lUo 0 F

Paper Number IVSS-2004-

Intelligent System Controller for the Full spectrum
active protection Close in Layered Shield

Mark J. Salamango
National Automotive Center

U.S. Army Tank-automotive Research, Development, and Engineering Center

Brian E. Rathgeb

U.S. Army Tank-automotive Research, Development, and Engineering Center

ABSTRACT

Active protection may become heavily relied on for
survivability of ground combat vehicles as the Army
shifts to lighter plaiforms. Recent events in southwest
Asia have also demonstrated a need for active
protection on tactical vehicles. The Full spectrum active
protection Close-in Layered Shield (FCLAS) system is
an active protection system capable of intercepting
threats fired even extremely close to a vehicle. The
system was designed to provide significant protection for
future vehicles while being applicable to the legacy fleet.
FCLAS boasts elegant simplicity, which makes it an
attractive solution to anyone looking to add protection to
their vehicles.

The FCLAS system controller will offer both passive and
active means fo minimize fratricide when intercepting
incoming threats. The system operators can actively
disable individual tubes to prevent countermeasures
from launching in the direction of dismounted troops;
these areas are known as exclusion zones. A novel
tracking system of dismounted troops allows the
controller to dynamically create exclusion zones fo
maintain optimal protection while minimizing fratricide.
The architecture used to implement the controller
functionality provides a multitude of further benefits in
the field. Among the benefits are diagnostics,
prognostics, and logistics support.

Because enterprise networks are becoming distributed,
the central data center has given way to a network
environment containing distributed server clusters, edge
servers, and a new tier of network-enabled devices that
provide ubiquitous access. In essence, the network is
expanding outward and embracing a series of new
processing nodes (e.g., PDAs, cell phones, vehicles,
system controllers, MP3 players, consumer appliances,
etc.). These network nodes are called pervasive
devices. ‘

The goal of pervasive computing is to make data and
application services available to any authorized user
anywhere, anytime. and on any device. Technologies
such as the Java Virtual Machine (JVM), the Open
Services Gateway initiative (OSGi), and a host of

communication standards have enabled the pervasive
computing vision. Since a controller on a vehicle has
similar configuration, security, and scalability needs as
many pervasive devices, it makes sense to leverage
these tools on the vehicle’s embedded controllers.

This paper will explain the software architecture we have
chosen to implement the FCLAS system controller in a
secure, scalable, and reconfigurabie way.

INTRODUCTION

As the U.S. Army continues to fight battles against a
wide variety of enemies in a plethora of environments, it
is vital to maintain technological superiority to keep the
Soldier safe. A key aspect in protecting soldiers is to
defend them from close range incoming threats. This
paper will:
e Describe common threats.
¢ Introduce the Full spectrum active protection
Close-in Layered Shield (FCLAS) system.
o Explain the software architecture for the FCLAS
controller.

BACKGROUND
MODERN THREATS

Today’s battlefield is host to a wide breadth and depth of
threats intended to disable or destroy combat vehicles
and/or combat support vehicles. Some threats have
inception dates from the pre-Vietnam era while others
have just recently come to fruition and possess the latest
sophistication technology has to offer. In addition to age
characteristics, threats can also be classified by how the
weapon is utilized. Artillery shells can launch a bus full
of submunitions from ranges in excess of 15 kilometers
from the target. The shell releases its payload over a
preprogrammed area of the battlefield at which time
submunitions rain down on targeted vehicles.

Some threats are fired from the main gun of a battle
tank. Two of the more common tank-fired threats are
categorized as High Explosive Anti-Tank (HEAT) or
kinetic energy rounds. A HEAT round will travel
approximately 750 m/s and contain a fuze that is

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED
26 MAY 2004 N/A -
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Intelligent System Controller for the Full spectrum active protection £b. GRANT NUMBER

Closein Layered Shield
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Mark J. Salamango; Brian E. Rathgeb 5o TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
USA TACOM 6501 E 11 Mile Road Warren, M1 48397-5000 REPORT NUMBER
14067
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR' S ACRONY M(S)

TACOM TARDEC

11. SPONSOR/MONITOR’S REPORT

NUMBER(S)
12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited
13. SUPPLEMENTARY NOTES
14. ABSTRACT
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE SAR 8
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

triggered upon impact with a target vehicle. The fuze
triggers the defonation of the onboard warhead, which
forms a liquefied metal jet able to penetrate tens to
hundreds of millimeters of armor. Kinetic energy rounds
are transformed from dead weight into highly lethal
projectiles when launched at speeds in excess of one
kilometer per second. Resultant energies can exceed
nine megajoules, which is enough to penetrate hundreds
of millimeters of armor.

