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Cone characterizations of approximate

solutions in real-vector optimization

Alexander Engau∗ and Margaret M. Wiecek∗

Department of Mathematical Sciences

Clemson University, SC, USA

Abstract

Borrowing concepts from linear algebra and convex analysis, it has been shown

how the feasible set for a general vector optimization problem can be mapped under a

linear transformation so that Pareto points in the image correspond to nondominated

solutions for the original problem. The focus of this paper is to establish corresponding

results for approximate nondominated points, based on a new characterization of these

solutions using the concept of translated cones. The problem of optimizing over this

set of approximate solutions is addressed and possible applications are given in the

references.

Keywords: Approximate solutions, epsilon-efficient solutions, epsilon-minimal ele-

ments, translated cones

1 Introduction

The general goal in any optimization or decision making process is to identify a single or

all best solutions within a set of given feasible points or alternatives. For decision problems

with multiple criteria, however, the notion of a best solution needs special attention due to

the lack of a canonical order of vectors and usually depends on the underlying preferences

of the optimizing decision maker.

∗This research has been supported by the Automotive Research Center, a U.S. Army TACOM Center
of Excellence for Modeling and Simulation of Ground Vehicles at the University of Michigan, and by the
National Science Foundation, grant number DMS-0425768.
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The preference order traditionally adopted was introduced into the economic theory by

Edgeworth (1881) although usually credited to and thus more commonly associated with the

name of Pareto (1896). A main characteristic of this concept is that in contrast to problems

with only one criterion, in general there does not exist a unique best solution, but a solution

set of so-called efficient or nondominated points.

Based on the observed equivalence between other partial orderings and certain convex

cones, Yu (1974) and Bergstresser et al. (1976) generalized the Pareto concept to more

general domination structures and sets. Following up these works, Lin (1976) provided a

comparison of the defined optimality concepts, and Chew (1979) proposed a reformulation

for general vector spaces. The papers by Bergstresser and Yu (1977) and Takeda and Nishida

(1980) also illustrate domination structures for multicriteria games and fuzzy multicriteria

decision making, respectively. Many of these earlier results were collected in the monograph

by Yu (1985), while further investigation was continued by Weidner (1985, 1987, 1990). More

recently, Chen and Yang (2002) examined variable domination structures in the context of

variational inequalities, while Weidner (2003) also studied domination structures with respect

to tradeoff directions.

Miettinen and Mäkelä (2000, 2001) provided a detailed characterization of optimality

concepts based on the original concept of cones. Realizing that this concept is widely used

for theoretical investigations but hardly employed in real life applications, Hunt and Wiecek

(2003) promoted the use of cones also for practical decision making. A tradeoff-based cone

construction for modeling the decision maker’s preferences was developed in Hunt (2004),

while Wu (2004) further examined the relevance of convex cones for a solution concept in

fuzzy multiobjective programming.

Nevertheless, although providing a theoretical framework for the definition of various

optimality concepts, the use of cones does not in general provide us with applicable tools

to actually identify the associated solutions. Hence, a second major research area in vector

optimization is the development of practical methods to solve these problems, thereby usually

adopting the traditional concept of Pareto efficiency. In this context, Wierzbicki (1986)

collected and examined various approaches with respect to their capability to identify the

complete set of optimal solutions. Since this set, however, might consist of an infinite

number of points, finding an exact description often turns out to be practically impossible

or at least computationally too expensive, and consequently many research efforts focused

on approximation concepts and procedures, see Vályi (1985), Lemaire (1992) or Ruzika and

Wiecek (2005), among others.
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The notion of approximate solutions adopted in this text follows from the concept

of epsilon-efficiency originally introduced into multiple objective programming by Loridan

(1984). Two years later, White (1986) introduced six alternative definitions of epsilon-

efficient solutions and established the relationships between those. Following either Loridan

or White, related definitions or examinations of these concepts were given by Helbig and Pat-

eva (1994), Tanaka (1996), Yokoyama (1996, 1999) and Li and Wang (1998), while Németh

(1989), Loridan et al. (1999) and Rong and Wu (2000) also considered epsilon-efficiency for

more general vector optimization problems.

Another significant portion of the literature deals with necessary and sufficient condi-

tions for epsilon-efficient solutions, among those the works by Yokoyama (1992, 1994), Liu

(1996), Deng (1997, 1998) and Dutta and Vetrivel (2001). Further results were obtained

by Kazmi (2001) who also derived conditions for the existence of epsilon-minima. Recently,

Engau and Wiecek (2005a,b) also described practical decision making situation in which

suboptimal solutions are of relevance other than merely for approximation purposes and de-

veloped a methodology for the generation of epsilon-efficient solutions in multiple objective

programming.

The purpose of this paper is to define and investigate approximate solutions for real vector

optimization problems in the framework of cones, based on the concept of epsilon-efficiency.

However, thereby it turns out that the underlying domination structure cannot be described

by a cone anymore, following the classical definition as given by Rockafellar (1970), but is

described by a cone that is translated from the origin. Therefore we adopt the more general

notion presented in Luenberger (1969) which allows for a cone with an arbitrary vertex and

corresponds to what Rockafellar calls a skew orthant or generalized m-dimensional simplex

with one ordinary vertex and m − 1 directions (or vertices at infinity). Other than the two

monographs above, Nachbin (1996) introduced affine cones to describe mappings between

convex vector spaces, and Bauschke (2003) mentioned translated cones in the context of

duality results for Bregman projections onto linear constraints, both of which, however, do

not relate to the translation of a cone in the context of this paper.

We formulate the notion of translated cones as needed for our purposes and investigate

some preliminary properties and possible representations of translated cones as polyhedral

sets. Borrowing concepts from linear algebra and convex analysis, we review results from Yu

(1985), Weidner (1990), Hunt and Wiecek (2003) and the more general treatment in Cambini

et al. (2003) which show how the feasible set for a general vector optimization problem can

be mapped under a linear transformation so that Pareto points in the image correspond to
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nondominated solutions for the original problem. We then generalize these results in the

proposed new context by deriving corresponding relationships for approximate solutions and

polyhedral translated cones.

The organization of the remaining text is now as follows. After this introduction, Section

2 provides some preliminaries by defining (weakly) minimal and epsilon-minimal elements

as the adopted concepts of approximate solutions and formalizing the notion of translated

cones as cones that are shifted from the origin along some translation vector. Alternative

representations of translated cones are derived in Section 3 with the main focus on possible

descriptions by a system of linear inequalities. In Section 4, these representations are used to

characterize epsilon-minimal elements with respect to polyhedral cones as minimal solutions

with respect to translated polyhedral cones, and of particular interest for practical applica-

tions, it is shown how the set of epsilon-minimal solutions with respect to a polyhedral cones

can be transformed into a set of minimal elements with respect to a Pareto cone. The prob-

lem to identify maximal elements among the set of epsilon-minimal elements is addressed in

Section 5, and some final remarks in Section 6 and the list of references conclude the paper.

