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ABSTRACT 

We describe the development of a computational cognitive model that explains navigation behavior 
on the World Wide Web (WWW). The model, called SNIF-ACT (Scent-based Navigation and 
Information Foraging in the ACT cognitive architecture), is motivated by Information Foraging 
Theory (IFT), which quantifies the perceived relevance of a Web link to a user’s goal by a spreading 
activation mechanism. The model assumes that users evaluate links on a Web page sequentially, and 
decide to click on a link or to go back to the previous page by a Bayesian satisficing model (BSM) 
that adaptively evaluates and selects actions based on a combination of previous and current 
assessments of the relevance of link texts to information goals. The model was tested against data 
collected from novice users engaged in unfamiliar information-seeking tasks. SNIF-ACT 1.0 utilizes 
the measure of utility, called information scent, derived from IFT to predict rankings of links on 
different Web pages. The model was tested against a detailed set of protocol data collected from 
eight subjects as they engaged in two information-seeking tasks using the WWW. The model 
provided a good match to subjects’ link selections and decisions to leave a Web site, and thus 
provided support for the use of information scent as a psychological measure of the perceived 
relevance of link text to information goals. In SNIF-ACT 2.0, we include an adaptive link selection 
mechanism that sequentially evaluates links on a Web page according to their position. The 
mechanism was derived based on a rational analysis of link selection on a Web page. The 
mechanism allowed the model to dynamically update the evaluation of actions (e.g., to follow a link 
or leave a Web site) based on sequential assessments of link texts on a Web page, and to decide 
when to leave a page based on experiences with previous pages. SNIF-ACT 2.0 was validated on a 
data set obtained from 74 subjects. Monte Carlo simulations of the model showed that SNIF-ACT 
2.0 provided better fits to human data than SNIF-ACT 1.0 and a Position model that used position of 
links on a Web page to decide which link to select. We conclude that the combination of the IFT and 
the BSM provides a good description of user-Web interaction. Practical implications of the model 
are discussed. 
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1. INTRODUCTION 

Most everyday problems, such as making an investment, planning travel around traffic conditions, or 
finding a restaurant, are ill-defined (Reitman, 1964; Simon, 1973) and require additional knowledge 
search (Newell, 1990) in order to develop a solution. A substantial number of people now turn to the 
World Wide Web in search of such knowledge.1 Consequently, the Web has become a domain that 
allows the study of complex everyday human cognition. The purpose of this article is to present a 
computational cognitive model that simulates how people seek information on the Web. This model 
is called SNIF-ACT, which stands for Scent-based Navigation and Information Foraging in the ACT 
architecture. SNIF-ACT provides an account of how people use information scent cues, such as the 
text associated with Web links, in order to make navigation decisions such as judging where to go 
next on the Web, or when to give up on a particular path of knowledge search. SNIF-ACT is shaped 
by rational analyses of the Web developed by combining the Bayesian satisficing model (Fu & Gray, 
2006; Fu, in press) with the information foraging theory (Pirolli, 2005; Pirolli & Card, 1999), and is 
implemented in a modified version of the ACT-R cognitive architecture (Anderson et. al, 2004)2. In 
this article, we will describe the current status of the SNIF-ACT model and the results from testing 
the model against two data sets from real-world human subjects. At this point, our goal is to validate 
the model’s predictions on unfamiliar information-seeking tasks for general users. To preview our 
results, our model was successful in predicting users’ behavior in these tasks, especially in 
identifying the “attractor” pages that most users visited.  

This paper reports on two versions of SNIF-ACT (versions 1.0 and 2.0) that have been 
developed to model how users navigate through the Web in search of answers to specific 
information-seeking tasks.  SNIF-ACT 1.0 (Pirolli & Fu, 2003) was developed to simulate a small 
number of users working on a small number of tasks, whose Web navigation behavior had been 
previously subjected to very detailed protocol analysis (Card et al., 2001). SNIF-ACT 1.0 establishes 
how information scent is used in navigation, but makes the strong assumption that all links from a 
Web page are attended and assessed prior to a decision about the next navigation action. SNIF-ACT 
2.0 extends the first version of the model by incorporating the Bayesian satisficing model (Fu & 
Gray, 2006; Fu, in press) in the evaluation of Web links. The process of satisficing assumes that, 
instead of searching for the optimal choice, choices are often made once they are good enough based 
on some estimation of the characteristics of the environment. We also show that the user data and 
SNIF-ACT 2.0 Monte Carlo data can both be fit by the Law of Surfing (Huberman et al., 1998), a 

                                            
1 Internet use is estimated to be 68.3% of the North American population (http://www.internetworldstats.com/stats.htm). It is estimated that 88% of 
online Americans involve the Internet in their daily activities (http://www.pewinternet.org/pdfs/PIP_Internet_and_Daily_Life.pdf).  
2 We modified the utility calculations of productions in the original ACT-R by a new set of calculations presented in later sections. 
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strong empirical regularity describing the distribution of lengths of navigation paths taken by users 
before giving up. 

One reason for developing SNIF-ACT is to further a psychological theory of human information 
foraging (Pirolli & Card, 1999) in a real world domain. Real world problems pose productive 
challenges for science. New theory often emerges from scientific problems that reflect real 
phenomena in the world. Such theories are also likely to have implications for real problems that 
need to be solved.  Psychological models such as SNIF-ACT are expected to provide the theoretical 
foundations for cognitive engineering models and techniques of Web usability.  Following our 
presentation of SNIF-ACT, we discuss the relation of the model to a semi-automated Web usability 
analysis system called Bloodhound (Chi et al., 2003), and usability guidelines developed for Web 
designers (Nielsen, 2003, 2004; Spool et al., 2004). We will also compare SNIF-ACT to two 
existing models of user-WWW interactions called MESA (Miller & Remington, 2004) and CoLiDeS 
(Kitajima et al., 2005) in the Discussion section. 

1.1. Overview of the article 

In the next section, we will briefly review the theories behind the SNIF-ACT model. We will focus 
on the underlying theories governing how the model measures information scent and consequently 
selects the appropriate actions based on the currently attended information content. Based on the 
theories, we will discuss the details of the model and the user-tracing architecture that we used to 
analyze the human and model data. We will then present two versions of the model. First, we will 
describe the details of SNIF-ACT 1.0, which was tested against a data set collected by Card et al. 
(2001) in a controlled experiment involving a small number of subjects. The purpose of that 
experiment was to provide detailed data on moment-to-moment user-Web interactions including 
keystroke data, eye-movement data, and concurrent verbal reports. This detailed set of protocols 
allowed us to directly test and fine-tune the basic parameters and mechanisms of SNIF-ACT 1.0. We 
also compared the SNIF-ACT 1.0 to a Position model that decides which link to select based solely 
on the position of links on a Web page. Although SNIF-ACT 1.0 provides a better fit to the data than 
the Position model, we also found that link selections seem to depend on the dynamic interaction 
between information scent and the position of the link on a Web page. We therefore extended the 
model to include a Bayesian satisficing mechanism that dynamically decides which link to follow 
and when to leave a Web page as the model sequentially evaluates link texts on a Web page. SNIF-
ACT 2.0 is therefore more flexible and adaptive to the dynamic interactions between the user and 
different Web sites. The flexibility and adaptiveness of SNIF-ACT 2.0 make it suitable to explain 
aggregate user behavior across different Web Sites. Indeed, Monte Carlo simulations of the SNIF-
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ACT 2.0 model showed good fits to a data set collected by Chi et al. (2003) in a controlled study 
involving 74 users working on tasks in realistic settings.  

2. THEORY 

SNIF-ACT is a model developed within Information Foraging Theory (Pirolli & Card, 1999), which 
employs the rational analysis method (e.g., Anderson, 1990).  Pirolli’s (2005) rational analyses of 
information foraging on the Web focused on some of the problems posed by the general task 
environment of Web users, and the structure and constraints of the information environment on the 
Web. SNIF-ACT provides a mechanistic implementation that approximates the rational analysis 
model. In developing the SNIF-ACT computational cognitive model, additional constraints coming 
from the cognitive architecture must be addressed. In particular, SNIF-ACT must employ satisficing 
(suffices to satisfy a particular aspiration level without maximizing, see Simon, 1955) and learning 
from experience. These mechanisms arise as solutions to limits on computational resources and 
amount of available information that are not necessarily considered constraints in rational analyses. 
In this section, we provide a summary of Information Foraging Theory, the rational analysis of Web 
foraging, and the spreading activation model of information scent that is implemented in SNIF-ACT. 

2.1. Information Foraging Theory 

Information foraging theory (Pirolli & Card, 1999) assumes that people develop information-seeking 
strategies that optimize the utility of information gained in relation to the cost of interaction. This 
approach shares much with the rational analysis methodology initiated by Anderson and his 
colleagues (Anderson, 1990; Oaksford & Chater, 1998). The rational analysis approach involves a 
kind of reverse engineering in which the theorist asks (a) what environmental problem is being 
solved, (b) why is a given behavioral strategy a good solution to the problem, and (c) how is that 
solution realized by cognitive mechanisms. The products of this approach include (a) 
characterizations of the relevant goals and environment, (b) mathematical rational choice models 
(e.g., optimization models) of idealized behavioral strategies for achieving those goals in that 
environment, and (c) computational cognitive models. Rational analysis is a variant form of an 
approach called methodological adaptationism that has also shaped research programs in behavioral 
ecology (e.g., Mayr, 1983; Stephens & Krebs, 1986; Tinbergen, 1963), anthropology (e.g., 
Winterhalder & Smith, 1992), and neuroscience (e.g., Glimcher, 2003). 

Pirolli’s (2005) rational analysis of information foraging on the Web focused on the problems of 
(a) the choice of the most cost-effective and useful browsing actions to take based on the relation of 
the navigation cues (information scent) to a user’s information need and (b) the decision of whether 
to continue at a Web site or leave based on ongoing assessments of the site’s potential usefulness 
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and costs. Rational choice models, and specifically approaches borrowed and modified from optimal 
foraging theory (Stephens & Krebs, 1986) and microeconomics (McFadden, 1974), were used to 
predict rational behavioral solutions to these problems. Pirolli (2005) argued that the cost-benefit 
assessments involved in the solution to these problems facing the Web user could be grounded in a 
rational utility model implemented as a spreading activation process. Activation from representations 
of information scent cues spreads to the user’s information goal. The amount of activation received 
by the user’s goal reflects the expected utility of choosing navigation actions associated with those 
cues. This spreading activation model is discussed in the next subsection. 

2.1.1.  Spreading Activation and Information Scent 

SNIF-ACT employs a spreading activation mechanism to assess the utility of navigational choices. 
Spreading activation is assumed to operate on a large associative network that represents the Web 
user’s linguistic knowledge. These spreading activation networks are central to SNIF-ACT, and one 
would prefer that they be predictive in the sense that they are (a) general over the universe of tasks 
and (b) not estimated from the behavioral data of the users being modeled. SNIF-ACT assumes that 
the spreading activation networks have computational properties that reflect the statistical properties 
of the linguistic environment (Anderson & Milson, 1989; Landauer & Dumais, 1997). These 
networks can be constructed using statistical estimates obtained from appropriately large and 
representative samples of the linguistic environment. Consequently, SNIF-ACT predictions for Web 
users with particular goals can be made using spreading activation networks that are constructed a 
priori with no free parameters to be estimated from user data. 

Figure 1 presents a schematic example of the information scent assessment subtask facing a Web 
user. It assumes that a user has the goal of finding information about “medical treatments for 
cancer,” and encounters a Web link labeled with the text that includes “cell”, “patient”, “dose”, and 
“beam”.  The user’s cognitive task is to predict the likelihood that a distal source of content contains 
desired information based on the proximal information scent cues available in the Web link labels. 
Pirolli (2005) presents a rational analysis (in terms of a Bayesian analysis) of the assessment 
problem exemplified in Fig. 1 which arrives at a spreading activation model. 

 
----- INSERT Figure 1  ABOUT HERE ----- 

 
The spreading activation model of information scent in SNIF-ACT assumes that activation 

spreads from a set of cognitive structures that are the current focus of attention through associations 
to other cognitive structures in memory. Using ACT-R terminology, these cognitive structures are 
called chunks (Anderson & Lebiere, 2000). Chunks representing information scent cues are 
presented on the right side of Fig. 1, chunks representing the user’s information need are presented 
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on the left side, and associations are represented by lines.  The associations among chunks come 
from past experience. The strength of associations reflects the degree to which proximal information 
scent cues predict the occurrence of unobserved features. For instance, the word “medical” and 
“patient” co-occur quite frequently and they would have a high strength of association.  Greater 
strength of association produces greater amounts of activation flow from one chunk to another. 

