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Abstract

An application of the SIPE planning system to high-level task planning for an autonomous
indoor mobile robot is presented. The primary purpose was to evaluate the adequacy of SIPE
for this domain, extending and improving the system in the process. The mobile robot domain
as encoded in SIPE and the approach to interfacing the planner and the lower-level routines
are described. The bulk of the paper presents both problems encountered during the process
of encoding this domain, and extensions of the planning system that were made to solve

them.

The most sighificant addition was a redesign of the deductive capability of the planner,
which is deseribed in some detail. Efficiency considerations and the ability to intermingle
planning and execution are discussed. The most important problem encountered invoh‘red
hierarchical planning, an ambiguous term. We present a definition of it, and examine several
of the reasons for this ambiguity. An explication of hierarchical-planning implementations
entails two distinct notions: abstraction level and planning level. A problem in currently im-
plemented planners that is caused by mixing these two levels is presented and various remedies
suggested. Three solutions that have been implemented in the current SIPE planning system

are described.




1 Introduction

Domain-independent planners developed by Al researchers have not been used in real-world
applications. There are several reasons for this, one being that programs tailored specifically |
for a particular domain will generally outperform a domain-independent system that has the
domain encoded in it. However, there are more serious problems. Many assumptions made
by these planners curtail the types of domains that can be represented. If the application
requires sensory input for monitoring the world, some severe obstacles are encountered in the

task of interfacing the planner’s representations with the sensory data.

Planning the actions of an autonomous mobile robot is a natural application for planning
systems and, moreover, a propitious domain for investigating the above problems. We have
therefore applied the SIPE planning system to an indoor mobile robot domain. ¥  SIPE
[14,15] is a hierarchical, domain-independent planning system that incorporates several exten-
sions of previous such systems. Included among these extensions are a perspicuous formalism
for describing operators and objects, the use of constraints for the partial description of
objects, mechanisms that permit concurrent exploration of alternative plans, heuristics for
reascning about resources, a deductive capability, and an execution-monitoring module that

replans when unexpected events occur.

Qur primary purpose was to evaluate the adequacy of SIPE for this domain, extending and
improving the systern in the process. However, our research also has promise for implementing
a working high-level reasoning capability for a robot (though the robot’s environment will
be fairly restricted). In addition, we have had to address the problem of interfacing the
high-level reasoning of the planner and the lower-level control and signal processing needed
by the robot. The planner deals with conrceptual entities by using declarative, propositional

representations, while lower-level routines deal with perceptual entities and frequently use

! The research reported herein is supported by Air Force Office of Scientific Research under Contract
F49620-79-C-0188.



more iconic representations. While not solving this difficult and central problem, we have

developed a framework within which new developments can be accomodated.

We begin by outlining our approach to the interaction between the planner and the
lower-level routines. Following that, we briefly describe the mobile robot domain, as encoded
in SIPE, and the plans generated by the system. The bulk of the paper describes both
problems encountered during the process of encoding this domain, and extensions of the
planning system that were made to solve them. The most significant addition was a redesign
of the deductive capability of the planner, which is described in some detail. SIPE’s ability to
represent a larger class of problems than its predecessors is due, in large part, to its ability to
perform deductions that depend upon the state of the world. Thus, the extended deductive
capability described here is critical. Another extension described is the ability to intermingle

planning and execution.

In addition to extensions of SIPE, a problem that applies to all hierarchical planners was
uncovered during this application. This paper contains a general discussion of hierarchical
planning that enumerates its many uses in various systems, identifies the aforementioned
problem, and presents solutions thereto. We conclude by describing some of the efficiency
factors that had to be taken into account in implementing this domain. Such considerations
are of prime importance in a.ctua.llg.r using a planner, but are ignored in most of the planning

literature.