2 Preliminaries

Let Z be a real linear space. The sum of two subsets X,Y ⊆ Z is defined as the Minkowski

sum X + Y := {x + y : x ∈ X, y ∈ Y }, and for z ∈ Z a single element, Y + z is written

instead of Y + {z}.

Definition 2.1. A cone C ⊆ Z is a set that is closed under nonnegative scalar multiplication,

λC ⊆ C for all λ ≥ 0. The notation C◦ is used to denote C \ {0}. An ordering cone is a

pointed convex cone, that is a convex cone which does not contain any nontrivial subspaces,

C + C ⊆ C and C◦ ∩ −C = ∅.

Given an ordering cone C ⊆ Z, a partial order on Z can be defined by z1 5C z2 if and

only if z2 − z1 ∈ C, where z1 and z2 are any two elements in Z. Furthermore we write

z1 ≤C z2 if and only if z2 − z1 ∈ C◦ and z1 =C z2 and z1 ≥C z2 if and only if z2 5C z1 and

z2 ≤C z1, respectively.

For Z = Rm a Euclidean vector space, the abbreviated notation z1 5 z2 is used if and

only if z1
i ≤ z2

i for all i = 1, . . . ,m, z1 ≤ z2 if and only if z1 ≤ z2 and z1 6= z2, z1 < z2 if

and only if z1
i < z2

i for all i = 1, . . . ,m. With the relations =, ≥ and > defined accordingly,
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then the nonnegative, the nonnegative nonzero and the positive orthants are denoted by

Rm
= := {z ∈ Rm : z = 0}, Rm

≥ := {z ∈ Rm : z ≥ 0} and Rm
> := {z ∈ Rm : z > 0}.

An important class of Euclidean ordering cones is given by pointed polyhedral cones.

Definition 2.2. A polyhedral cone is a cone C ⊆ Rm for which there exists a matrix A ∈
Rp×m such that C = {z ∈ Rm : Az = 0}. The kernel of a polyhedral cone is defined as the

kernel (or nullspace) of the associated matrix

Ker C = Ker A = {z ∈ Rm : Az = 0}.

It is an easy task to verify that a polyhedral cone is always convex, but in general not

pointed. Given a pointed polyhedral cone C, the relations 5C and ≤C are defined as before,

and in addition z1 <C z2 is written if and only if z2 − z1 ∈ int C, where int C denotes the

interior of C using the standard Euclidean topology. Then in particular for A = I ∈ Rm×m

the identity matrix, the three induced polyhedral cones coincide with the three orthants

defined above.

While our main interest lies in the characterization of approximate solutions in real-

vector optimization for the particular application to multiobjective programming, the initial

concepts and results do not depend on the Euclidean nature of the underlying space and

thus are presented for an arbitrary real linear space Z.

2.1 Minimal and epsilon-minimal elements

Let Z be a real linear space, Y ⊆ Z be a given set and C ⊆ Z be a given cone.

Definition 2.3. An element z ∈ Z is called a minimal element of the set Y with respect to

the cone C if z ∈ Y and if there does not exist a point y ∈ Y with y ≤C z, or equivalently

Y ∩ (z − C◦) = ∅.

The set of all minimal elements of Y with respect to the cone C is denoted by MIN(Y,C).

Alternative terminology refers to the set MIN(Y,C) as the set of efficient or nondominated

solutions and calls C the domination cone or the cone of dominated directions. Hereby, the

particular assumptions of convexity and pointedness of an ordering cone guarantee that the

sum of two dominated directions d1, d2 ∈ C is again a dominated direction, d1 +d2 ∈ C, and

that if both d and −d ∈ C are dominated directions, then d = 0.
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By replacing the cone C ⊆ Z with an arbitrary set D ⊆ Z, we extend Definition 2.3 and

furthermore introduce the notion of weakly minimal elements.

Definition 2.4. The set MIN(Y,D) of all minimal elements of Y with respect to the set D

is defined as the set of all points z ∈ Y for which

Y ∩ (z − D◦) = ∅.

Furthermore, if the space Z carries a topology allowing to define the interior of a set, then

the set of weakly minimal elements of Y with respect to D is defined as

WMIN(Y,D) := MIN(Y, int D).

The following lemma gives two equivalent characterizations of (weakly) minimal elements,

among which we choose the most convenient without further explanation for all subsequent

proofs throughout the rest of the paper.

Lemma 2.1. Let z ∈ MIN(Y,D) be a minimal element of Y with respect to the set D. Then

the following are equivalent:

(i) Y ∩ (z − D◦) = ∅;

(ii) there does not exist y ∈ Y, y 6= z such that z − y ∈ D;

(iii) there does not exist y ∈ Y, d ∈ D, d 6= 0 such that z = y + d.

Proof. Rewrite (i) Y ∩ (z − D◦) = ∅

⇐⇒ @ y ∈ Y : y ∈ z − D \ {0}

⇐⇒ @ y ∈ Y, y 6= z : y ∈ z − D ⇔ z − y ∈ D (ii)

⇐⇒ @ y ∈ Y, y 6= z, d ∈ D : y = z − d

⇐⇒ @ y ∈ Y, d ∈ D, d 6= 0 : z = y + d (iii).

¤

For a cone C, conditions for the existence of minimal elements are established by Hartley

(1978), Corley (1980), Borwein (1983) and Sawaragi et al. (1985), among others. For a

comparison of various existence results, the reader is referred to the recent survey provided

by Sonntag and Zalinescu (2000). A major role in these results is the pointedness condition
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C◦∩−C = ∅ of the cone C which can be ensured to hold for a set D if this set is specifically

chosen as the translation of the pointed cone C from the origin along one of its nonzero

elements ε ∈ C◦. Note that ε ∈ C◦ can also be written as ε ≥C 0.

Definition 2.5. For given ε ∈ C◦, an element z ∈ Z is called an ε-minimal element of the

set Y with respect to the cone C if z ∈ Y and if there does not exist a point y ∈ Y with

y ≤C z − ε, or equivalently

Y ∩ (z − ε − C) = ∅.

The set of all ε-minimal elements of Y with respect to the cone C is denoted by MIN(Y,C, ε).