Expressing the spreading activation model in the context of a user evaluating the utility of a link 
L on a Web page to his or her information goal G, the activation of a chunk i in the information goal 
is Ai, where 

!
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jijii SWBA . (Eqn 1: Activation equation) 

In the activation equation above, Bi is the base-level activation of chunk i, Sji is the association 
strength between chunk j representing a cue in the link L and the goal chunk i, and Wj reflects the 
attentional weight the model puts on chunk j. As noted in Pirolli (2005), Sji is a very near 
approximation of what is known as Pointwise Mutual Information (PMI) in the information retrieval 
and statistical natural language literature (e.g., Manning & Schuetze, 1999). The activation equation 
is interpreted as a Bayesian prediction of the relevance of chunk i in the context of the chunks in the 
link on a Web page to which the model is currently attending (Pirolli & Card, 1999). Bi reflects the 
log prior odds of chunk i occurring in the world, and Sji reflects the log likelihood ratio of chunk j 
occurring in the context of word i. The information scent of the link L is simply the sum of 
activations of all chunks in the information goal G 
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For tasks in which the information goal remains constant throughout the task—such as the tasks 
modeled in this paper—the base-level activations Bi can be ignored. This is because the goal chunks 
i remain the same throughout the task. Consequently, the base-level activations of the goal, Bi, of 
goal chunks do not change regardless of the link chunks j. Consequently, in the SNIF-ACT model 
we set Bi to zero. 

The model also must deal with the case in which a link chunk j is the same as goal chunk i (e.g., 
if a person were looking for “medical information” and saw the word “medical” on a link). In cases 
of direct overlap between the information goal of the user and the information scent cues of the link 
(i.e., when Sji = Sii), Sji reflects the log prior odds of the goal chunk i. This has the effect of making 
the activation equation especially sensitive to direct overlaps between information goals and 
information scent cues. 
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The model also requires the specification of the attentional weight parameter Wj. We have simply 
assumed that the attention paid to an individual information scent cue decays exponentially as the 
total number of cues increases. Specifically, we set  

nd
i eWW !
= , (Eqn 3: Attentional weight equation) 

where n is the number of words in the link, W is a scaling parameter, and d is a rate of decay 
parameter. The exponential decay function is used to ensure that the activation will not increase 
without bounds with the number of words in a link. Specifically, as the number, n, of words on a link 
gets larger, the total summed amount of attention grows to an asymptote 

!
=

n

i
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1
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Exploration of the parameters suggested that we use W = 0.1 and d = 0.2 throughout the simulations. 
Using these parameters, we get a growth function for ΣWi that shows no substantial change (less 
than 1%) after n = 20 words (Spool et al., 2004). 

In order to calculate the information scent of a link on a Web page given the information goal of 
the user, we need to estimate Sji. As discussed in Pirolli and Card (1999), it is possible to 
automatically construct large spreading activation networks from on-line text corpora, and calculate 
the estimates of Sji for different words and information goals. Specifically, base-rate frequencies of 
all words and pairwise co-occurrence frequencies of words that occur within some distance of one 
another can be computed from large text corpora to estimate Sii and Sji. For SNIF-ACT 1.0 we 
obtained these estimates from a local Tipster document corpus (Harman, 1993) with a back-off to 
search engine queries of the Web to obtain statistics about words not contained in the Tipster 
collection. In SNIF-ACT 2.0 we employed estimates from locally stored samples of Web documents 
plus a back-off technique that queried the Web for statistics about words not present in the local 
Web collection  (Farahat et al., 2004). This general method of using a local sample of documents for 
most estimates plus queries to the Web as a back-off technique combines efficiency (most of the 
encountered words will be in the local store and statistics can be rapidly computed) with coverage 
(low frequency words can typically be found on the Web). Practically, PMI scores can be calculated 
efficiently (Farahat, Pirolli, and Markova, 2004), and theoretically, Farahat et. al showed that PMI 
scores were as least as good or better than Latent Semantic Analysis (LSA) in providing good fits to 
human word similarity judgments in a variety of tasks. All “stop words” such as “the” and “a” as 
listed in Callan, Croft, & Harding (1992) were removed from all processing. 
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2.2. Utility Calculations 

SNIF-ACT uses spreading activation to calculate the information scent provided by words associated 
with links on a Web page, according to the equations specified above. These information scent 
values are used to evaluate the utility of actions including attending to links, selection of links, going 
back to a previous page within a Web site, and leaving a Web site. The specific utility calculations 
used in SNIF-ACT 1.0 were developed on the basis of random utility models in economics  
(McFadden, 1974) and stochastic models of search in optimal foraging theory (McNamara, 1982). 
These utility calculations were refined in SNIF-ACT 2.0 to implement satisficing (Simon, 1955, 
1956). The details of these utility calculations are discussed separately below in the context of each 
model. 

3. SNIF-ACT 

A model called SNIF-ACT (Pirolli & Fu, 2003) was developed based on the theory of information 
scent described above (this earlier presentation of the model covered parts of SNIF-ACT 1.0). In this 
article we present old and new data and the newest version of the model. The basic structure of the 
model is shown in Figure 2. Similar to ACT-R models, SNIF-ACT has two memory components – 
the declarative memory component and the procedural memory component. Elements in the 
declarative memory component can be contemplated or reflected upon, whereas elements in the 
procedural memory component are tacit and directly embodied in physical or cognitive activity. 
Next, we will discuss each of the memory components separately and give an example showing the 
flow of the model as shown in Figure 2. 
 

---- INSERT Figure 2 ABOUT HERE ------ 

3.1. Declarative Knowledge 

Declarative knowledge corresponds to “facts about the world”, which are often verbalizable. In the 
current context, declarative knowledge consists of the content of Web links or the functionality of 
browser buttons, and the current goal of the users (e.g., evaluating a link, choosing a link, etc.). 
Since the current goal of SNIF-ACT is not to model how users learn to use the browser, we assume 
that the model has all the knowledge necessary to use the browser, such as clicking on a link, or 
clicking on the “back” button to go back to the previous Web page. We also assume that users have 
perfect knowledge of the addresses of most popular Web search engines. Declarative knowledge is 
pre-defined in the model in all the simulations, and does not change throughout the simulations. 
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3.2. Procedural Knowledge 

Procedural knowledge corresponds to “how to do it” knowledge. In contrast to declarative 
knowledge, procedural knowledge is often not verbalizable. As in ACT-R, procedural knowledge is 
represented as production rules, which are represented as condition-action pairs. Table 1 shows the 
set of production rules in SNIF-ACT, presented in their English-equivalent forms. A production rule 
has a condition (IF) side and an action (THEN) side. When all the conditions on the condition side 
are matched, the production may be fired and when it does, the actions on the action side of the 
production will be executed. At any point in time, only a single production can fire. When there is 
more than one match, the matching productions form a “conflict set”. One production is then 
selected from the conflict set based on the Random Utility Model (RUM, details later), with the 
measure of information scent as the major variable controlling the likelihoods of selecting any one of 
the productions in the conflict set.  

3.3. Selection of Actions 

Actions of the models are represented as production rules as shown in Table 1. An example trace of 
the model is shown in Table 2, which shows the sequential execution of productions in the model. 
The model always starts with the goal of going to a particular Web site (usually a search engine) on 
the internet. There are two ways the model could go to a Web page, it could type the URL (Uniform 
Resource Locator) address, or it could use the “bookmark” pull-down menu in the browser. Since 
the major predictions of the model were on behavior contingent on the links displayed on a Web 
page, we are agnostic about the first Web sites users preferred (which are selected based on their 
prior knowledge rather than influenced by the information displayed on a Web page) and how they 
reached the Web sites of their choices to start their tasks. We therefore force the model to match 
users’ choices (details of this procedure are discussed in the next section). There were three major 
productions that competed against each other when the model was processing a Web page: Attend-
to-Link, Click-Link, and Leave-Site3. Each of these productions has a utility value, which is 
calculated based on the measures of information scent of the links on the Web page. At any moment, 
the choice of these productions depended on their utility values. We will describe the calculations of 
the utility values with each model. 

------ INSERT Table 1 and Table 2 ABOUT HERE ----- 

                                            
3 Since subjects stayed in the same Web site throughout the whole task in Experiment 2, the Leave-Site was only used in Experiment 1. 
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3.4. User-Tracing Architecture 

User trace data consists of several kinds of data recorded and analyzed by our instrumentation 
package. Performance on the tasks was recorded using an instrumentation package that included: (a) 
WebLogger (Reeder, Pirolli, & Card, 2001), which is a program that tracks user keystrokes, mouse-
movements, button use, and browser actions, (b) an eye tracker, and (c) video recordings that 
focused on the screen display. Details of the instrumentation used are given in Card, et. al (2001). 
WebLogger also saves the actual Web content (i.e. the text, images, scripts, etc.) that a user looked 
at during a browsing session. It does this by saving a cache of all pages and associated content that 
was viewed by the user. Eye-movements are handled by our WebEyeMapper system, which maps 
fixations to individual web elements (e.g., a link text) and stores the mapping in a database. 
Videotapes of users thinking aloud provide additional data about users’ goals and subgoals, attention, 
and information representation (Ericsson & Simon, 1984). The video plus WebLogger and 
WebEyeMapper data are used to produce a Web Protocol Transcript. The Web Protocol Transcript 
includes interactions recorded by the WebLogger, transcribed audio/video data, and model coding of 
the inferred cognitive action that is associated with the data. The protocol analysis provides data that 
are not available from WebLogger and WebEyeMapper, especially the users’ reading and evaluation 
of content and links. 

Figure 2 shows how the User Tracer controls the SNIF-ACT simulation model and matches the 
simulation behavior to the user trace data (each step is indicated by a circle in Figure 2): 

1. Parse the Interface Objects, Coded Protocol, and Event Log to determine the next display 
state and the next user action that occurs at that display state. 

2. If the display state has changed, then indicate this to the SNIF-ACT system. SNIF-ACT 
contains production rules that actively perceive the display state and update declarative 
memory to contain chunks that represent the perceived portions of the display. 

3. Run SNIF-ACT so that it runs spreading activation to identify the active portion of 
declarative memory and matches productions against working memory to select a conflict set 
of production rules. 

4. SNIF-ACT evaluates the productions in the conflict set using the information scent 
computations. At the end of this step, one of the rules in the conflict set will be identified as 
the production to execute. 

5. Compare the production just selected by SNIF-ACT to the next user action and record any 
statistics (notably whether or not the production and action matched). If there is a match, then 
execute the production selected by SNIF-ACT. If there is a mismatch, then select and execute 
the production that matches the user action. 

6. Repeat Steps 1 - 5 until there are no more user actions. 
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The User-Tracing architecture was used to compare and evaluate the SNIF-ACT models. However, 
because there were significant differences between the two versions of SNIF-ACT, the evaluation 
methods were also different and are discussed in the next sections. 
 

4. SNIF-ACT 1.04 

SNIF-ACT 1.0 was tested against detailed data from a small set of subjects studied in Card et al. 
(2001). These data allowed us to test and adjust parameters of our model to provide descriptions of 
user behavior. The main goal of developing SNIF-ACT 1.0 was to test the basic predictions about 
navigation choice behavior based on the theory of information scent discussed above. SNIF-ACT 1.0 
assumes that users assess all the links on a page before making a navigation choice. To preview our 
results, we found that selection of links seem to be sensitive to their position on the web page. The 
results led us to refine our model to SNIF-ACT 2.0, in which we incorporated mechanisms from the 
Bayesian satisficing model (Fu & Gray, 2006; Fu, in press) that combine the measure of information 
scent and the position of links on the web page into a satisficing process that determines which link 
to select. 

4.1. Tasks and Users 

Tasks for the Card et al. (2001) study were modified versions of tasks compiled in a survey of 2188 
Web users (Morrison, Pirolli, & Card, 2001). The two tasks analyzed in detail were: 

 
Antz Task: After installing a state of the art entertainment center in your den and replacing the 

furniture and carpeting, your redecorating is almost complete. All that remains to be 

done is to purchase a set of movie posters to hang on the walls. Find a site where you 

can purchase the set of four Antz movie posters depicting the princess, the hero, the 

best friend, and the general. 

City Task: You are the Chair of Comedic events for Louisiana State University in Baton Rouge, 

LA. Your computer has just crashed and you have lost several advertisements for 

upcoming events. You know that The Second City tour is coming to your theater in 

the spring, but you do not know the precise date. Find the date the comedy troupe is 

                                            
4 Some of the results of SNIF-ACT 1.0 have been reported in Pirolli & Fu (2003), although additional description and 
analyses are included here.  
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playing on your campus. Also find a photograph of the group to put on the 

advertisement. 

Four users were solicited from PARC and Stanford. Users were encouraged to perform both 
tasks as they would typically, but they were also instructed to think out loud (Ericsson & Simon, 
1984) as they performed their tasks. Data from the users and tasks analyzed by Card et al. (2001) 
were simulated by SNIF-ACT 1.0 to produce the model fits discussed below. All stop words were 
removed from the description of the user tasks to calculate information scent of link texts.  

