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ABSTRACT 

In 2003, the US Army began using the Integrated Mechanical Diagnostics Health 

and Usage Management System (IMD-HUMS), an integrated airborne and ground-based 

system developed by Goodrich Corporation, to support maintenance of the UH-60L. 

IMD-HUMS is responsible for collecting, processing, analyzing, and storing an 

enormous amount of vibratory and flight regime data obtained from sensors located 

throughout the aircraft.  

The purpose of this research is to predict failures of the UH-60L’s electrical 

generators, applying Artificial Neural Networks (ANN) on the IMD-HUMS-produced 

data. Artificial NNs are data based vice rule based, thereby possessing the potential 

capability to operate where analytical solutions are inadequate. They are reputed to be 

robust and highly tolerant of noisy data. Software tools such as Clementine 10.0, S-Plus 

7.0, and Excel are used to establish these predictions. 

This research has verified that ANNs have a position in machinery condition 

monitoring and diagnostics. However, the limited nature of these results indicates that 

ANNs will not solve all machinery condition monitoring and diagnostics problems by 

themselves. They certainly will not completely replace conventional rule-based expert 

systems. Ultimately, it is anticipated that a symbiotic combination of these two 

technologies will provide the optimal solution to the machinery condition monitoring and 

diagnostics problem. 
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EXECUTIVE SUMMARY 

Readiness is a key factor for military forces to stay effective and reliable in a 

continuously growing and demanding environment. Increased readiness can be achieved 

by increasing availability through performing efficient maintenance, performing less 

corrective maintenance actions, and identifying more accurate preventive maintenance 

periods. Today, the United States and allied forces spend billions of dollars for time or 

phased maintenance periods that overlook several facts and realities of operational use. 

Important savings can be gained by using hardware and software to evaluate component 

health and the conditions of systems based on operational usage and performing 

maintenance in relation to statistical and engineering analyses that predict availability and 

readiness. 

Nowadays, the majority of maintenance processes are accomplished by either the 

predetermined preventive or the corrective approach. The former approach has fixed 

maintenance intervals; the latter is performed after the fault of the component. Because 

both approaches are costly, some industries have started to perform maintenance action in 

a predictive manner, Condition Based Maintenance (CBM), where the condition is the 

key parameter to set the maintenance intervals and appropriate maintenance tasks. 

Condition Based Maintenance (CBM) is a technology weapon that tries hard to 

recognize initial faults before they develop into critical failures, which permits more 

precise scheduling of the preventive maintenance. The causes that have motivated a boost 

in the action of CBM include the need for reduced maintenance and logistics costs, 

protection against failure of mission-important equipment, and upgraded equipment 

availability. 

In 2003, the US Army began using the Integrated Mechanical Diagnostics Health 

and Usage Management System (IMD-HUMS), an integrated airborne and ground-based 

system developed by Goodrich Corporation, to support maintenance of the UH-60L. 

IMD-HUMS is responsible for collecting, processing, analyzing, and storing an 

enormous amount of data obtained from sensors located throughout the aircraft. The 

IMD-HUMS improves aircraft availability for operators by identifying potential 
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problems early so that maintenance can be performed before it becomes an issue that 

could impact flight operations. The system also provides operators with accurate flight 

parameter data, monitored automatically on each flight, allowing them to better schedule 

routine maintenance and, in some cases, avoid unnecessary early repair and overhaul. 

Neural networks are used in numerous fields, including medical diagnostics. In 

this thesis neural networks are used for machinery diagnostics and specifically for 

diagnosing the UH-60L helicopter’s electrical generator. In order to accomplish this, a 

database collected from IMD-HUMS is used. The emphasis in this thesis is to develop a 

neural network that would utilize the collected data from IMD-HUMS, manufactured by 

Goodrich Corporation, in order to discover patterns that would predict a potential failure 

of a UH-60L helicopter generator. Many different neural networks are evaluated for their 

success rate for this faulting diagnosis. 

As in any prediction/forecasting model, the selection of appropriate model inputs 

is extremely important. However, in most ANN Artifiacial Neural Network) applications, 

less attention is given to this task. The main reason for this is that ANNs belong to the 

class of data-driven approaches, whereas conventional statistical methods are model 

driven. In the latter, the structure of the model has to be determined first, which is done 

with the aid of empirical or analytical approaches, before the unknown model parameters 

can be estimated. Data-driven approaches, on the other hand, have the ability to 

determine which model inputs are critical, so there is less need for “...a priori 

rationalization about relationships between variables...” However, presenting a large 

number of inputs to ANN models and relying on the network to determine the critical 

model inputs usually increases network size. This has a number of disadvantages, such as 

decreasing processing speed, increasing the amount of data required to estimate the 

connection weights efficiently and degrading performance of the AAN. This is 

particularly true for complex problems, where the number of potential inputs is large and 

where no a priori knowledge is available to suggest which inputs to include. 

Clementine which is the software used in this research, incorporates several 

features to avoid some of the common pitfalls of ANNs, including sensitivity analysis, 

network accuracy, and feedback graph. With these options selected, a sensitivity analysis 



 xix

will provide information on which input fields are most important in predicting the output 

field, a network accuracy will provide the percentage of records for which the prediction 

of the model matches the observed value in the data, and the feedback graph will depict 

the accuracy of the network over time as it learns. 

In practice, building an ANN forecasting model involves a lot of trial and error. 

Consequently, the objective of this thesis is to provide a practical, non-technical 

introduction to structure an ANN forecasting model using real operating data of UH-60L 

helicopters. The success of ANN applications for an individual researcher depends on 

three key factors. First, the researcher must have the time, patience, and resources to 

experiment. Second, the ANN software must allow automated routines, such as walk-

forward testing, optimization of hidden neurons, and testing of input variable 

combinations—either through direct programming or the use of batch/script files. Third, 

the researcher must maintain a good set of records that lists all parameters for each 

network tested. 

This research has verified that ANNs have a position in machinery condition 

monitoring and diagnostics. However, the limited nature of these results indicates that 

ANNs will not solve all machinery condition monitoring and diagnostics problems by 

themselves. They certainly will not completely replace conventional rule-based expert 

systems. Ultimately, it is anticipated that a symbiotic combination of these two 

technologies will provide the optimal solution to the machinery condition monitoring and 

diagnostics problem. 
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I. INTRODUCTION  

Readiness is a key factor in enabling military forces to stay effective and reliable 

in a continuously growing and demanding environment. Increased readiness can be 

achieved by increasing availability through performing efficient maintenance, performing 

fewer corrective maintenance actions, and identifying more accurate preventive 

maintenance periods. Today, the United States and allied forces spend billions of dollars 

on time or phased-maintenance approaches that overlook several facts and realities of 

operational use. Important savings can be gained by using hardware and software to 

evaluate component health and the conditions of systems based on operational usage and 

performing maintenance in relation to statistical and engineering analyses that predict 

availability and readiness. 

The emphasis in this thesis is to develop a neural network that utilizes data 

collected from IMD-HUMS, manufactured by Goodrich Corporation, in order to discover 

patterns that can predict a failure of a UH-60L helicopter generator. Many different 

neural networks will be evaluated for their success rate on this faulting diagnosis. 

A. CONDITION BASED MAINTENANCE  
Maintenance is usually carried out in either time-based scheduled periods (so-

called preventive maintenance) or by corrective maintenance. Preventive maintenance 

aims to avoid system or component failure by performing repair, service, or replacement 

within the fixed time intervals. On the other hand, corrective maintenance is performed 

after the failure or when an apparent fault has taken place (Davis, A., 1998). For several 

types of equipment or systems the maintenance action must be done without delay, but 

for many others it can be delayed depending on the equipment’s function. In many cases 

the preventive maintenance can be divided into two groups: Condition-Based 

Maintenance (CBM) and Predetermined Maintenance (PM). PM is scheduled in time, 

while CBM mostly has dynamic or on-request intervals (Figure 1). 
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Figure 1.   Overview of Maintenance Terminology 
 

Entire CBM schemes involve a number of efficient capabilities, like sensing and 

data acquisition, signal processing, condition and health estimation, prognostics, and 

decision assistance. Moreover, in order for the user to have access to the system, a 

Human System Interface (HSI) development is necessary. Generally, the integration of 

various hardware and software components is needed to implement a CBM system.   

A complete architecture for CBM systems should cover the range of functions 

from data collection through the recommendation of specific maintenance actions. The 

major tasks that assist CBM consist of (http://www.osacbm.org): 

• Sensing and data acquisition  

• Signal processing and feature extraction 

• Production of alarms or alerts 

• Fault or  failure diagnosis and health evaluation 

• Prognostics:  projection of health profiles to future health or estimation of 
remaining useful life 

• Decision aiding:  maintenance recommendations, or evaluation of asset 
readiness for a particular operational setting 

• Management and control of data flows or test sequences 
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• Management of historical data storage and historical data access 

• System configuration management 

• Human system interface. 

CBM makes use of information collected on equipment through monitoring 

devices. As equipment becomes more complex, more manufacturers are providing these 

monitoring devices to assist companies or organizations handle and maintain their 

equipment (Tsang, A., 1995). CBM uses this online data to compare equipment 

conditions to predefined operating thresholds. Data that happen to fall outside these 

thresholds generates a maintenance alert by the software that signals a problem or area of 

concern.   

B. IMD-HUMS 
In 2003, the US Army began using the Integrated Mechanical Diagnostics Health 

and Usage Management System (IMD-HUMS), an integrated airborne and ground-based 

system developed by Goodrich Corporation, to support maintenance of the UH-60L. 