Furthermore, if the space Z carries a topology allowing to define the interior of a set, then

the set of weakly ε-minimal elements of Y with respect to C is defined as

WMIN(Y,C, ε) = MIN(Y, int C, ε).

Remark 2.1. Note that opposed to Definitions 2.3 and 2.4 for minimal elements, Defini-

tion 2.5 does not exclude zero from the cone C and therefore does not define 0-minimal

in generalization of minimal elements, for which it would be necessary to require that

Y ∩ (z − ε − C◦) = ∅.

The reason for the slightly varying definition of minimal and ε-minimal elements is to

guarantee the following identity which provides a convenient characterization of (weakly)

ε-minimal elements with respect to a cone C as (weakly) minimal elements with respect to

a set D.

Proposition 2.1. Let C be a pointed cone and ε ∈ C◦. Define D = Cε := C + ε. Then

MIN(Y,D) = MIN(Y,C, ε) and WMIN(Y,D) = WMIN(Y,C, ε).

Proof. From the definition of minimal elements with respect to some set D we have that

MIN(Y,D) = {z ∈ Y : Y ∩ (z − D◦) = ∅}

= {z ∈ Y : Y ∩ (z − (C + ε) \ {0}) = ∅}

= {z ∈ Y : Y ∩ (z − (C \ {−ε} + ε)) = ∅}

= {z ∈ Y : Y ∩ (z − C − ε) = ∅} = MIN(Y,C, ε)

where the last equality follows from −ε /∈ C since C is pointed and ε ∈ C◦. Then the
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second statement follows immediately from Definitions 2.4 and 2.5 and the observation that

int(C + ε) = int C + ε. ¤

Note that the set D = Cε corresponds to the translation of the cone C along the vector

ε and therefore, in principle, is not a cone anymore. In the following section, we investigate

some preliminary properties of sets that are cones translated from the origin.

2.2 Translated cones

As before, let Z be an arbitrary real linear space.

Definition 2.6. Let D ⊆ Z be a given set. If there exists a cone C ⊆ Z and a vector ε ∈ Z

such that D = C +ε, then D is said to be a translated cone with translation vector ε, written

D = Cε. The translated cone D = Cε is called convex or pointed if and only if the cone C is

convex or pointed, respectively.

The following proposition justifies the previous ”only if” statement be demonstrating

that if such a cone C exists, then it must be unique.

Proposition 2.2. Let C1, C2 ⊆ Z be two cones and ε1, ε2 ∈ Z be two translation vectors. If

the translated cones C1
ε1 and C2

ε2 are equal, C1
ε1 = C2

ε2, then so are the cones,

C1 = C2.

Proof. Suppose C1
ε1 = C2

ε2 and let d ∈ C1. Then d+ε1 ∈ C1
ε1 = C2

ε2 and thus d+ε1−ε2 ∈ C2.

Since C2 is a cone, we also have that 1
2
(d+ε1−ε2) ∈ C2, thus ε2 + 1

2
(d+ε1−ε2) ∈ C2

ε2 = C1
ε1

and ε2 + 1
2
(d + ε1 − ε2) − ε1 = 1

2
(d + ε2 − ε1) ∈ C1. The fact that C1 is a cone now gives

that also d + ε2 − ε1 ∈ C1, and we conclude d + ε2 − ε1 + ε1 = d + ε2 ∈ C1
ε1 = C2

ε2 and finally

d + ε2 − ε2 = d ∈ C2. Hence C1 ⊆ C2, and by interchanging the roles of C1 and C2 we

obtain the result. ¤

Note that the translation vector, in general, is not unique.

Example 2.1. Let Z = R2 and consider the cone C = {(d1, d2)
T ∈ R2 : d1 ≥ 0}. Then

C = Cε for all translation vectors ε ∈ {(ε1, ε2)
T ∈ R2 : ε1 = 0}.

However, uniqueness of the translation vector can be guaranteed in the case of a pointed

(translated) cone.
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Proposition 2.3. Let D ⊆ Z be a pointed translated cone. Then there exists a unique cone

C ⊆ Rm and a unique translation vector ε ∈ Z such that D = Cε.

Proof. Apply Proposition 2.2 to obtain the unique cone C, which by definition is pointed,

C◦ ∩ −C = ∅. Since D is a translated cone, there exists ε ∈ Z such that D = Cε, and in

order to show uniqueness, let Cε1 = Cε2 , where ε1, ε2 ∈ Z are two translation vectors. Then

we have to show that ε1 = ε2. First, knowing that ε1 ∈ Cε1 = Cε2 3 ε2, there must exist

vectors d1, d2 ∈ C such that ε1 = d2 + ε2 and ε2 = d1 + ε1. Hence, we obtain d1 = −d2 which

then implies d1 = d2 = 0 as C is pointed, thus yielding ε1 = ε2. ¤

Definition 2.7. Given a translated cone D = Cε for which the translation vector ε is unique,

then ε is also said to be the vertex of the translated cone D.

Now let C ⊆ Z be a given cone and ε1, ε2 ∈ Z be two translation vectors. We close this

section by addressing the relationships between D1 = Cε1 , D2 = Cε2 and the associated sets

MIN(Y,D1) and MIN(Y,D2) of minimal elements, based on the relationship between ε1 and

ε2, thereby following Sawaragi et al. (1985) who established the following containment result

for the set of minimal elements with respect to two different cones.

Proposition 2.4. Let Y ⊆ Z be a set and C1, C2 ⊆ Z be two cones with C2 ⊆ C1. Then

MIN(Y,C1) ⊆ MIN(Y,C2).

Remark 2.2. Note that analogously to Proposition 2.4, it follows that MIN(Y,D1) ⊆
MIN(Y,D2) whenever D2 ⊆ D1, so that in particular MIN(Y,C1

ε ) ⊆ MIN(Y,C2
ε ) for any

vector ε ∈ Z.

Now given only one cone C ⊆ Z but two translation vectors ε1, ε2 ∈ Z, we formulate a

corresponding condition on ε1 and ε2 which guarantees that MIN(Y,C, ε1) ⊆ MIN(Y,C, ε2).

Proposition 2.5. Let D1 = Cε1 and D2 = Cε2 be two convex translated cones with ε1 5C ε2.

Then

MIN(Y,D1) ⊆ MIN(Y,D2).

Proof. Since ε1 5C ε2, we have that ε2 − ε1 ∈ C, or ε2 ∈ C + ε1. It follows that C + ε2 ⊆
C + C + ε1 ⊆ C + ε1 since C is a convex cone, and so D2 ⊆ D1. Now Remark 2.2 implies

that MIN(Y,D1) ⊆ MIN(Y,D2). ¤

In particular, we obtain that MIN(Y,C) ⊆ MIN(Y,C, ε) for every ε ∈ C◦.
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3 Inequality representations of polyhedral translated

cones

For the subsequent two sections, we let Z = Rm be a Euclidean space and first focus on

the derivation of linear inequality representations of translated polyhedral cones in terms of

polyhedral sets. The first definition serves to clarify the adopted notation.