Figure 3 shows examples of behavior extracted from the two tasks performed by one of the four 
study subjects. The behavior is plotted as a Web Behavior Graph (WBG), which is a version of a 
problem behavior graph (Newell and Simon, 1972). Each box in the diagram represents a state in a 
problem space. Each arrow depicts the execution of an operator, moving the state to a new state. 
Double vertical arrows indicate the return to a previous state, augmented by the experience of having 
explored the consequences of some possible moves. Thus time in the diagram proceeds left to right 
and top to bottom. Different shades surrounding the boxes in Figure 3 represent different Web sites. 
An X following a node indicates that the user exceeded the time limits for the task and that it was 
therefore a failure. The WBG in Figure 3, and the WBGs for the remaining study subjects and users, 
is presented in greater detail elsewhere (Card et. al, 2001). The WBG is particularly good at showing 
the structure of the search. One may characterize task difficulty in terms of the branchiness of the 
WBGs, with more branches indicating that search paths were abandoned and the user returned to a 
prior state. Another way of characterizing task difficulty is by the number of states visited by users. 
From Figure 3 it is evident that the ANTZ task is more difficult than the CITY task. This was true 
over all four users. The goal of SNIF-ACT 1.0 is to assess how much of the variability of the Web 
behavior, such as that depicted in Figure 3, is predictable from the measure of information scent. 
 

----- INSERT Figure 3 ABOUT HERE ------ 

The predictions made by the SNIF-ACT 1.0 model were tested against the log files of all data 
sets. The model predicts two major kinds of actions: (1) which links on a Web page people will click 
on, and (2) when people decide to leave a site. These two actions were therefore extracted from the 
log files and compared to the predictions made by the model. We call the first kind of actions link 
selections, which were logged whenever a subject clicked on a link on a Web page. The second kind 
of actions was called site-leaving actions, which were logged whenever a subject left a Web site 
(and went to a different search engine or Web site). The two kinds of actions made up 72% (48% for 
link-following and 24% for site-leaving actions) of all the 189 actions extracted from the log files. 
The rest of the actions consisted of, for example, typing in the URL to go to a particular Web site, or 
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going to a pre-defined bookmark. These actions were excluded as they were more influenced by 
prior knowledge of the users rather than information displayed on the screen.  

4.2. Utility Calculations 

4.2.1. Link Selection and the Random Utility Model (RUM) 

As discussed above, the spreading activation theory calculation of information scent reflects the 
likelihood that the link (a proximal cue) will eventually lead to the information goal (distal 
information). SNIF-ACT 1.0 assumes that all links on a page are sequentially processed by a user, 
and that production instantiations for selecting each processed link (the Click-Link production in 
Table 1) compete with one another. The utility of these Click-Link instantiations is calculated using 
the information scent equation (Eqn 2) presented above. The probability that a particular Click-Link 
production is selected and executed is calculated using a kind of Random Utility Model (McFadden, 
1974, and see Appendix A). Consider the case in which the model is faced with a conflict set C of k 
Click-Link productions. The information scent for the nth link is calculated by IS(G,n) specified in 
the definition of information scent (since the goal stays the same in all our tasks, we will simply 
refer the information scent as IS(n) from now on). Assuming that the noise parameters, ε, are 
independent random variables following a Gumbel distribution, the probability that link n will be 
chosen can be represented as a conditional probablity P(n, C), where  
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 (Eqn 4: Conflict resolution equation) 

and where τ  = √2 ε is a scaling parameter and the summation is for all j production instantiations in 
the conflict set C. 

There are a number of points to make about the conflict resolution equation. First, as with other 
well-known choice equations in psychology (e.g., Luce, 1959; Thurstone, 1927) the choice of a 
particular link n is conditional on the utilities of other links. This means that a particular link with a 
particular information scent score (which determines the numerator of the conflict resolution 
equation) will have a probability of selection that can be high or low depending on the information 
scent of competing links (which determine the denominator of the same equation). Second, the size 
of the conflict set (the number of competing links) will affect the selection of any particular link for 
similar reasons. Third, as τ decreases, the model is more likely to choose the link with the highest 
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information scent. This is because τ is related to the variance of the noise parameter in the 
information scent equation. We set τ = 1.0 throughout the simulations.  

4.2.2. Leaving a Patch of Information 

The SNIF-ACT 1.0 model assumes that the decision of whether or not to continue at a Web site is 
similar to a class of foraging decisions modeled in the optimal foraging literature (Pirolli, 2005). One 
of the major predictions of food foraging models concerns the time when the forager will leave a 
food patch. For example, in the stochastic food foraging models by McNamara (1982), a potential 
function h(x) is defined for a given state within a food patch, x, and the optimal forager is one that 
maximizes the potential function. In particular, the potential function is defined as  

h(x) = U(x) – C(t),  (Eqn 5: Potential function equation) 

where U(x) is the utility of continued foraging in the current patch x, t is the expected amount of 
time that will be spent foraging in the patch, and C(t) is the opportunity cost of foraging for t amount 
of time. McNamara’s model defines the opportunity cost function as  

C(t) = Rm*t, (Eqn 6: Opportunity cost function equation) 

where Rm is the average long-term rate of gain of foraging in various food patches. The optimal 
policy for leaving a patch is when h(x) < 0, or when  

U(x)/t < Rm.  (Eqn 7: Patch-leaving policy) 

SNIF-ACT 1.0 assumes that collections of Web pages form information patches.5 When the current 
utility of finding information on a Web page is perceived to be lower than the long term average 
utility of similar tasks on the Web, the optimal decision is to leave the Web page and pursue a 
different navigation path to find the information.  

An implicit assumption of this optimal foraging model is that the forager has perfect knowledge 
of the environments (e.g., knowledge of U(x), t, C(t), and Rm). Similarly SNIF-ACT 1.0 makes the 
strong assumption that a Web user has perfect knowledge of these values. A more realistic 
assumption is that the forager estimates these characterizations of the Web based on experience with 
previous Web pages on similar Web sites. The SNIF-ACT 2.0 model discussed later incorporates a 
rational learning model to estimate Web properties similar to these. 

                                            
5 For example, Eiron and McCurley (2003) show that the link structure of most Web sites will tend to form localized hierarchical structures, which is 
similar to the structures of food patches found in the natural environment (see Pirolli & Card, 1999). 
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4.3. Results 

4.3.1. Link selections 

The SNIF-ACT 1.0 model was matched to the link selections extracted from 8 sets of data (2 tasks X 
4 subjects). The user trace comparator was used to compare each action from each subject to the 
action chosen by the model. Whenever a link selection was encountered, the SNIF-ACT 1.0 model 
ranked all links on the Web page according to the information scent of the links. We then compared 
the links chosen by the subjects to the predicted link rankings of the SNIF-ACT 1.0 model. If there 
were a purely deterministic relationship between predicted information scent and link choice, then 
all users would be predicted to choose the link with the smallest rank number. However, as discussed 
earlier, we assume that the scent-based utilities are stochastic and subject to some amount of 
variability due to users and context. Consequently we expect the probability of link choice to be 
highest for the links ranked with the greatest amount of scent-based utility, and that link choice 
probability is expected to decrease for links with higher rank number as determined on the basis of 
their scent-based utility values. 

To highlight the importance of the information scent measure in the model, the ranks produced 
by SNIF-ACT 1.0 were compared to those produced by an alternative model that selects links based 
solely on their positions on the page. This model was motivated by recent findings that people tend 
to scan a Web page from top to bottom, and was found to be biased in selecting links at the top of a 
page containing Web search results (Joachims, et al., 2005).  In this alternative model, the rank of a 
link is simply determined by its position on the web page, so that a link at the top of the page will be 
ranked 1, and the rank number increases as the model goes down from top to bottom of the web page. 
We call this model the “Position” model. Figure 4 shows the frequency distribution of the 91 link-
following actions by the subjects plotted against the ranks of the links calculated by the SNIF-ACT 
1.0 and the Position model. For SNIF-ACT 1.0, links that had a low rank number (i.e., high on scent-
based utilities) tended to be chosen over links that had a higher rank number, indicating that link 
choice is strongly related to scent-based utility values. For example, Figure 4 shows that the link 
with the highest information scent as calculated by SNIF-ACT 1.0 was select 19 times by the 
subjects, and the link with the next highest score was selected 15 times by the subject. The predictive 
value of the model lies on the high frequencies of links on the left side of Figure 4, which slope 
down and level off to the right side of the figure. This result replicates a similar analysis made by 
Pirolli and Card (1999) concerning the ACT-IF model prediction of cluster selection in the 
Scatter/Gather browser, in which the rankings made by the model (which were also based on the 
same scent-based utilities) correlated well with the selection by the users. 

For the Position model, the ranks in Figure 4 indicated the positions of the links on the Web page. 
Links on the top of a page will have a smaller rank number than those at the bottom; in cases where 
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there were more than two links on the same line, links on the left will have a lower rank number than 
those on the right. By this method, we found that the first link on the Web page was selected two 
times by the subjects, and the second link on the Web page was selected 3 times by the subjects. The 
frequencies of link choices increased with rank number (i.e., position on the web page) and peaked 
at approximately the fourth link, but after that they decreased slowly for links further down the page. 
The results indicated that although subjects did not simply choose the first link on a web page, there 
was still a higher tendency to choose links at the top of the page than those towards the bottom of the 
page. Indeed, for both SNIF-ACT 1.0 and the Position model, the downward trends across ranks 
were significant (slope = -0.32 and -0.20, t(1,28) = 4.61 and 6.84 respectively), suggesting that both 
models successfully predicted the general link-selection trends. In other words, both information 
scent and position on a web page have some predictive power of link selection, however, the 
significantly more negative slope by SNIF-ACT 1.0 indicated that the measure of information scent 
has more predictive power than position on a web page (χ2 (30) = 53.59, p < 0.005). On the other 
hand, previous research on the predictive power of link location have focused on Web search results, 
and our results showed that the predictive power is still significant even in general Web pages. 

 

---- INSERT Figure 4 ABOUT HERE ---- 

4.3.2. Site-leaving actions 

To test how well information scent predicts when people will leave a site, site-leaving actions were 
extracted from the log files and analyzed. Site-leaving actions were defined as actions other than 
link-clicking that led to a different site (e.g. when the subjects used a different search engine by 
typing in the URL or using an existing bookmark). The results were plotted in Figure 5. It shows the 
mean information scent of the four Web pages the subjects visited before they left the site (i.e. Last-
3, Last-2, Last-1, and Leave-Site in Figure 5). It shows that initially the mean information scent of 
the Web page was high, and right before the subjects left the site, the mean information scent 
dropped. However, given the small number of site-leaving actions that we recorded, the difference 
did not reach statistical significance (t(11)=0.61, p =0.56).  

Figure 5 also shows the mean information scent of the Web pages right after the subjects left 
the site (the dotted line in Figure 5). It shows that the mean information scent on the page right after 
they left the site tended to be higher than the mean information scent before they left the site. This is 
consistent with the information foraging theory which states that people may switch to another 
"information patch" when the expected gain of searching in the current patch is lower than the 
expected gain of searching for a new information patch. In fact, from the verbal protocols, we often 
found utterances like "it seems that I don't have much luck with this site", or "maybe I should try 
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another search engine" right before subjects switch to another site. It suggests that the drop in 
information scent on the Web page could be the factor that triggered subjects' decision to switch to 
another site. 

---- INSERT Figure 5 ABOUT HERE ---- 
 

4.3.3. Summary of results 

We show that links chosen by the subjects were largely predicted (as reflected by the low rank 
numbers) by SNIF-ACT 1.0. The good match between the predictions of SNIF-ACT and the data 
shows the predictive power of information scent in link selections. Information scent was also shown 
to be sensitive to when people will decide to switch to a different Web site, although the effect is not 
statistically significant. When subjects left a site, the average information scent of the site tended to 
be decreasing. The results are consistent with the notion that as people go through a sequence of 
Web pages, they are building up an expectation of how likely they can find the target information on 
the Web sites.  

The results for the Position model also show that there is a weak trend for people to select 
links at the top of the page over those at the bottom of the page. It is, however, likely that there is a 
high correlation between information scent of links and their position on a Web page. This is 
especially likely in situations where subjects are evaluating a list of links returned from a Web 
search engine, as links at the top of the returned list of links tended to be more relevant to the search 
terms than those further down the list. Indeed we found that this correlation was high (r=0.64, 
t(15)=1.92, p<0.05). Since SNIF-ACT 1.0 simply picks the link with the highest information scent 
value regardless of its position on the Web page, link selections by the model are not sensitive to the 
position of links. To take into account the fact that both information scent and positions influence 
link selection, we refine our model in SNIF-ACT 2.0 so that the model will dynamically build up an 
expectation on how likely the target information can be found as it processes each link on a Web 
page sequentially. To preview our results, we found that this dynamic mechanism provides a much 
better match to link selections than either the Position or the SNIF-ACT 1.0 model.  

 
5. SNIF-ACT 2.0 

Results from the test of SNIF-ACT 1.0 show that the measure of information scent provides good 
prediction of link selections in naturalistic user-Web interactions. We also found that the simple 
information of link position on a web page also seems to predict link selections. The results are 
consistent with the idea that the link selection process involves a dynamic evaluation process that 
operates on both information scent and the position or sequential order of links. In SNIF-ACT 2.0, 
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we hypothesize that during the link selection process, current and previous experiences with 
different link texts and Web sites interact dynamically and influence the final selection. The learning 
mechanism allows the model to adapt to the specific experiences of users as they interact with 
different Web pages.  