IMD-HUMS is responsible for collecting, processing, analyzing, and storing an 

enormous amount of data obtained from sensors located throughout the aircraft. The 

IMD-HUMS improves aircraft availability for operators by identifying potential 

problems early so that maintenance can be performed before it becomes an issue that 

could impact flight operations. The system also provides operators with accurate flight 

parameter data, monitored automatically on each flight, allowing them to better schedule 

routine maintenance and, in some cases, avoid unnecessary early repair and overhaul. 

The IMD-HUMS consists of two main subsystems: the On-Board System (OBS) and the 

Ground Station System (GSS) (System Users Manual For IMD-HUMS, 1995). 

1. On-Board System (OBS) 

The OBS is comprised of the following components (Figure 2): 

• Cockpit display unit (CDU) 

• Data transfer unit (DTU) 

• Remote data concentrator (RDC) 

• Main processor unit (MPU) 

• 2 junction boxes (JB1/JB2) 

• 20 drive train and gearbox accelerometers 
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• 4 engine accelerometers 

• 5 trim and balance accelerometers 

• 1 4g body accelerometer for regime recognition 

• Main and tail rotor magnetic RPM sensors 

• Main rotor blade tracker 

• Engine output shaft optical tachometers. 

The heart of the IMD-HUMS OBS is the Main Processing Unit (MPU). The MPU 

collects the data from the accelerometers, analyzes the inputs, and records the data, 

seeking for vibration exceedances and events. It calculates time spent in various flight 

regimes, performs various diagnostic algorithms, and stores the data to an onboard data 

cartridge. The OBS also provides for crew interaction through a Cockpit Display Unit 

(CDU) in order to support prompted procedure actions related to power assurance checks, 

power train analyses, and rotor track and balance data acquisitions. Besides prompted 

actions, the OBS uses regimes information to automatically store power train and rotor 

vibration data. 

2. Ground Station System (GSS)  
The GSS is the major user interface for the IMD-HUMS. It performs after-flight 

debrief and is designed to analyze, process, and compile flight data into useful 

information for the maintenance crew, logistics teams, the operations department, and 

engineering support. The IMD-HUMS GSS functions include: 
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Figure 2.   OBS & GSS  (From: IMD-HUMS User Manual, 2005) 
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• Rotor Time and Balance 

• Strip Charts of Aircraft Data 

• Engine Performance 

• Trending 

• Usage Computation and Tracking 

• Regime Identification and Processing 

• Flight Operations Management 

• Fault/BIT Display 

• Maintenance Management 

C. PREVIOUS WORK 
Willard and Klesch in their 2005 thesis, used 36,742 observations from monitored 

components of 30 UH-60L helicopter’s generators. The data was collected during the 

two-year period where the IMD-HUMS were installed. Each IMD-HUMS acquisition 

concerning the shaft, spur gear, and bearing of generators results in 170 variables. Each 

generator is assigned a binary value 1 or 0 to classify its known state. The value of one 

was given to the generators that were removed for fault, hence referred as bad generators. 

The value of zero was given to the generators that were not removed, referred to as good 

generators. To accomplish this generator classification, maintenance records and 

photographs from the 101st AVN Division were used. 

Principal components and other techniques were applied to reduce the 170 initial 

predictors to only 10. A logistic regression model and random forest classifiers were used 

on each generator, and the plotted probabilities of being bad were smoothed and used to 

predict the current functional condition of generators in the test set. Only Condition 

Indicators (CI) computed in the last 20 observations of each generator were used in the 

predictive models because generators classified as bad were not necessary bad through 

their entire two-year history. Due to the highly variable nature of the predictor values, the 

model had lower success predicting states with just one acquisition. One the other hand, 

some surprising cases of generators which were wrongly presumed to be bad and, 

conversely, another generator which was wrongly assumed to be good, were classified 

correctly by this study’s approach.  
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D. AREA OF RESEARCH AND APPROACH 
ANNs have a number of traits that make them an attractive alternative to 

conventionally configured expert systems. First, many are capable of discriminating non-

linear relationships. Second, they are capable of functioning with a certain degree of 

background noise and erroneous information with minimal degradation of their pattern 

recognition abilities. Third, they have the ability to generalize, having the ability to 

classify previously unseen vector patterns into existing and, in some cases, new output 

categories. They are also capable of identifying multiple faults. These are all areas where 

traditional expert systems typically fall short. Moreover, ANNs are data-based rather than 

rule-based. This means that they may be capable of correctly discriminating relationships 

previously hidden from the best of “experts”. 

ANNs are not without their disadvantages. They, like all computer algorithms, are 

capable only of manipulating numbers and require an engineer to discern the intelligence 

of their output. Their success is largely limited to the quality of the data that they are 

provided. If the input vectors provided are inadequate to describe the decision space 

fully, then their likelihood for success is small. Again, they require an engineer to provide 

the proper inputs. Finally, they may be able to distinguish new relationships, but the 

relationships themselves remain hidden; all that is seen external to the network are the 

input and the output vectors. It is generally believed that the relationships are somehow 

hidden in the connection weights and the hidden layers but meaningful extraction of this 

information has yet to occur.  

ANNs appeared to have potential in numerous fields, including machinery 

diagnostics. The question might be asked whether an ANN should theoretically be 

capable of recognizing patterns in vibration signatures. It is the scope of this research to 

determine whether this potential can be realized in the region of machinery diagnostics 

and specifically for the UH-60L helicopter’s electrical generator. In order to accomplish 

this, a database collected from IMD-HUMS is be used. Pattern recognition is an essential 

component of rotating machinery condition forecasting; therefore,  examining and 

training different model structures and shapes in trying to identify patterns that are 

“storing” the “weights” of the networks is being researched. 
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E. STATISTICAL TOOLS 
ANN software prices start at a few hundred dollars and can go to hundreds of 

thousands, or even more. The most expensive ones are generally packaged with more 

complete data mining products, which contain ANNs as one of the capabilities offered. 

This research utilizes one of those statistical packages, Clementine 10.0 produced by 

SPSS. This product is designed to function on servers and networks and has the ability to 

handle massive databases. The software also provides some handy features useful in 

evaluating the function fit by the NN, such as a computation of sensitivities. Through this 

software, the researcher had the opportunity to apply and, at the same time, train a 

number of different kinds of ANNs, in an effort to find the most suitable for the database 

of interest.  

In addition, S-PLUS 7.0 from Insightful and Excel from Microsoft, two 

inexpensive and well-spread tools were used to assist the models in this research.  

F. ORGANIZATION OF STUDY 
This thesis begins with Chapter I, which briefly introduces the reader to the 

modern concept of CBM and the tools available to support it, like IMD-HUMS 

manufactured by Goodrich Corporation. A summary of previous relative work is 

provided, along with the author’s area of interest and the tools utilized to achieve the 

objective of this research. 

Chapter II is dedicated to the traditional explanation of ANNs. Theory and 

pictures are used concurrently trying to clarify what is commonly known to ANNs as a 

“black box” solution. Data enter the “black box” and a prediction comes out of it. 

Chapter III describes the database, procedures that are followed to clean and 

choose the final data in use, and presents the steps of the methodology that leads to the 

result of this research. 

Chapter IV briefly presents and discusses the results and outputs of the models 

that were trained in supporting the goal of this research. Most of the structures of these 

models are summarized in Appendix B. 

Finally, Chapter V summarizes the conclusions and recommendations for future 

research ideas associated with the database and used techniques. 
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II. ARTIFICIAL NEURAL NETWORKS OVERVIEW 

An Artificial Neural Network (ANN) is an information processing system that has 

certain performance characteristics in common with biological ANNs. They are parallel 

in nature and the fundamental idea behind them is that, if it works in nature, it must be 

able to work in computers. ANNs are data-based vice rule-based, so they possess the 

potential of being able to operate where analytical solutions are inadequate. They are 

reputed to be robust and extremely tolerant of noisy data.  

A. HISTORY 
The ANN concept was first introduced in 1943 by W. McCullock and W. Pitts, 

who, while trying to describe how the brain’s neurons might work, modeled an ANN 

using electrical circuits. In 1949, D. Hebb introduced the training of the ANNs in his 

book “The Organization of Behavior,” in which he argued that if two nerves fire at the 

same time, their connection is strengthened and thereby it is also possible that the same 

two nerves will fire again. By the 1950’s, while computers became more advanced, 

researchers were eventually able to simulate such a hypothetical ANN. N. Rochester of 

IBM laboratories was an early pioneer in this field but, unfortunately, his effort failed. 

During 1959 and 1962, B. Widrow and M. Hoff developed two models (ADALINE and 

MADALINE) that recognized binary patterns, introduced a new learning algorithm 

applying the Least-Mean-Squares (LMS) learning rule, and used it to train adaptive 

ANNs.  

For almost for two decades (1960-1980), interest in ANNs faded because of a lack 

of new ideas and computational power. In 1972, T. Kohonen and J. Anderson developed 

a similar network independently of one another, with both resulting in a collection of 

analog ADALINE circuits. The first multi-layered network was developed in 1975, an 

unsupervised network.  

Since 1980, many researchers have boosted the idea and today ANNs are 

extremely popular as prediction and forecasting tools in a number of areas. The future of 

ANNs, though, lies in the development of hardware. 
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B. BIOLOGICAL NEURON 
In principal, the brain is composed of almost 10 billion neurons; each is attached 

to about 10,000 other neurons. The main segment of the cell is called the soma or cell 

body (Figure 3). Neurons have a large number of extensions called dendrites. Each 

neuron receives electrochemical signals from other neurons connected throughout 

different axons.  At the synapses—between the dendrite and axons—electrical signals are 

modulated in various amounts. If the sum of these electrical signals is sufficiently 

influential to activate the neuron, it produced an electrochemical output along the axon, 

and passes this signal to the other neurons, whose dendrites are attached at any of the 

axon terminals (Norgaardm M., Ravn O., Poulsen N., Hansen L., 2000). These attached 

neurons may then fire. It is essential to point out that a neuron fires only if the entire 

signal received at the cell body surpasses a certain level.  The neuron either fires or it 

doesn't; there aren't different levels of firing. 

