant image and white noise with
known variance. The more general case of an underlying piecewise-smooth image and
white noise with unknown variance is treated elsewhere [10].

We denote the real n x m image by the vector z indexed by 2 € I = 1,...,nm.
The underlying image u(z,y) is represented by a regular grid of square 1 x 1 elements,
with each element centered at the coordinate (z;,y;) of the i*" pixel in the real image.
The 1 x 1 square centered at (z;,y;) is the spatial domain X; of the ¢** element, and
the value of the element is u;. Thus,

u(z,y)=w; V(z,y)€e A, i€l

and the vnderlying image is completely represented by the vector u = {v;, i € I}.

Similarly, we represent the noise by the vector r. Thus, the statement that the
real image is the sum of the underlying image and the noise can be written as

Z=1u+r. (1)

A consequence of this choice of representations is that discontinuities in the underlying
image can occur only along the vertical and horizontal boundaries between the grid

6



elements. One advantage of this is that the underlying image is uniquely specified
when there is no noise (namely, u = z). However, a more sophisticated representation
in which elements have variable shape is also possible. This 1s an excellent avenue for
future research.

~ Using the above definitions, the problem of finding the simplest description is
therefore
. () = (wr)z=utr [£a(u)l + 1£(r)l,
where £, and L, denote the languages used to describe u and r. From Eq. 1, the
equivalent problem is
u® = min |Cu(u)| + | L (z — )|

There are two steps involved in solving this problem. First, we must define the
languages £, and L,. Second, we must specify a computationally feasible procedure
for finding u* and for determining the stability of the solution.

Defining Descriptive Languages

The first task, then, is to define a language for describing the underlying piecewise-
constant image u. By definition, u is composed of regions of constant intensity. Thus,
for each region, we need specify only the shape and position of the region boundaries
and the constant intensity within the region. The region boundaries are described by
a chain code of unit-length line segments located between adjacent elements; each line
segment corresponds to the boundary between adjacent square grid elements. The
number of bits required to describe each region is thus proportional to the number
of elements in the chain plus a constant to specify the constant intensity and the
first element of the chain. The total number of bits required to specify the underlying
image is thus proportional to the number of regions plus the total length of the region
boundaries.

Because region boundaries occur only when spatially adjacent elements of u are
different, their total length can be determined locally by counting all adjacent el-
ements (u;,u;) that have a nonzero difference and dividing by 2 (because region
boundaries will be counted twice this way). Thus, the total length of the region

boundaries is )
52 > (1 — 8w ~uy)),
i€l jeN;

where
N; = the set of neighbors of the i** element

1 ifz=0

0 otherwise °

6(z) = the Kronecker delta = {
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When the regions are relatively large, a good approximation to the number of bits
required to describe u is thus

L(u)| = 3 Z 2 (1=8(uwi—vy)), (2)

:EI FEN;

where b is the sum of (1) the number of bits required to encode each element in the
chain code and (2) the number of bits required to encode the constant intensity and
starting element, divided by the average region-boundary length.

As for describing the noise, the fewest bits required to describe data generated by
a stochastic process is the negative base-two logarithm of the probability of observing
that data [16]. Because we assume the noise to be uncorrelated,

|£-(r)] = —log, P(r) = —logzl__[P(r,-)

17

= =) log, P(ry)

iel

Furthermore, we assume the noise to be quantized white noise, where the elements are
drawn from a normal distribution and then quantized to the nearest g, the precision
of the pixels in the real image. Thus,

r‘ﬂq 1 2
P = o e ()

2
~ q -7
N 5= exp (202) when ¢ < o, (3)

and

_logzP(r)mnmc+aZ(g)2. (4)

1el

Thus, for u and r satisfying Eq. 1, an approximation to the total number of bits
required to describe u and r is

|La()| + £, (x)| = nmc + L(u),

where

L) =aX (B25) 4 2% T (- - u). (5)

el tGI FEN;

Dropping the additive constant, the minimization problem can thus be written as

x

u” = min L(u).



Defining a Computationally Feasible Procedure

The simplest, direct way of finding the global minimum of L(R) is to search through
all possible sets of regions, calculating the cost for each set, and choosing the set
with the smallest cost. Unfortunately, the number of possible sets of regions grows
exponentially with the number of elements of u, rendering such a search completely
infeasible. Even dynamic programming-like algorithms require at least the evaluation
of the cost for every possible simple region, which i1s an exponential in nm when n
and m are greater than 1, again rendering such a search computationally infeasible.