SNIF-ACT 2.0 has an adaptive action evaluation and selection mechanism that dynamically 
chooses actions based on current and previous experiences with the link texts on the Web sites. To 
evaluate SNIF-ACT 2.0, we expanded our data sets to include more subjects and more tasks (Chi et 
al., 2003). We intend to understand how the predictions of the model can be applied to explain the 
dynamic user-Web interactions across different Web sites and users in realistic settings. In this 
section, we will first discuss the tasks in the dataset by Chi et al., followed by a description of the 
new learning mechanism in SNIF-ACT 2.0. We will then show the results from Monte Carlo 
simulations of the model and how well they matched the human data.   

5.1. Tasks and Users 

Chi et al. (2003) were interested in validating the predictions of an automated Web usability testing 
system called Bloodhound. Chi et al. (2003) used a remote version of a usability data collection tool 
based on WebLogger (Reeder, et. al., 2001). Subjects in the Chi et al. (2003) study downloaded this 
testing apparatus and went through the test at their leisure in a place of their choosing. Users were 
presented with specific information-seeking tasks to perform at specific Web sites. We discovered 
that it was difficult to infer user navigation at Web sites that relied heavily on the dynamic 
generation of Web pages in this dataset as we could not reproduce exactly what was on these 
dynamic Web pages. Consequently, we chose to simulate data from tasks performed at two Web 
sites in the Chi et al. (2003) data set: (1) help.yahoo.com (the help system section of Yahoo!) and (2) 
parcweb.parc.com (an intranet of company internal information). We will refer to these sites as 
“Yahoo” and “ParcWeb” respectively for the rest of the article. 

 
---- INSERT Table 3 ABOUT HERE ---- 

Each of these Web sites (Yahoo and ParcWeb) had been tested with a set of eight tasks, for a 
total of 8 X 2 = 16 tasks. For each site, the eight tasks were grouped into four categories of similar 
types. For each task, the user was given an information goal in the form of a question. The tasks 
developed by Chi et al. (2003) were designed to be representative of the tasks normally performed 
by users of the site. The tasks are presented in Table 3. 

The Yahoo and ParcWeb datasets come from a total of 74 subjects distributed approximately 30 
subjects in the Yahoo dataset and 44 subjects in the ParcWeb dataset. Yahoo subjects were recruited 
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using Internet advertising and ParcWeb subjects were recruited from PARC employees6. Subjects 
had been asked to perform the study in the comfort of their office or anywhere else they chose. 
Subjects could abandon a task if they felt frustrated, and they were also told that they could stop and 
continue the study at a later time. The idea was to have them work on these tasks as naturally as 
possible. Users had been explicitly asked not to use the search feature of the site, since Chi et al. 
(2003) were interested in predicting navigation data. This was the preferred strategy as shown by 
Katz & Byrne (2003). Each subject was assigned a total of eight tasks from across different sites and 
each task was assigned roughly the same number of times. Whenever the user wanted to abandon a 
task, or if they felt they had achieved the goal, the user clicked on a button signifying the end of the 
task. Remote WebLogger recorded the time subjects took to handle each task, the pages they 
accessed, and the keystrokes they entered (if any). 

Of all the user sessions collected, the data were inspected to throw out any sessions that 
employed the site’s search engine as well as any sessions that did not go beyond the starting home 
page. We were not interested in sessions that involved the search engine because we wanted users to 
find the information using only navigation. In the end, 590 user sessions were usable (358 in Yahoo; 
232 in ParcWeb). Table 4 summarizes the number of usable sessions that were collected for each 
task. 

 
---- INSERT Table 4 ABOUT HERE ---- 

In general, we found that in both sites, there were only a few (< 10) “attractor” pages visited 
by most of the subjects, but there were also many pages visited by fewer than 10 subjects. In fact, a 
large number of Web pages were visited only once in both sites. We decided that Web pages that 
were visited only a few times seemed more random than systematic, and were excluded from our 
model simulations. In the rest of the analyses, we dropped the bottom 30% of the Web pages that 
were least frequently visited. As a result, Web pages that were visited fewer than three times (for all 
subjects) in the ParcWeb site and those visited fewer than five times in the Yahoo site were excluded 
for model simulations. Our assumption is that predicting pages visited most often in our sample of 
subjects is more important in terms of validating the SNIF-ACT model 

5.2. Utility calculations 

Based on the SNIF-ACT 1.0 simulations, we decided to refine the model to provide more precise 
predictions on the dynamic user-Web interactions. We performed Monte Carlo simulations of the 
model and match the results to aggregates of human data. The major extension of the model in 

                                            
6 Since ParcWeb was quite dynamic and changed quite frequently, none of the subjects was familiar with the link structures nor knew the 
location of the target information before the tasks even though they were Parc employees. 
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SNIF-ACT 2.0 is the use of an adaptive mechanism that incrementally learns from its experiences 
with the links and Web pages visited. We will show how the mechanism defines stochastic decision 
boundaries that allow SNIF-ACT 2.0 to decide when to (1) choose a link on a Web page through a 
satisficing process, and (2) stop evaluating links on a web page and go back to the previous Web 
page. 

The adaptive mechanism is based on a rational analysis of link evaluation and selection on a web 
page. The details of the rational analysis can be found in Appendix B. As a summary, the mechanism 
assumes that the probability that a link will be selected is incrementally updated through a Bayesian 
learning framework in which the user is gathering data from the sequential evaluation (left-right then 
top-down) of links on a Web page (see Fu, in press; Fu & Gray, 2006). We define the perceived 
closeness of the target information as a weighted sum of the IS of the links encountered on the web 
page (details see Appendix B). This allows us to define how utilities of productions are calculated in 
SNIF-ACT 2.0.  

As discussed earlier, the critical productions that determine which links to follow and when to go 
back to the previous page were Attend-to-Link, Click-Link, and Backup-a-page. Since subjects in 
the Chi et al. (2003) dataset stayed in the same Web site throughout the entire session, the Leave-
Site production was not used. The utilities of the critical productions are updated according to the 
following equations: 
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 (Eqn 8: Utility Equations) 

In the equations above, U(n) represents the utility of the production at cycle n, IS(link) represents the 
information scent of the current attended link, N(n) represents the number of links attended on the 
Web page at cycle n, IS(Best Link) is the highest information scent of the links attended on the Web 
page, k is a scaling parameter, MIS(page) is the mean information scent of the links on the Web page, 
and GoBackCost is the cost of going back to the previous page. The values of k and GoBackCost 
were set at k = 5 and GoBackCost = 5 in the simulations. The first two equations are derived from 
the rational analysis of link evaluation and selection. The last equation is based on the finding in 
SNIF-ACT 1.0 (see Figure 5), and is consistent with the patch-leaving policy we discussed earlier. 
We will illustrate this point with a hypothetical example below. 



 Running head: SNIF-ACT  Page 20 

 

---- INSERT Figure 6 ABOUT HERE ---- 

Figure 6 shows a hypothetical situation in which the SNIF-ACT 2.0 model is processing a Web 
page. We will show how the probabilities of attending to the next link, selecting a link, and leaving 
the Web page will change as the model interacts with this Web page. In this hypothetical Web page, 
the information scent (i.e., IS(link) in the utility equations above) decreases from 10 to 2 from Links 
1 to 57. The information scent of the links from 6 onwards stays at 2. The mean information scent of 
the previous pages was 10 (i.e., MIS(Previous page)), and the noise parameter τ (see the conflict 
resolution equation) was set to 1.0. The initial utilities of all productions were set to 0. One can see 
that initially, the probability of choosing Attend-to-Link is high. This is based on the assumption that 
when a Web page is first processed, there is a bias in learning the utility of links on the page before a 
decision is made. However, as more links are evaluated, the utility of the production decreases (as 
the denominator gets larger as N(n) increases), and thus, the probability of choosing Attend-to-Link 
decreases. As N(n) increases, the utility of Click-Link increases, and in this example, the best link 
evaluated so far is the first link that has information scent of 10 (i.e., IS(Best) = 10). The implicit 
assumption of the model is that since evaluation of links takes time, the more links that are evaluated, 
the more likely that the best link evaluated so far will be selected (otherwise the time cost may 
outweigh the benefits of finding a better link). As shown in Figure 6, after four links have been 
evaluated, the probability of choosing Click-Link is larger than that of Attend-to-Link. At this point, 
if Click-Link is selected, the model will choose the first (best) link and the model will continue to 
process the next page. However, as the selection process is stochastic (see the conflict resolution 
equation), Attend-to-Link may still be selected. If this is the case, as more links are evaluated (i.e., as 
N(n) increases), the probability of choosing Attend-to-Link and Click-Link decreases. On the other 
hand, the probability of choosing Backup-a-Page is low initially because of the high GoBackCost. 
However, as the mean information scent of the links evaluated (i.e., MIS(links 1 to n)) on the page 
decreases, the probability of choosing Backup-a-Page increases. This happens because the mean 
information scent of the current page is perceived to be dropping relative to the mean information 
scent of the previous page. In fact, after eight links are evaluated, the probability of choosing 
Backup-a-Page becomes higher than that of Attend-to-Link and Click-Link, and the probability of 
choosing Backup-a-Page keeps on increasing as more links are evaluated (as the mean information 
scent of the current page decreases). 

As illustrated in the above example, as the model attends to each of the links on the web page, 
the probability of selecting Attend-to-Link decreases while that of Click-Link increases (the actual 
probabilities are derived from the conflict resolution equation). As a result, the utility calculations 
                                            
7 The scent values are chosen for illustration purposes only, the actual scent values are likely to be in the range from 50 to 200.  
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and the set of productions implement an adaptive stopping rule for when to stop evaluating the next 
link, in which the stopping rule depends stochastically on the dynamic interactions between past and 
current experiences of the links. For example, the model is more likely to stop attending to the next 
link as it experiences links of diminishing scent values. Similarly, since the probability of selecting 
Backup-a-Page increases as the model attends to each link, the model is getting more likely to stop 
attending to the next link or clicking on the best link. This adaptive stopping rule is consistent with 
the patch-leaving policy we discussed earlier. As the information scent of the links on the current 
Web page drops below the mean information scent of previous pages, the model is more likely to 
stop processing the current Web page and abandon the current path of navigation by going back to 
the previous page. The utility calculations also implement a satisficing process (Simon, 1956), in 
which links are evaluated in sequence until one is “good enough”. This is the essence of the theory 
of bounded rationality coined by Simon (1955, 1956). Compared to SNIF-ACT 1.0, in which we 
assumed that subjects evaluate all links on a page and pick the one with the highest information 
scent, the satisficing process in SNIF-ACT 2.0 is a more psychologically plausible mechanism. This 
learning mechanism also makes the model more adaptive to specific experiences of links on a Web 
page, and therefore makes the model more flexible to the characteristics of different Web sites.  

Finally, it is important to point out that the current mechanism does not guarantee that the “best” 
link will be picked. The current model is therefore consistent with the concept of bounded rationality 
(Simon, 1956). In other words, although the Information Foraging Theory is based on the rationality 
framework and the optimal foraging theory, the implementation of the model does include 
reasonable psychological constraints that do not always imply optimal behavior.  

5.3. Results 

5.3.1. Link selections 

As the utility calculations imply, when processing a Web page, the model’s prediction of which link 
to select depends on both the information scent and the position of the links. To test the predictions 
of the SNIF-ACT 2.0 model on its selection of links, we first started SNIF-ACT 2.0 on the same 
pages as the subjects in all tasks. The SNIF-ACT 2.0 model was then run the same number of times 
as the number of subjects in each task, and the selections of links were recorded8. After the 
recordings, in case SNIF-ACT 2.0 did not pick the same Web page as subjects did, we forced the 
model to follow the same paths as subjects. This model-tracing process was a common method for 
comparing model predictions to human performance (e.g., see Anderson, Corbett, Koedinger, & 
Pelletier, 1995, for a review). It also allows us to directly align the model simulation results with the 

                                            
8 We also recorded the case when the model chose to go back to the previous page. Details are presented in the next subsection. 
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subject data. For example, if subjects clicked on a particular Web page k time, the model would also 
make k selection on the same web page. Since the model faced each of the Web pages the same 
number of times as the subjects, ideally, the number of times the links on a particular Web page were 
selected by the model and subjects would be equal. For example, if there were 3 links (X, Y, Z) on a 
Web page and subjects clicked Link X 3 times and Link Y 1 time and did not click on Link Z, the 
model would be presented with the same Web page 4 times and made one link selection in each of 
these presentations. If the model selected Link X 1 time, Link Y 2 times, and Link Z 1 time, the 
correlation between the subject and the model would be r= -0.189.  