 

 
Figure 3.   A Biological Neuron (From: Lawrence, J., 1993) 

 

The human brain is composed of these interrelated, electrochemical, broadcasting 

neurons. From a huge number of extremely naive processing units (each carrying out a 

weighted sum of its inputs, and then firing a binary output if the total input exceeds a 

certain level) the brain controls very complex tasks. This is the model on which artificial 

ANNs are based. Although ANNs haven't even approximated modeling the  
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complexity of the human brain, they have appeared to be excellent at problems that are 

easy for a human but difficult for a conventional computer, such as image recognition 

and forecast based on earlier knowledge. 

C. ARTIFICIAL NEURON 
The artificial neuron is meant to mimic the major characteristics of the biological 

neuron. The three crucial mechanisms of the artificial neuron are: 

(1) The synapses or connecting links that give weights, jw  to the input values, 

jx  for j=1, 2,…, m (Figure 4).  

(2) A summer that adds all the weighted input values to calculate the input to 

the activation function 0
1

m

j j
j

v w w x
=

= +∑ , where 0w  called the bias (not to 

be confused with statistical bias in prediction or estimation) which is an 
arithmetic value associated with the neuron. It is suitable to consider the 
bias as the weight for an input 0x  whose value is constantly equivalent to 

1, so that 
0

m

j j
j

v w x
=

=∑ . 

(3)  An activation function g that maps v to g (v), the output value of the 
neuron. This function is a monotone function. 

 
 

 

 

 

 

Figure 4.   An Artificial Neuron 
 

The artificial neuron has two stages of operation; the training stage and the using 

stage (Fausett, L., 1994). During the former, the neuron can be trained to fire or not, for 

specific input patterns or vector. In the latter, when a taught input pattern is identified at 

the input, its relayed output updates the current output. If the input pattern does not 
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belong in the taught list of input vector or patterns, the firing rule is used to determine 

whether to fire or not. Is important to state that the firing rule is related to all the input 

patterns, not only the ones on which the neuron was trained. 

D. ARCHITECTURE OF NEURAL NETWORKS 

1. Single Layer Networks (SLN) 
The structure of an artificial ANN consists of the ‘input layer’ connected to the 

‘hidden layer’, which is connected to the ‘output layer.’ Any action of the input units 

corresponds to the raw data that is fed into the network, while the action of each hidden 

unit is determined by the behavior of the input units and the weights on the links between 

the input and the hidden units (Ripley, B., 1996). The status of the output units depends 

on the activity of the hidden units and the weights between the hidden and output units 

(Figure 5). 

 

 
Figure 5.   Single Layer Network 

 

This simple class of network is especially interesting because the hidden units are 

free to build their own versions of the input. The weights between the input and hidden 

units decide when each hidden unit is active, and so by adjusting these weights, a hidden 

unit can choose what it represents. 

2. Multi Layer Networks (MLN) 
The most frequent ANN model is the multilayer perceptron (MLP). This family of 

ANN is known as a supervised network because it needs a preferred output for learning 

purposes (Kartalopoulos, S., 1996). The goal of this network is to generate a model that 
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correctly matches the input to the output using chronological data so that the model can 

then be used to create the output when the desired output is not known. A graphical 

demonstration of an MLP is shown below (Figure 6). 

 
 

Figure 6.   Multi Layer Network 
 

3. Feed -Forward Networks (FFN) 
Feed-forward ANNs are the most accepted and extensively used models in several 

realistic applications. FFNs permit signals to pass through one way only: from input to 

output. There is no feedback or loop and they tend to be straight-forward networks that 

connect inputs with outputs. They are broadly used in pattern recognition. This structure 

of organization is also referred to as bottom-up or top-down. (Figure 7) 

4. Radial Basis Function Networks (RBFN) 
The input of a Radial Basis Function (RBF) network is nonlinear while the output 

is linear. Because of their nonlinear approximation properties, RBF networks are capable 

of modeling complex mappings, which perceptron ANNs can only model by using 

multiple intermediary layers (Bishop, C., 1995). To use an RBF network we need to state 



14 

the hidden unit activation function, the quantity of processing units, a criterion for 

modeling a given task, and a training algorithm for finding the parameters of the network. 

 

 
Figure 7.   Feed Forward and RBF Network Representation 

 
E. LEARNING PROCESS 

One of the most essential phases of ANN is the learning process. Learning can be 

done in a supervised or unsupervised way.  

1. Supervised Learning 
In supervised learning, both the inputs and the outputs are known. During the 

training, the net runs the inputs and compares its resulting outputs against the known 

outputs. The differences of this comparison (the errors) are calculated, and the system 

adjusts the weights that manage the network. The aim is to establish a set of weights that 

minimizes the error. One famous method, which is frequent to many learning procedures, 

is the Least Mean Square (LMS) convergence (Duda, R., 2000). In this case, the network 

learns “offline” because the learning and the operation stages are different. Supervised 

learning can be subdivided into the following three general types: 

a. Hebbian Learning 
Hebbian learning is based on the premise that those connections that 

receive the most signal energy should in turn be strengthened. In this type of ANN, 

connection weights increase in a manner proportional to the magnitude of the signals  

 

 



15 

provided that both the input through the path and the desired output are high. While 

historically important and neurologically accurate, it is not widely used in neural 

computing applications.  

b. Delta Rule Learning 
Today, the most frequent form of learning in use is the delta rule. Here, 

weights are adjusted based on a direct comparison between the actual and desired 

outputs. Back propagation is one learning rule based on the generalized delta rule: 

 1 2 3ij ij ij ijW C E C M C X= + +  (2.1) 

where ijW is the weight of the connection from the thi element in the current layer to the 

thj element of the previous layer; 1 2 3, , andC C C  are coefficients varying from 0 to 1; 

ijE is the error proportional to the difference between the actual and desired output of the 

network; ijM is the momentum term based on the difference between the previous weight 

of the given connection and the weight immediately prior to that; and ijX is the 

activation energy associated with that particular connection (Ripley, B., 1996). 

c. Competitive Learning 
Competitive learning is where the output of processing elements is 

weighted according to the magnitude of its response relative to those of other processing 

elements. The “winning” processing element weighting is then modified according to 

comparison between actual and desired outputs. Thus only the strongest activation 

energies are adjusted; weak signals get progressively weaker unless the magnitudes of 

their response become comparable to those of the “winners”. 

2. Unsupervised Learning 
In unsupervised training, the network is provided only with inputs and not with 

preferred outputs. In the training phase, an input pattern is applied to the input layer and 

the net is permitted to achieve equilibrium (“winner”). Thereby, weight changes are made 

according to some instructions. The model itself should then decide what features it will 

use to cluster the input data. This type of organization is also known self-organized or 

adoption. Here the network learns “online,” because it learns and operates at the same 

time.  
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3. Activation Functions 
The activation function is basically used to introduce nonlinearity to the net. The 

activation function ( )g i  transforms the presented input of an artificial neuron during its 

activation, and determines how influential should be the output from the neuron, based on 

the sum of the inputs. If the artificial neuron must mimic a biological neuron, the 

activation function ( )g i  has to be a simple threshold function returning binary values. 

However, this is not always the approach that artificial neurons implement. Sometimes it 

is more powerful and efficient to have a smooth differentiable activation function. The 

output from this group of activation functions lies within the ranges of [0,1] or [-1,1], 

depending on which activation function is applied. Some cases, where the identity 

function is used as the activation function, do not have these restrictions. On while, inputs 

and weights have no boundaries and take values within the R range ( , )−∞ +∞ , in 

practice they often have small values centered around zero or are rescaled to have such 

small values. 

As pointed out before, there are many different activation functions, but the most 

frequently used are the identity function (Figure 8), the sigmoid (Figure 9), and the 

hyperbolic tangent (Figure 10). It is obvious that all the functions should be differentiable 

because the back propagation (BP) algorithm requires this property in order to work out 

the data process within the network (Bishop, C., 1995). 

An identity function, also known as an identity map or an identity transformation, 

is a function which does not have any effect. It always returns the same value that was 

used as its argument. For ANNs, that is reflected by the absence of hidden layers 

(perceptron). 
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( )g x x=  

 
Figure 8.   Identity Function 

 

A sigmoid function, also known as logistic, is an S-shaped curve that maps all 

input to the range [0, 1]. It has a limit of 0 as x approaches negative infinity, and 1 as x 

approaches infinity. 

 

1( )
1 xg x

e−=
+  

 
Figure 9.   Sigmoid Function 

 

A hyperbolic tangent function is analogous to a sigmoid, but it maps all of its 

input to the range [-1, 1]. It has a limit of -1 as x approaches negative infinity and 1 as x 

approaches infinity. The constants a and b define the possible output range (a) as well as 

the slope (b). The neuron transforms the stimulus in a nonlinear way, an essential 

precondition for solving a variety of highly complex problems. 
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Figure 10.   Hyperbolic Tangent Function 

 
4.  Gradient Descent 
As clarified previously, in training, a function estimator frequently decreases to 

result in a value of w
→

 that minimizes a scalar error function ( )E w
→

. This is a typical 

optimization issue and various methods have been developed to answer it. The most 

frequent one is gradient descent. Gradient descent consists in thinking that E is the height 

of a landscape on the weight space: to locate a minimum, beginning from an arbitrary 

point, march descending until a minimum is reached (Figure 11) (Sobajic D., 1993). 