Furthermore, because of the Kronecker delta term, L(u) has many local min-
ima. Thus, standard descent-based optimization techniques are useless. Also, the
simulated-annealing style of algorithms exemplified in Geman and Geman [6] are in-
appropriate, because the time complexity is much too high for this type of function
[2]. Intuitively, the reason that stochastic gradient-descent algorithms are inappropri-
ate for this particular objective function is that the function has extremely narrow (in
fact, infinitesimally narrow) valleys, so that even stochastic sampling of the surface
provides no guidance for the search.

Instead, I have devised an algorithm that yields something very close or equal to
the optimal solution for a large class of inputs. It belongs to a class of optimization
techniques generally called continuation methods {5, 21). This algorithm is similar
in spirit to the algorithm described in Blake and Zisserman [3] as the “graduated
nonconvexity,” or GNC algorithm.

As used here, a continuation method embeds the objective function in a family
of functions L{u, s) for which there is a single local minimum at some large s, and
for which the number and position of the Jocal minima converge to those of L(u) as
s approaches zero. The steps of the continuation method are straightforward. First,
find the unique local minimum u® of L(u,s®) for some sufficiently large s°. Then,
track the local minimum in u as a decreasing function of s, as follows. For s = s,
let u**! be the result of taking a single step of a descent algorithm, as applied to
the objective function L(u,s'*!) started at u = u’. When the descent algorithm
converges, let s*"! = r s* for some 0 < r < 1, and repeat until s* 1s sufficiently small.
For an ideal embedding, there will be no bifurcations along this path, and the value
of u’ for a sufficiently large t (and hence a sufficiently small s*) will be close or equal
to the global minimum of L(u).

The specific embedding used here replaces §(u; — u;) with an exponential,

S ) exsln, ) = exp (-0,

go that

Iu,s)=a T (2 ’“*‘) O S (- es(ws). (6)

el =eI jeN;



This is an appropriate embedding because
].ll’% c,-,j(u,s) = 5(‘&, — u,-)

so that
lim L(u,s) = L{u),

and, hence, the local minima of L(u,s) approach the local minima of L(u). Further-
more, there exists a unique local minimum of L(u, s) for sufficiently large s, namely
u = 2. This is so because (1) L{u,s) > 0 Vu, (2) u = z is the unique point for
which the first summation of Eq. 6 is identically zero, and (3) the second summation
vanishes for arbitrarily large s when u is bounded. Thus, for s approaching infin-
ity, u = 2z is the unique point for which L{u,s) = 0, the unique local (and global)
minimum. o

Intuitively, the exponential term introduces broad valleys when s is large, and
converges to the narrow valleys in the limit as s goes to zero. Thus, the continuation
method creates a kind of “scale space” representation of the objective function L(u)
(in analogy to Witkin’s scale-space representation of a signal [20]) and tracks a local
minimum from the coarsest scale (where there is only one local minimum) to the
finest scale (where there are many).

Although any iterative descent algorithm can be used for the continuation method
(see, for example, the wide variety described in Luenberger’s excellent book [12]), the
following algorithm has proven to be quite efficient for the objective function examined
here. Some experimentation with a conjugate-gradient algorithm has, so far, reduced
the number of iterations by only a factor of two, but each step of the algorithm is
about twice as long as the simpler one below.

By definition, local minima of L(u, s) occur when

3L(u,3)=2_au__z_ Z—b e ;lu,s){u; —uj;) =
Bu; 0.2( i t)+( )25621“ 05 (0 8)(u; ;) =0, (M)

which can be written in vector notation as:

8L(u,s)

VL(U.,S) = "'——au_ =Dh + A(u,S)u = 0, (8)
where
2a 2%
wilms) = 2 (so)? jEEN.— ei;(a,s)
—2b
_ 2" e e N,
a‘-lj(u’ S) = 30')2 e‘lJ(ul S) ]f 7 [~
0 otherwise
—2az;
b, = -
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At each step of the iterative descent algorithm, we linearize the above set of
equations by setting s'*1 = rs' and fixing A* = A(u?, s'*'). Because A' is diagonally
dominant, a Gauss-Seidel iterate can be used to provide a step in the direction of the
solution:

b t ot

_1 Zi T a(st+1)? Zp}r €,5Uj

ultl = —= | b+ 3 _af,ul | = b - ’ )
a: - Y ' i
T e
ieN;
where
Bé'j = Bi'j(ut,SH']).

This is carried out on the Connection Machine'™ by assigning each element to a virtual
processor in a two-dimensional VP set, and iterating in parallel. The interaction
strengths e} ; are recomputed at each iteration via the NEWS network.