Definition 3.1. Let A ∈ Rp×m be a matrix and b ∈ Rp be a vector. Then

D(A, b) := {d ∈ Rm : Ad = b}

defines a polyhedral set. For b = 0, the polyhedral cone implied by A is denoted by

D(A) := D(A, 0) = {d ∈ Rm : Ad = 0}.

Remark 3.1. Note here that the representation D(A, b) of a polyhedral set is not unique

and that, in general, a polyhedral set D = D(A, b) may be empty. However, if b ∈ −Rp
=,

then 0 ∈ D and hence D 6= ∅. In particular, a polyhedral cone is always nonempty.

As mentioned before, an ordering cone is a cone that is pointed and convex. It is an

easy task to verify that a polyhedral cone is always convex, while conditions for a pointed

polyhedral cone are characterized in the following proposition.

Proposition 3.1. Let C = {d ∈ Rm : Ad = 0} be a polyhedral cone with matrix A ∈ Rp×m.

Then the following are equivalent:

(i) C is pointed;

(ii) C◦ = {d ∈ Rm : Ad ≥ 0};

(iii) A has full column rank, rank A = m.

3.1 Representing translated polyhedral cones as polyhedral sets

The first theorem states that every translated polyhedral cone can be represented as a

polyhedral set.
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Theorem 3.1. Let Cε ⊆ Rm be a translated polyhedral cone with C = D(A) ⊆ Rm for

some matrix A ∈ Rp×m, and ε ∈ Rm be a translation vector. Set b = Aε ∈ Rp and let

D = D(A, b) ⊆ Rm be the polyhedral set implied by A and b. Then

D = Cε.

Proof. We have to show that D = Cε, where D = D(A, b) with b = Aε and C = D(A). For

the first inclusion, let d ∈ D. Then Ad = b = Aε and thus

Ad − Aε = A(d − ε) = 0 ⇒ d − ε ∈ C ⇒ d ∈ C + ε = Cε,

yielding D ⊆ Cε. For the reversed inclusion, let d = c + ε where c ∈ C. Then Ac = 0, or

Ad = A(c + ε) = Ac + Aε = 0 + b = b,

which implies d ∈ D and therefore gives Cε ⊆ D to conclude the proof. ¤

Given a translated cone D which can be represented as polyhedral set D = D(A, b), we

also call D a polyhedral translated cone.

Remark 3.2. By definition, a polyhedral translated cone D is pointed if and only if the

polyhedral cone C is pointed, in which case Proposition 2.3 established that the translation

vector ε is the unique vertex of D = Cε.

Now the pointedness conditions from Proposition 3.1 can be generalized for polyhedral

translated cones.

Proposition 3.2. Let D = Cε ⊆ Rm be a polyhedral translated cone with C = D(A) ⊆ Rm

and translation vector ε ∈ Rm. Then the following are equivalent:

(i) D is pointed with vertex ε;

(ii) D \ {ε} = {d ∈ Rm : Ad ≥ b}, where b = Aε;

(iii) A has full column rank, rank A = m.

Proof. By Remark 3.2, the translated cone D = Cε is pointed if and only if C is pointed,

and hence (i) is equivalent to the pointedness of C. Next, note that (ii) means that there

does not exist d ∈ D, d 6= ε such that Ad − b = Ad − Aε = A(d − ε) = 0 or equivalently, by
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writing c = d − ε ∈ D − ε = C, that there does not exist c ∈ C, c 6= 0 such that Ac = 0.

Therefore, (ii) is equivalent to saying that C◦ = C \ {0} = {d ∈ Rm : Ad ≥ 0}, and now the

proof follows from Proposition 3.1. ¤

3.2 Polyhedral sets describing polyhedral translated cones

In this section we investigate a statement similar to Theorem 3.1 and derive conditions for

a given polyhedral set to describe a polyhedral translated cone. For this purpose we first

extend the concept of the kernel of a polyhedral cone to polyhedral sets.

Definition 3.2. Given a polyhedral set D = D(A, b) ⊆ Rm, the kernel of D with respect to

A and b is defined as

Ker D(A, b) := {d ∈ Rm : Ad = b}.

If A and b are clear from the context, we simply write Ker D instead of Ker D(A, b).

However, note that the kernel in general depends on the specific choice of A ∈ Rp×m and

b ∈ Rp.

Example 3.1. Let Z = R, A = (1, 1)T and b = (1, 0)T . Then

D1 = D(A, b) = {d ∈ R : d ≥ 1, d ≥ 0} = {d ∈ R : d ≥ 1}

with Ker D1 = ∅. However, if we let D2 = D(1, 1), then D1 = D2 but Ker D2 = {1}.

The following results collect some properties of the kernel which eventually lead to a

second characterization of polyhedral translated cones.

Proposition 3.3. The kernel of a polyhedral set D = D(A) ⊆ Rm is again a polyhedral set.

In particular, the kernel of a polyhedral cone C = D(A) ⊆ Rm is a polyhedral cone.

Proof. Note that

Ker D = {d ∈ Rm : Ad = b} = {d ∈ Rm : Ad = b,−Ad = −b};

Ker C = {d ∈ Rm : Ad = 0} = {d ∈ Rm : Ad = 0,−Ad = 0},

and hence Ker D = D((A,−A)T , (b,−b)T ) and Ker C = D((A,−A)T ). ¤

Proposition 3.3 also follows from basic linear algebra by observing that the kernel of a

polyhedral cone D(A) is the solution set to the homogeneous system of equations Ad = 0.
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Analogously, the kernel of a polyhedral set D(A, b) is given by the general solution to the

inhomogeneous system of equations Ad = b.

Now the following property is well known.

Proposition 3.4. Let Ker C and Ker D be the kernel of the polyhedral cone C = D(A)

and the polyhedral set D = D(A, b), respectively. If ε ∈ Ker D is any kernel element of the

polyhedral set, then

Ker D = Ker C + ε.

Similar to Proposition 3.1 pointedness of polyhedral translated cones can be characterized

in terms of the kernel of the associated polyhedral sets.

Proposition 3.5. Let D = D(A, b) ⊆ Rm be a polyhedral set. Then

(i) D \ Ker D = {d ∈ Rm : Ad ≥ b};

(ii) int D = {d ∈ Rm : Ad > b}.