From the figure we can see that gradient descent will not at all times converge to an 

absolute minimum of E, but only to a local minimum. In the majority of these cases, this 

local minimum is good enough, given a realistic initial value of w
→

. 

 

 

Figure 11.   Gradient Descent.  

(a) 

(b) 
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5. Back propagation Algorithm 

Back propagation (BP) is one of the earliest training algorithms, first developed 

by P. Werbos and is widely used for training supervised networks. The goal of BP is to 

minimize the square error of the predictions over all the observations (Fausett, L., 1994). 

Based on this algorithm, the output error is assumed to be collectively contributed by all 

connection weights. Basically, at the center of the algorithm, an application of the chain 

rule for ordered partial derivatives takes place to compute the sensitivity that a cost 

function has with respect to the environment and weights of the net.   

Initial weights are usually chosen as small random values, so that each neuron 

will adapt a different set of weights. The network’s input jz to a node j is resolved by 

summing the weights of its inputs  

 ,j i j i
i

z w x j= ∀∑  (2.2) 

where ix designates the input in one node, and ,i jw the weight from node i  to node j . 

Next, the node’s threshold valueθ  (bias) is added to net’s input jz  and the calculated 

value is filtered through an activation function, usually a sigmoid function (Figure 12): 

 
jj -z

1F(z ) = 
(1 + e )jθ+

 (2.3) 

 
Figure 12.   Sigmoid Function 
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The sigmoid function is also known as a ”squashing” function because it maps its 

inputs on a preset range number between 0 and 1. 

The learning procedure in a BP net has two stages. At the first stage, each input 

pattern pI  is provided to the net sequentially, and propagated forward until the output. In 

the second stage, a technique called “gradient descent” is applied to minimize the total 

error on the input patterns within the training set. During this technique, weights are 

altered in proportion to the negative of an error derivative with respect to each weight  

 ,
,

[ ]j i
j i

Ew
w

ε ∂
∆ = −

∂
 (2.4) 

Then, the weights moving toward the steepest descent of the error surface, which 

is defined by the total error  

 2
, ,

1 ( )
2 p j p j p jE t o= Σ Σ −  (2.5) 

where ,p jo  denotes as the responding output of node j  to pattern p , and ,p jt  is the target 

output for node j . After the error on each pattern is calculated (1.2), all the weights are 

readjusted in proportion to this error, and back-propagated from the outputs to the inputs, 

applying the gradient descent method. The new calculated weights decrease the overall 

error in the net. The idea of gradient descent using only a single weight is presented in the 

following picture. 

 

 
Figure 13.   Gradient Descent Using One Weight 
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An application of the chain rule is used to develop the BP learning rule, while 

reworking the error gradient for each pattern as the product of two partial derivatives. 

The first partial derivative represents the change in error as a function of the network 

input ,/p j iE w∂ ∂ , while the second partial derivative represents the effect of a weight 

change on a change in the network input , ,/p j j iz w∂ ∂ . Modifying the error gradient turns 

into  

 ,

, , ,

[ ]*[ ]p p p j

j i p j j i

E E z
w z w
∂ ∂ ∂

=
∂ ∂ ∂

 (2.6) 

Using the equation (2.2) for the net input jz  to a node j , we can solve directly for 

the second partial derivative and derive the network’s output ,p io for the pattern p to the 

node i :  

 
, ,

,
,

, ,

( )
[ ]

i k i k
p j k

p i
j i j i

w oz
o

w w

∂∂
= =

∂ ∂

∑
 (2.7) 

Naming the negative of the first partial derivative as the error signal:  

 ,
,

p
p j

p j

E
d

z
∂

=−
∂

 (2.8) 

the corresponding change in the weight ,i jw  with respect to the error pE  becomes  

 , , ,* *p j i p j p jw d oη∆ =  (2.9) 

where η  is a parameter describing the learning rate. The speed and accuracy of the 

learning process during the iterations to update the weights also depend on the learning 

rateη . A low learning rate can guarantee more stable convergence, but a high learning 

rate can accelerate convergence in several cases. 

The next step in the BP algorithm is to calculate the ,p jd  for each node in the net. 

The equation (1.8) can be rewritten as:  
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 (2.10) 

To compute the first partial derivative there are two cases to examine:  

a. First Case 

Assume that j  is an output node of the net; then, from equation (1.5) it 

follows that:  

 , ,
,

2( )p
p j p j

p j

E
t o

o
∂

= −
∂

 (2.11) 

substitute equation (1.11) to equation (1.8) becomes:  

 , , , ,2( )* ( )p j p j p j p jd t o f z= −  (2.12) 

b. Second Case 

Assume that is not an j output node of the net, then applying again the 

chain rule, we obtain: 
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 (2.13) 

Combining now the above cases, we form an iterated process for 

calculating the signal error ,p jd  for all nodes in the net. These errors can then be used to 

update its weights.  

As BP uses a gradient descent method, the corresponding net tracks the 

contour of an error surface with weight updates moving in the direction of the steepest 

descent. Assuming a plain net without hidden layers, it is easy to minimize the error 

using gradient descent because the error surface is bowlshaped (Figure 13). The net will 

always locate an optimal solution at the base of the bowl. Such optimal solutions are 
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called global minima. On the other hand, cases which are more complex require the 

existence of an extra hidden layer to carry out the solution to such difficult problems. 

Here, error surfaces become also complex, containing possibly many minima. Because 

some minima are deeper than others, it is possible that gradient descent will not locate a 

global minimum, and the network may be trapped in a local minimum, which is a 

suboptimal solution.  

It is clear that we want to avoid local minima while training a BP net. 

Although in some case this may be difficult to do, in practice it is essential to try to find 

how often and under what circumstances local minima occur. Moreover we have to study 

possible approaches for avoiding them. It is known in the ANNs theory that the more 

hidden layers you have in a net, the less possible you meet a local minimum during 

training. Although additional hidden nodes amplify the complexity of the error surface, 

the extra dimensionality increases the number of possible flee paths.  

The BP algorithm analyzed in this chapter only involves only weight 

changes that are proportional to the derivative of the error. As we mentioned before at 

equation (1.9), the increment of the learning rate contributes η  to an increment of the 

weight changes on each iteration, and the faster the net learns (although the magnitude of 

the learning rate can also control whether the net reaches a stable solution). If the learning 

rate gets too large, then the weight changes no longer approximate a gradient descent 

procedure and that often results in oscillation of the weights. Obviously, we want to get 

the largest learning rate without causing oscillation, achieving the best learning speed 

while minimizing the training time for the net. One technique that has been used is a 

small modification of the BP algorithm that contains a momentum term.  

The idea of momentum is that previous changes in the weights should 

control the current direction of movement in the weight space. This idea is implemented 

by the adjusted weight update rule:  

 , , , ,( 1) * ( )j i p j p j j iw d a wη ε α η∆ + = + ∆  (2.14) 

where η  is the learning rate. With momentum, if the weights begin to move in a specific  
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direction in their space, they tend to keep on moving in that direction. Momentum can aid 

the net to overcome a local minimum, in addition to speeding learning, particularly along 

extensive flat error surfaces.  

In Clementine, the default learning rate is 0.25 and the default momentum 

parameter is 0.9. When using BP for a series of problems, much smaller values than these 

are often used. For especially complex problems, a learning rate of 0.01 is very common. 

6. Efficient Algorithms 

Selecting the proper value for the learning rate η  is not an easy concept. If η  has 

a small value, then the learning procedure will be too slow. On the other hand, if η  is 

assigned a large value, the learning procedure may diverge. An acceptable value of η  can 

be established by trial and error, but this is a quite boring and wasteful process (Bishop, 

C., 1995). In order to deal with this problem, a large range of efficient learning methods 

has been developed. Here, we briefly present the most essential theoretical ideas 

underlying them. One of the most basic ideas for speeding up the learning procedure is to 

use the second-order information regarding the error function. Assuming a quadratic error 

in one dimension, the best learning rate is the inverse of the second order derivative 

(Figure 14), which can aid in designing capable learning methods. 

 



25 

 

Figure 14.   Learning Rate effect on Gradient Descent (From: Fausett, L., 1994) 
 

If it is possible to calculate this second-order derivative, then it is feasible to 

achieve a good learning rate. Unhappily, the error function might not be quadratic at all. 

Therefore, setting the learning coefficient to the inverse of the second-order derivative 

only works near the optimum, in regions where the quadratic approximation is valid. But 

if the second-order derivative is negative, this does not work. For handling such 

circumstances, particular care must be taken. Moreover, a few other issues come up when 

the dimension of the weight space is bigger than one, which is the most common case in 

practice. The second order derivative is not a single number anymore, but a matrix called 

the Hessian and defined as:  
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 (2.15) 

Sometimes it is probable to have dissimilar curvatures in different directions 

(Figure 15). This can generate a major problem if there is, for instance, a second 

derivative of one hundred (100) in one direction, and a second derivative of one (1) in 

another. In this case, the learning coefficient must be less than 0.002 in order to avoid 

divergence. This means that convergence will be very slow in the direction where the 

second derivative is one (1). This phenomenon is called ‘ill conditioning.’ Efficient 

algorithms frequently try to change the weight space in order to have the same curvatures 

in all directions. This has to be done cautiously so that instances where the curvature is 

negative work as well. Some of the best algorithms are QuickProp, Levenberg 

Marquardt, and Conjugate Gradient.  
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Figure 15.   Ill Conditioning. (From: Bishop, C., 1995) 
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7.  Batch Vs Incremental Learning 

In unsupervised learning, as described earlier, the error function is frequently 

defined as a sum of error terms over a finite amount of training samples that consist of 

pair vectors (input, output). Again, the error function is:  

 
p

i
i

E E=∑  (2.16) 

with  

 21 ( ( ) )
2i i iwE f x y= −JG

JG JJG
 (2.17) 

 Applying the steepest descent on E is known as “batch learning” (BL) for the 

reason that the gradient of the error has to be calculated on the full training set previous 

to weights modification. A different method to modify weights aiming to minimize E is 

“incremental learning” (IL). Within this method, the gradient descent steps are applied on 

iE  instead of E. Some other known names for IL are online or stochastic learning. Now 

the obvious question that arises is which of these methods is the best. The answer is not 

so simple and depends always on the particular problem to be solved. Here are a few of 

the tips to consider (Simpson P., 1996): 

a. Advantages of Incremental Learning (IL) 

• IL is usually faster, particularly when the training set is redundant. In 
situations where the training set has input and output patterns that are 
similar, BL wastes time calculating and adding similar gradients before 
setting one weight update. 

