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Shading into Texture*

Alex P. Pentland
Artificial Intelligence Center, SRI International,

333 Ravenswood Ave., Menlo Park, CA 94025, U.5.A.

Recommended by Michael Brady

ABSTRACT

Current shape-from-shading and shape-from-texture methods are applicable only to smooth surfaces,
while real surfaces are often rough and crumpled. To extend such methods to real surfaces we must
have a model that also applies to rough surfaces. The fractal surface model [6] provides a formalism
that is competent to describe such natural 3-D surfaces and, in addition, is able to predict human
perceptual judgments of smoothness versus roughness. We have used this model of natural surface
shapes lo derive a technigue for 3-D shape estimation that treats shaded and textured surfaces in a
unified manner.

1. Introduction

The world that surrounds us, except for man-made environments, is typically
formed of complex, rough, and jumbled surfaces. Current representational
schemes, in contrast, employ smooth, analytical primitives—e.g., generalized
cylinders or splines—to describe three-dimensional shapes. While such smooth-
surfaced representations function well in man-made, carpentered environments,
they break down when we attempt to describe the crenulated, crumpled surfaces
typical of natural objects. This problem is most acute when we attempt to
develop techniques for recovering 3-D shape, for how can we expect to extract
3-D information in a world populated by rough, crumpled surfaces when all of
our models refer to smooth surfaces only? The lack of a 3-D model for such
naturally occurring surfaces has generally restricted image-understanding efforts
to a world populated exclusively by smooth objects, a sort off “Play-Doh™ world
[1] that is not much more general than the blocks world.

Standard shape-from-shading [2, 3] methods, for instance, all employ the
heuristic of “‘smoothness’ to relate neighboring points on a surface. Shape-from-

“The research reported herein was supported by National Science Foundation Grant No.
DCR-83-12766 and the Defense Advanced Research Projects Agency under Contract No. MDA
903-83-C-0027 {monitored by the U.5. Army Engineer Topographic Laboratory).
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texture [4, 5] methods make similar assumptions: their models arc concerned
with markings on a smooth surface. Before we can rehably employ such
techniques in the natural world, we must be able (o determince which surfaces are
smooth and which are not—or else generalize our techniques to include the
rough, crumpled surfaces typically found in nature.

To accomplish this, we must have recourse to a 3-D model competent to
describe both crumpled surfaces and smooth ones. Ideally, we would like a
model that captures the intuition that smooth surfaces are the limiting case of
rough, textured ones, for such a model might allow us to formulate a unified
framework for obtaining shape from both shading (smooth surfaces) and texture
(rough surfaces, markings on smooth surfaces). We require a 3-D model
competent to describe a continuum of surfaces ranging from the smooth to the
rough as is illustrated in Fig. 1. The fractal model of surface shape [6, 7] appears
to possess the required properties.

FiG. 1. Spherical shapes with surface crenulations ranging from smooth (fractal dimension=
topological dimension) to rough (fractal dimension » topological dimension).
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Evidence for the adequacy of this model comes from several sources. Recently
conducted surveys of natural imagery |7, 8]. for instance, found that the fractal
model of imaged 3-D surfaces furnishes an accurate description of how most
homogeneous textured or shaded tmage regions change over scale (change in
resolution). Perhaps most convincing, however, is the fact that fractals look like
natural surfaces [9-11]. This is important information because the natural
appearance of fractals is strong evidence that they capture much of the
perceptually relevant shape structure of natural surfaces.

In this paper we will use the fractal model to develop a method of estimating
shape that applies to either smooth or rough surfaces, and that treats both
shading and texture in a unified manner. The result will be a technique that
resembles both previous shape-from-shading algorithms and previous shape-
from-texture algorithms, but with some important changes that we believe may
have a significant effect on the robustness of the estimation process. In
particular, we suggest methods of addressing the problems of scale, and of
anisotropic, “stretched” textures.

2. Background: The Fractal Model

During the last twenty years, Mandelbrot has developed and popularized a
relatively novel class of mathematical functions known as fracrals [9, 10]. The
defining characteristic of a fractal is that it has a fractional dimension, from
which we get the word ““fractal.”” The notion of fractal dimension is very close to
our intuitive definition of roughness. In our previous work [7, 11], for instance,
we have shown that the fractal dimension of a surface correlates nearly perfectly
with our perception of roughness in many situations. Thus, if we were to
generate a series of scenes with the same 3-D relief but with increasing fractal
dimension D, we would obtain a sequence of surfaces with linearly increasing
perceptual roughness (see Fig. 1).

Fractals are found extensively in nature [9, 10, 12]; Mandelbrot, for instance,
shows that fractal surfaces are produced by many basic physical processes. One
general characterization of naturally occurring fractals is that they are the end
result of any physical processes that randomly modifies shape through local
action. After innumerable repetitions, such processes will typically produce a
fractal surface shape. Thus clouds, mountains, turbulent water, lightning and
even music have all been shown to have a fractal form [9].

Such fractals are a generalization of Brownian motion, i.e., the path of a
random walk. Such naturally occurring shapes have two important properties:
(i) each segment is statistically similar to all others; (ii) segments at different
scales are statistically indistinguishable, i.c., as we examine such a surface at
greater or lesser imaging resolution its statistics (curvature, etc.) remain the
same. Because of these invariances, the most important variable in the
description of such a shape is how it varies with scale; in essence, how many
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large features there are relative to the number of middle-sized and smaller-sized
features. When we consider a natural surface such as a mountain, there will be a
certain number of large features (e.g., bumps large relative to our field of view)
within a particular patch of the surface, many more intermediate-sized features,
and still more smaller features. For fractal shapes, and thus for many real
shapes, the ratio of the number of features of one size to the number of features
of the next larger size is a constant—a surprising fact that derives from the
scale invariance of random walks.