Anti-Tank Guided Missiles (ATGMs) can be launched
from combat vehicles, portable launchers, or from the
shoulder of a soldier. ATGMs employ a similar warhead
to HEAT rounds, but have embedded systems that allow
them to be guided into the targeted vehicle. Some
ATGMs are actively guided by the operator into the
targeted vehicle. An example of this is the American
TOW (Tube-launched, Optically tracked, Wire guided)
missile. The operator must command steering
corrections of the ATGM via the fiber optic cable from
launch until impact. Other ATGMSs are considered “fire-
and-forget” weapons. The gunner needs to only point
and shoot the weapon for it to be effective. This
capability allows socme ATGMs to be fired from beyond
the line of sight of the gunner, yet have a high probability
of kill. Using a laser designator to identify the target is a
common way to employ this type of system. A soldier,
independent of the gunner, shines a laser at the target.
The ATGM locks cn the laser energy reflected off the
target and steers itself into that target.

An additional threat gaining the attention of the public is
the Rocket Propelled Grenade (RPG). This threat
combines a rocket motor, impact fuze, and warhead into
a small, easily transportable package. The launcher and
RPG can usually be carried on the back of an infantry
fighter or a collecticn can be transported in the bed of a
pickup truck. The tareat does not use any sophisticated
equipment, which makes it easy to use for any trained or
untrained soldier or insurgent. Records of RPGs date
back to World War il at which time the Union of Soviet
Socialist Republic began massive production efforts.
Designs and reverse engineered derivatives of this
threat have since heen scattered throughout the world
for a variety of countries to produce and purchase. This
has brought available quantities into the hundreds of
thousands and decreased purchase costs to hundreds of
dollars. Adding to the threat's popularity is its
effectiveness. A skilled shooter can hit a vehicle from
200-300 meters, puncturing a whole in a tank, personnel
carrier, or truck and potentially ending the lives of its
crew and passengers. Among the enthusiasts of RPGs
are terrorists. Heavy armor can significantly degrade an
RPG's effectiveness, but not all vehicles have the luxury
of supporting such massive amounts of weight and
space. The next generation of U.S. combat vehicles will
not rely on this option either, based on the Army’s efforts
to build a lighter, more deployable force. One
technology that may protect our Soldiers from these
large caliber threats is known as Active Protection (AP).

ACTIVE PROTECTION

Active protection is the process of detecting, tracking,
and physically defeating a threat at a distance
sufficiently far from the defended vehicle to assure its
survival. The process begins with knowing a threat is
coming at a friendly vehicle. Sensors capable of this
include Electro-Optic (EO) missile detectors, Infra-Red
(IR) launch detectors, and radar search sensors. These
“cueing” sensors look into the battlefield for a
phenomenon typical of an incoming threat. This might
be the escaping gasses from a chemically induced threat
launch, emission of a bright flash from a gun barrel,
Doppler shift of a radio frequency caused by threat flight,
or some other threat signature. Battlefield clutter can
cause false alarms by these sensors, so a high-level of
signal processing is typically done by the cueing sensor
to verify the existence of an incoming threat. Once the
cueing sensor is confident a threat is approaching, the
responsibility is handed off to a tracking sensor.

A tracking sensor follows the threat to acquire further
information. The type of AP system determines what
information is critical to successfully protect the vehicle.
It is common for the tracking sensor to determine the
threat's exact target. If the threat will pass by the
vehicle, it may be best not to engage the threat. Other
typical information tracking sensors determine is range
from the vehicle and velocity. These help determine
when to attempt threat intercept. Radar and Ladar (a
sensor similar to radar, except that a laser is used rather
than a radio frequency beam) are common tracking
sensors. The tracking sensor passes the critical data to
a processing unit that commands the countermunition to
take action against the threat.