Using the same calculations, Figure 7 shows the scatter plots of the number of times the links 
on all Web pages were selected by the model and subjects. As illustrated by the example earlier, if 
the model’s predictions were perfect, all points in Figure 7 should lie on the straight line that passes 
through the origin with a slope of 1. Figure 7 shows that in general, the model did a good job 
describing the data, and the model did better in describing the data in the Yahoo tasks (R2=0.91) than 
in the ParcWeb tasks (R2=0.69). In particular, in the ParcWeb site, there were many data points lying 
near the x- and y-axis when the model or subjects selected the link 5 times or fewer (i.e., the area 
near the origin), suggesting that there were many selections made by a small number of the subjects 
not predicted by the model, and also many selections by small number of runs of the model (because 
of the noisy stochastic process) not chosen by the subjects. However, even when these data points 
were further excluded (those selected fewer than 5 times by both the subjects and model), we still 
obtained a fit of R2=0.64 and R2=0.91 for the ParcWeb and Yahoo tasks respectively. These results 
show that, in general, links frequently chosen by subjects were also chosen frequently by the model 
for both sites. This is important because this demonstrates the ability of SNIF-ACT 2.0 to identify 
the links most likely chosen by the subjects across a wide range of tasks in two very different Web 
sites. Theoretically, the results provided further evidence supporting the claim that the measure of 
information scent captures the way people evaluate mutual relevance between different link texts 
and information goals. From a practical point of view, we consider the ability to make predictions on 
which links are chosen most frequently as one of the most important criteria for evaluating a 
usability tool. For example, designers are able to evaluate the way information is presented on a Web 
site (or any information structures in general) by predicting how people are able to obtain the 
information they want efficiently. 
 

---- INSERT Figure 7 ABOUT HERE ---- 

To highlight the predictive power of SNIF-ACT 2.0, we also compared the simulation results 
to those produced by the Position model and SNIF-ACT 1.0. However, since the Position model 
only predicts the ranks of links on a given Web page based on the position of links, we need to refine 
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the models so that they include a stochastic action selection mechanism to select a link. For the 
Position model, the Backup-a-Page production was never selected, and the probabilities of choosing 
the productions Attend-to-Link and Click-Link were calculated as: 

 

P(Attend-to-Link) = 
Page on the Links ofNumber 

)(1 nN
!  

P(Click-Link)        = 
Page on the Links ofNumber 

)(nN  

(Eqn 9: Probabilities of production selection in the Linear model) 
 

where N(n) is the number of links attended on the Web page at cycle n. As the model attended to 
each link, the Information Scent value of the link was calculated, and the model kept track of the 
best link encountered so far. When the Click-Link production was selected, the best link would be 
selected. However, unlike SNIF-ACT 2.0, the probability to click on the best link depended only on 
the number of links attended, and did not depend on its Information Scent value.  
 Figure 7 also shows the same scatter plots for SNIF-ACT 1.0 and the Position model. We see 
that SNIF-ACT 1.0 did a reasonable job describing the data (R2=0.35 and R2=0.62 for the ParcWeb 
and Yahoo sites respectively), showing that even without taking into account the position of links, 
information scent still had good predictive power on link selections. For the Position model, we 
obtained R2=0.03 and R2=0.45 for ParcWeb and Yahoo respectively. Contrary to previous findings 
(Joachims, et al., 2005), the Position model yielded worse fits than SNIF-ACT 1.0 and 2.0. The 
results showed that in general, information scent seems to be a better predictor than position 
information.9 
  Figure 7 shows that SNIF-ACT 1.0 and the Position model were worse at identifying many 
of the “attractor” pages, as shown by the data points lying on or close to the x-axis. On the other 
hand, both SNIF-ACT 1.0 and the Position model frequently chose links that were not chosen by the 
subjects, as shown by the data points lying on the y-axis. By inspecting these links, we found that 
links chosen frequently by subjects but not by SNIF-ACT 1.0 were all encountered early on (13 out 
of 16 for ParcWeb and 6 out of 6 for Yahoo); on the other hand, those links chosen by SNIF-ACT 
1.0 but not by the subjects had high Information Scent values, but they were mostly at the bottom of 
the Web page (8 out of 12 for ParcWeb and 6 out of 7 for Yahoo). The results were consistent with 
the assumption of the SNIF-ACT 2.0 model: subjects tended to “satisfice” on “reasonably good” 
links presented earlier on the Web page rather than exhaustively finding the best links on the whole 
Web page. 
                                            
9 The study by Joachims et al. only focused on lists returned from search engines, and our dataset did not allow us to 
separate those pages from others. 
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5.3.2. Going back to the previous page 

The new utility equations allow the model to predict when it will stop evaluating links and go back 
to the previous Web page. Going back to the previous Web page was more likely when the utility of 
the Backup-a-page production became comparable or higher than that of Attend-to-Link and Click-
Link productions, and consequently the Backup-a-page production was more likely to be selected by 
the stochastic conflict resolution equation. As shown in Figure 6, as the information scent decreases 
and becomes much lower than the mean information scent of previous pages, the probability of 
choosing the Backup-a-Page production increases. To test the model’s predictions, we compared the 
number of times the model chose to go back on a given Web page to the number of times subjects 
chose to go back on the same Web page. We then performed the same regression analyses as we did 
when we tested SNIF-ACT 2.0 predictions on link selection. We obtained R2 = 0.73 and R2 = 0.80 
for the ParcWeb and Yahoo sites respectively (see Figure 8). Given the large number of Web pages 
that we analyzed, we considered that SNIF-ACT 2.0 did a good job predicting when people would 
stop following a particular path and go back to the previous page. In the model, when the 
information scent of a page dropped below the mean information scent of previous pages, the 
probability of going back increased. The results provided further support for the claim that people 
will choose to leave a page when the information scent drops, as we found in the SNIF-ACT1.0 
simulations. The results showed that the satisficing mechanism provided a good descriptive account 
of both link selections and when people decided to leave a Web page. 

5.3.3. Successes in finding the target pages 

In the evaluation of our model, we adopted the model-tracing approach, in which we reset our model 
to follow the same paths if the model selected a link different from that chosen by the subjects. This 
approach allows us to directly align the predictions of the model to the subjects’ data. However, this 
raises the question that the model is not truly experiencing the exact same sequences of Web pages 
as the subjects, and may not truly reflect the general capabilities of the model in predicting user-Web 
interactions. We therefore performed simulations of the model without resetting, and compared the 
percentages of time the model could successfully find the target Web pages to those of subjects. The 
goal of the simulations was to study how well the model was able to predict the likelihood for 
subjects to find the target information on a given web site, and thus how well the model can be 
applied to usability analyses of Web sites. 

We performed 500 cycles of simulations of the Position model and both versions of SNIF-
ACT and obtained the percentages of successes for each model. Table 5 shows the percentages of 
the subjects who successful found the target Web page, as well as percentages of times each of the 
models found that target Web pages. There were some “easy” tasks (ParcWeb 1a, 4a, and 4b; Yahoo 
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1a, 2a, 3a, 4a, 3b and 4b) where most subjects found the target Web pages, but there were a few 
“difficult” tasks where none of the subjects found the target Web pages (ParcWeb 2a, 3a, 2b, 3b). 
Table 5 shows that in general, the models were worse than subjects in successfully finding the target 
pages in the “easy” tasks. SNIF-ACT 2.0 was closest to subject performance among the other 
models in tasks in these “easy” tasks, followed by SNIF-ACT 1.0, with the Position model being the 
worst. However, for the “difficult” tasks, SNIF-ACT 1.0 still found many of the target Web pages, 
while both the Position model and SNIF-ACT 2.0 failed to find the target Web pages, thus providing 
a better match to subject performance. This interesting result could be explained by the fact that 
SNIF-ACT 1.0 selected links with the highest scent regardless of their position on the Web page, and 
presumably some of those correct links (with possibly the highest information scent values) were at 
the bottom of the Web pages that both the Position model and SNIF-ACT 2.0 could not find. The 
good fits of SNIF-ACT 2.0 again demonstrate that the satisficing mechanism provides a good 
psychologically plausible account of the process of sequential evaluation of links. The results also 
demonstrate the general capabilities of the model to be utilized as a tool to predict task difficulties 
and for general usability analyses of Web sites. Usability analysts could first identify a range of 
typical information goals for particular Web sites or large information structures. The model can 
then be applied to search for these information goals using the Web site, and the percentages of 
successes could provide a good index of how likely users are able to find the target information in 
general. The good match of the model to human behavior demonstrates the validities of applying the 
model to conduct this kind of automatic usability analyses system. In the Discussion section, we will 
briefly describe such a system called Bloodhound. 

5.3.4. Summary of results 

We conclude that SNIF-ACT 2.0 did a good job predicting user-Web interactions in a wide range of 
users and tasks in realistic settings. In both versions of the model, SNIF-ACT 1.0 and SNIF-ACT 2.0, 
we found that the measure of information scent provides good descriptions of how people evaluate 
mutual relevance of link texts and their information goals. We also compared the models to a simple 
Position model that selects links based solely on their positions on the Web page. Consistent with 
previous results (Joachims et al., 2005), we found that the Position model did have some predictive 
power in characterizing link selections. On the other hand, both versions of SNIF-ACT provide 
much better fits to human data than the Position model, demonstrating that the measure of 
information scent does a much better job in predicting user-Web interactions. 

To combine the predictive power of position of links and information scent, we developed SNIF-
ACT 2.0, which implements a stochastic, adaptive evaluation and selection mechanism when 
evaluating and selecting links on a Web page. The major theoretical premise of SNIF-ACT 2.0 is 
derived from the assumption that, since evaluation of links takes time, the time cost incurred from 
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evaluating all links on a page may not be justified, and thus as links are evaluated sequentially, the 
selection of links will be affected by a dynamic tradeoff of the perceived likelihood of finding the 
target information as the model continues to evaluate the list of links and the cost incurred in doing 
so. Unlike SNIF-ACT 1.0, which selects the best links on a Web page regardless of its position, 
SNIF-ACT 2.0 satisfices on a good enough link without exhausting all links on a Web page. Our 
results show that SNIF-ACT 2.0 provides a better descriptive account of user-Web interactions than 
both SNIF-ACT 1.0 and the Position model. By developing our model on the basis of a general 
theoretical framework of rational analyses, our goal is to show how a more general methodology can 
be useful for developing a solid theoretical foundation for usability studies for a wide range of 
situations.  

Besides link selection, SNIF-ACT 2.0 also provides good descriptions of when people will go 
back to the previous page. Based on results from the SNIF-ACT 1.0 simulations, the probability that 
the model will go back to the previous page increases as the information scent of the current page is 
low compared to the mean information scent of previous pages. This mechanism is based on the 
assumption that when the model processes a page, it develops an expectation of the level of 
information scent of future pages. When the information scent of a page drops below the expected 
level, the model is more likely to go back to the previous page. The dynamic selection mechanism 
therefore successfully provides an integrated account of both link selection and when people decide 
not to continue further on a given Web page. Indeed, when we allow the model to freely search on 
the Web sites, we found that SNIF-ACT 2.0 provides the best match to human data in finding 
(whether successful or not) the target information. This is important as it demonstrates the model’s 
capability to predict task difficulties and how it can be extended to an automatic usability analyses 
tool, which we will describe in the discussion section next.  
 

6. GENERAL DISCUSSION 

Pirolli and Card (1999) presented the theory of information foraging that casts the general problem 
of finding information in terms of an adaptation process between people and their information 
environments. In this article, we extended the theory and presented a computational model that 
combines the Bayesian satisficing mechanism (Fu & Gray, 2006) with the random utility theory to 
explain user-Web interactions. In particular, we showed that the model made good predictions about 
link selections on a Web page and when people would abandon the current page and go back to the 
previous page. In two experiments, we show that the predictions match human data well at both the 
individual and the aggregate level. Although the model is tested only on interactions between 
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humans and the WWW, we believe that the fundamental principles behind the model are general 
enough to be applicable to other large information structures. 

One of the assumptions of conventional optimal foraging models (Stephens & Krebs, 1986) is 
that the forager has perfect knowledge of the environment. This assumption is similar to the 
economic assumption of the “rational person”, who has perfect knowledge and unlimited 
computational resources to derive the optimal decision (Simon, 1955; 1956). Simon argued that 
human decision makers are better characterized as exhibiting bounded rationality – limited 
knowledge and various psychological constraints often make the choice process far from optimal. 
Instead of searching for the optimal choice, choices are often made once they are good enough based 
on some estimation of the characteristics of the environment – a process called satisficing. In our 
model, the satisficing process is implemented through competition between productions. Instead of 
processing all links on a page and selecting the best link, utilities of productions are updated as each 
link is evaluated, and once a link is found to be good enough, the model will choose it. The same 
mechanism is used to implement the patch-leaving policy, in which the average utility of staying on 
the same Web page is constantly updated and compared to the expected valued estimated from 
previous experiences. We show that the model based on the bounded rationality framework provides 
good description of user-Web interactions. 

As we proceeded from modeling individual to aggregate behavior, we were making predictions 
about the emergent behavior of the population of Web users. This approach is similar to the analyses 
of Web user behavior by Huberman et. al. (1997). Huberman et. al show that the distribution of the 
length of sequences of Web page visits can be characterized by the Inverse Gaussian distribution – a 
finding that they called the Law of Surfing. The Law of Surfing assumes that Web page visits can be 
modeled as a random walk process in which the expected utility of continuing to the next page is 
stochastically related to the expected utility of the current page. An individual will continue to surf 
until the expected cost of continuing is perceived to be larger than the discounted expected value of 
the information to be found in the future. Our model shares the same basic assumptions as those 
behind the derivation of the Law of Surfing, and in Appendix C, we show that the predictions of our 
model on aggregate behavior are consistent with those of the Law of Surfing. On the other hand, 
instead of predicting how many links a user will click through on the same Web site, our model is 
able to produce more fine-grained predictions that focus on how evaluation of content on a Web 
page will affect link selections and when one will go back to the previous page.  