In particular, if C = D(A) ⊆ Rm is a polyhedral cone, then

(iii) 0 ∈ Ker C;

(iv) Ker C = {0} if and only if C is pointed.

Proof. (i), (ii) and (iii) follow immediately from the representation of a polyhedral set and

the definition of the kernel. Then (iv) follows from (iii), (i) and Proposition 3.1. ¤

Based on Theorem 3.1, we can formulate the analogous statements for polyhedral trans-

lated cones.

Proposition 3.6. Let Cε ⊆ Rm be a polyhedral translated cone with C = D(A) and trans-

lation vector ε ∈ Rm. Then there exists a representation Cε = D(A, b) such that

(i) ε ∈ Ker D(A, b);

(ii) Ker D(A, b) = {ε} if and only if D is pointed.

Proof. Refer to Theorem 3.1 in which it is shown that the polyhedral translated cone Cε can

be represented as Cε = D(A, b) with b = Aε, and thus in particular ε ∈ Ker D(A, b) which

establishes (i). Analogously to Proposition 3.5(iv), then (ii) follows from (i), Proposition

3.5(i) and Proposition 3.2. ¤
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Corollary 3.1. Let Cε ⊆ Rm be a polyhedral translated cone with C = D(A) and translation

vector ε ∈ Ker D. Then there exists a representation Cε = D(A, b) such that the following

are equivalent:

(i) Ker C = {0};

(ii) Ker D(A, b) = {ε};

(iii) C and D(A, b) are pointed.

Proof. By definition, a translated cone Cε is pointed if and only if C is pointed. Now

combine Proposition 3.5(iv) with Proposition 3.6(ii) to obtain the result. ¤

The preceding results now enable the statement of a second characterization of polyhedral

translated cones by giving both a necessary and sufficient condition for a polyhedral set

D ⊆ Rm to describe a polyhedral translated cone Cε ⊆ Rm.

Theorem 3.2. Let D ⊆ Rm be a polyhedral set.

(i) If D has a representation D = D(A, b) such that the kernel of D with respect to A and

b is nonempty, Ker D(A, b) 6= ∅, then D describes a polyhedral translated cone D = Cε.

Moreover, C = D(A) and the translation vector ε ∈ Ker D(A, b).

(ii) If the kernel in (i) is a singleton, Ker D(A, b) = {ε}, then the polyhedral translated

cone D = Cε is pointed.

Proof. For (i) we have to show that if D = D(A, b) with Ker D 6= ∅, then D = Cε, where

C = D(A) and ε ∈ Ker D(A, b). Thus, let ε ∈ Ker D(A, b) and D = D(A, b). Then Aε = b

and d ∈ D if and only if Ad = b = Aε, or Ad − Aε = A(d − ε) = 0. This implies that

D − ε = C and therefore D = Cε, and then (ii) follows from Corollary 3.1. ¤

Remark 3.3. Theorem 3.2 and Theorem 3.1 imply that the condition of a nonempty kernel,

Ker D 6= ∅, is in fact a necessary and sufficient condition for D to describe a polyhedral

translated cone.

The condition that Ker D is a singleton is merely sufficient, but in general not necessary

for Cε to be pointed. If the kernel of an arbitrary representation is empty, Ker D = ∅, then

Cε can still be pointed or not pointed. If this kernel contains more than one element, then

Cε is always not pointed.
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Example 3.2. As in Example 3.1, let Z = R, A1 = (1, 1)T and b1 = (1, 0)T . Then

D1 = {d ∈ R : d ≥ 1, d ≥ 0} = {d ∈ R : d ≥ 1} is pointed with Ker D1 = ∅. On the other

hand, consider D2 = D(0,−1) = {d ∈ R : 0d ≥ −1}, then Ker D2 = ∅ while D2 = R is not

pointed.

The concluding corollary restates Theorem 3.2 in terms of the rank of the matrix A and

follows again from well established results in linear algebra and the theory of matrices.

Corollary 3.2. Let D = D(A, b) ⊆ Rm be a polyhedral set with matrix A ∈ Rp×m and vector

b ∈ Rm.

(i) If rank A = rank(A, b) or equivalently, b ∈ Lin A, where Lin A denotes the linear hull

of A, then D describes a polyhedral translated cone.

(ii) If rank A = rank(A, b) = m, then D describes a pointed polyhedral translated cone.

4 Cone characterizations of epsilon-minimal elements

While the previous representation results do not depend on any particular properties of

the underlying cones, for a reasonable definition of minimal elements it essentially suffices

to require some ordering properties such as convexity or pointedness. Nevertheless, most

practical applications restrict consideration to the special case of a Pareto cone and hence

motivate efforts to find relationships between minimal elements with respect to general or-

dering cones and Pareto efficient solutions. Yu (1985), Weidner (1990) and Hunt and Wiecek

(2003) established results for polyhedral cones which show that in this case the set of min-

imal elements can be transformed into a set of minimal elements with respect to a Pareto

cone, while Cambini et al. (2003) also studied the effects of other linear transformations on

the partial orders induced by a given ordering cone. After examining some of these estab-

lished results, we derive the corresponding relationships for minimal elements with respect

to arbitrary polyhedral sets and, as a special case, for ε-minimal elements with respect to

polyhedral (translated) cones.

4.1 Minimal elements and polyhedral cones

The first theorem is adopted from the above mentioned references and describes the rela-

tionship between the images of minimal elements of Y and the minimal elements among the

image of the initial set Y under the linear mapping induced by the cone matrix A.
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Theorem 4.1. Let C = D(A) ⊆ Rm be a polyhedral cone. Then

A[MIN(Y,C)] ⊆ MIN(A[Y ], Rp
=),

where A[MIN(Y,C)] := {u ∈ Rp : u = Ay for some y ∈ MIN(Y,C)}. If Ker A = {0}, then

MIN(A[Y ], Rp
=) ⊆ A[MIN(Y,C)].

Recall that for a polyhedral cone C = D(A), the kernel of the matrix A also defines the

kernel of the cone C, Ker C = Ker A. Hence, Proposition 3.5 implies the following corollary

to Theorem 4.1.

Corollary 4.1. Let C = D(A) ⊆ Rm be a pointed polyhedral cone. Then

A[MIN(Y,C)] = MIN(A[Y ], Rp
=).

Weidner (1990) established equality in Theorem 4.1 under the weaker assumption that

Ker A ∩ (Y − Y ) = {0}.

We shortly discuss this condition and derive conditions for its equivalence with the pointed-

ness condition Ker A = {0} employed in Theorem 4.1.