• IL often results in better outcomes. This happens because the randomness 
of IL generates noise in the weight updates. This noise aids weights to 
jump out of bad local optima. 

• IL is capable of tracking changes. As an example, consider a learning 
model of the dynamics of a mechanical system. While this system gets 
older, its properties might slowly evolve and IL can track this type of drift. 

b. Advantages of Batch Learning (BL) 

• In IL, noise causes the weights to continuously oscillate around a local 
optimum, and they never converge to a constant stable value. This is not 
the case in BL, making it easier to analyze. 
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• Various acceleration methods can operate only in BL, such as some of the 
algorithms mentioned earlier (QuickProp, Conjugate Gradient). 

• Another benefit related to the absence of noise in BL is that the theoretical 
analysis of the weight dynamics and convergence rates are very simple. 
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III. DATA DESCRIPTION AND METHODOLOGY 

Vibration analysis is among the most powerful tools available for the detection 

and isolation of incipient faults in mechanical systems. Among the methods of vibration 

analysis in use today and under continuous study are broadband vibration monitoring, 

time-domain analysis, and frequency analysis. All have varying degrees of utility in 

machinery condition monitoring and diagnostics and all have characteristics that lend 

themselves particularly well to specific applications. Since the effectiveness of ANN is 

directly related to how effectively the chosen inputs define a particular decision space, 

the selection of the optimum vibration parameters for inputs to the ANNs is critical. 

Thus, a good understanding of elementary machinery diagnostics techniques is essential. 

A. SOURCES OF VIBRATION 
In mechanical systems, any mechanical component which periodically comes in 

contact with a second component to transmit an axial, radial, or torsional load is a 

potential source of mechanical vibration. In machines with a gear train, the principal 

components involved with load transfer will be its torsional power source, such as a 

motor; the gear meshes; the bearings; and those items that interconnect them, the shafts. 

Additionally, because vibrational isolation is seldom complete, additional extraneous 

sources of vibration will also be present. The diagnostician is generally interested in 

extracting the vibrations created by specific machinery components and ignoring the 

other sources as extraneous noise. In this study, we are particularly interested in the 

vibrations generated by the rotating machinery’s gears, bearings, and shafts. As such, the 

discussion will be limited to these sources of vibration. 

1. Gear Vibration  

In a gear train, the gear mesh is the dominating source of mechanical vibration. 

This vibration primarily stems from the non-uniformity in the transmission of angular 

motion from one gear to its mate. The non-uniformity of the angular motion occurs due to 

geometric deviations of the contact surfaces from the ideal involutes shape and the elastic 

deformation that any mechanical system undergoes when transmitting a load (Mark, 

W.D., 1998). Moreover, torque fluctuations and deflections of the gearbox can also be  
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sources of vibration in gears. Clearly, any damage that occurs to the gear contact surface, 

as well as other mechanical linkages to the gear mesh, will also have an effect on the 

gear’s vibration (Mattew, J., and Alfredson, R.J., 1987). 

2. Bearings  
Bearing vibrations occur for much the same reasons as gears. However, because 

bearings are not situated directly along the power transmission train and support largely 

static loads, they characteristically generate a small vibration signal until the damage 

inflicted upon them reaches advanced stages. Because of the low magnitude of these 

signals, they are often masked by much stronger gear-related signals. Partially because of 

this belated detection of trouble, antifriction bearings are among the most common causes 

of machinery failure in moderately sized machines. The frequencies associated with the 

bearing-related signals generally depend on the location of the damage, the dimensions of 

the bearings, and the shaft rotation speed. 

3. Shafts  

Shafts generally produce vibration signals at their rotational frequency and its 

harmonics. Shafts are also prone to a number of different faults, all of which register at 

the shaft rotative frequency. In the case of bent shafts and shafts misalignments, the 

second harmonic is the dominant frequency in 90 percent of the cases (Collacott, R.A., 

1979). Imbalances in the shaft or load characteristically generate a dominant signal at the 

shaft rotative frequency but there tends to be a phase shift as well. Mechanical looseness 

can also introduce increases in the shaft rotational frequency but also characteristically 

involves higher harmonics as well (Hewlett Packard, 1983). 

B. DATA COLLECTION 
The database used in this research was provided by Goodrich Corporation and 

collected through the IMD-HUMS installed on 30 UH-60L helicopters. The period of 

data collection starts at 9/22/2003 and stops at 7/31/2005. The total number of 

observations utilized was 36,742 and each observation consists of 169 fields. For the 

database’s structure and reference ease, each generator was assigned a number starting 

from 1 up to 66. Appendix A summarizes the allocation of generators among the 

helicopters and the number of the recorded observations for each generator. 
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C. SELECTING VARIABLES 

As in any prediction or forecasting model, the selection of appropriate model 

inputs is extremely important. However, in most ANN applications, less attention is 

given to this task. The main reason for this is that ANNs belong to the class of data-

driven approaches, whereas conventional statistical methods are model-driven. In the 

latter, the structure of the model has to be determined first, which is done with the aid of 

empirical or analytical approaches, before the unknown model parameters can be 

estimated. Data-driven approaches, on the other hand, have the ability to determine which 

model inputs are critical, so there is less need for “...a priori rationalization about 

relationships between variables...” However, presenting a large number of inputs to ANN 

models and relying on the network to determine the critical model inputs usually 

increases network size. This has a number of disadvantages, such as decreasing 

processing speed; increasing the amount of data required to estimate the connection 

weights efficiently, and degrading the AAN performance. This is particularly true for 

complex problems, where the number of potential inputs is large and where no a priori 

knowledge is available to suggest which inputs to include. 

1. Input Vector 

According the vibration theory mentioned before and after an assiduous study of 

the entire data recorded by the IMD-HUMS, the variables which potentially could form a 

well-informed input vector—all of them or subsets—to the training process of this 

research model, are shown and briefly explained below (Goodrich Corporation, 1998): 

a.  Torque 

Torque is a measure of how much force acting on an object causes that 

object to rotate. 

b.  SO_1 (Shaft Order 1) 
SO_1 is the once-per-revolution energy in the signal average and is used 

to detect shaft imbalance. 

c.  SO_2 (Shaft Order 2) 

SO_2 is the twice-per-revolution energy in the signal average and is used 

to detect shaft misalignment. 
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d.  SO_3 

SO_3 is the thrice-per-revolution energy in the signal average and is used 

to detect shaft disparity. 

e.  Signal Average RMS 
Frequencies that are integer multiples of the basic shaft frequency will be 

enhanced by the averaging process and other frequencies will be relatively attenuated. 

Depending on the mechanical environment, the signal average generally requires about 

100 revolutions to converge to a usable waveform.  

f.  Residual Kurtosis 
The residual analysis first removes all the strong tones from the signal 

average to produce a residual signal so as to minimize the interference of these strong 

tones. Here the process handles kurtosis, which measures the thickness of the tails of the 

distribution of bearing vibrations after the background signal has been removed (Harris, 

2002). 

g.  Residual RMS 
The residual process deals with the Root Mean Square, which is the 

overall energy level of the vibration data.   

h.  Side Band Modulation_1 

This analysis is designed to reveal any sideband activities that may be the 

result of certain gear faults, such as eccentricity, misalignment, or looseness. The 

indicator characterizes the degree of sideband modulation for the first sideband. 

i.  Gear Distributed Fault 
This attribute is an effective detector for distributed gear faults, like wear 

and multiple tooth cracks. It is a dimensionless measurement calculated from the ratio of 

explained and unexplained variances of a vibration generated at the meshing of gears. 

j.  G2_1 
G2_1 is an algorithm developed by Goodrich Corporation to compute the 

ratio of the signal average peak to peak and the gear meshing energies. 

k.  Residual Peak to Peak 
The residual process deals with the algebraic difference between the 

extremes of the vibration quantity. 
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l.  Gear Misalignment_1 

Gear Misalignment_1 is a dimensionless measurement resulting from the 

ratio of the energies of the vibrations produced when gears mesh (Harris, 2002). 

m.  Ball Energy 
Ball Energy is the total energy associated with the bearing ball spin defect 

frequency and its harmonics. 

n.  Cage Energy 
Cage Energy is the total energy associated with the bearing cage defect 

frequency and its harmonics. Usually it is detectable only at the later stage of a bearing 

failure, but some studies show that this indicator may increase before the others. 

o.  Inner Race Energy 

Inner Race Energy is the total energy associated with the bearing inner 

race defect frequency and its harmonics. 

p.  Outer Race Energy 
Outer Race Energy is the total energy associated with the bearing outer 

race defect frequency and its harmonics. 

q.  Envelope RMS 

The main purpose of envelope analysis is to sum and normalize the six 

multiples of frequencies above or below the Root Mean Square value of the vibration. 