If we move closer to such a surface, the intermediate-sized features now
appear larger relative to our field of view, the small become intermediate-sized,
and what was previously seen as surface “texture” becomes visible as small
individual features. The ratio between the number of features of one size to the
number of features of the next larger size, however, remains the same constant
value as before, The statistics of the surface are constant across changes in
scale, i.e., as we move closer to or farther away from the surface.

We have used this relationship to develop a new method of constructing a
fractal shape, one that explicitly represents structures at all scales. This
construction is illustrated in Fig. 2(a). We first pick a fractal scaling parameter r,
0= r=1, a ratio that determines the fractal dimension of the surface (i.e., the
fractal dimension D of a surface is determined by D =T + r, where T is the
topological dimension of the surface) and randomly place n*® large bumps on a
plane, giving the bumps a Gaussian distribution of altitude (with variance o*), as
seen in Fig. 2(a). We then add to that 4n” bumps of half the size, and altitude
variance o’r®, as shown in Fig. 2(b). We continue with 16n° bumps of one
quarter the size, and altitude o’r’, then 64n” bumps one eighth size, and
altitude o*® and so forth. The final result, shown in Fig. 2(c), is a true
Brownian fractal shape. This construction does not depend on the particular
shape of the bumps employed;' the only constraint is that the sum must fill out
the Fourier domain. Figures 2(d) and 2(e) illustrate the power and generality of
this construction; all of the forms and surfaces in these images can be
constructed in this manner.

In practice, we often produce a fractal surface by filling a pyramid structure
with Gaussian-distributed random noise of variance o at the top level of the
pyramid, o*r" at the next level, and so forth. Because of the expansion between
successive levels of the pyramid, entries at the top of the pyramid produce
bumps twice as large as entries at the next level, four times as large as the third
level, and so forth. Thus when we successively expand and sum the levels of
the pyramid, the end result is a surface that is a close approximation to a true
fractal surface.

When the placement and size of these bumps is random, we obtain the

'Differently shaped bumps will, however, give different appearance or texture to the resulting
fractal surface; this is an important and as yet relatively uninvestigated aspect of the fractal model,



SHADING INTO TEXTURE 15]

FR

FiG. 2. (a)}-(c) show the construction of a fractal shape by successive addition of smaller and smaller
features with number of features and amplitudes described by the ratio 1/r. All of the forms and
surfaces shown in (d) and {e) (which are images by Voss and Mandelbrot, see [9]} can be generated in
this manner.

classical Brownian fractal surface that has been the subject of our previous
research. When some components of this sum are matched to a particular
object, however, we obtain a description of that object that is exact for those
details encompassed by the specified components. The advantage of this
construction over other techniques (e.g.. [9. 13]) is that it makes it possible to
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exactly specify a shape at one range of scales while retaining a qualitative,
statistical description at other scales.

To describe a complex natural form such as a cloud or mountain, for instance,
we might specify the “"bumps™ down to the desired level of detail by fixing the
larger clements of this sum, and then we specify only the fractal statistics of the
smaller bumps in order to fix the qualitative appearance of the surface. Figure |
illustrates an cxampie of such description. The overall shape is that of a sphere;
to this specified large-scale shape, smaller bumps were added randomly. The
smaller bumps were added with six different choices of r (i.e., six different
choices of fractal statistics) resulting in six qualitatively different surfaces—each
with the same basic spherical shape.

The fractal scaling parameter r is the ratio between the number of features of
one size to the number of features at another size, and thus describes how the
surface varies across different scales (resolutions, spatial frequency channels.
etc.). This ratio, therefore, summarizes how complex the surface is; how many
features of one size there are for each larger feature. It is an intrinsic property of
the surface;’ surfaces formed by different processes typically have different
fractal scaling parameters. Thus this parameter allows us to crudely classify the
surface in terms of the process that formed it.” We have found that by measuring
the fractal scaling parameter r in patches of the image we can infer the fractal
scaling parameter r of the imaged 3-D surface [6, 7]; in experiments this has
allowed us to closely predict people’s perception of surface roughness [11]; we
can speculate, therefore, that the demonstrated ability of people to preatten-
tively segment an image on the basis of this scaling parameter gives them a
method of segmenting the scene into regions that were separately formed.

2.1. The mathematics of fractal Brownian functions

The path of a particle exhibiting Brownian motion is the canonical example of
most naturaily occurring fractals; the discussion that follows, therefore, will be
devoted exclusively to fractal Brownian functions, which are a mathematical
generalization of Brownian motion.

A random function /(x) is a fractal Brownian function if for all x and Ax

pr ( I(x + Ax) = I(x)

2 <) = FO) 1)

*This ratio primarily depends on the spatial autocorrelation of the process that formed the surface.

*Becuuse formative processes tend to act over a range of scales, real surfaces normally have a
constant scaling parameter over fairly wide (c.g.. 1:8) ranges of scale. although it is rare for it to be
constunt over several decades of scale. Thus if we observe that £ at karge scales is much different than
at small scales (as in Fig. 1), we can reliably infer that two different process were invalved in forming
the surface, and that they acted over different ranges of scale,
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where F(y) is a cumulative distribution function [7]. and the variable r s the
ratio r of the previous section. Note that x and /(x) can be interpreted as vector
quantitics. thus providing an extension to two or more topological dimensions. [f
the topological dimension of /(x) is 7. the fractal dimension D of the graph
described by /(x) is D=T+r. If r=13 and F(y) comes from a zero-mean
Gaussian with unit variance, then /{x) is the classical Brownian function.

[t is important to note that (1) describes change over scale, but does not talk
about pattern. Very highly patterncd surfaces can be fractal; all that is required
is that they scale appropriately. The description of pattern is orthogonal to the

fractal description of (1).