Proposition 4.1. Let A ∈ Rp×m be a matrix and Y ⊆ Rm be a set with 0 ∈ int(Y − Y ).

Then

Ker A ∩ (Y − Y ) = {0} ⇐⇒ Ker A = {0}.

Proof. Let 0 ∈ int(Y − Y ). Then for all d ∈ Rm, there exists λ > 0 such that µd ∈ (Y − Y )

for all 0 ≤ µ ≤ λ. Furthermore, recall from Proposition 3.3 that the kernel of a polyhedral

cone is a polyhedral cone. Then let Ker A ∩ (Y − Y ) = {0} and suppose by contradiction

that there exists d ∈ Ker A, d 6= 0. From the above, we know that µd ∈ (Y − Y ) for some

(sufficiently small) µ > 0 and hence µd 6= 0. Since Ker A is a cone, we also have that

µd ∈ Ker A and thus µd ∈ Ker A∩ (Y −Y ), giving the contradiction. The opposite direction

is immediate. ¤

The next proposition provides a sufficient criterion for Y ⊆ Rm which guarantees that

the condition 0 ∈ int(Y − Y ) in Proposition 4.1 holds true. We also present an example

which demonstrates that this criterion, in general, does not necessarily need to be satisfied.
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Proposition 4.2. If the set Y ⊆ Rm has a nonempty interior, int Y 6= ∅, then

0 ∈ int(Y − Y ).

Proof. Let y ∈ int Y . Then, for all d ∈ Rm, there exists λ > 0 such that y + µd ∈ Y for all

0 ≤ µ ≤ λ. It follows that for all d ∈ Rm, (y + µd − y) = µd ∈ (Y − Y ) for all λ ≥ µ ≥ 0

and hence 0 ∈ int(Y − Y ). ¤

From the above, it can be concluded that Weidner’s condition is equivalent with the point-

edness of the ordering cone for continuous problems in which the set Y is connected and has

nonempty interior, but might provide a true generalization for discrete vector optimization

problems.

In addition, it turns out that the statement of Proposition 4.2 and thus the equivalence

in Proposition 4.1 may also hold true for a set Y whose interior is empty, as illustrated by

the following example.

Example 4.1. Consider the following set for which the above condition intY 6= ∅ is violated,

while the statement of Proposition 4.2 and thus the equivalence in Proposition 4.1 still holds.

Given the set

Y := {(y1, 0)T ∈ R2 : −1 ≤ y1 ≤ 1} ∪ {(0, y2)
T ∈ R2 : 0 ≤ y2 ≤ 2},

we have that int Y = ∅, but Y −Y = {(y1, y2)
T ∈ R2 : −2 ≤ y1 ≤ 2,−2 ≤ y2 ≤ 2} and hence

0 ∈ int(Y − Y ) = {(y1, y2)
T ∈ R2 : −2 < y1 < 2,−2 < y2 < 2}.

Based on the above observations we refrain from further investigation of Weidner’s condi-

tion and continue to use the initial condition KerA = {0}. Now returning to the discussion of

Theorem 4.1, note that this theorem is formulated for minimal elements. The generalization

to weakly minimal elements is also possible, but has not been addressed in the literature.

Theorem 4.2. Let C = D(A) ⊆ Rm be a polyhedral cone. Then

A[WMIN(Y,C)] = WMIN(A[Y ], Rp
=).

Proof. Let û ∈ A[WMIN(Y,C)] with û = Aŷ, ŷ ∈ WMIN(Y,C), i.e., there do not exist

y ∈ Y, d ∈ int C, d 6= 0 such that ŷ = y + d. Now suppose by contradiction that û /∈
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WMIN(A[Y ], Rp
=), then û > u for some u ∈ A[Y ], u = Ay, where y ∈ Y, y 6= ŷ. It follows

that

û − u = Aŷ − Ay = A(ŷ − y) > 0,

and setting d = ŷ − y gives ŷ = y + d, d ∈ int C, d 6= 0 in contradiction to the above. For

the opposite direction, let û ∈ WMIN(A[Y ], Rp
=) with û = Aŷ, ŷ ∈ Y . Then there does not

exist y ∈ Y such that Aŷ > Ay and hence A(ŷ − y) > 0. Now suppose by contradiction

that û /∈ A[WMIN(Y,C)], or ŷ /∈ WMIN(Y,C). Then there exist y ∈ Y, d ∈ int C such that

ŷ = y + d and hence

A(ŷ − y) = Ad > 0.

This yields the contradiction. ¤

Note that this result can also be derived from Corollary 4.1. First, recall from Definition

2.4 that WMIN(Y,C) = MIN(Y, int C) and then observe that int C is always pointed for

C ⊂ Rm a polyhedral cone, and clearly MIN(Y,C) = WMIN(Y,C) = ∅ for C = Rm and Y

not a singleton.

4.2 Epsilon-minimal elements and polyhedral translated cones

In this section, we derive various generalizations of Theorems 4.1 and 4.2. In its original

formulation restricted to minimal elements with respect to polyhedral cones, we derive the

corresponding results for minimal elements with respect to arbitrary polyhedral sets and, as

a special case, for ε-minimal elements with respect to polyhedral translated cones.

Theorem 4.3. Let D = D(A, b) ⊆ Rm be a polyhedral set. Then

A[MIN(Y,D)] ⊆ MIN(A[Y ], Rp
=b

),

where Rp
=b

:= Rp
= + b = {w ∈ Rp : w = b}. If Ker A = {0}, then

MIN(A[Y ], Rp
=b

) ⊆ A[MIN(Y,D)].

Proof. Let û ∈ A[MIN(Y,D)] with û = Aŷ, ŷ ∈ MIN(Y,D), i.e., there do not exist y ∈
Y, d ∈ D, d 6= 0 such that ŷ = y+d. Now suppose by contradiction that û /∈ MIN(A[Y ], Rp

=b
),

then û = u + b for some u = Ay ∈ A[Y ], u 6= û and thus y 6= ŷ. It follows that

û − u = Aŷ − Ay = A(ŷ − y) = b,
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and setting d = ŷ − y gives ŷ = y + d, d ∈ D, d 6= 0 in contradiction to the above. For

the opposite direction, let û ∈ MIN(A[Y ], Rp
=b

) with û = Aŷ, ŷ ∈ Y . Then there does

not exist u = Ay ∈ A[Y ], Ay 6= Aŷ such that Aŷ = Ay + b, or A(ŷ − y) = b. Now

suppose by contradiction that û /∈ A[MIN(Y,D)], or ŷ /∈ MIN(Y,D). Then there exist

y ∈ Y, d ∈ D, d 6= 0 such that ŷ = y + d and hence

A(ŷ − y) = Ad = b

with Aŷ 6= Ay if Ker A = {0}. This yields the contradiction. ¤

Proposition 4.3 provides an alternative condition to guarantee equality in Theorem 4.3.