Table 1 enumerates the above potential predictors for later reference purposes. 

 
Predictors 

1 Torque 10 G2_1 

2 SO1 11 Residual Peak to Peak 

3 SO2 12 Gear Misalignment_1 

4 SO3 13 Ball Energy 

5 Signal Average RMS 14 Cage Energy 

6 Residual Kurtosis 15 Inner Race Energy 

7 Residual RMS 16 Inner Race Energy 

8 Side Band Modulation_1 17 Envelope RMS 

9 Gear Distributed Fault   
 

Table 1.   Potential Model Predictors 
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2. Output Vector 

In this research’s models, the output vector consists only of one variable, which is 

the operating condition of the generator. Each generator is assigned a binary value of 1 or 

0 to classify its known state. The value of 1 corresponds to generators removed for fault 

while the value of 0 corresponds to good generators. The fact that each generator is 

assigned a state of 0 (good) or 1 (bad) does not mean these generators are actually in the 

assigned state. The given state of 0 (good) or 1 (bad) is based only upon whether a 

generator was removed for fault or not, according the maintenance records. A generator 

with a hidden fault would be assigned a state of 0 (good). Similarly, a generator which 

was taken out for a malfunction and given a state of 1 (bad) could have been 

mechanically good (Willard, L., Klesch, G., 2005). Unlikely the previous work of 

Willard and Klesch (2005), the entire history of “good” and “bad” generators is used 

here. Thus most “bad” generators should have an initial period of “good” following by 

“bad” as they fail. 

The following table shows the generators that were confirmed as bad, either after 

maintenance or based on IMD-HUMS data, and assigned the value of 1 (Table 2). The 

failure of two of the generators, numbers 9 and 33, were detected during operation by a 

generator warning light. Faults in the remaining four generators, numbers 22, 31, 53, and 

56, did not trigger the generator warning light. However each of the four generators had 

unusually high SO1 readings upon removal. Three of these generators, numbers 22, 31, 

and 53, showed evidence of fault or wear. The removal of generator number 56 resulted 

from the case of an identifiable buzz (Willard, L., Klesch, G., 2005). 
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Bad Generators—Reasons for Replacement 

Generator Comments 

9 Generator failed during shutdown upon APU generator coming on during start. 

22 SO1 near 2 ips. After Spline Adapter Coupler replacement, SO1 returned to 0.05 ips. 

31 SO1 at 3 ips. After Spline Adapter Coupler replacement, SO1 remained high and so 
generator was replaced 

33 Generator bad 

53 SO1 at 3 ips. After Spline Adapter Coupler replacement SO1 returned below 0.05 ips. 

56 SO1 over 4 ips. Generator and  Spline Adapter Coupler were replaced. 

Note: 
Replacement of generators 9 & 22 were made due to maintenance records while the rest due 
to Johnny Wright and Ground Station Team, IMD-HUMS Fault Detections, Goodrich 
Corporation. Draft 5/25/2005 (Ver 117) 

 
Table 2.   Bad Generators—Reasons for Replacement 

 
D.  DATA PREPROCESSING 

Data preprocessing is frequently used to analyze and transform the input and 

output variables to minimize noise, emphasize essential relationships, identify trends, and 

flatten the distribution of the variables to aid the ANN in learning the relevant patterns. 

Since ANNs are pattern matchers, the representation of the data is important in designing 

a successful network. In most datasets there is a large variability in the scale of range 

fields. To balance this effect of scale, range fields are transformed so that they all have 

the same scale. In Clementine, range fields are rescaled to have values between 0 and 1. 

The transformation used is:  

 ' m in

m a x m in

i
i

x xx
x x=

−
−

 (2.18) 

where '
ix  is the rescaled value of input field x for record i, ix is the original value of x 

for record i, minx  is the minimum value of x for all records, and maxx  is the maximum 

value of x for all records. 

An additional problem for network representation of the utilized database was 

that, out of 36,742 total observations, only 1,477 cases referred to the bad generators. 

This fact directly affects the learning procedure of the network by creating a tendency to 

predict only good generators. For example, Table 3 gives results for a AAN using the 
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default settings in Clementine where the classification is perfect for “good” generators 

while the classification for the “bad” generators is that actually they are “good” too. 

Changing the ANN architecture consistently gives similar results; most observations are 

predicted as “good.” To correct this situation, the records of bad generators were 

replicated so that the ratio of good to bad generators was close to 1. We can consider this 

scheme as a weighting technique to emphasize the input vector of the bad generators and, 

concurrently, the information they might convey. The multiplication factors differed for 

each generator. They chose so that each bad generator had about the same number of total 

observations and so that the number of bad generators was about equal to the number of 

good generators. Table 4 describes the latter procedure of data manipulation, and Figure 

16 presents the setup of Clementine to create the new normalized database. 

 

PREDICTION ACCURACY ORIGINAL 

SET 

ALL DATA 

W/O GEN 

TRAINING 

ACCURACY BAD GOOD 

9 98.479 % 

22 98.173 % 

31 97.111 % 

33 97.657 % 

53 97.151 % 

36742 

observations 

56 96.928 % 

0 % 100 % 

 
Table 3.   Training Set using only Original Data  
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Generator Observations Factor Result Total Ratio 

9 435 13 5655 

22 336 16 5376 

31 302 18 5436 

33 245 22 5390 

53 61 55 5390 

B
ad

 G
en

 

56 98 90 5490 

32737

Good Gen All 35265

0.93 

 
Table 4.   Data Multiplication of Bad Observations 

 

Figure 16.   Clementine Preprocessing Data 
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E. DATA SETS  

In ANNs, it is a common practice to partition the database into three separate sets 

called the training, test, and validation sets.  

1. Training Set 
The training set is the largest set and is used by the ANN to learn the patterns that 

exist in the data. The training set used for this research consists of the observations of 

five (5) bad and fifty-six (56) good generators, for a total of about 60,000 records. 

2. Test Sets 
The test sets, varying in size from 10% to 30% of the training set, are used to 

evaluate the ability of a trained ANN to generalize to a new set of data. The researcher 

fits the parameters and the topology of the network that achieves the best results on a test 

set. Using the features of the software, the size of a test set was always taken to be at 25% 

of the training set. Periodically during the process of training, new test sets are selected 

from the training set. Although this sample was selected randomly from the training set, 

the same seed of (12345) was used, in order to duplicate results for different model fits. 

Figure 17 shows the format chosen for the training and testing sets.  

 

 
Figure 17.   Model Architecture GUI 
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For the purposes of training, each record is considered as an observation. Thus it 

is likely that the test set contains records from each of the 61 generators.  

3. Validation Set 

The validation set is used last as a final check on the performance of the trained 

network. The size of the validation set should keep a balance between obtaining a 

sufficient sample size to evaluate a trained network and having enough remaining 

observations for both training and testing. The validation set consists of one (1) bad and 

four (4) good generators. The records from these five generators are not used in training 

the network. They are only used for validation. 

F. NETWORK ARCHITECTURE AND EVALUATION CRITERIA 

As a baseline, this analysis uses a model architecture consisting of one input layer 

containing the predictors for the model, one output layer giving the estimate of the 

probability that the record is bad, and one hidden layer. Clementine provides six training 

methods for building ANN models but for this research utilized only the following two: 

(Figure 17) 

• Prune: This method starts with a large network and removes (prunes) the 
weakest units in the hidden and input layers as training proceeds. This 
method is usually slow, but it often yields better results than other 
methods. 

• RBFN: The radial basis function network uses a technique similar to k-
means clustering to partition the data based on values of the target field. 

Clementine incorporates several features to avoid some of the common pitfalls of 

ANNs, including sensitivity analysis, network accuracy, and feedback graph. With these 

options selected, a sensitivity analysis will provide information on which input fields are 

most important in predicting the output field, network accuracy will provide the 

percentage of records for which the prediction of the model matches the observed value 

in the data, and the feedback graph will depict the accuracy of the network over time as it 

learns (Clementine 10.0 Node Reference, 1999). Moreover, a Confidence level ($N-

Binary) is provided for each observation after the prediction, which, in this model with a 

flag (0 or 1) output, is calculated by using the formula:  

 $N-Binary 2 | 0.5 Raw Output |= −  (2.19) 

where the RawOutput is the output unit value scaled so that it is between o and 1. 
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If the output unit value is below 0.5, the observation is predicted as 0 (false), and 

if it is 0.5 or above, the observation is predicted as 1 (true). For example, if the ANN 

prediction value is 0.72, the prediction is displayed as “true,” and the confidence will be 

2 0.5 0.72 0.44− = . A part of some output results is presented in Figure 18. 

 

Figure 18.   Clementine Prediction Table 
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IV. RESULTS AND DISCUSSION 

A. MODEL WITH ALL PREDICTORS 
The first attempt of this experiment was to predict the state of one (1) bad and 

four (4) good generators. The good generators were chosen randomly and form a constant 

group for the rest of the experiment. The bad generators were sequentially chosen, one at 

a time, in order to observe how the model reacts and how this might affect the learning 

procedure. Initially, all the predictors were used to form the input vector for the training 

procedure of the network (Table 1). 

Appendix B provides the structure of the models in Tables 4, 5 and 6 along with 

their sensitivity tables. The training sets used for those models consist of the observations 

of five (5) bad and fifty-six (56) good generators. The size of the test sets was always 

taken to be at 25% of the training set while the validation set consists of one (1) bad and 

four (4) good generators.  