Numerous countermunition approaches have been
researched. Airbags are one approach to catch the
threat. Firing a gun from the vehicle back at the threat
can potentially break the threat into pieces. Using a
pure-blast of explosive is another approach. The blast
creates enough energy to destroy the threat and/or
induce a shift in the threats path for it to harmlessly pass
by the defended vehicle or into the ground prior to target
impact. Blast-fragmentation countermeasures utilize the
same theory, but add fragmentation to break the threat
into pieces with a higher probability. Some AP systems
detonate their explosive from the vehicle hull. However,
intercepting threats at a significant standoff distance
from the vehicle can, in some cases, increase their
likelihood of success. This allows more flight time for the
threat to break into pieces and divert from its intended
path. However, an accurate, stabilized launcher coupied
with a fast delivery system can be necessary. The
Integrated Army Active Protection System (IAAPS) has
demonstrated successful end-to-end intercepts of
Rocket Propelled Grenades, Anti-Tank Guided Missiles,
and tube launched High Explosive Anti-Tank rounds.
This system uses an EO cueing sensor, radar tracking
sensor, and a rocket delivered, spin-dispersed buckshot
warhead to predetonate the incoming threat.
Development is continuing on this system to improve its
defeat capabilities. One drawback to a system relying

on a rocket flying out to the threat is the timeline
necessary for the processing, aiming, and rocket fly-out.
This leaves the vehicle vulnerable to very close-in
attacks. The most common threat employed in these
scenarios, excluding Improvised Explosive Devices, is
the Rocket Propelled Grenade. The U.S. Army is
developing the Full Spectrum Active Protection Close-in
Layered Shield (FCILAS) to fill this gap in protection.

FULL SPECTRUM ACTIVE
CLOSE-IN LAYERED SHIELD

PROTECTION

The Full spectrum active protection Close-in Layered
Shield (FCLAS) is an active protection system capable
of defeating shoulder fired rockets and ATGMs fired at
even very close ranges. An active protection
engagement is considered a success if the protected
vehicle is not penetrated by the threat. This requirement
is especially challenging with the U.S. Army’s objective
combat system weight of only 20 tons. The FCLAS
system is being developed to pose a minimum
integration burden on a multitude of platforms. Potential
platforms that can benefit from the system are the
Stryker, High-Mobility Multi Wheeled Vehicle (HMMWV),
Family of Medium Tactical Vehicles (FMTV), Unit of
Action variants, and others. The U.S. Army has
historically developed active protection systems that
intercept threats farther away from the vehicle. The
need for FCLAS became apparent in recent years with
the proliferation of RPGs around the world and the influx
of urban warfare scenarios experienced by U.S. troops.

COMPONENTS

Three components make up a fully functional system:
countermunition, launcher, and system controller. Each
component processes data and communicates with the
other pieces of the system. Onboard processing at each
component spreads the computational load across
multiple processors. This allows for parallel processing
of critical functions, such as threat tracking, while other
processing can still occur, such as handling user
commands.

Countermunition

The countermunition has the responsibility of searching
for, tracking, and infercepting threats. Figure 1 shows a
mockup of an FCLAS countermunition. An sensor
staring into the battlefield looks for potential threats in
the immediate area of the vehicle. If a threat is detected,
the signal processor begins tracking the round and
predicting whether the threat poses a danger to the host
vehicle. The threat will be ignored if it is predicted to
miss the vehicle, i.e. pass over or around the platform.
Otherwise, the countermunition makes a request to the
system controller to engage the threat. This is done to
prevent multiple FCI_LAS rounds from attacking the same
threat. After permission is granted, the countermunition
launches itself towards the incoming threat. The forward
looking sensor is turned off and the side looking
proximity fuze is activated once the countermunition

leaves the launcher. This sensor stares radially out from
the countermunition looking for the threat. Ground
clutter is filtered out and once the threat is aligned with
the countermunition, a fire signal is issued to the
warhead. The warhead detonates and creates high-
velocity fragments traveling in a tight pattern radially
away from the countermunition. These fragments are
designed to penetrate the warhead casing of the threat
and sever it from the flight body (see Figure 2). This
side attack method virtually eliminates the chance of
triggering the crush fuze of the threat, which can cause
the threat warhead to detonate and still be iethal to the
crew. The countermunition is fire-and-forget, which
means once is leaves the launch tube, it no longer
needs commands or a data link from the vehicle.