2 Integrating Planning with Robot Control Systems

We might view an integrated robot-control system as shown in Figure 1. Current robotic sys-
tems contain actuators and sensors, operating in conjunction with controllers that interpret
their output, and generate commands according to a program that has been written specifi-

cally for the job at hand. Qur research on SIPE during the last few years has concentrated



on the planning system represented by the upper box in the figure. Little work has been done
on the interface represented by the two arrows interconnecting the two larger boxes. There is
a wide disparity in the representations and techniques used within each box; representations
in the planning box are normally in some form of logic, while representations in the latter
are often iconic or procedural [6]. Current perceptual reasoning is usually accomplished by
special-purpose systems, such as free-space reasoning programs and vision systems. These
problems cannot currently be dealt with by SIPE or, for that matter, by any other high-level

planning systems.

Many lower-level control systems have been developed, each of which operates in a fairly
specialized domain. These include various vision systems, systems for monitoring ultrasound
sensors, programs that compute information from optical flow, programs that plan paths or l
reason about free space, and the like. They are specialized because they make assumptions
about the domain. For example, model-based vision systems assume significant a priori
knowledge about the geometry of the objects to be recognized [3]. Systems for analyzing
optical flow may assume rigid body motion, or they may assume translation but no rotation
in the movement of objects. Significant gains in efficiency can often be obtained by enforcing

such restrictions.

The scope of our research does not, include the development of lower-level control systems.
Our goal is to investigate the utility of SIPE as the highest-level planning system in an
integrated r_obot. Our concern is to develop a system that can work in the short term on
simple but useful tasks in a constrained indoor environment, as opposed to an ultimate design

for a completely robust, intelligent robot.

In particular, we do not want to commit ourselves to particular representations or designs
for the lower-level systems. Instead we are using a heuristic interface language that requires
SIPE to plan to a suitably low level before executing actions, and has SIPE accept suitably

low-level feedback from other systems. Our intention is for the interface language and its
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extensions to employ the types of concepts that can be accommodated by diverse low-level
systems. The motivation for this is to be able to take advantage of a diversity of research
results in these types of systems, rather than committing ourselves to a single approach. For
example, instead of presenting a solution to the problem of sensor fusion, we would define
reasonable I/O specifications for a system that does fuse information from. various sensors,
and we would write SIPE operators to interact with these specifications (e.g., speaking of
objects being at certain locations with uncertainty bounds). Any system fér doing sensor
fusion could then be utilized in SIPE after translating between the I/O specifications (a
problem whick may vary from being easy to being completely unsolvable depending on the

particular system).

2.1 Division of Tasks

The central problem is defining the suitable level for the interface including the commands
issued by SIPE and the feedback it receives. SIPE is used to generate task-level plans that
include information-gathering actions, as well as to replan when unexpected events occur.
For example, in planning to get a book for someone, SIPE is responsible for planning how
to find the book in someone’s office, how to pick it up, and how and where to deliver it.
In addition, if the 6fﬁce is inaccessible, SIPE should replan — possibly going to the library
for the book, using a different accesa to the office, or deciding that some other report could

replace the book.

Geometric reasoning, precise path planning with obstacle avoidance, and interpretatioh
of sensor data are done by the lower-level controllers, many of which may use iconic rep-
resentations that are more suitable for these tasks than those of the planner. SIPE plans
actions down to the level of actual motor éommands for controlling the robot. However, these
commands assume that the world is as represented in the planner and that the commands

will be executed with complete accuracy. Making these assumptions, SIPE controls a robot
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simulator in performing tasks, thereby actually giving commands to the robot’s motors.

Since neither of these assumptions holds in the real world, low-level routines must use
sensors to carry out the actions produced lby SIPE. For example, one of the highest-level
actions planned by SIPE might be to go forward 50 feet. While this is an actual motor
command, SIPE also provides the information that the controller should follow a wall along
a hallway to the second door on the right. The controller may cause the robot to veer one
way or the other, so as to avoid objects in its proximity as it executes the action of advancing
50 feet. It will also recognize the doorway, thus making the end of the action more precise.
In turn, it can report back to SIPE that it has stopped at a particular location (with error
bbunds) either with success, failure for unknown reasons, failure because an object has been
detected at some other particular location, or failure because no doorway has been detected.

Given one of these failure reports, SIPE can then replan.