2.1.1. The fractal model and imaging

Before we can use a fractal model of natural surfaces to help us understand
images, we must determine how the imaging process maps a fractal surface
shape into an image intensity surface. The first step is to define our terms
carefully:

Definition 2.1. A fractal Brownian surface is a continuous function that obeys
the statistical description given by (1), with x as a two-dimensional vector at ail
scales (i.e., values of Ax) between some smallest (Ax_, ) and largest (Ax_,,)
scales.

Definition 2.2. A spatially isotropic fractal Brownian surface is a surface in which
the components of the surface normal N =(N,_, N, N_) are themselves fractal
Brownian surfaces of identical fractal dimension.

Note that “isotropic™ in this usage does not mean that the surface cannot be
stretched, like tree bark. What it means is that, up to a multiplicative
(stretching) factor, the statistical process describing the surface is identical in all
directions. Tree bark, for instance, appears to be well modeled by such an
isotropic process.

The fractal Brownian surface is as constructed in Fig. 2. A spatially isotropic
Brownian surface may be constructed by adding smaller bumps such that their
height (axis of symmetry) is aligned with the normal to the existing surface,
rather than always being aligned in the vertical direction.

Our previous papers {6,7] have presented evidence showing that most
(approximately 90%) natural surfaces are spatially isotropic fractals over scale
ranges of at least 1:8 (i.e., Ax_, /Ax_, >8). This finding has since been
confirmed by others [8]. These findings imply that real surfaces often obey the
fractal scaling law. ‘

It is also interesting to note that practical fractal generation techniques, such
as those used in computer graphics, have had to constrain the fractal generating
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function to producc spatially isotropic fractal Brownian surfaces in order to
obtain realistic imagcry [13]. Thus, it appears that many rcal 3-D surfaccs arc
spatially isotropic fractals, at lcast over a wide range of scales.

It must be emphasized that these findings makc no implication about
patterning of the surfaces—finding a surface to be “fractal™ tells how different
scales (spatial frequency channels, etc.) relate to one another. but not about the
appearance at any one scale. What this finding does tell us is that the statistics of
homogeneous surfaces normally vary over scale in such a way (i.e.. exponentiai-
ly) as to appear the same at each scale or resolution. This explains why it is so
difficult to measure perspective gradients in real imagery: although things
appear smaller with increasing distance, the (textural) statistics of the surface
typically remain constant over wide ranges of scale.

2.1.2. Estimation within homogeneous patches

With these definitions in hand, we can now address the problem of how
homogeneous patches of a 3-D fractal surface appear in the 2-D image.

Proposition 2.3. A 3-D surface with a spatially isotropic fractal Brownian shape
produces an image whose intensity surface is fractal Brownian and whose fractal
dimension is identical to that of the components of the surface normal, given a
Lambertian surface reflectance function and constant illumination and albedo.

This proposition (proved in [7]) demonstrates that the fractal dimension of the
surface normal dictates the fractal dimension of the image intensity surface and,
of course, the dimension of the physical surface. Simulation of the imaging
process with a variety of imaging geometries and reflectance functions indicates
that this proposition will hold quite generally; the “roughness” of the surface
seems to dictate the *“‘roughness” of the image. Further, this proposition has
proven to be an excellent predictor of people’s perception of 3-D surface
roughness. Thus if we know that the surface is homogeneous (perhaps by
examining color information), then we can estimate the fractal dimension of the
surface by measuring the fractal dimension of the image data. What we have
developed is a method for inferring a basic property of the 3-D surface—its
fractal dimension—from the image data.’

*Experimental note: Fifteen naive subjects (mostly language researchers) were shown digitized
images of eight natural textured surfaces drawn from [14]. They were asked “if you were to draw
your finger horizontally along the surface pictured here, how rough or smooth would the surface
feel?"—i.c., they were asked to estimate the 3-D roughness/smoothness of the viewed surfaces. A
scale of one (smoothest) to ten (roughest) was used to indicate 3-D roughness/smoothness. The
meun of the subject’s estimates of 3-D roughness had an excellent 0.91 correlation (i.e.. 83% of the
variance was accounted for p < 0.001) with roughnesses predicted by use of the image’s 2-D fractal
dimension and Proposition 2.3. This resuit supports the general validity of Proposition 2.3.
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2.1.3. Estimation from imaged contour

When a surface is not homogeneous it is better to use imaged contours to infer
the fractal dimension of the surface. Such contours can also be used as
independent confirmation of the estimate provided by Proposition 2.3. The
following proposition addresses this issue.

Proposition 2.4. The fractal scaling parameter r of an imaged contour is identical
to that of the imaged 3-D surface given that (1) the surface is a spatially isotropic
fractal, and (2) the 3-D shape of the contour generator is described by the
intersection_of a smooth function ( fractal dimension = topological dimension)
with the imaged surface.

The fractal dimension of the locus of intersection between a fractal surface
and a smooth surface is determined entirely by the properties of the fractal
surface. Further, the fractal properties of a curve are unaffected by projection.
Thus the fractal statistics of an imaged contour produced by cast shadow,
occlusion, and so forth, are reliably indicative of the fractal statistics of the
underlying surface. The requirement of isotropy does not exclude stretched
surfaces such as tree bark; the isotropy applies only to the fractal scaling
parameter of the surface excluding, e.g., a developable surface (generalized
cylinder) with a fractal cross-section.