Figure 1. Mockup FCLAS countermunition.

Figure 2. RPG after intercept by FCLAS
countermunition.

Launcher

The launcher houses the countermunitions and is a
communication node between the controller and
countermunition. Each tube is 66mm in diameter
enabling the FCLAS launchers to be downward
compatible to launch standard smoke grenades. Figure
3 shows how an FCLAS launcher may look. Since
multiple defensive weapons can be loaded in these

tubes, the launchers detect what type of round (FCLAS,
smoke, or other device) is in each tube and relay that
information to the system controller. Launcher design is
flexible and can be adapted to meet the needs of each
platform integrating FCLAS. Tubes can be aimed with
tight angle separations for more overlap of coverage
from countermunition to countermunition or wide angles
to reduce the number of countermunitions needed for
360 degrees of coverage. A layered approach can add
redundancy to the system. Aiming two tubes in the
same direction allows the system to react to one threat
fired at the vehicle and then to a second threat fired from
the same direction. This requires more
countermunitions, but has benefits that may outweigh its
burdens. These options are under the discretion of the
program manager using the system.

Figure 3. Conceptual FCLAS launcher design.

The FCLAS launchers currently utilize a Controller Area
Network (CAN) bus to communicate with the system
controller and other launchers. The 40 mega-bit/sec
data rate used by the system is sufficient to perform
common communication tasks with the system controller
(i.e. launcher health status, munition identification, and
enabling/disabling tubes). The most time-critical function
performed by the launcher is passing a request to launch
from a countermunition to the system controller and the
concurrence or cenial message returned to the
countermunition. This requires a high-speed mode with
data rates yet to be determined.

System Controller

The system controller maintains central control over the
FCLAS launchers and countermunitions. A graphical
user interface (GUI) view of the FCLAS system on the
vehicle is used to present relevant data to the user and
accept user commands (see Figure 4). The GUI shows
which tubes are loaded and what type of munition is in
each tube. Should a munition be launched, the
countermunition being launched will be highlighted and
the direction of the incoming threat is shown to the user.
This data can also be made available to the fire control
system of the vehicle for “slew-to-cue” operation. An
automated gun system can slew itself in the direction of
the threat to return fire. The now vacant tube is shown
on the GUI after a short time delay. The crew can then

operate knowing what zones are not protected by
FCLAS and choose to reload the tube at the appropriate
time. Exclusion zones can be setup using the GUI if the
vehicle crew knows where supporting dismounted troops
or friendly vehicles will be operating relative to the
vehicle.

Figure 4. Graphical User Interface used for FCLAS
controller.

Exclusion zones are areas around the vehicle where
FCLAS is prohibited from engaging threats. This is done
by enabling or disabling individual tubes or launchers
using the GUI. Exclusion zones help prevent fratricide
and collateral damage. For example, all tubes on the
right side of the vehicle may be disabled if infantry
soldiers will be clearing buildings on that side. Another
example is that exclusion zones may be appropriate if a
vehicle will be traveling in a linear convoy formation to
prevent FCLAS from launching to the front or rear of the
vehicie. Commands to launch munitions can also be
directed via the GUL.

If smoke grenades are loaded in FCLAS launchers, their
status will be displayed on the interface. The user can
press a button to launch all or certain smoke grenades
using the FCLAS controller interface. This operation is
critical to obscure the vision of the enemy or the vision
system on a guided missile. The GUI then provides
feedback to the soldier by indicating which tubes have
launched grenades and their empty status after a short
time delay. The system controller also performs
functions transparent to the user.