There have been other successful models for user-Web interactions, although each of them has a 
slightly different focus from SNIF-ACT. For example, CoLiDes (Kitajima, Blackmon, & Polson, 
2000), was implemented in the Construction-Integration architecture that explains user-Web 
behavior on a single Web page. Another model, called MESA by Miller & Remington (2004) makes 
good predictions on user behavior in different tree-like Web site architectures. Each of these models 
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has its strength that provides strong motivation for future improvement of the SNIF-ACT model. We 
will provide a review of existing models of user-Web interactions in Section 6.3. In the next two 
sections, we will discuss the applications, limitations and future directions of the SNIF-ACT model. 

6.1. Applications of the SNIF-ACT Model  

From a practical point of view, computational models of user-Web interactions are expected to 
improve current human-information technology designs. Existing guidelines for designs often rely 
on a set of vague “cognitive principles” that often only provide coarse predictions about user 
behavior. The major advantage of using computational models is that they allow simulations of the 
integration of various cognitive processes and how they interact to affect behavior. These 
predictions cannot be obtained by simply applying superficial applications of vague “cognitive 
principles”. Another obvious advantage is that it has the potential to perform fully automatic 
evaluations of information structures. Given the demands in private industry and public institutions 
to improve the Web and the scarcity of relevant psychological theory, there is likely to be continuing 
demand for scientific inquiries that may improve commerce and public welfare. 

One of the ongoing projects that instantiates the practical capabilities of the SNIF-ACT model is 
a system called Bloodhound10 (Chi et al, 2003). A person (the Web site analyst) interested in doing a 
usability analysis of a Web site must indicate the Web site to be analyzed, and provide a candidate 
user information goal representing a task that users are expected to be performing at the site. The 
Bloodhound system starts with a Web-crawler program that develops a representation of the linkage 
topology (the page-to-page links) and downloads the Web pages (content). From these data, 
Bloodhound analyzes the Web pages to determine the information scent cues associated with every 
link on every page. At this point Bloodhound essentially has a representation of every page-to-page 
link, and the information scent cues associated with that link. From this, Bloodhound develops a 
graph representation in which the nodes are the Web site pages, the vertices are the page-to-page 
links at the site, and weights on the vertices represent the probability of a user choosing a particular 
vertex given the user’s information goal and the information scent cues associated with the link. This 
graph is represented as a page-by-page matrix in which the rows represent individual unique pages at 
the site, the columns also represent Web site pages, and the matrix cells contain the navigation 
choice probabilities that predict the probability, based on the measure of information scent and the 
conflict resolution equation, that a user with the given information goal, at a given page, will choose 
to go to a linked page. Using matrix computations, this matrix is used to simulate user flow at the 
Web site by assuming that the user starts at some given Web page and iteratively chooses to go to 

                                            
10 The Bloodhound system does not include a satisficing mechanism so it is similar to SNIF-ACT 1.0, but it has a better 
interface for users to interact with the system. 
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new pages based on the predicted navigation choice probabilities. The user flow simulation yields 
predictions concerning the pattern of visits to Web pages, and the proportion of users that will arrive 
at target Web pages that contain the information relevant to their tasks. As part of the Bloodhound 
project, an input screen is created so that Web site analysts can enter specifications of user tasks, the 
Web site URL, and the target pages that contain the information relevant to those tasks. An analysis 
is then done by Bloodhound and a report is then automatically generated that shows such measures 
as the predicted number of users who will be able to find target information relevant to the specified 
task, as well as intermediate navigation pages that are predicted to be highly visited that may be a 
cause of bottlenecks. Unlike the model-tracing method we used when evaluating SNIF-ACT 2.0, the 
system demonstrates the general capability of the model to travel to all pages on the Web site and 
generate a probability profile for the whole site. The development of an automatic tool that 
accurately models user-Web behavior will greatly facilitate the interactive process of developing and 
evaluating Web sites.   

6.2. Cognitive Models of Web Navigation 

There have been many attempts to understand Web users and to develop Web usability methods.   
Empirical studies (Choo et al., 2000) have reported general patterns of information seeking behavior, 
but have not provided much in the way of detailed analysis.  Web usability methodologists (Brinck 
et al., 2001; Krug, 2000; Nielsen, 2000; Spool et al., 1999) have drawn on a mix of case studies and 
empirical research to extract best design practices for use during development as well as evaluation 
methods for identifying usability problems (Garzotto et al., 1998).  For instance, principles regarding 
the ratio of content to navigation structure on Web pages (Nielsen, 2000), the use of information 
scent to improve  Web site navigation (User Interface Engineering, 1999), reduction of cognitive 
overhead (Krug, 2000), writing style and graphic design (Brinck et al., 2001), and much more, can 
be found in the literature.  Unfortunately, these principles are not universally agreed upon and have 
not been rigorously tested. For instance, there is a debate about the importance of download time as 
a usability factor (Nielsen, 2000; User Interface Engineering, 1999). Such methods can identify 
requirements and problems with specific designs, and may even lead to some moderately general 
design practices, but they are not aimed at the sort of deeper scientific understanding that may lead 
to large improvements in Web interface design. 

The development of theory in this area can greatly accelerate progress and meet the demands of 
changes in the way we interact with the Web (Newell & Card, 1985).  Greater theoretical 
understanding and the ability to predict the effects of alternative designs could bring greater 
coherence to the usability literature, and provide more rapid evolution of better designs.  In practical 
terms, a designer armed with such theory could explore and explain the effects of different design 
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decisions on Web designs before the heavy investment of resources for implementation and testing.  
Theory and scientific models themselves may not be of direct use to engineers and designers, but 
they form a solid and fruitful foundation for design models and engineering models (Card et al., 
1983; Paternò et al., 2000). Unfortunately, cognitive engineering models that had been developed to 
deal with the analysis of expert performance on well-defined tasks involving application programs 
(e.g., Pirolli, 1999) have had limited applicability to understanding foraging through content-rich 
hypermedia, and consequently new theories are needed .  

The SNIF-ACT model presented in this paper is one of several recently developed cognitive 
models aimed at a better understanding of Web navigation. Web navigation, or browsing, typically 
involves some mix of scanning and reading Web pages, using search engines, assessing and 
selecting links on Web pages to go to other Web pages, and using various backtracking mechanisms 
(e.g, history lists or back buttons on a browser). None of these recently developed cognitive models 
(including SNIF-ACT 1.0) offers a complete account of all of these behaviors that are involved in a 
typical information foraging task on the Web. The development of SNIF-ACT has been driven by a 
process of rational analysis (Anderson, 1990) of the tasks facing the Web user and successive 
refinement of models in a cognitive architecture that is aimed to provide an integrated theory of 
cognition (Anderson & Lebiere, 1998). SNIF-ACT has focused on modeling how users make 
navigation choices when browsing over many pages until they either give up or find what they are 
seeking. These navigation choices involve which links to follow, or when to give up on a particular 
path and go to a previous page, another Web site, or a search engine.  SNIF-ACT may be compared 
to two other recent models of Web navigation, MESA (Miller & Remington, 2004) and CoLiDeS 
(Kitajima et al., 2005), which are summarized in the next subsections. 

6.2.1. MESA 

MESA (Miller & Remington, 2004) simulates the flow of users through tree structures of linked 
Web pages. MESA is intended to be a cognitive engineering model for calculating the time cost of 
navigation through alternative Web structures for given tasks. The focus of MESA is on link 
navigation, which empirical studies (Katz & Byrne, 2003) suggest is the dominant strategy for 
foraging for information on the Web. MESA was formulated based on several principles: (a) the 
rationality principle, which heuristically assumes that users adopt rational behavior solutions to the 
problems posed by their environments (within the bounds of their limitations), (b) the limited 
capacity principle which constrains the model to perform operations that are cognitively and 
physically feasible for the human user, and (c) the simplicity principle, which favors good 
approximations when added complexity makes the model less usable with little improvement in fit 
(see also, Newell & Card, 1985).  
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MESA scans the links on a Web page in serial order. MESA navigates with three basic operators 
that (1) assess the relevance of a link on a Web page, (2) select a link, and (3) backtrack to a 
previous page. MESA employs a threshold strategy for selecting links and an opportunistic strategy 
for temporarily delaying return to a previous page. MESA scans links on a Web page in serial order. 
If a link exceeds an internal threshold, it selects that link and goes to the linked page. Otherwise, if 
the link is below threshold, MESA continues scanning and assessing links. If MESA reaches the end 
of a Web page without selecting a link, it re-scans the page with a lower threshold, unless the 
threshold has already been lowered, or if marginally relevant links were encountered on the first 
scan. 

MESA achieves correlations of r2 = 0.79 with human user navigation times across a variety of 
tasks, Web structures, and quality of information scent (Miller & Remington, 2004). MESA does 
not, however, directly interact with the Web, which requires the modeler to hand-code the structure 
of Web that is of concern to the simulation. MESA also does not have an automated way of 
computing link relevance (the information scent of links), requiring that modelers separately obtain 
ratings of stated preferences for links. Both of these concerns are addressed by the SNIF-ACT 
model. 

6.2.2. CoLiDeS 

CoLiDeS (Kitajima et al., 2005) is model of Web navigation that derives from Kintsch’s (1998) 
construction-integration cognitive architecture.  The CoLiDeS cognitive model is the basis for a 
cognitive engineering approach called CWW (Cognitive Walkthrough for the Web, Blackmon et al., 
2002). Construction-integration is generally a process by which meaningful representations of 
internal and external entities such as texts, display objects, and object-action connections are 
constructed and elaborated with material retrieved from memory, then a spreading activation 
constraint satisfaction process integrates the relevant information and eliminates the irrelevant. 
CoLiDeS includes meaningful knowledge for comprehending task instructions, formulating goals, 
parsing the layout of Web pages, comprehending link labels, and performing navigation actions. In 
CoLiDeS these spreading activation networks include representations of goals and subgoals, screen 
elements, and propositional knowledge, including object-action pairs. These items are represented as 
nodes in a network interconnected by links weighted by strength values. Activation is spread through 
the network in proportion to the strength of connections. The connection strengths between 
representations of a user’s goal and screen objects correspond to the notion of information scent. As 
discussed below, these strengths are partly determined by Latent Semantic Analysis measures (LSA, 
Landauer & Dumais, 1997). 

Given a task goal, CoLiDeS (Kitajima et al., 2005) forms a content subgoal representing the 
meaning of the desired content, and a navigation subgoal representing the desired method for 
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finding that content (e.g., “use the Web site navigation bar”). CoLiDeS then proceeds through two 
construction-integration phases: (1) an attention phase, which determines which display items to 
attend to, and (2) an action-selection phase which results in the next navigation action to select. 
During the attention phase, a given Web page is parsed into subregions based on knowledge of Web 
and GUI layouts, knowledge is retrieved to elaborate interpretations of these subregions, and 
constraint satisfaction selects an action determining the direction of attention to a Web page 
subregion. During the action selection phase, representations of the elements of the selected 
subregion are elaborated by knowledge from long-term memory. The spreading activation constraint 
satisfaction process then selects a few objects in the subregion as relevant. Another constraint 
satisfaction process then selects eligible object-action pairs that are associated with the relevant 
items. This determines the next navigation action to perform. 

In both the attention phase and the action-selection phase, spreading activation networks are 
constructed, activation is spread through the networks, and the most active elements in the network 
are selected and acted upon. As noted above, LSA is used to determine the relevance (information 
scent) of display objects to a user’s goal. LSA is a technique, similar to factor analysis (principal 
components analysis), computed over a word by document matrix tabulating the occurrence of terms 
(words) in documents in a collection of documents.  Terms (words) can be represented as vectors in 
a factor space in which the cosine of the angle between those vectors represents term-to-term 
similarity (Manning & Schuetze, 1999), and those similarity scores correlate well with such things as 
judgments of synonymy (Landauer, 1986). In CoLiDeS, relevance is determined by five factors 
(Kitajima et al., 2005) : (1) semantic similarity as measured as the cosine of LSA term vectors 
representing a user’s goal and words on a Web page, (2) the LSA term vector length of words on a 
Web page, which is assumed to measure the familiarity of the term, (3) the frequency of occurrence 
of terms in document collection on which LSA has been computed, (4) the frequency of encounter 
with Web page terms in a user’s session, and (5) literal matches between terms representing the 
user’s goal and the terms on a Web page. These five factors combine to determine the strengths of 
association among elements representing goal elements and Web page elements, which determines 
the spread of activation and ultimately the control of attention and action in CoLiDeS. 