2.1.4. Practical measurement of the fractal dimension

The fractal dimension of a function can be measured either directly from the
second-order statistics (dipole statics) of /(x) by use of (1), or from /(x)’s Fourier
power spectrum P( f), as the spectral density of a fractal Brownian function is
proportional to f¥ >,

To measure the fractal dimension from the dipole statistics, we rewrite (1) to
obtain the following description of the manner in which the second-order
statistics of the image change with scale:

E(|AL, DIAx|]™" = E(|AL,,. ),

- where E(JAl,,|) is the expected value of the change in intensity over distance

Ax. To estimate r, and thus D, we calculate the quantities E(|A/, |) for various
Ax, and use a least-squares regression on the log of our rewritten equation (1).

We may also measure the fractal dimension from the Fourier power spectrum.
Since the power spectrum P(f) is proportional to f*"~°, we may use a linear
regression on the log of the observed power spectrum as a function of f (e.g., a
regression using log P(f) = (2r — 3) log f + & for various values of f) to deter-
mine the power r and thus the fractal dimension D =T + r.

This power spectrum method suggests a method of measuring fractal dimen-
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sion using physiologically plausible filters. The integral of the squared responsc
of band pass filters (e.g., Laplacian or center-surround filters) is proportional to
the amount of power (energy) in the Fouricr spectrum that lies within the filter's
scnsitive region, Thus, if we take two filters that have equal volume in the
Fourier domain but different center frequencies. then the log of the ratio of the
squared response of such filters will be linearly related to the fractal dimension.

3. Shape Estimation and the Fractal Model

One of the major problems in using current shape-from-shading (2, 3], or
shape-from-texture [4, 5] operators for recovering estimates of 3-D shape is that
these techniques have been developed only for the case of smooth surfaces.
They cannot, in general, be reliably applied to the rough, natural surfaces.
Moreover, it has not even been possible to discriminate “‘smooth” surfaces from
“rough™ ones, or “shaded’ surfaces from *‘textured’ ones, so that we have not
been able to determine what technique to apply, or been able to tell when we
can expect a reliable answer.

By providing a unified mathematical description of both rough and smooth
surfaces, the fractal model offers us a path out of these problems. The simplest
application of the fractal model to this problem is to improve previousiy
developed shape-from-shading and shape-from-texture methods by providing a
method of checking some of their assumptions.

‘We have shown that people judge5 fractal functions with r = 0 to be “‘smooth,”
with gentle random unduiations described by the function F(y) in (1}. In
contrast, fractals with r >0 are not perceived as smooth, but rather as being
rough or three-dimensionally textured. The extreme case of r=1 produces a
nearly planar surface completely covered with jagged spikes; this is the
salt-and-pepper Gaussian noise image standardly used as a model of imaged
textures.

The fractal model, therefore, encompasses smooth shaded surfaces, three-
dimensionally textured surfaces, and surfaces that are flat but covered with
salt-and-pepper texture, with shading as a limiting case in the spectrum of 3-D
texture granularity. The fractal model thus allows us to make a reasonable,
rigorous and perceptually plausible definition of the categories “textured”
versus “‘shaded,” “rough” versus “‘smooth,” in terms that can be measured by
using the image data.

This can allow us to determine when to apply shading techniques, and when to
apply 2-D texture techniques. For surfaces that are perceptually smooth (r=0),
it is appropriate to apply shading techniques; while for surfaces that have 2-D
texture (r= 1) it is more appropriate to apply available texture measures.

For surfaces with 0<r<1, however, the assumptions of the standard
shape-from-x techniques are violated: the surface is neither smooth nor planar

. ) . .
See earlier note about psychophysical evidence.
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with Gaussian noise. We can usc the fractal surface model to extend current
techniques so that they address these three-dimensionally textured cases too.
Further, because we have a single model that encompasses shading, 2-D texture,
and 3-D textures, we can derive a shape estimation procedure that treats shaded.
two-dimensionally tcxtured, and three-dimensionally textured surfaces in a
single. unified manner. The remainder of this paper will be addressed to this
derivation.

3.1. Measuring properties intrinsic to the surface

Shape evidences itself within a small neighborhood by foreshortening, the
apparent compression of surface features in the image that occurs along the
direction of surface tilt (the image-plane component of surface orientation. i.e.,
the image direction in which the projected surface normal points). To form a
local estimate of surface shape, therefore, we must be able to measure this
apparent foreshortening for some feature intrinsic to the surface. For
homogeneous. unmarked surfaces the only features that are intrinsic to the
surface may all be expressed in term of the surface normal and its derivatives. To
form an estimate of shape for such surfaces, therefore, we must be able to
observe foreshortening of the surface normal, its derivatives, or functions of the
surface normal and derivatives.

3.1.1. A model of image formation

To understand how we may observe foreshortening of the surface normal or
derivatives, we employ a simple model of image formation that expresses image
intensity in terms of the surface normal. This model makes two assumption: (i)
albedo and illumination are constant in the neighborhood being examined, and
(ii) the surface reflects light isotropically (Lambert's law, an idealization of
matte, diffusely reflecting surfaces and of shiny surfaces in regions that are
distant from highlights and specularities [3]). Figures 1 and 2(a)-(c) were
generated by use of this model.

We are then led to this simple linear equation relating image intensity to the
surface normal:

I=pA(N-L) (2)

where p is surface albedo, A is incident flux, ¥ is the mean (three-dimensional )
unit surface normal within the neighborhood being examined, and L is a
(three-dimensional) unit vector pointing toward the weighted mean of all the
illumination sources.

In (2), image intensity is dependent upon the surface normal, as all other
variables have been assumed constant. Similarly, the second derivative of image
intensity is dependent upon the second derivative of the surface normal, i.e.,
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d*f = pA(d°N-L). (3)

(Notation. We will write d°/ and d°N to indicate the second derivative quantities
computed along some image direction (dx, dy)—this direction to be indicated
implicitly by the context.)