It is obvious from Table 4 that all the models behave well through the learning 

process and their training accuracy, computed on the test set taken from the training set, 

is very high (above 99%). Moreover, the prediction accuracy of the models, for the group 

of the good generators in the validation set, is also high (above 86%). On the other hand, 

it is noticeable that four (4) models could not predict the bad generator in the validation 

set at all, or to be more specific, they predicted that the generator was good. These 

models are even unable to predict generators 9 and 33, which are certainly bad because 

they had been replaced due to total failure and not preventively. The most likely 

explanation is that the patterns for the bad generators are too close to those to the good 

ones. It is also likely that the patterns of predictors for bad generators differ among the 

bad generators. There are a variety of potential causes for these differences. It is plausible 

that variability among aircrafts, among generators, or even among placement of IMD-

HUMS acidometers could cause differences in readings from generator to generator. We 

also expect that bad generators with different failure causes will have different vibration 

patterns. Projection pursuit implemented by the statistical software Ggobi, used to gain a  
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visual perspective of the relationship among the variables. Ggobi plots two-dimensional 

projections of multi-dimensional data and Figure 19 depicts some of the data leading to 

the assumption of a unique failure type for each “bad” generator. 

 

Figure 19.   Ggobi screen for “bad” generators 

 

Attempting to explore and understand further the models’ behavior, we tested five 

(5) new models to predict the condition of the two generators, 31 and 53, which were 

well predicted from models 3 and 5 of Table 5. Each model includes the whole database  
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excluding those data of the validation set which are the “bad” generators in question and 

the “good” generators 4, 26, 42 and 66. For these models, we exclude from the training 

set the data of the pair referenced in table. 

The prediction accuracy for generator 53 drops from 78.69 % in the single model 

5, to a range of 77.05 % - 59.02 % in the paired models. This seems to indicate that all 

the bad generators contribute to the prediction (Table 6).  

In contrast, for generator 31, the accuracy of models 8 and 9 drops less than 10% 

and for model 10 is almost 0%. This might indicate that generator 31 is more closely 

related to those generators that form the corresponding pairs (Table 7). Once again, we 

notice that the previous assumptions of close bad and good generator patterns and the 

possibility of unique reasons for generator failures are valid. Additionally, we observe 

that any change made on the models didn’t affect the accuracy of good generators. 
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MODEL VALIDATION SET TRAINING ACCURACY   (%) PREDICTION ACCURACY   (%) 

BAD 9 0 

4 90.73 

26 96.85 

42 100 

1 
GOOD 

66 

99.913 

100 

BAD 22 0 

4 100 

26 95.40 

42 100 

2 
GOOD 

66 

99.721 

100 

BAD 31 89.74 

4 100 

26 95.66 

42 100 

3 
GOOD 

66 

99.708 

100 

BAD 33 0 

4 100 

26 99.74 

42 100 

4 
GOOD 

66 

99.821 

100 

BAD 53 78.69 

4 100 

26 99.77 

42 100 

5 
GOOD 

66 

99.448 

100 

BAD 56 0 

4 100 

26 86.20 

42 100 

6 
GOOD 

66 

99.376 

100 

 
Table 5.   Models Predicting Single Generator 
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MODEL VALIDATION SET TRAINING ACCURACY   (%) FIRST PREDICTION   (%) SECOND PREDICTION   (%) 

53 78.69 77.05 
BAD 

9 99.31 0 

4 100 100 

26 97.77 100 

42 100 100 

7 

GOOD 

66 

89.976 

100 100 

53 78.69 72.13 
BAD 

22 100 0 

4 100 100 

26 97.77 99.47 

42 100 100 

8 

GOOD 

66 

99.707 

100 100 

53 78.69 59.02 
BAD 

31 100 0.33 

4 100 100 

26 97.77 95.66 

42 100 100 

9 

GOOD 

66 

99.478 

100 100 

53 78.69 78.69 
BAD 

33 99.18 0 

4 100 100 

26 97.77 99.87 

42 100 100 

10 

GOOD 

66 

99.728 

100 100 

53 78.69 70.49 
BAD 

56 100 6.12 

4 100 100 

26 97.77 98.69 

42 100 100 

11 

GOOD 

66 

99.640 

100 100 

 
Table 6.   Models Predicting Pair of Generators Including 53 
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MODEL VALIDATION SET TRAINING ACCURACY   (%) FIRST PREDICTION   (%) SECOND PREDICTION   (%) 

31 89.74 97.68 
BAD 

9 99.54 0 

4 100 100 

26 95.66 96.85 

42 100 100 

12 

GOOD 

66 

99.830 

100 100 

31 89.74 7.62 
BAD 

22 100 0 

4 100 100 

26 95.66 96.98 

42 100 100 

13 

GOOD 

66 

99.795 

100 100 

31 89.74 1.99 
BAD 

33 100 0 

4 100 100 

26 95.66 99.87 

42 100 10 

14 

GOOD 

66 

99.780 

100 100 

31 89.74 0.33 
BAD 

53 100 59.02 

4 100 100 

26 95.66 95.66 

42 100 100 

15 

GOOD 

66 

99.478 

100 100 

31 89.74 82.12 
BAD 

56 100 24.49 

4 100 100 

26 95.66 98.29 

42 100 100 

16 

GOOD 

66 

99.509 

100 100 

 
Table 7.   Models Predicting Pair of Generators Including 31 
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B. ARTIFICIAL TRAINING SETS 

Leaving out certain bad generators degrades the performance of the network when 

fitting the ANN. If including patterns of predictors for those bad generators is important 

for classification, then there may be other patterns of predictors for bad generators that 

have not yet been observed and are not included in the data set. 

In this section an attempt is made to predict patterns of bad generators not 

included in the training set. First assume that a “bad” generator is any pattern which is 

not like the “good” generators in the data set. With the large number of good generators 

in the data set and the fact that the predictors of the good generators seem to clump 

together in two dimensions, this seems like a reasonable assumption. The ANN classifies 

as “bad” any pattern which is not like the good generators of the training set. To 

accomplish this, artificial records of “bad” generators are constructed and included in the 

training set. These artificial records are constructed by simulating values of their 

prediction variables using uniform distributions with lower and higher limits taken to be 

respectively the minimum and maximum value for that predicted variable. Table 8 gives 

these values for each predictor. 

Uniform random numbers were generated in Excel. With Excel’s limited memory, 

only 65,000 uniform random numbers could be generated at one time. With seventeen 

(17) predictors, limiting the number of these artificial records to 65,000 makes for a 

sparse set of “not good” records. 
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Table 8.   Summary Statistics for each Predictor variable including the Minimum, 
Maximum, Average and Standard Deviation. 

 

The following table (Table 9) presents the results of forecasting generator 9 using 

the above idea of training a uniformly distributed artificial set, combined along with the 

rest of generators regardless of their condition. We can see that propagating the artificial 

training set, even up to 1.3 million (1.3M) observations, the model still has no ability to 

predict the real condition of the bad generator in question. It does while still having 

excellent prediction accuracy on the group of good generators. The model starts to have 

encouraging prediction accuracy (11.72 %) after the artificial set reaches 2.6M 

observations but, at this point, it becomes less effective on the group of good generators. 

As the artificial set reaches a size of 2.75 M observations, it has excellent prediction 

accuracy (100 %) on the generator in question but now the predictions for the good group 

become very poor. This suggests once again that the patterns of good and bad generators 

are closely related. We can also conjecture that, because of the large number of predictor 

variables, we are seeing the so called “curse of dimensionality.” This means that the  
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complexity of the model grows exponentially with the dimension, rapidly outstripping the 

computational and memory storage capabilities of computers. For this data training more 

than 2.75M observations become infeasible. 

The same method is applied to generator 33. The results are analogous and 

summarized in Table 10, while the structures of the networks are provided in Appendix 

C. 

 

PREDICTION ACCURACY ARTIFICIAL 

SET 

ALL DATA 

W/O GEN 

MODEL 

ACCURACY BAD GOOD 

65,000 93.676 % 0% 

650,000 98.140 % 0% 

1.30 M 99.101 % 0% 

Excellent 

2.60 M 99.137 % 11.72% Average 

2.75 M 

9 

99.243 100% Poor 

 
Table 9.   Artificial Training Set to Predict Gen 9 

 

PREDICTION ACCURACY ARTIFICIAL 

SET 

ALL DATA 

W/O GEN 

MODEL 

ACCURACY FOR BAD FOR GOOD 

65,000 91.983% 0% 

650,000 98.053 % 0% 

1.30 M 98.915 % 0% 

2.60 M 99.209 % 0.41% 

2.75 M 

33 

99.537 % 0.40% 

Excellent 

 
Table 10.   Artificial Training Set to Predict Gen 33 
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C. STEPWISE PREDICTORS USAGE 

A simpler, but sometimes very effective, way of dealing with high-dimensional 

data is to reduce the number of dimensions. At this phase of the research we pursued a 

stepwise approach, similar to that of forward selection used for regression models. First 

were trained separate networks for each input variable. The network achieving the best 

training accuracy is then preserved. The effect of adding each of the rest of the inputs to 

this model in sequence is evaluated. This procedure is repeated for one, two, three, etc., 

predictors until the addition of extra predictors does not result in a significant 

improvement in model performance. Like any process, this approach has several 

disadvantages. The biggest are that it requires substantial computation and that it is also 

unable to capture the importance of certain combinations of predictors that might be 

insignificant on their own. 

This phase of the research was the most time-consuming and many single and 

combined predictors were evaluated, aiming to find the model that better classified all the 

generators of the validation set. In the following table (Table 11), for space and time 

saving reasons, we present only one model as representative of those with the best ability 

to classify correctly. 