The above is repeated until |uit! — ut| is sufficiently small (less than 0.15**'¢) for
all ¢; only one or two iterations are typically required to achieve this accuracy. Once
convergence has been achieved, s is decreased (s**! = rs?, 0 < 7 < 1), and everything

repeated until s**? is sufficiently close to zero.

When the interaction strength falls below 1/e (i.e., when |uf —ut| < s'%'0), we say
that a [tentative] discontinuity between adjacent elements has been found at time ¢.
The discontinuity is called tentative because it is possible (though relatively rare) for
the interaction strength to oscillate a few times before converging to a stable value.
The word “tentative” will be dropped unless ambiguity would result. The first value
of s**1 for which this occurs is called the stability, s;;, of the discontinuity.

The reason for calling s;; a stability measure, as discussed in detail in another
paper [10], is that s;; is approximately equal to the ratio of the local contrast to
o. Thus, when the contrast is sufficiently large relative to o, the boundary is typi-
cally unaffected by small changes to the input image, whereas when the ratio is low,
boundaries can shift unpredictably or disappear altogether. Thus, to obtain a stable
description, it is necessary to stop the procedure at a reasonably large value of s'*!
(typically 1/4 or so). A different strategy might be to stop at a much smaller value,
but then use the stability measure in the subsequent stages.

Results

Because of time and graphics software constraints, the figures in this paper were all
produced using a Symbolics Lisp-Machine implementation. Similar, but not identical,
results were obtained using the Connection Machine.*™ The primary reason for the
difference is that the Lisp-Machine implementation does not update every element at
each Gauss-Seidel iteration. To save time, only those elements that differ significantly
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from the previous iteration are updated (except, of course, all elements are updated
at the iteration when s' is decreased). This results in a significant increase in speed
on a sequential machine, but also produces a slight degradation in performance. This
was not fully appreciated before the Connection Machine!™ implementation.

For a 128 x 128 input image, with a VP ratio of 2 and without floating-point
hardware, the Connection Machine'™ takes about 0.7 second per iteration for the
plecewise-constant case, which is about 100 times faster than the Lisp-Machine im-
plementation (when all elements are updated at each iteration). For the piecewise-
first-order case, the time increases to about 3.8 seconds per iteration. In general,
the time is approximately k*/2 times the time required for the piecewise-constant
case, where k is the number of coefficients in the highest-order polynomial (three for
first-order polynomials, six for second order, and so on).

The results presented here were obtained by using the most general form of the
encoding-length function, in which the underlying image is piecewise polynomial,
the variance of the noise is unknown and piecewise constant, and the sensor model
includes a point-spread function. A key point about these examples is that they were
all obtained by using precisely the same parameters, with the following exceptions.
First, a Gaussian point-spread function with ¢ = 1 was used for all of the real
images, but no point-spread function was used for any of the synthetic images (taking
advantage of our a priori knowledge about how these synthetic images were created).
Second, for demonstrative purposes only and as noted for each example, several values
of Prmar, the order of the underlying image, were used. The conclusion that emerges
from these and many other examples not presented here is that a piecewise-second-
order underlying image is appropriate for a large class of real images.

The first example illustrates the power of global optimization compared with
purely local, noniterative, operations. Figure la is the 20 x 20 input image, which
is the sum of a piecewise-first-order image and zero-mean white noise with unit vari-
ance. The outer region of the underlying image has intensity 0.0, the center ramp
has a slope of 1.0, and the contrast at either end of the ramp with the outer region
is 4.0. Of course, the contrast of the center of the ramp with the background is 0.

Figures 1b and 1c illustrate the result of the procedure for p,.. = 1 and 2,
respectively, stopping at s* = 1/4. First, note that the entire ramp is separated
from the background, even in the center where the local signal-to-noise ratio is 0 (the
thinner line separating the ramp from the background near the center indicates that
the discontinuity is only of order 1, that is, a discontinuity in the first derivative of
the underlying image). This is in contradistinction to the output of the Canny edge
detector [4]. For a small spatial scale (Figure 1d), the Canny operator leaves a gap (not
to mention the introduction of spurious discontinuities due to the assumption that
edges are locally piecewise-constant), whereas a larger spatial scale (Figure le) simply
makes the artifacts worse. (The operator was unable to find the correct outline for any
parameter settings.) Second, note that the elements of the ramp have been determined
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Figure 1: An illustration of the power of global optimization. (a) The input synthetic
image. (b) The result of the procedure for ppe. = 1. (c) The result of the procedure
for pme- = 2. (d) The output of the Canny operator, mask size=4. (&) The output of
the Canny operator, mask size=8.