3.1.2. A texture measure

The problems in observing N directly are well known; perhaps even worse
problems apply to observing dN, the first derivative of N (see [16]). For d°N (the
second derivative of the surface normatl), however, a statistical regularity—that
the vector d°N is isotropically distributed—allows us to measure the intrinsic
surface property d°N, estimate the magnitude and direction of foreshortening,
and thus estimate surface shape.

For surfaces of the type addressed in this paper the distribution of d’N is
isotropic in space. Thus the expected value of the vectors d°N (measured for
some particular direction (dx, dy)) will be the zero vector and therefore (by (3))
the mean of d*I will be zero.

If we define the vector d’N™ to be

d’N if dN-L=0
d2N+ — { £l 1] 4
-d’~N, ifdN-L<0, (4)
then we can® describe the distribution of |d*/| by
(d*I|=[pAd®°N-L]|=pAd®N*-L. (5)

As d°N is isotropically distributed the expected value of these vectors will then

be
Eo(d®N")=(0,0, kE,(|d°N||)) = kE,(|d°N|)L , (6)

where ||d*N|| denotes the magnitude of d°N, and E,(d"N) the expectation of
d"N, where the derivatives are taken along the direction 6. In this expression, k
is a positive constant dependent upon the variance of the angie between d’N
and L.

Consequently, if we knew the intensity f; of a point with normal N, such that
N, =L, that is, a point which faces the mean illuminant direction, then

i

This relation is not exact because of the differential effect of the illuminant
across the angular spread of the distribution of d’N.

‘Assuming that the distribution of illumination is constant across the surface.

i

I, = kE,([ld°N])). (7)

) _E(pA(dN" L))  E,(d’N*)-L
T pAWN, L)y T L-L
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Because this is a measure of an intrinsic surface property, it may be used as a
texture measure. It is affected by foreshortening which acts to increase the
apparent frequency of variations in the surface, i.e.. to increase the average
magnitude of d°N. We may, therefore, use this texture measure to estimate
surface orientation.

3.2. Estimating the surface tilt

We start by picking a space constant ¢ which defines the resolution of our
estimates of surface orientation. That is, if z(x, y) is the original imaged surface,
we will estimate the orientation of the z*(x, y) = G(o, x, y) & z(x, y) (where
G(o, x, y) is a two-dimensional Gaussian of variance o) by estimating
foreshortening’s contribution to the weighted mean value of our texture measure
over the support of G(o, x, y). Thus expectations are estimated using con-
volutions with G(a, x, y), and we assume negligible change in the orientation
and curvature of z* within its support.

If we let (u, v) be a coordinate system tangent to the surface z*, oriented so
that u is the direction of the surface tilt, and let (x*, y*) be an image-plane
coordinate system in which u projects only onto x*, and v only onto y* (i.e.,
(x*, y*) is a rotated version of the viewer’s coordinates (x, y)), then

V) _p (4N du N duy_(aN) du
E(dx* =E du dx"+du dx* =E du/ dx* (8)

as dv/dx* =0. Similarly,

dzN) (dzN( du )2 dN du dN d% )
=FEl—|l—) +— — ++— .
E(dx“‘2 £ du’® \dx* du dx*?  dv dx*? ®)

Equivalent equations hold for the y* and v directions, except that dv/dy* =1,
so that finally,

d’N ( du )2 d’N
+

2 ——
E(VN)_E(duZ dx* dvz

+(dN dN)( du  dv  dw d% )) (10)

—+ — + + +
du dv/\dx*®  dx*? dy“‘2 dy‘"2

Note that all of the terms of this expression are independently distributed. We
can use these relations to obtain an estimate of the surface tilt (which is the
image-plane component of the surface normal, i.e., the direction the surface
normal would face if projected onto the image plane) by finding the gradient
direction of E(|V*I/I,|).

The surface tilt lies along the gradient direction under the conditions that (i)
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the texture is homogeneous within the averaging patch7—a[though it may be
stretched like wood bark, (ii) the third and crossed second derivatives of the
averaged surface z* are small.” and (iii) the surface is not planar. Under these
assumptions we may combine (7) and (10) to derive

P vl ) 3 . ( AN\ du du
2~ L kE(TN|) = 24 ) .
ax! E(‘ [“ ax* (|| II) 2 E du__ dx* dx"“
. (11)
3 v
e (7)) =o.
ay 1,

Thus the gradient direction will be along either the direction x* or —x*
(depending upon the sign of d’u/dx*?), which by definition is parallel to the
direction of surface tilt.

The first assumption is a requirement of any texture analysis method, and thus
presents no unusual restriction. Similarly, the second assumption seems only
slightly restrictive. That the mean third derivatives are small follows from the
properties of physical surfaces that exhibit fractal scaling behavior.” That the
mean crossed second derivative d’u/dxdy is typically small is a result of the
estimated surface z* (and thus u, v) being defined by convolution with a smooth
function of x and y, rather than of « and v. It must be noted, however, that these
observations about the second assumption are only statistical in nature; it is
straightforward to construct specific examples in which the local surface
structure violates the assumption.

The final assumption—that the surface is not planar—is somewhat restrictive;
however, it is clear that people suffer from a similar restriction. People tend to
see planar anisotropic (stretched) textures as facing directly towards them unless
there is a significant perspective gradient. This is part of the phenomena known
as “‘regression toward the frontal plane.” It seems, therefore, that estimating the
surface tilt by the gradient of E(|V’I/I,|) is a reasonable procedure—even
when the surface is “stretched,” like wood bark.

3.2.1. Albedo and illumination variations

This formulation still has two undesirable traits; one, it requires finding [,
something that is not always possibie, and two, it makes very strong use of the
assumptions of constant albedo and illumination. In natural scenes it is
especially important to avoid dependence on assumptions of constant albedo

Le., dE(d’N/du’) /dx = dE{d’N/dv®) /dx = dE(dN/du)/dx = dE(dN/dv) /dx = 0 and similarly
for dy.