The primary evaluation of CoLiDeS comes from an Web usability engineering model called 
Cognitive Walkthough for the Web (CWW, Blackmon et al., 2002; Kitajima et al., 2005). CWW is 
used to find and identify usability problems on given Web pages. This includes prediction of the 
total number of clicks to accomplish a goal (a measure of task difficulty), and the identification of 
problems due to lack of familiar wording on Web pages, links that compete for attention, and links 
that have weak information scent. 
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6.2.3. Relations between SNIF-ACT and other models 

SNIF-ACT, like MESA, is a simulation of how users navigate over a series of Web pages, although 
SNIF-ACT is not artificially restricted to tree-like structures and deals with actual Web content and 
structures. Similar to MESA, SNIF-ACT is founded on a rational analysis of Web navigation, 
although the rational analysis of SNIF-ACT derives from Information Foraging Theory (Pirolli, 
2005; Pirolli & Card, 1999).  This rational analysis guides the implementation of SNIF-ACT as a 
computational cognitive model. The initial implementations of SNIF-ACT have implicitly assumed a 
slightly different version of MESA’s simplicity principle: SNIF-ACT was developed under the 
assumption that the complexity of Web navigation behavior could best be addressed by a process of 
successive approximation. This involves first modeling factors that are assumed to control the more 
significant aspects of the behavioral phenomena and then proceeding to refine the model to address 
additional details of user behavior. 

As argued elsewhere (Pirolli, 2005), the use of information scent to make navigation choices 
during link following on the Web is perhaps the most significant factor in determining performance 
times in seeking information. This is because navigation through a Web structure, such as a Web 
site, can be characterized as a search process over a graph in which graph nodes represent pages and 
graph edges represent links among pages. Although the underlying structure is a graph, the observed 
search process typically forms a tree. Each search tree node, representing a visited page, has some 
number of branches emanating from it, corresponding to the links emanating from that page to 
linked pages. If the user makes perfect navigation choices at each node, only one branch is followed 
from each node in the tree along the shortest path from a start node (representing a starting Web 
page) to a target node (representing a page satisfying the user’s goal). Performance times will be 
proportional to the length of that minimal path. On the other hand, if the quality of information scent 
does not support perfect navigation choices, then more than one branch will be explored from each 
node visited, on average. Consequently, performance times will grow exponentially with the 
minimum distance between the start page and the target, and the size of the exponent will grow with 
the average number of incorrect links followed per node (Pirolli, 2005). In the general case, small 
changes in information scent can cause a qualitative change from costs that grow linearly with the 
the minimum distance from start to target, to costs that grow exponentially with minimum 
distance—what has been called a phase transition (Hogg & Huberman, 1987) in search costs. 
Consequently, the development of SNIF-ACT has focused first on modeling the role of information 
scent in navigation choice. In this respect it is much like CoLiDeS (Kitajima et al., 2005). 

However, SNIF-ACT differs in several respects from CoLiDeS. The model of information scent 
is based on a rational analysis of navigation choice behavior (Pirolli, 2005). The rational analysis is 
specified as a Random Utility Model (McFadden, 1974) that includes a Bayesian assessment of the 
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likelihood of achieving an information goal given the available information scent cues.  Also unlike 
CoLiDeS, SNIF-ACT derives from the ACT-R architecture (Anderson & Lebiere, 1998). Although 
we currently do not make use of the full set of modeling capabilities in ACT-R, we expect those 
capabilities to be useful in successive refinements of SNIF-ACT. For instance, SNIF-ACT does not 
currently make use of ACT-R modules for the prediction of eye movements and other perceptual-
motor behavior, which would be crucial to the prediction of how users scan individual Web pages 
and why users often fail to find information displayed on a Web page (but see Brumby & Howes, 
2004).  SNIF-ACT also does not make use of ACT-R’s capacity for representing information-
seeking plans that are characteristic of expert Web users (Bhavnani, 2002). Our choice of ACT-R as 
the basis for the SNIF-ACT model is partly driven by the expectation that other developed aspects of 
ACT-R can be used in more detailed elaborations of the basic SNIF-ACT model.  

Although SNIF-ACT could not predict which Web site people would go to when they first start 
to search for information (by actions other than link-clicking), the model seemed to match well with 
human data on when they decided to go back to the previous pages. Being able to predict how long 
users will spend at a Web site, or on a Web foraging session, has been addressed by stochastic 
models of aggregate user behavior (Baldi et al., 2003; Huberman et al., 1998). We build upon 
optimal foraging models (Charnov, 1976; McNamara, 1982) to develop a rational analysis of 
information patch leaving (Pirolli & Card, 1999) that specifies the decision rule for abandoning the 
current link-following path. This rational analysis is also implemented in SNIF-ACT. To conclude, 
we found that while different cognitive models address slightly different aspects of user-Web 
interactions, there is no theoretical reason why they could not be integrated to complement each 
other in their strengths and weaknesses. In fact, we find the successes of these cognitive models of 
user-Web interactions demonstrate the promising aspect of developing a strong theoretical 
foundation for characterizing and understanding complex human-technology interactions. 

6.3. Limitations and Future Directions 

6.3.1. Sequential vs hierarchical processing of Web pages 

One of the assumptions of the SNIF-ACT model is the sequential processing of links on a Web 
page. This assumption is realistic for the tasks that we analyzed, in which subjects often used search 
engines that returned a list of links for them to process. While we believe that this is one of the 
dominant modes of user-Web interactions for general information-seeking tasks, the assumption of 
sequential processing of links may not apply as well in certain kinds of Web pages. For example, 
Blackmon, Kitajima, and Polson (2005) studied how people processed Web pages that were 
categorized under different headings and sub-regions. They found that people tended to scan 
headings to identify the sub-regions of the Web page that were semantically most similar to their 
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user goals. Interestingly, they found that when there was a high-scent heading on the Web page, 
people tended to focus on the sub-region categorized under the high-scent heading and ignored the 
rest of the Web page. Blackmon et al.’s results implied a hierarchical, instead of sequential, 
processing of links on a Web page in these kinds of Web pages.  

At this point, SNIF-ACT was developed at a level of abstraction that was not sensitive to 
different visual layouts of the Web pages, and thus could not predict results from Blackmon et al. On 
the other hand, the sequential processing of links in SNIF-ACT is at the evaluation stage, not at the 
attentional stage. Our plan is that once we have a better understanding of the relationship between 
people’s attention process to different links and different visual layouts, it is possible to re-order the 
sequence of links evaluated by SNIF-ACT based on the relationship. In fact, by recording detailed 
eye-movements of users while they are navigating on the Web, models have been constructed that 
predict sequences of fixations are constructed to explain low-level perceptual processes in 
information seeking (Brumby & Howes, 2004; Hornof, 2004). As complex Web pages are becoming 
more common, a good theory of attention allocation as a function of different visual layouts is 
definitely important in predicting navigational behavior. Our goal is to incorporate existing results 
and perform further studies to understand attention allocation strategies in complex Web pages, and 
combine these results in future versions of the SNIF-ACT model. In fact, we believe that such a 
synergy will result in a more detailed and predictive model of Web navigation.  

6.3.2. Users with different background knowledge 

In both SNIF-ACT 1.0 and 2.0, we tested subjects on general information-seeking tasks that 
involve little domain-specific knowledge. Indeed, our model is based on weak problem-solving 
methods that do not depend on domain-specific knowledge. It is possible that in specific domains, 
for example, for Web sites that contain medical information for practitioners, expert users (either 
expert in the domain or in the Web sites) may perform differently by forming complicated goal 
structures (e.g., see Bhavnani, 2002) that possibly cannot be handled by the current version of SNIF-
ACT (although it is almost trivial to implement goal structures in a production system, see Anderson 
& Lebiere, 1998). We do not know exactly know how expertise will influence the user-Web 
interactions and whether the influence will have large variability across domains. The question is 
clearly subject to future research. 

A related question is how background knowledge will affect the computations of information 
scent. For example, familiarities of different words for a college-level and a 9th-grade user could be 
very different (as they could be different between professional anthropologists and astro-physicists), 
and thus may affect the measurement of relatedness of two sets of words for different groups of 
users with very different background knowledge. One approach is to divide the text corpus a priori 
into sets that correspond to different groups of users with different background knowledge, and 
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perform the information scent calculations using these separate text corpora (e.g., see Kitajima, 
Blackmon, & Polson, 2005). This will allow the model to be sensitive to individual differences in 
background knowledge. 

Another related question is how well are usability analysts able to generate typical information 
goals as required by the current model. The current evaluation of SNIF-ACT does assume that a 
well-defined information goal is presented to the user. One could imagine that in many cases, users 
do not have a well-formulated information goal, but rather a vague or ill-defined information goal 
that motivates them to search on the WWW to either understand a topic better, to acquire some 
conceptual framework in a particular domain, or to investigate the opinions of others on a particular 
topic or problems. Obviously, our model was not able to answer these questions directly, and more 
research is needed to understand how these information goals would arise as people are engaged in 
this kind of ill-defined, “sense-making” tasks. 
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9. FIGURE CAPTIONS 

Figure 1. A schematic example of the information scent assessment subtask facing a Web user. The 

arrows represent associations between the words. 

Figure 2. The structure of SNIF-ACT 1.0 and the User-Tracer. 

Figure 3. Web Behavior Graphs for one study subject working on the ANTZ task (left) and CITY 

task (right) in experiment 1. 

Figure 4. The links chosen by subjects and ranked by SNIF-ACT 1.0 and the Position model. The 

lower the rank, the more likely that the model will choose the links.    

Figure 5. The mean scent scores before subjects left a Web site. The dashed line represents the 

overall mean scent scores of all Web pages visited by the subjects. 

Figure 6. (a) A hypothetical Web page in which the information scent of links decreases linearly 

from 10 to 2 as the model evaluated links 1 to 5. The information scent of the links from 6 

onwards stays at 2. The number in parenthesis represents the value of information scent. (b) 

The probability of choosing each of the competing productions when the model processes each 

of the link in (a) sequentially. The mean information scent of the previous pages was 10. The 

noise parameter t was set to 1.0. The initial utilities of all productions were set to 0. k and 

GoBackCost were both set to 5. 

Figure 7. The scatter plots for the number of times links were selected in the Parcweb and Yahoo 

sites by subjects and by the SNIF-ACT 2.0, SNIF-ACT 1.0, and Position model.  

Figure 8. The scatter plots of the number of times subjects and the model went back to the previous 

pages. 

Figure 9. Log-Log plots of frequency against number of clicks on web pages in Yahoo and ParcWeb. 

In the equations, x represents Log(clicks) and y represents Log(frequency). 

Figure 10. The Cumulative Distribution Frequency for the number of users on Yahoo and ParcWeb 

plotted against the number of clicks and the predictions by the law of surfing and SNIF-ACT 

2.0. 
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Figure 1. A schematic example of the information scent assessment subtask facing a Web user. The 

arrows represent associations between the words.  
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Figure 2. The structure of SNIF-ACT 1.0 and the User-Tracer. 
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Figure 3. Web Behavior Graphs for one study subject working on the ANTZ task (left) and CITY 

task (right) in experiment 1. 

 

 

 



 Running head: SNIF-ACT  Page 48 

Figure 4. The links chosen by subjects and ranked by SNIF-ACT 1.0 and the Position model. The 

lower the rank, the more likely that the model will choose the links. 
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Figure 5. The mean scent scores before subjects left a Web site. The dashed line represents the 

overall mean scent scores of all Web pages visited by the subjects. 
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Figure 6. (a) A hypothetical Web page in which the information scent of links decreases linearly 

from 10 to 2 as the model evaluated links 1 to 5. The information scent of the links from 6 onwards 

stays at 2. The number in parenthesis represents the value of information scent. (b) The probability 

of choosing each of the competing productions when the model processes each of the link in (a) 

sequentially. The mean information scent of the previous pages was 10. The noise parameter t was 

set to 1.0. The initial utilities of all productions were set to 0. k and GoBackCost were both set to 5.  
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Figure 7. The scatter plots for the number of times links were selected in the Parcweb and Yahoo 

sites by subjects and by the SNIF-ACT 2.0, SNIF-ACT 1.0, and Position model. 
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Figure 8. The scatter plots of the number of times subjects and the model went back to the previous 

pages. 
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Figure 9. Log-Log plots of frequency against number of clicks on web pages in Yahoo and ParcWeb. 

In the equations, x represents Log(clicks) and y represents Log(frequency). 
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Yahoo (observed)
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Figure 10. The Cumulative Distribution Frequency for the number of users on Yahoo and ParcWeb 

plotted against the number of clicks and the predictions by the law of surfing and SNIF-ACT 2.0. 
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10. TABLES 

Table 1. Productions in SNIF-ACT 1.0 in their English equivalent forms. 