13



to be order 1 (as indicated by the number immediately above each element, no number
means that the element is order 0), whereas the elements of the outer region have been
determined to be order 0. Thus, the procedure has not only located the discontinuities
correctly, but has also determined the correct order for each region.

Figure 2 illustrates an application of the procedure to an aerial image of a house,
with pmer = 1, stopping at s* = 1/4. Figures 2b and 2c show the resulting underlying
image and discontinuities. Figure 2d is an image of the stability measure for these
discontinuities, with the darkest lines indicating the most stable discontinuities. Two
interesting points emerge from this example. First, the four bushes in the upper-left
corner are almost completely delineated, even though the contrast along that part of
their boundaries is virtually nil. This is an example of the “zero contrast” situation
similar to the previous synthetic ramp image. Second, the majority of discontinuities
that form closed regions have high stability measures. This is a fairly strong indication
that the piecewise-first-order (or higher-order) model is appropriate for this image.
To verify this conclusion, observe that the discontinuities obtained using ppez = 2
(Figure 3) are virtually identical, the only exceptions being the few very-low-stability
discontinuities. '

Figure 4 illustrates an application of the same model with p,,., = 1 {using pre-
cisely the same parameters) to the image of a face. In this example, about half the
discontinuities have a fairly low stability measure. This indicates that the language
is probably not appropriate for this image. This is especially evident in the cheek
and chin areas where a higher-order model is clearly more appropriate. Even so, the
discontinuities with high stability measures appear to be good candidates for region
boundaries. Figure 5 shows the results for pn.. = 2, in which the artifacts due to
using too low an order are entirely absent.

Summary

Much work has been done recently on the problem of reconstructing piecewise-smooth
surfaces in one or more dimensions, given corrupted samples of the surface [1, 3, 8,
9, 11, 13, 14, 18, 19]. There are several especially difficult aspects to the problem.
The first is to determine automatically the appropriate degree of smoothness of the
surface as a function of the given data. The second is to determine auntomatically
both the position and order of the discontinuities. The third is to ascertain when
such a description is appropriate for the data. We have resolved these difficulties by
(1) posing the problem as an optimization problem in which the objective function
is based on the information-theoretic notion of minimum-length descriptions, and
(2) defining an algorithm that balances simplicity of description against stability of
description by first finding the most stable aspects of the description.
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Figure 2: An application of the procedure to an aerial image of a house, with ppar = 1.
(a) The input image. (b) The resulting underlying image. (c) The underlying image

with overlaid discontinuities. (d) The stability measure of the discontinuities; the
darkest discontinuities are the most stable.

(a) (b) (c)

Figure 3: Same as the prior figure, but with ppmer = 2.
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Figure 4: An application of the procedure to the image of a face, with ppe = 1.
(a) The input image. (b) The resulting underlying image. (¢) The underlying image
with overlaid discontinuities. (d) The stability measure of the discontinuities.

G Sl

(a) (b) (c)

Figure 5: Same as the prior figure, but with pu.. = 2.
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We have presented a new approach to the image-partitioning problem: construct
a complete and stable description of an image in terms of a descriptive language that
is simplest in the sense of being shortest. We have presented criteria on which to base
formal definitions of completenéss, stability, and simplicity, and we have embodied
these criteria within the theory of minimum-length descriptions. This formalism is
very general and is likely to be applicable to other stages of the scene-analysis process.

For the specific image-partitioning problem, we described real images as the cor-
ruption of ideal {piecewise-polynomial) images by blurring and the addition of spa-
tially varying white noise. We defined a language for describing both the ideal image
and the corruptions, and presented an algorithm for finding the simplest description
of an image, in terms of this language, for a given measure of stability. This measure
has proved crucial because we are interested in descriptions that are not only as sim-
ple as possible, but that are also as invariant as possible to the severe approximations
embodied in any low-level descriptive language. The algorithm not only determines
the position of discontinuities in the ideal image, but also determines both the order
of the discontinuity and the order of the polynomial within the regions; all of this
is done without the need to adjust any parameters. Furthermore, the algorithm is
local, parallel, and iterative, making it ideally suited to massively parallel computer
architectures such as the Connection Machine.'™

Applications of this formalism to real images indicate that, even though the de-
scriptive language we have defined is extremely simple {(with no models of three-
dimensional shape, lighting, or texture, for example), the simplest and most stable -
description in this language yields excellent image partitions.
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