“le., du/dxdy =0.d"u/dx' =d'u/dy*=---=0.

*Almost all natural physical surfaces have a fractal scaling parameter 0.5 > r = 0, which carries the
implication that the mean magnitude of the first derivatives is greater than that of the second
derivatives, which in turn is greater than that of the third derivatives. This follows from the
autocorrelation function of these surfaces.
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and illumination, for such asumptions arc very rarely correct and can introduce

large errors. It has, therefore, been found advantageous to use the mean of the
. . It o k1

local intensities, rather than /. as the divisor, e.g.,

E,,(’del‘)=E,,(‘%Dx£,,(“dw”). (12)

This use of [ rather than [/, introduces a bias of f/f, when the albedo and
illumination are actually constant. This is of no consequence for local estimation
of surface orientation, as that involves ratios between measurements with the
same bias, and thus the effects will divide out.

This bias will, however, affect later calculations that make comparisons
between widely separated points. The motivation for accepting this bias is that
by using the local mean of intensity we remove all dependence on the albedo and
intensity of illumination; further, previous analyses have shown that the
practical effect of this bias is often not significant [16, 19].

3.3. An alternate development

We derive our result in the following alternate, independent manner. First we

note that the zero-crossing density of the Laplacian of an image may be used to

estimate surface orientation, i.e., for isotropic, locally planar surfaces with

surface markings that generate zero-crossings the tilt of the surface is the

direction along which the maximum density of zero-crossing contours occurs [5].
Secondly, we note that

2 __ i 2
A ~Var(69VG®I(x, y)), (13)

where A is the zero-crossing density along direction 6 for the Laplacian of a
zero-mean Gaussian process [15]. Using the fact that the Brownian fractal
functions discussed here are zero-mean Gaussian processes we may combine
these two results to obtain an independent derivation of our shape estimator.

First we show that our texture measure is in fact an estimator of zero-
crossing density. For a Gaussian process E(|x|) = 0.67 Std{x) where Std(x) is
the standard deviation of the zero-mean random variable x. Thus

).

3
VG ® K(x, y)‘ =+ |£VZG®I(x, y)‘

d
A= (0.67)°E? (‘5 VG ®I(x, y)

Noting that
d

a6

"“l.e.. Gla, x. y)® I(x. y). where the space constant @ of G can be chosen to be the same as that
of the filter V°G(o. x, y). or (perhaps better) substantialiy larger.

""Experiments on natural imagery show that {d*] is uncorrclated with [, thus E(|d°H{]) =
E(]d’1)1E(1). This also follows from Markov process models of imagery.
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except at zero-crossings of V°G ® /(x, v). we see that

a | VG HKx, v) ‘ +1 3 _,
Z =L | = — VG ® I(x, 14
a6 ‘ f,(x, v} f(x, y) | a8 (x.7) (14)

and thus, as convolution (used to estimate expectation) and differentiation

commute, we have that
3 ( VG ® I(x, y)D_“ ( 3 _a )~
aBE —lu(x, %) =k Std agVG@i(x,y) = kA, (15}

where k is £0.67/1,(x, y). Thus by (13) the gradient direction of our texture
measure—i.e., the gradient direction of E(|ViI(x, y)/I,(x, y)|)—is approxi-
mately parallel to the direction of maximum zero-crossing density.

Using the result that for locally planar surfaces with isotropic surface markings
(i.e., markings that are not “‘stretched’”) the direction of maximum trequency of
zero-crossing density is also the direction of surface tilt, we see that the gradient
direction of E(|V*I(x, y)/I,(x, y)|} is approximately parallel to the surface tilt.

We may generalize this to rough surfaces by noting that the positions of
zero-crossings in an image of a rough, 3-D textured surface are localized to
within about 3o, of the true position of the surface’s inflection point, where o,
defines the finest resolution at which we view the surface z(x, y}. Thus, if o (the
resolution of the estimated surface z*(x, y}} is much larger than g, then we
may treat the zero-crossings produced by the 3-D texture as being fixed on the
surface. Thus when the surface z(x, y) is not anisotropically “‘stretched,” and
o ® o,, we may apply the above result to correctly estimate the direction of
surface tilt. As in the previous development, we may substitute the assumption
that z(x, y) is not stretched for the assumptions that the texture is homogene-
ous and that the third and crossed second derivatives are small.

3.4. Development of a robust slant estimator

Surface slant (the depth component of the surface riormal) is much more difficult
to determine, because it requires not only that we estimate the direction of
foreshortening (which yields the tilt) but also the amplitude of the foreshor-
tening.

For example, to estimate the foreshortening amplitude we may compare the
value of our texture measure along the tilt direction to the value along the
perpendicular direction in order to estimate the amount of foreshortening. This
technique is, however, critically dependent upon the isotropy of the texture. Or
we may look at the magnitude of the texture gradient to estimate the rate of
change of the foreshortening. This method, however, is critically dependent
upon knowing the curvature of the averaged surface.

There seems to be no really good way to locally estimate surface slant.
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because estimation of foreshortening amplitude requires comparison to some
base linc estimate of the unforeshortened texture. Thus each method is critically
dependent upon comparing texture density estimates at different points or along
different directions, and so local variation in the surface texture is a major
source of error in each slant estimation technique.'” It is important, therefore. to
develop a method of estimating surface slant that is robust with respect to local
variation in the surface texture.