 
PREDICTION ACCURACY 

MODEL 

TO 
PREDICTORS 

TRAINING 

ACCURACY BAD 
GOOD 

(4,26,42,66) 

Predict 

Gen9 
86.029 % 39.08% > 85 % 

Predict 

Gen22 
84.036 % 26.49 % > 83 % 

Predict 

Gen31 
87.345 % 5.36 % > 72 % 

Predict 

Gen33 

ResidualRMS 

SideBandMod1 

ResidualPeakToPeak 

BallEnergy 

InnerRaceEnergy 

85.377 % 40.82 % > 90 % 
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PREDICTION ACCURACY 
MODEL 

TO 
PREDICTORS 

TRAINING 

ACCURACY BAD 
GOOD 

(4,26,42,66) 

Predict 

Gen53 
87.321 % 36.07 % > 73 % 

Predict 

Gen56 
86.386% 2.04 % > 69 % 

 
Table 11.   Stepwise Good Generated Model 

 

This last phase comes to verify that no matter which strategy was applied, the 

patterns of good and bad generators are so closely related that no model of the structure 

that we trained could distinguish the different pre-assigned condition of those generators. 

The time that the one model was a good classifier for the bad generator, it failed to 

predict the good ones and via versa; if the model performed well on the good generators, 

it failed to recognize the bad ones. The model summarized in Table 11 achieved the best 

overall performance for the database of this research. Even though the overall prediction 

accuracy appears low for the records of “bad” generators, the pattern of predicted 

probability that a record is “bad” p̂ , as a function of time is very different for “bad” 

generators than for “good” generators. As an example, Figures 20 and 21 give plots of p̂  

versus time for a “bad” and “good” generator respectively. The “good” generator has 

value of p̂  close to zero, where as the “bad” generator p̂  is vary considerably and show 

an increasing trend in time. Appendix D contains plots of p̂ versus time for the rest of the 

generators in the validation set and sensitivity analysis of this model.  
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Figure 20.   p̂  from “bad” Generator 9 

 

Figure 21.   p̂  from “good” Generator 66 
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V. CONCLUSIONS AND RECOMMENDATIONS 

The emphasis in this thesis was to develop an ANN that would utilize the 

collected data from IMD-HUMS, manufactured by Goodrich Corporation, in order to 

discover patterns that would predict a potential failure of a UH-60L helicopter generator. 

Many different ANNs were evaluated for their success rate on this faulting diagnosis. 

The first models that this research shaped were trained, tested, and evaluated 

using only the data collected by IMD-HUMS. The whole database was normalized and 

populated accordingly. One (1) bad and four (4) good generators, which were left out of 

the training and test sets, were used for validation purposes for those models. The method 

was applied sequentially to each bad generator, always maintaining the same group of 

good generators. Two of the six models were considered as good classifiers: with 

accuracy above 78.69% and 89.74%, respectively. The other four models had zero ability 

to classify the bad generators, although they all predicted very well the group of good 

generators. 

The next phase of the experiment was to generate a uniformly distributed artificial 

data set, using it along with the original database to form a training/testing set for further 

classifications. Artificial sets up to 2.6M were created in an effort to capture the bad 

generator patterns. Because the learning phase was time -and resource- consuming, the 

researcher was limited to testing two generators, the ones originally replaced for failure 

(9 and 33). One model started to show some promising results by the time the researcher 

reached the computer’s limits. Obviously, the “curse of dimensionality” comes into play 

at this point of this research. 

During the last portion of this experiment, the researcher tried to deal with the 

multi-dimensional problem and, at the same time, shape a model with good 

generalization behavior. A stepwise strategy was followed and many models were trained 

with various combinations of predictors. Once again, the produced classifiers were not 

generally successful in generator prediction. 

Concluding, the researcher realized that in each phase of this experiment, the bad 

and good generators patterns are very closely related. This affects the learning procedure 
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of the network by blocking its ability to build a model capable of classifying the good and 

bad generators concurrently. Additionally, it is possible that the reason of failure for each 

bad generator is unique, so that the size of this database and the structure of those models 

are not capable of capturing those patterns in a generalized form. On the other hand, this 

research exploits many paths, identifies various issues about the classification of the UH-

60L helicopter generators, and finally comes up with models capable of classifying a big 

portion of the database in question.  

ANNs are a category of artificial intelligence technology that mimics the human 

brain’s skill at identifying patterns. In theory, ANNs are capable of approximating any 

continuous function. Such flexibility makes for a potentially powerful forecasting tool but 

the big number of parameters that must be selected makes the design process difficult. In 

practice, building an ANN forecasting model involves a lot of trial and error. 

Consequently, the objective of this thesis was to provide a practical, non-technical 

introduction to structure an ANN forecasting model using real operating data of UH-60L 

helicopters. The success of ANN applications for an individual researcher depends on 

three key factors. First, the researcher must have the time, patience, and resources to 

experiment. Second, the ANN software must allow automated routines, such as walk-

forward testing, optimization of hidden neurons, and testing of input variable 

combinations—either through direct programming or the use of batch/script files. Third, 

the researcher must maintain a good set of records that lists all parameters for each 

network tested. 

This research has verified that ANNs have a position in machinery condition 

monitoring and diagnostics. However, the limited nature of these results indicates that 

ANNs will not solve all machinery condition monitoring and diagnostics problems by 

themselves. They certainly will not completely replace conventional rule-based expert 

systems. Ultimately, it is anticipated that a symbiotic combination of these two 

technologies will provide the optimal solution to the machinery condition monitoring and 

diagnostics problem.  

Further future work can be conducted on building models with more than one 

hidden layer which can explain more complex data, but which requires experience in 
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manipulating the parameters of the utilized software and good a priori knowledge of the 

database itself. Furthermore, enhancing the current database with new real data, 

accompanied with proper maintenance records, will benefit and improve any future effort 

on predicting the generators’ conditions, regardless of the techniques that will be used by 

the researcher. 
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APPENDIX A 

 
TAIL #GENERATOR OBSERVATIONS FINAL CONDITION 

1 526 
9126351 

35 526 

2 980 
9226432 

36 980 

3 313 
9226435 

37 313 

4 439 
9226438 

38 439 

5 282 
9226439 

39 282 

6 651 
9226441 

40 651 

7 476 
9226443 

41 476 

8 647 
9226446 

42 647 

Good 

9 435 Bad 
10 488 9226450 

43 923 

11 825 9226453 

44 825 

12 545 9226455 

45 545 

13 917 9326477 

46 917 

14 617 9326485 

47 617 

15 487 9326493 

48 487 

16 873 
9326500 

49 873 

Good 
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TAIL #GENERATOR OBSERVATIONS FINAL CONDITION 

17 5889326506 
50 588

18 4239326507 
51 423

19 8959326509 
52 895

20 648

Good 

53 61 Bad 9326515 

54 587

21 5539326516 
55 553

Good 

22 336 Bad 

23 12 Good 

56 98 Bad 
9326518 

57 250

24 6219326519 
58 621

25 4579326524 
59 457

26 7619426530 
60 761

27 10779426533 
61 1077

28 2989426534 
62 298

29 11029426537 
63 1102

30 2549426545 
64 254

Good 

31 302 Bad 

32 2879426549 

65 589
Good 

33 245 Bad 

34 11
9926829 

66 256
Good 
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APPENDIX B 

 

Figure 22.   Model 1 (Predict Bad 09 and Good 4, 26, 42, 66) 
 

Figure 23.   Model 2 (Predict Bad 22 and Good 4, 26, 42, 66) 
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Figure 24.   Model 3 (Predict Bad 31 and Good 4, 26, 42, 66) 
 
 

Figure 25.   Model 4 (Predict Bad 33 and Good 4, 26, 42, 66) 
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Figure 26.   Model 5 (Predict Bad 53 and Good 4, 26, 42, 66) 
 
 

Figure 27.   Model 6 (Predict Bad 56 and Good 4, 26, 42, 66) 
 

 



64 

Figure 28.   Model 7 (Predict Bad 53, 9 and Good 4, 26, 42, 66) 
 
 

Figure 29.   Model 8 (Predict Bad 53, 22 and Good 4, 26, 42, 66) 
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Figure 30.   Model 9 (Predict Bad 53, 31 and Good 4, 26, 42, 66) 
 
 

Figure 31.   Model 10 (Predict Bad 53, 33 and Good 4, 26, 42, 66) 
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Figure 32.   Model 11 (Predict Bad 53, 56 and Good 4, 26, 42, 66) 
 
 

Figure 33.   Model 12 (Predict Bad 31, 9 and Good 4 ,26, 42, 66) 
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Figure 34.   Model 13 (Predict Bad 31, 22 and Good 4, 26, 42, 66) 
 
 

Figure 35.   Model 14 (Predict Bad 31, 33 and Good 4, 26, 42, 66) 
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Figure 36.   Model 15 (Predict Bad 31, 53 and Good 4, 26, 42, 66) 
 
 

Figure 37.   Model 16 (Predict Bad 31, 56 and Good 4, 26, 42, 66) 
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APPENDIX C 

Figure 38.   Model 17 (Predict Bad 9 Using Artificial Sets) 
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Figure 39.   Model 18 (Predict Bad 33 Using Artificial Sets) 
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APPENDIX D 

Figure 40.   Stepwise Model Using 5 Predictors  (Predict Bad 9) 
 
 

Figure 41.   Stepwise Model Using 5 Predictors  (Predict Bad 22) 
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Figure 42.   Stepwise Model Using 5 Predictors  (Predict Bad 31) 
 
 

Figure 43.   Stepwise Model Using 5 Predictors  (Predict Bad 33) 
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Figure 44.   Stepwise Model Using 5 Predictors  (Predict Bad 53) 
 
 

Figure 45.   Stepwise Model Using 5 Predictors  (Predict Bad 56) 
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