The controller requests a Built In Test (BIT) be
performed by each FCLAS countermunition upon being
loaded into a launcher. If a BIT fails, the user is
informed of the malfunctioning munition via the interface.
The controller is also responsible for preventing multiple
FCLAS rounds from engaging the same threat. Each
FCLAS munition sends a request to the controller to
intercept a threat prior to launching. Tracking data of the
incoming round is embedded in the message, so the
controller can determine if multiple FCLAS rounds are

tracking the same threat. Once the controller concurs
with a round to launch, it then prevents successive
rounds from launching against the same threat if their
tracking data indicates they are detecting the same
incoming threat. All of these functions are critical to
proper operation of the active protection system and
performed without user guidance. The user may have
the option of enabling a dismounted soldier tracking
system to further minimize the chance of fratricide.

The FCLAS contreller includes functionality to accept
future warfighter caoabilities to track dismounted troops.
The locations of blue force troops in the immediate
vicinity of the host platform can be displayed on the
controllers GUI in real-time. Seeing the locations of
friendly forces car enhance a vehicle commander's
ability to fight. Tracking soldiers around the vehicle
facilitates dynamic exclusion zones. This feature can
turn tubes on and off depending on the locations of the
dismounted troops. A dynamic exclusion zone improves
on the capabilities of programmed exclusion zones in
that only the very minimum number of tubes will be
disabled at any time, thus protecting the vehicle to the
highest level without endangering friendly forces.

The remainder of tnis paper will describe some of the
general technologies used in the FCLAS controller, and
then will go into detail on the specifics of how the
application is constructed as a whole. It first goes over
the requirements of the controller, then the Model-View-
Controller (MVC) Pattern, Open Services Gateway
initiative (OSGi}, and P3ML. Then the paper discusses
the operation of the controller and gives specific
information on the software architecture chosen.

CONTROLLER REQUIREMENTS

The requirements fcr the FCLAS controller were basic at
first glance:

e Create a graphical interface that could be used
to arm and disarm individual munitions, or entire
launchers.

¢ Dynamically update controller code as Java
bundles.

e Configure the FCLAS system for different
operations such as a supply convoy and “walled”
troop protection.

e Leave & small size footprint.

Be processing resource conscious.

If possible, track soldier's movement around the
vehicle and determine whether or not munitions
should be disarmed if a friendly soldier is
nearby.

e Connect to a bus to control the FCLAS
launchers in any configuration.

Various subtleties became apparent upon further
scrutiny. One such case is in the logic that determines
when munitions should be armed and disarmed

automatically. One such example is when a friendly
soldier is outside a vehicle and there are no occupants
inside. In this example it makes sense to automatically
disarm the countermeasure with the hope that the
incoming round or the outgoing counter-munitions will
not hurt the soldier. However, if there are many people
in the vehicle and only one soldier outside, it may make
sense to fire the countermeasure to save the vehicle
crew. Doctrine will have to decide the rules for a
production controller. For now, the controller has the
architecture appropriate for inserting the logic as it is
developed.

in designing the application, great care was taken to
make the system flexible so that as new requirements
were added, the software could adapt quickly. In many
cases throughout the application, Java interfaces were
used and implemented as services. A Java interface is
a “contract” among independent Java objects that allows
them to interact with each other. It establishes a
protocol of behavior for any object that wishes to
communicate to a particular interface.

MODEL-VIEW-CONTROLLER (MVC) PATTERN

The Model-View-Controller (MVC) Pattern is a way of
dividing up software into distinct functional components
to allow for flexibility and easier maintenance. This
pattern breaks out the business logic (model), the user
interface (view), and the controller.

The model contains business logic and is usually looked
at as the internal “state” of the system. The view is
simply the interface where the user navigates through
the application. The controller receives requests from
the view and decides which model it will execute next.
The controller sets the next stop for the interface when
the business logic completes.

An MVC pattern is a good design method because it
allows developers to focus on specific pieces of the
overall system. If a section has to be replaced, the
controller only needs to change the flow of control when
the appropriate action is needed. If the user interface
needs updating, it will make appropriate calls to the
controller. Thus, the loosely coupled sections become
easier to update and maintain.

OPEN SERVICES GATEWAY INITIATIVE (OSGI)

While there are many wide-area network and home
networking standards, there has been no service
delivery specification. The Open Services Gateway
initiative (OSGi) specifications provide the 'glue’ in this
new value chain, through an open-platform independent
framework and API's that allows for the dynamic delivery
of managed services with secure, scalable and reliable
metrics.