3.4.1. Using regional constraints

Progress towards such robustness can be obtained by applying regional, rather
than purely local, constraints. Natural textures are often “‘homogencous™ over
substantial regions of the image, although there may be significant local
variation within the texture, because the processes that act to create a texture
typically affect regions rather than points on a surface. This fact is the basis for
interest in texture segmentation techniques. Current shape-from-texture tech-
niques do not make use of the regional nature of textures, relying instead on
point-by-point estimates. By capitalizing on the regional nature of textures we
can derive a substantial additional constraint on our shape estimation procedure.

The most direct improvement provided by this additional constraint comes
from using the statistical fact that a better estimate of the texture parameters
(i.e., one independent of local variations) may be made from many samples than
can be made from one sample.

We may illustrate this by an example. Let us assume that we are viewing a
textured planar surface whose orientation is a 30° slant and a vertical tilt. Let us
further suppose that the surface texture varies randomly from being isotropic to
being anisotropic (stretched) up to an aspect ratio of 3: 1, with the direction of
this anisotropy also varying randomly. Such a surface, covered with small
crosses, is shown in Fig. 3(a); for comparson, the same surface, minus
variations, is shown in Fig. 3(b).

If we apply standard shape estimation techniques—i.e., estimating the
amount of foreshortening (and thus surface orientation) by the ratio of some
texture measure along the (apparently) unforeshortened and (apparently)

“Estimates of the fractal scaling parameter of the viewed surface [6,7], by virtue of their
independence with respect to multiplicative transforms, offer a partial solution 1o this problem.
Because foreshortening is a multiplicative effect. the computed fractal scaling parameter is not
affected by the orientation of the surface (at least not until self-occlusion effects have become
dominant in the appearance of the surface). Thus, if we measure the fractal scaling parameter of an
isotropically textured surface along the x- and y-directions, the measurements must be identical. If,
however, we find that they are unequal, we then have prima facie evidence of anisotropy in the
surface. This method of identifying anisotropic textures is most effective when each point on the
surface has the same direction and magnitude of anisotropy, for in these cases we can accurately
discriminate changes in fractal scaling parameter between the x- and y-directions. When the surface
texture is variable. however, this indicator of anisotropy becomes less useful.
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Fic. 3. (a) Variation in local texture; (b) same texture without variation.

maximally foreshortened directions—our estimates of the foreshortening mag-
nitude will vary widely, with a mean error of 65% and an rms error of 81%. If,
however, we estimate the value « of the unforeshortened texture measure by
examining the entire region, and then compare this regional estimate to the
texture measure along the (apparently) maximally foreshortened direction, then
our mean error is reduced to 40% and the rms error to 49%. By estimating the
texture parameter over the entire region, a better estimate is made than when
estimating it separately at each point.

A second, equally important improvement in shape estimation provided by
regional constraints comes from the requirement of consistency: at a bounding
contour the principal direction of apparent foreshortening in the texture pattern
must be orthogonal to the contour. If this regionai consistency constraint is not
met, then the pattern is anisotropic, and often the general direction of the
anisotropic stretching can be determined.

3.4.2. Estimation of surface slant

We may construct an interesting slant estimation algorithm based on this
notion of regional estimation and on the texture measure introduced above by

employing the fact that

d’  d%

Vii=—+—— 16

for any orthogonal u, v.
We will assume that (i) we have a texture region with a single, overall
anisotropy, e.g., that the texture is “‘stretched” in approximately the same
direction throughout the entire region, like, for instance, bark on a tree, and (ii)
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the mean second derivatives of the averaged surface z* are small relative to the
mean first derivatives (a statistical property of surfaces that have fractal scaling
parameter (.5> r > 0).

We start by finding the direction 8, along which the texture region as a whole is
most compressed, i.e.. the direction that appears to be most foreshortened. [f
the mean normal throughout the region is not toward the viewer, this will affect
the apparent average “stretch™ of the texture. This overali bias can often be
detected by the regional consistency constraint, and some adjustment to 6,
made. “

We may then form an estimate of the value of the texture measure along the
most compressed (apparently most foreshortened) direction averaged through-
out the region R; for instance, one method of forming this estimate is as follows:

a, = Eq 4 (|d°1/1]) . (17)

Similarly, we may form an estimate of the average value of the texture measure
along the least compressed (apparently least foreshortened) direction within the
overall region R; e.g.,

a = ER'GO_,,H(IdZHII) . (18)

Other methods of estimating «, or «, are also available; for instance, when
smooth occluding contours bound a texture region then the constraint that
N -V =0 may be used to determine their values (see [16]).

Thus, letting 6 be the angular difference between the tilt direction at a
particular point and the direction of texture anisotropy within the entire
region, we find that for an unforeshortened planar patch our texture measure

will be
E, (

Then by combining (10), (16) and (19) under the above assumptions, we
obtain the result that

&

!

)==a1 cos § + a,sin 8. (19)

E(|V?11|) = (—a, sin 8 + a, cos §) __(du)z 20
(a, cos 8 + a, sin 8) ~ \dx (20)
from which we can estimate the surface slant ¢ using
a-*cos_‘(d—u)_! 21
i/ (21)

When the texture is isotropic, then a, = a,. and so
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2 112
o =cos (E(W 1:") a) (22)

where «a is the regional estimate of the unforeshortened value of E(|d*111]).

4. A Unified Treatment of Shading and Texture

The fractal surface model captures the intuitive notion that, if we examine a
series of surfaces with successively less three-dimensional texture, eventually the
surfaces will appear shaded rather than textured. This is illustrated by Fig. 1.
Because the shape-from-texture technique developed here was built on the
fractal model, we might expect that it too would degrade gracefully into a
shape-from-shading method. This is in fact the case: this shape-from-texture
technique is a generalization of the shape-from-shading technique previously
developed by the author [16]. That is, we have developed a shape-from-x
technique that applies to both texture and shading. (The shape-from-shading
technique described in [16] also assumed that surface curvature was isotropic, so
that a, = a,. In [16] local averaging of the image measurements was not
explicitly part of the shape estimation procedure; it was, however, introduced in
order to produce depth estimates by integration of local surface orientation
estimates. Thus the procedure used to derive the displayed shape estimates is
identical to that developed here.)