Proposition 4.3. Let D = D(A, b) ⊆ Rm be a polyhedral set with b /∈ −Rp
=. Then

A[MIN(Y,D)] = MIN(A[Y ], Rp
=b

).

Proof. The inclusion A[MIN(Y,D)] ⊆ MIN(A[Y ], Rp
=b

) follows as in Theorem 4.3. For the

reversed inclusion the final contradiction follows from

A(ŷ − y) = Ad = b

since b /∈ −Rp
= implies that Ad 6= 0 and hence Aŷ 6= Ay. This completes the proof. ¤

Following exactly as before, we can prove the corresponding result for weakly minimal

elements.

Theorem 4.4. Let D = D(A, b) ⊆ Rm be a polyhedral set. Then

A[WMIN(Y,D)] = WMIN(A[Y ], Rp
=b

).

From here, we now can use Proposition 2.1 to relate the notion of ε-minimal elements with

respect to a polyhedral cone C to minimal elements with respect to a polyhedral translated

cone D with translation vector ε. Based thereon, we then derive results corresponding to

Theorems 4.1 and 4.2 for ε-minimal elements. In order to avoid pathological results and

maintain notational clarity, we assume that ε 6= 0 throughout the remaining part of this

section.
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Lemma 4.1. Given a matrix A ∈ Rp×m and a vector ε ∈ Rm, set b = Aε and let C = D(A)

be the polyhedral cone and D = D(A, b) be the polyhedral set implied by A and b. Then

MIN(Y,C, ε) = MIN(Y,D) and WMIN(Y,C, ε) = WMIN(Y,D).

Proof. From Theorem 3.1, first observe that under the given assumptions D = Cε, i.e., the

polyhedral set D describes the polyhedral translated cone Cε. Then apply Proposition 2.1

to conclude with the result. ¤

Theorem 4.5. Let C = D(A) ⊆ Rm be a polyhedral cone with matrix A ∈ Rp×m and ε ∈ Rm

a vector. Then

A[MIN(Y,C, ε)] ⊆ MIN(A[Y ], Rp
=b

),

where b = Aε. If Ker A = {0}, then

MIN(A[Y ], Rp
=b

) ⊆ A[MIN(Y,C, ε)].

In any case

A[WMIN(Y,C, ε)] = WMIN(A[Y ], Rp
=b

).

Proof. From Lemma 4.1 we have that MIN(Y,C, ε) = MIN(Y,D) and WMIN(Y,C, ε) =

WMIN(Y,D), where b = Aε and D = D(A, b) is the translated polyhedral cone implied by A

and b = Aε. Thus we obtain that A[MIN(Y,C, ε)] = A[MIN(Y,D)] and A[WMIN(Y,C, ε)] =

A[WMIN(Y,D)], and now Theorems 4.3 and 4.4 give the result. ¤

Finally, we collect two further corollaries to Theorem 4.5.

Corollary 4.2. Let C = D(A) ⊆ Rm be a pointed polyhedral cone. Then

A[MIN(Y,C, ε)] = MIN(A[Y ], Rp
=b

).

Proof. Use Theorem 4.5 and Corollary 3.1. ¤

Alternatively, we obtain the same result from Proposition 4.3.

Corollary 4.3. If b = Aε /∈ −Rp
=, then

A[MIN(Y,C, ε)] = MIN(A[Y ], Rp
=b

).
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5 Maximizing over the set of epsilon-minimal elements

Over the years, many authors have shown interest in the problem of optimizing over the effi-

cient set of a multiobjective programming problem, see Benson and Sayin (1994), Tu (2000)

and Jorge (2005), among others. Here we consider the particular problem of maximizing

over the set of ε-minimal elements while retaining to the same underlying ordering cone

C. Motivation was provided by Engau and Wiecek (2005a,b) who described applications of

multiobjective programming problems which require the generation of suboptimal solutions

in practical decision making situations.

Now let Z be a topological real linear space, Y ⊆ Z be a given set and C ⊆ Z be a given

ordering cone. Let ε ∈ C◦ be given and as before denote by MIN(Y,C, ε) and WMIN(Y,C, ε)

the sets of all (weakly) ε-minimal elements of Y with respect to C.

Analogously to the definition of minimal elements, we first define the set of (weakly)

maximal elements for a set X ⊆ Z.

Definition 5.1. An element z ∈ Z is called a maximal element of the set X with respect to

the cone C if z ∈ X and if there does not exist a point x ∈ X with x ≥C z, or equivalently

X ∩ (z + C◦) = ∅

The set of all maximal elements of X with respect to the cone C is denoted by MAX(X,C).

The set of weakly maximal elements WMAX(X,C) is defined as the set of all elements z ∈ X

for which there does not exist a point x ∈ X with x >C z,

X ∩ (z + int C◦) = ∅,

or WMAX(X,C) = MAX(X, int C), equivalently.

Remark 5.1. Using Definition 5.1 together with Definitions 2.3 and 2.4, it is easily verified

that MAX(X,C) = MIN(X,−C) and WMAX(X,C) = WMIN(X,−C).

Now the problem of interest is to identify the set of (weakly) maximal elements within

the set of (weakly) ε-minimal elements, that is to find

WMAX(WMIN(Y,C, ε), C).

Although the underlying set of weakly ε-minimal elements is in general unknown and thus
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an actual optimization over this set in practice not possible, we can provide an alternative

characterization of (at least) a subset of the above set of interest.

Definition 5.2. Let Y ⊆ Z be a set, C ⊆ Z be a cone and ε ∈ C◦ be a vector. Then

MINε(Y,C) := (MIN(Y,C) + ε) ∩ Y and WMINε(Y,C) := (WMIN(Y,C) + ε) ∩ Y.
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Figure 1: Relationships between different domination concepts

Figure 1 illustrates the relationships between the different sets defined for the depicted set

Y as subset of Z = R2. The set MIN(Y, R2
=) of minimal elements with respect to the Pareto

cone R2
= is given by the curve connecting points A and B, while the set WMIN(Y, R2

=)

of all weakly minimal elements corresponds to the extended curve from C to D. Trans-

lating these sets by the specified translation vector ε yields the sets MINε(Y, R2
=) and

WMINε(Y, R2
=) as the curves connecting points E and F, and G and H, respectively. Fi-

nally, the set MIN(Y, R2
=, ε) of ε-minimal elements is the shaded area enclosed by all marked

points without the curve connecting I, G, E, F, H and J, while the set WMIN(Y, R2
=, ε)

of weakly ε-minimal elements includes the curve from I to J. Maximization over this set

of weakly minimal elements with respect to the weak Pareto cone R2
> then yields the set

WMAX(WMIN(Y, R2
=, ε), R2

=) and consists of all points along the curve connecting I and J.