OSGi is an alliance between companies such as BMW,
Nokia, Motorola, Sun Microsystems, and IBM

Corporation as well as many others. Their common goal
as reported on www.osgi.org is to “specify, create,
advance, and promote an open service platform for the
delivery and management of multiple applications and
services to all types of networked devices in home,
vehicle, mobile and other environments.” In a nutshell,
the plan is to come up with a platform to deliver Java
software to networkad devices “on the fly.”

There are several implementations of the OSGi
specification. IBM created the Service Management
Framework (SMF), Gatespace Telematics has the
Gatespace Telematics Distributed Service Platform
(GDSP), and the open source community has Oscar.
There are several other open source and commercial
companies that offer versions of the OSGi spec.

%‘
}‘ Bundles
|
\

OSGi Service Gateway

Java Class Library

£

g

€]

>
w

)
c

©

.

o

o
o

ge]

<

©

o
e

@

>
=

0

©
e

>

@
0

Java Virtual Machine

Figure §. OSGi Software Stack.

OSGi takes special Java packages and makes them into
one of the core OSGi building blocks called a “bundle.”
Bundles are distributed through a “bundle server.”

A bundle must be able to start up and shut down cleanly.
That is, it must initialize itself properly and clean up its
resources when it terminates.

Bundles make extensive use of Java interfaces,
exposing an Application Programming Interface (API) for
other bundles to use. The interface signifies the notion
of a “service.” By abstraction through an interface, a
specific class can implement the interface in any way the
programmer wants.

In essence, a bundle is no more than a Java JAR file
and a MANIFEST.INF file which is simply a file that
describes the bundle, services it imports, services it
exports, and what the bundle contains.

Bundles can be installed or uninstalled dynamically as
they are needed by either devices, vehicles, or by other
bundies.

A real benefit of using a distribution method such as
OSGi is that bundles can be updated on the fly. A
technician can remotely install bundles onto muitiple
vehicle telematics devices or on many handheld devices
at once. Once more efficient or intelligent algorithms are
developed, they can be sent to remote devices quickly.

When a new configuration of launchers is put on a
vehicle, bundles can be sent to the vehicle to adjust
accordingly.

P3ML - THE VIEW

In the case of the FCLAS controller, the view is handled
by P3ML. P3ML is a lightweight graphical toolkit that
was developed by OTI and is now included in the IBM
WebSphere Studio Device Developer Integrated
Development Environment (IDE).

With P3ML, it is possible to build custom Graphical User
Interfaces (GUIs) made up of bitmaps and lightweight
widgets. Skinning is possible to change the look and
feel of the GUI.

P3ML uses eXtensible Markup Language (XML) to
describe the layout and resources for an application.
The XML is then parsed and rendered for use by a Java
application.

A screen shot of the actual FCLAS controller can be
found in Figure 6 below.

& Futl Spectrum Active Protection Close-n Layered Shisld
Front left laacher changed

Figure 6. P3ML Graphical User Interface.

CONTROLLER CPERATION

The controller consists of an embedded touch screen
computer and a GUI. The touch screen computer
connects to either a bus or another communication
method such as a wireless network. The launcher is
then connected to the embedded computer through the
bus or wireless network.

There is a view of the vehicle from the top where
launchers and munitions are depicted. There is a color
scheme to denote when launchers and munitions are
armed or disarmed. Blue signifies a launcher or
countermeasure is disarmed, red is for the armed
condition, and white or gray means the launcher or
launcher tube is empty. Smoke grenades can be
signified by adding another color.

When the screen is touched, the P3ML interprets what
action to take. If a launcher is touched, it will toggle all
munitions within that launcher from armed to disarmed,
or alternatively from disarmed to armed. The user may
also arm or disarm individual countermeasures by
pressing one of the squares surrounding the vehicle. |If
the system detects a friendly soldier outside the vehicle,
a signal is sent to automatically disable the
countermeasure. The doctrine of who has precedence
over the operation of the FCLAS system, the signal from
the soldier outside, or the vehicle operator, must be
better defined for a production system.