4.1. Shading versus texture

This technique does not, however, apply equally to both texture and shading.
Estimates from textured surfaces will be more reliable than those from shaded
surfaces. A small patch of a smooth, shaded surface (such as top row of Fig. 1)
has essentially only one surface orientation, Gaussian curvature, etc., because
the parameters of the surface vary only slowly. In contrast, a convoluted 3-D
surface, such as appears in the bottom row of Fig. 1, has a great many unrelated
surface patches because the parameters of the surface vary rapidly. For the
convoluted surface, therefore, the (on average, statistical) truth that for a 3-D
fractal surface the mean second derivative vector d’N is parallel to the viewer
direction V may be relied upon because we know that with many independent
observations our estimated mean will be close to the true mean.

For the smooth, shaded surface, however, we have only one observation and
can have no such statistical assurance. Thus when we use the relationship
between mean d°N and V to estimate the shape of a smooth surface we are
making the strong assumption that this relationship will hold not just “‘on
average,” but that it will hold ar each and every point. For smooth surfaces,
therefore, we will often be in error—although our assumption (which is
equivalent to assuming that we are viewing a spherical surface) seems to be the



SHADING INTO TEXTURE 167

best a priori estimate we can make, and in fact often gives a reasonable estimate
of shape (see [16, 17]).

The reliability of this shape estimator increases gradually as we proceed from
completely smooth surfaces. to smoother “rolling™ surfaces such as the middle
row of Fig. 1, and finally reaching maximum reliability on rough, convoluted
surfaces such as the bottom row of Fig. 1. This gradient of reliability is seen in
human perception too; compare your perception of shape over these same
images, for instance. This gradient of reliability has recently been demonstrated
in controlied psychophysical testing [18].

This gradient of performance as we move from rough surfaces to smooth is
observed when we apply this shape estimator to natural imagery. Figure 4(a)
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FiG. 4. (a) The image of a log, together with the relief map generated from the shape algorithm’s
estimates of surface orientation, {b) the image of a rock. together with the relief map generated from
the shape algorithm’s estimates of surface orientation..
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shows the image of a log, together with the relief map generated from the shape
algorithm’s estimates of surface orientation. Note that both the surface and the
texture in this figure are not isotropic. Figure 4(b) shows the image of a rock.
together with the relief map generated from the shape algorithm’s estimates of
surface orientation. The relief maps in Figs. 4(a) and 4(b) correspond closely to
the actual shapes of these two objects. This is as expected for such rough.
complex surfaces.

In contrast, low accuracy is often obtained on smooth surfaces such the
digitized picture of a face shown in Fig. 5(a). Figure 5(b) shows a relief map of
the surface slant estimated for that image (eye and eyebrow regions were
masked out by hand). No relief map of the estimated surface shape could be
obtained from this surface because of difficulties in integrating the slant and tilt

FiG. 5. (a) The digitized picture of a small portion of a face, (b) a relief map of the surface slant
estimated for that image (eye and eyebrow regions were masked out by hand).
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estimates. In this slant map representation regions with higher relief face toward
the viewer, while lower relief regions face away. Note, however, that
many important details of the surface shape are still apparent; for instance, the
structure of the nose, the cheeks, and the eyebrow ridges is plainly visible.

4.2. The problem of scale

We have seen that this estimator is most reliable when the estimated surface
z™(x, y) is “locally planar’ or **smoothly varying™ and the full-resolution surface
is rough and crenulated. This, then, raises the problem of scale: given that we
know this performance characteristic of the estimator, at what resolution (scale)
should we attempt to estimate the surface shape?

The solution to this scale problem can be seen if we state the reliability
conditions more formally, in terms of the fractal scaling parameter r. The
reliability conditions are: the texture measure is most reliable when r = 0 for the
resolution at which we estimate shape, and when r> 0 at finer resolutions.

We can, therefore, determine the best scale for shape estimation by examining
the surface’s scaling parameter r over the entire range of available resolutions
(see Section 2.1.4 on measurement of the fractal scaling parameter). That
resolution which best satisfies the above criterion for reliability is the best scale
for shape estimation. For example in Fig. 1 the best scale at which to estimate
shape is the finest scale at which the surface still looks like a sphere: the finest
scale where r is small. At finer scales r >0, and so is best considered as
“texture” to be used for estimating larger-scale ‘“‘shape.”

Note that this “‘best” resolution is normally not constant over the entire
image. If we view, for example, the rolling hills covered with grass then the best
scale for shape estimation will be the minimum resolution at which we can no
longer see the individual blades of grass: the resolution at which we transition
from the r> 0 of the grass, to the r =0 of the rolling hills.

5. Summary

Shape-from-shading and texture methods have suffered from the lack of a
representation for complex, natural scenes: they have been applicable only to
smooth surfaces, while real surfaces are often rough and crumpied. We have
argued that the fractal model can help remedy these problems because it seems
to be a good model of these natural surface shapes: many basic physical
processes produce fractal surfaces, and moreover fractal surfaces also look like
natural surfaces.

We have used the fractal model to extend previous shape-from-x methods to
complex, natural surfaces. The fractal model’s ability to distinguish successfully
between perceptually *‘smooth” and perceptually “rough” surfaces, for in-
stance, may permit the reliable application of shape estimation techniques that
assume smoothness. More importantly, however, the fact that the model
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describes both smooth and rough surfaces within the same framework has
allowed us to construct a method of estimating 3-D shape that treats shading and
texture in a unified manner.
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