Start-Process-Page: 
IF the goal is Goal*Start-Next-Patch 
& there is a task description 
& there is a browser 
& the browser is on an unprocessed page 
THEN Set & push a subgoal Goal*Process-Page to the goal stack 
 
Process-Links-on-Page: 
IF the goal is Goal* Process-Page 
& there is a task description 
& there is a browser 
& there is an unprocessed link 
THEN Set and push a subgoal Goal*Process-Link to the goal stack 
 
Attend-to-Link: 
IF the goal is Goal* Process-Link 
& there is a task description 
& there is a browser 
& there is an unattended link 
THEN Choose an unattended link and attend to it 
 
Read-and-Evaluate-Link: 
IF the goal is Goal* Process-Link 
& there is a task description 
& there is a browser 
& the current attention is on a link 
THEN Read and Evaluate the link 
 
Click-Link: 
IF the goal is Goal* Process-Link 
& there is a task description 
& there is a browser 
& there is an evaluated link 
& the link has the highest activation 
THEN Click on the link 
 
Leave-Site: 
IF the goal is Goal* Process-Link 
& there is a task description 
& there is a browser 
& there is an evaluated link 
& the mean activation on page is low 
THEN Leave the site & pop the goal from the goal stack 
 
Backup-a-Page: 
IF the goal is Goal* Process-Link 
& there is a task description 
& there is a browser 
& there is an evaluated link 
& the mean activation on page is low 
THEN Go back to the previous page 
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Table 2. An example trace of the SNIF-ACT model. 

Productions Descriptions 
Use-Search-Engine fired Model started, decided to use a search engine. 
Go-To-Search-Engine fired Retrieved address of search engine from memory. 
Go-To-Site-By-Typing fired Typed address of search engine on browser. 
Start-Process-Page fired Moved attention to new Web page. 
Search-Site-using-Search-Box fired Typed search terms in search box 
Process-Links-on-Page fired Prepared to move attention to a link on page. 
Attend-to-Link fired Moved attention to the link. 
Read-and-Evaluate-Link fired Read and evaluated the link. 
Attend-to-Link fired Moved attention to next link. 
Read-and-Evaluate-Link fired Read and evaluated the link. 
Attend-to-Link fired Moved attention to next link. 
Read-and-Evaluate-Link fired Read and evaluated the link. 
Click-Link fired Clicked on the link. 
….  
Click Link Clicked on the link. 
Finish fired Target found. 
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Table 3. The tasks given to subjects in Experiment 2. 

ParcWeb (19227 documents) 
Tasks  

1a Find the PowerPoint slides for Jan Borchers’s June 3, 2002 Asteroid presentation. 
1b Suppose this is your first time using AmberWeb. Find some documentation that will help you figure out how 

to use it. 
2a Find out where you can download the latest DataGlyph Toolkit. 
2b Find some general information about the DataGlyphs project. 
3a What do the numerical TAP ratings mean? 
3b What patent databases are available for use through PARC? 
4a Find the 2002 Holiday Schedule 
4b Where can you download an expense report? 

  
Yahoo (7484 documents) 

Tasks  
1a What is the Yahoo! Directory? 
1b You want Yahoo! to add your site to the Yahoo! Directory. Find some guidelines for writing a description of 

your site. 
2a You have a Yahoo! Email account. How do you save a message to your Sent Mail folder after you send it? 
2b You are receiving spam on your Yahoo! Email account.  What can you do to make it stop? 
3a When is the playing season for Fantasy Football? 
3b In Fantasy Baseball, what is rotisserie scoring? 
4a You are trying to find your friend’s house, and you are pretty sure you typed the right address into Yahoo! 

Maps, but the little red star still showed up in the wrong place. How could this have happened? 
4b You want to get driving directions to the airport, but you don’t know the street address. How else can you get 

accurate directions there? 
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Table 4. The number of usable user sessions, Web pages visited, successes, and the number of times subjects decided to 

go back to previous Web page in each of the two sites. 

 Tasks 
ParcWeb 1a 2a 3a 4a 1b  2b  3b 4b Total 

Sessions 31 27 30 33 28 29 24 30 232 
Pages 124 72 120 86 350 106 107 232 1197 

Successes 27 0 0 31 5 0 0 23 86 
Going back 6 10 9 9 8 10 22 4 78 

          
     Tasks     

Yahoo 1a 2a 3a 4a 1b  2b  3b 4b Total 
Sessions 44 47 44 44 44 43 47 45 358 

Pages 104 149 164 144 216 197 260 257 1491 
Successes 40 39 36 43 13 18 45 31 265 

Going back 10 8 9 8 5 6 8 9 63 
 
 
Table 5. The percentages of successes in each of the tasks for the subjects and the models. 

 
 Tasks 

ParcWeb 1a 2a 3a 4a 1b 2b 3b 4b 
Subject 87% 0% 0% 94% 18% 0% 0% 77% 

Position 10% 0% 0% 12% 0% 0% 0% 0% 
Snif-Act 1.0 61% 21% 16% 62% 8% 7% 24% 45% 
Snif-Act 2.0 71% 0% 0% 63% 21% 0% 0% 51% 

         
 Tasks 

Yahoo 1a 2a 3a 4a 1b 2b 3b 4b 
Subject 91% 83% 82% 98% 30% 42% 96% 69% 

Position 13% 9% 2% 21% 2% 6% 15% 7% 
Snif-Act 1.0 53% 76% 78% 82% 21% 37% 46% 53% 
Snif-Act 2.0 89% 79% 76% 88% 16% 24% 78% 45% 
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APPENDIX A: THE RANDOM UTILITY MODEL OF LINK CHOICE 

 
Consider a person facing a Web page with a choice set of links L consisting of j 
alternatives. Suppose the person chooses alternative k from L. If rational behavior is 
assumed, revealed preference implies that Uk ≥ Uj for all j in L. The probability of this 
event occurring can be represented as Pk = Prob (Uk ≥ Uj for all j in L). 
 
In the random utility model, utilities are assumed to consist of two parts, one is 
deterministic and one is stochastic, thus the utility of link k can be represented as 
 
Uk=Vk + εk 
 
Thus, Pk = Prob (Uk ≥ Uj for all j in L) 

   = Prob (Vk – Vj ≥ εj - εk for all j in L) 
 
To determine Pk (the probability that a person will choose link k), one needs to 

specify the distribution for ε. McFadden (1974) shows that if we allow the assumption 
that ε follows one of the popular extreme value distribution called a double exponential 
distribution, i.e., Prob (εk < t) = exp[-exp(-t/b)], then once can obtain the conflict 
resolution equation as: 

 

! 

Pk =
exp(Vk /")

exp(V j /")
j#L

$
, where τ = √2 b. 

 
The assumption of the double exponential distribution for the error term thus allows an 
elegant closed form equation for the probability of selecting a link from a set. The 
distribution corresponds to the limiting distribution of the maximum value in a set of N 
elements as N approaches infinity. 
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APPENDIX B: A RATIONAL ANALYSIS OF LINK EVALUATION 
AND SELECTION 
 
The analysis below is based on the rational analysis in chapter 5 of Anderson (1990). The 
analysis aims at providing a rational basis for the utility calculations of the productions in 
the SNIF-ACT 2.0 model. The goal of the rational analysis is to derive the adaptive 
mechanism for the action evaluation and selection process as links are sequentially 
processed. The analysis is based on a Bayesian framework in which the user is gathering 
data from the sequential evaluation of links on a web page. We define: 
 

X = variable that measures the closeness to the target  
S = binary variable that describes whether the link will lead to the target page  
R = probability that the target information can be found 
r = the event that the target information exists 

 
Given the definitions, it immediately follows that  

Pr(S = 1|r) = R,  (A.1) 

and  

Pr(S = 0|r) = 1 - R;  (A.2) 

we also have, by Bayes Theorem: 
 

Pr(S,X|r) =  Pr(X|S,r) Pr(S|r). (A.3) 

 
Since the major assumption of the Information Foraging Theory is that information scent 
(IS) directly measures the closeness to the target, we define: 
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where IS(j) represents the information scent of link j, and K and α are constant parameters 
of the Equation A.4. The above Equation A.4 assumes that the measure of closeness is a 
hyperbolically discounted sum of the information scents of the links encountered in the 
past. The use of a hyperbolic discount function has been validated in a number of studies 
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in human preferences (e.g., Loewenstein & Prelec, 1991; Ainslie & Haslam, 1992; Mazur, 
2001). 

 
We treat this problem as one of sampling the random variables (X, S) from a 

Bernoulli distribution, with R equivalent to the parameter to the estimated for the 
distribution.  The appropriate Bayesian conjugate distribution convenient for use  
in updating estimates of R from samples of a Bernoulli random variable is the beta 
distribution. That is, we assume a prior beta distribution for R, and the user will use the 
observed information scent of the links on a web page to update a posterior beta 
distribution of R. We take R to follow a beta distribution with parameters a and b. After 
the user has experienced a sequence of links on a Web page, represented as 
 

Ln = ((X1, S1), (X2, S2) … (Xn, Sn)) 
 

where each pair (Xi, Si) describes the closeness to the target and whether the link leads to 
the target page. Since the prior of R is a beta distribution, the posterior distribution 
Pr(R|Ln) is also a beta, and the new parameters can be shown to be   

anew = a + ∑Si  (A.5) 

and  

bnew =  b + ∑(1 - Si) (A.6) 

as its parameters. The posterior predictive distribution for S and X given Ln can be 
computed as: 
 

! ++++ = dRLRRXSLXS nnnnnn )|Pr()|,Pr()|,Pr( 1111  (A.7) 

 
In our case, our interest mainly lies on the posterior predictive probability that the user 
can find the target, i.e., Pr(Sn + 1 = 1, Xn + 1|Ln), which can be computed as: 
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If the user is considering links sequentially on a Web page before the target is found, we 
have ∑Si = 0. To reduce the number of parameters, we set α = a, K = 1/a. and assume that 
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b = 0. We now only have one parameter a, which represents the prior number of 
successes in finding the target information on the web. The equation can then be reduced 
to: 
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In the model, the above probability is calculated to approximate the utilities of the 
productions read-next-link and click-link. Putting the above equation in a recursive form, 
we have: 
 

na
nISnUnU

+

+!
=

)()1()(  (A.10) 

 
In the equation specified in the text, we set a = 1 for the read-next-link production; and a 
= 1 + k for the click-link production. By setting the value of a for click-link to a higher 
value, we assume that in general, following a link is more likely to lead to the target page 
than attending to the next link on the same web page. k is a free parameter that we used to 
fit the data. 
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APPENDIX C: THE LAW OF SURFING 

The law of surfing (Huberman, Pirolli, Pitkow, & Lukose, 1998) was derived to describe 
emergent aggregate web navigation behavior. We are interested to see (1) if the data sets 
we collected also exhibit the same properties as predicted by the law of surfing (LoS), 
and (2) whether SNIF-ACT 2.0, a model aims at explaining fine-grained dynamic user-
Web interactions, will exhibit the same emergent properties at the aggregate level. The 
LoS is based on the notion that Web surfing can be modeled as a Weiner process with a 
random (positive) drift parameter µ and with noise σ2. Specifically, the utility of a page 
Xt to be visited at time t to the utility of a currently viewed page Xt-1 at time t – 1 is 
calculated as 

ttt XUXU !+= " )()( 1  (1) 

where εt is a random variable from a Gaussian distribution with mean µ and variance σ2.  
It is assumed that this process starts in some initial state X0, and terminates when some 
threshold utility U is encountered.  The distribution of first passage times (i.e, in our case, 
the number of clicks on a web site before the user leaves, or the “depth”) for this process 
is characterized by an Inverse Gaussian Distribution (IGD) which is usually presented as 
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where vtE =][  and !

3

][ vtVar =
. An interesting implication of the LoS can be obtained by 

taking logarithms on both sides of (2), which yields 
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The equation suggests that a log-log plot will show a straight line whose slope 
approximates -3/2 for small values of t. Figure 9 shows the log-log plot of the observed 
and predicted frequency and the number of clicks in the Yahoo and ParcWeb web sites. 
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We can see that in general both the observed and predicted data by SNIF-ACT 2.0 are 
consistent with the properties predicted by the LoS.  
 

------ INSERT Figure 9  ABOUT HERE ------ 
 

The LoS also allows precise predictions on the probability that a user will leave a web 
site as the user is navigating on the web site. Figure 10 shows the cumulative distribution 
frequency (CDF) of the predictions by LoS and SNIF-ACT 2.0. The figure also shows the 
data collected from Yahoo and ParcWeb, with mean of 2.31 clicks and variance of 1.35 
before users stopped clicking forward (i.e., either go back, type in a different URL, etc.). 
The match between the predictions between the LoS and SNIF-ACT 2.0 are extremely 
good (R2=0.993), and the match between the observed and LoS (R2=0.984) and that 
between the observed and SNIF-ACT 2.0 (R2=0.976) are also good. The good match 
between SNIF-ACT 2.0 and LoS in Figure 9 and Figure 10 is striking. SNIF-ACT and 
Los were derived based on very different assumption of human behavior and contents of 
Web sites. LoS was derived based on minimal assumption of human behavior (the IGD) 
and was insensitive to specific contents of Web pages. The value of LoS is its predictive 
power in long-term aggregate behavior in very large information structures. On the other 
hand, SNIF-ACT was derived from a rational analysis of link selection and assumption of 
how a single user may dynamically make decisions based on specific contents of Web 
sites. The good match between the two model suggests that the long-term expected 
behavior of SNIF-ACT is consistent with the predictions by LoS. 
 

------ INSERT Figure 10  ABOUT HERE ------ 
 
 