The above discussion of Figure 1 suggests that the set WMAX(WMIN(Y,C, ε), C) con-

tains the set of those weakly ε-minimal elements that are not minimal and, moreover, that
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this set has the sets MINε(Y,C) and WMINε(Y,C) as (possibly proper) subsets. The verifi-

cation of this intuitive conjecture, however, requires some further preparation.

Lemma 5.1. Let ŷ ∈ WMIN(Y,C) be a weakly minimal element and let ỹ ∈ Y .

(i) If ỹ <C ŷ + ε, then ỹ is an ε-minimal element, ỹ ∈ MIN(Y,C, ε).

(ii) If ỹ 5C ŷ + ε, then ỹ is a weakly ε-minimal element, ỹ ∈ WMIN(Y,C, ε).

Proof. We know ŷ ∈ WMIN(Y,C), so there does not exist y ∈ Y such that y <C ŷ, or

y <C (ŷ + ε) − ε. Then we have for (i), if ỹ <C ŷ + ε, that there does not exist y ∈ Y such

that y 5C ỹ − ε, and hence ỹ is an ε-minimal element. Similarly for (ii), if ỹ 5C ŷ + ε,

we obtain that there does not exist y ∈ Y such that y <C ỹ − ε, and hence ỹ is a weakly

ε-minimal element. ¤

Now the main result consists of two parts.

Theorem 5.1. Let Y ⊆ Z a set, C ⊆ Z a cone and ε ∈ C◦ be given. Then

MINε(Y,C) ⊆ WMINε(Y,C) ⊆ WMIN(Y,C, ε) \ MIN(Y,C, ε).

Proof. The first inclusion follows directly from Definition 5.2. For the second, we ob-

tain that WMINε(Y,C) ⊆ WMIN(Y,C, ε) from Lemma 5.1(ii), and then WMINε(Y,C) ∩
MIN(Y,C, ε) = ∅ follows since ε ∈ C◦ is a dominated direction. ¤

While Theorem 5.1 follows under quite general conditions, the second part requires some

further assumptions, namely convexity and pointedness of the underlying cone C.

Theorem 5.2. Let Y ⊆ Z a set, C ⊆ Z an ordering cone and ε ∈ C◦ be given. Then

WMIN(Y,C, ε) \ MIN(Y,C, ε) ⊆ WMAX(WMIN(Y,C, ε), C).

Proof. Let ŷ ∈ WMIN(Y,C, ε) \ MIN(Y,C, ε), then there do not exist y ∈ Y, d ∈ int C

(d 6= −ε as ε ∈ C◦ where C is pointed) such that ŷ = y + d + ε, but ŷ = ȳ + d̄ + ε for

some ȳ ∈ Y and d̄ ∈ C. We have to show that ŷ ∈ WMAX(WMIN(Y,C, ε), C), or that

there do not exist y ∈ WMIN(Y,C, ε), d ∈ int C, d 6= 0 such that ŷ = y − d. Therefore,

suppose by contradiction that ŷ = y − d with y ∈ Y , d ∈ int C, d 6= 0 and show that

y /∈ WMIN(Y,C, ε). From the above, we have ŷ = ȳ + d̄+ ε with ȳ ∈ Y and d̄ ∈ C, and thus

we obtain y = ȳ + d̄ + d + ε with ȳ ∈ Y and ¯̄d = d̄ + d ∈ int C as C is convex, with ¯̄d 6= −ε

again since ε ∈ C◦ with C pointed. Hence, y /∈ WMIN(Y,C, ε), and the proof is complete.

¤
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Combining Theorem 5.1 and Theorem 5.2 now implies the concluding result.

Corollary 5.1. Let Y ⊆ Z a set, C ⊆ Z an ordering cone and ε ∈ C◦ be given. Then

MINε(Y,C) ⊆ WMINε(Y,C) ⊆ WMIN(Y,C, ε)\MIN(Y,C, ε) ⊆ WMAX(WMIN(Y,C, ε), C).

An application of this result is given in Engau and Wiecek (2005a).

6 Conclusions

In this paper, we study approximate solutions in real-vector optimization and propose the

formal framework of cones for their characterization.

It is well established that minimal elements among a set of vectors can be defined with

respect to some partial order induced upon introduction of an underlying ordering cone.

In direct generalization, approximate solutions are defined as epsilon-minimal elements and

give rise to a number of interesting and previously unaddressed research questions.

At first, realizing that the cones describing epsilon-minimal elements must be shifted from

the origin, preliminary results on translated cones are reported and deal primarily with the

uniqueness of their representation. As a special case of interest, we investigate the possibility

of describing a given polyhedral translated cone by a system of linear inequalities and, from

a reversed point of view, derive conditions for which a given system defines a polyhedral

translated cone. We also mention how these results relate to and extend certain concepts

from linear algebra and convex analysis.

In spite of the theoretical analogy of allowing arbitrary ordering cones, most practical

applications adopt the Pareto order and hence motivate efforts to find relationships between

minimal elements with respect to the Pareto and more general ordering cones. Very satisfying

results have been established for polyhedral cones for which the set of minimal elements can

be transformed into a set of minimal elements with respect to a Pareto cone. Restricted

to minimal elements with respect to polyhedral cones, we derive the corresponding results

for minimal elements with respect to arbitrary polyhedral sets and, as a special case, for

epsilon-minimal elements with respect to polyhedral translated cones.

We hope that these results enable and stimulate further investigation of approximate

solutions within the rigorous formal framework proposed in this paper.

As one such particular research question of interest and directly motivated by parallel

methodological developments in Engau and Wiecek (2005a), we finally address the general
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problem of optimizing over the set of minimal or epsilon-minimal elements, or more precisely,

the identification of (weakly) maximal elements among the set of (weakly) epsilon-minimal

elements. Facing the challenge that for most practical situations the latter is not given

explicitly and hence that actual optimization is in general not possible, we offer an alternative

characterization of these maximal elements which as a by-product leads to an insightful result

relating epsilon-minimal and weakly epsilon-minimal elements.

While parts of this research have already been put in practice for our personal work,

we believe that some of the results presented in this paper also continue to be of inter-

est and benefit to others for further use and study of approximate solutions in real-vector

optimization problems.
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