SPECIFIC ARCHITECTURE

The FCLAS contrcller makes use of the MVC pattern
where applicable. In this particular system, the controller
used a Model-View pattern instead of the MVC pattern.
Because the business logic and the controller logic fit so
well in one class, it made more sense to include them
together. The Java code bundles sit on top of the OSGi
Framework, in this case on top of Service Management
Framework (SMF). The FclasP3mIHmi bundle takes
care of the user interface as seen in Figure 6. It makes
the proper calls to the P3ML bundle to create the
graphics on the screen. Figure 7 depicts the stack that
has been implemented. The specific roles of each
bundle can be found below.

Bundles
d\e\
N of o
N & S
> £ QK\Q' %G(\

& > 5 S S
Qqﬂ* < o < Q@ < Q@ ¢ G ’b‘&

<

| Embedded Computing Device and Device Drivers

Figure 7. FCLAS Software Architecture.

The bundles such as FakeGun and FakeFclasPlatform
implement interfaces; FakeGun represents the FCLAS
munitions and the FakeFclasPlatform represents a
vehicle. By creating bundies this way, it is possible to
create a bundle that simulates the behavior of real
FCLAS components without having the hardware. Then
the fake bundle can be replaced later when the
hardware is available. Many different types of
FclasPlatforms and guns can be developed as long as
they adhere to the interface specifications, their
implementations can be hidden from the application.

FclasFriendlyServlet is a bundle that receives positional
information from the friendly soldiers as they move
around the battlefield and near vehicles. The Servlet
accepts soldier identification, latitude, and longitude as
its parameters. The Servlet sends the information to the
launchers so they can arm or disarm particular rounds.

FclasSerialConnection does the “talking” between the
embedded computer and the FCLAS launchers via a
serial cable. It implements a service called
FclasConnectionService. FclasConnectionService is an
interface that specifies how the controller talks to the
launcher. This allows the application to connect to the
launcher via any communication such as a serial cable
or a vehicle bus. When it is time to connect to a J-1939
data bus, an Fclasd1939Connection class can
implement the FclasConnectionService, and the rest of
the application won't have to change.

The Fclas bundle binds to the chosen real or fake
platform. It also monitors the platform location and the
locations of friendly soldiers around the vehicle. It
unbinds the platform when the bundle terminates.

The OAF (OSGi Application Framework) bundle is a
layer that sits on top of the OSGi Service Gateway that
is used to make programming to the OSGi platform
easier. OAF simplifies the creation and destruction of

bundles, increases reliability and predictability, reduces
development time, and reduces training costs.

CONCLUSION

Today’s battlefield continues to introduce increasingly
lethal threats and tactics meant to harm U.S. Soldiers. A
key technology to assuring their survival is Active
Protection. The Full spectrum active protection Close-in
Layered Shield (FCLAS) system is an application of this
technology meant to provide a significant increase in
protection withcout the weight and space burdens posed
by conventional armor. The countermunition and
launchers are critical to the success of the system, yet
can not function without the added capabilities of the
controller.

The controller makes use of real and emerging
technologies such as Java, OSGi, and P3ML, as well as
the MVC pattern for software development. The
architecture simnplifies development, allows fleet-wide
application distribution with minimal effort, and provides
platform independence. Because of this architecture,
fleets will be more agile in and out of theater,
maintenance time and cost will be reduced, and new
applications wili be fielded more quickly.

REFERENCES

WWW.0sgi.org
OSGi Topics by Simon Archer

P3ML Topics by Simon Archer

CONTACT

Mark Salamango (salamanm@tacom.army.mil) is the
Chief Pervasive Architect working for the U.S. Army
Tank-automotive Research, Development, and
Engineering Center - National Automotive Center in
Warren, MI. Currently working in the area of Pervasive
Computing (PvC) he has obtained a BS in Computer
Science from University of Michigan in Ann Arbor. Mark
has held various prestigious positions in industry such as
IT/IS Director, Level Il Technical Consultant, and is the
President of his owr consulting corporation.

Brian Rathgeb (brign.rathgeb@us.army.mil) is a Project
Engineer at the U.8. Army Tank-automotive Research,
Development, and Engineering Center in Warren, MI.
Brian earned a BS degree in Electrical Engineering from
Kettering University in 2001. He has five years of
experience working on Active Protection systems for the
Army.