This distributes the planning appropriately, with much of the low-level planning being
done outside SIPE. This will also require a special interface for each controller that depends
on the representation employed. These interfaces, described in the next section, include
the ability to communicate helpful information among modules at any level. While leaving
many hard problems unresolved, this technique does permit the SIPE planner to be used
while research continues on several approaches to their solutions. The interface with a sonar
controller is so far the only one that has been designed in detail. Interfacing with actual

programs has been delayed pending their development.

Lower levels may have control for extended periods and, if they send no message back
to SIPE during that time, the planner will take no action. The planner will leave the robot
under the control of a suitable controller {(e.g., one that tries to keep the robot stationary,
but may have it dodge objects that are about to hit it) whenever it is actively engaged in
planning, thus leaving the robot with at least some ability to cope with the world. SIPE may

also pass control to a similar controller if it finds itself confused about the state of the world.



2.2 The Interface

Our design for interfacing SIPE with low-level controllers involvlfes treating them as pro-
grammable coroutines. There will be a bidirectional interface language for each controller
that will allow the planner to instruct and program the controller, while the latter, in turn,
will be able to inform and instruct the planner. The main idea is that the controllers will
not be simply subroutines to be called, but will be full-fledged routines, running concurrently
with SIPE, that can both send and receive information and requests, Thus, a sensor can
monitor the world continually and alert the planner when a certain condition arises. The
planner will be able to program such a sensor by telling it what conditions are expected and
which unexpected conditions, if they occur, should generate interrupts. For exami:le, when
the robot is moving down a hall that is expected to be clear, SIPE wants to be alerted by
the ultrasonic sensor if an object is approached, but does not want to receive any messages if
the space in front of the robot is clear. On the other hand, if the robot is moving up against

a box to push it, the sensor’s responses should be reversed.

Qur approach allows the planner to instruct the sensors and effectors about what is ex-
pected and what kshould trigger an alert. It also provides for the sensors to request potentially
useful information from the planner. One complication is that the instructions and requests
that can be supported vary with each low-level controller. In general, a vision system will
detect different situations from those that are detected by an ultrasonic sensor or speech-
understanding system. Thus, for each controller it will be necessary to develop an inferface
that accomodates all the useful conditions the controller can recognize for the planner, along
with all the types of information the controller can obtain from the planner and utilize in its
processing. Furthermore, the types of controllers needed are not readily available, at least

comrmmercially.

The planner can help the controllers in many ways. Primarily, it will call these controllers

in appropriate situations, given the domain restrictions imposed by the special-purpose algo-




rithms. For example, it could call a specialized path planner only on paths that are expected
to be clear. For other paths, the planner would plan to remove obstacles. There are various
types of information that SIPE can give these controllers to help them perform efficiently.
On the basis of its knowledge of the world, the planner could manipulate some specialized
internal representations of a controller. ‘LI'his might be complicated enough to require a spe-
cial subsystem to generate or manipulate the special-purpose representations of the low-level
systems according to predicates supplied by SIPE. For example, the planner can provide a
model-based vision system with a list of objects it expects to be in a scene, along with the
expected camera angle between the robot and these objects. The vision aystem can then use

this information to greatly reduce the search needed to interpret the scene.

This approach entails a rather loose coupling between the planner and the controllers.
This is in contrast to a more integrated system in which all aspects of the systems might
be based on the same primitives. Rosenschein’s use of situated automata is an interesting
example of a more integrated approach [8]. The loose coupling is motivated by the desire
to make maximum use of the many specialized algorithms that have been developed. SIPE
operators would encode knowledge about when to apply these, what their strengths and
weaknesses are, where they can be used most efficiently, and other relevant factors. The
planner would then invoke a controller only in aituations that match the particular constraints
on its algorithm and with suitable a priori information. If SIPE produces reasonable plans,

the controllers invoked should be able to carry out their desired functions efficiently.

3 Mobile Robot Domain

The simple indoor mobile-robot world encoded in the SIPE planning system is described here
and will be used for expository purposes throughout the rest of this paper. It consists of five
rooms connected by a hallway in the Artificial Intelligence Center at SRI International, the

robot itself, and various objects. The rooms were divided into 35 symbolic locations that



included multiple paths between locations (which greatly increases the amount of work done
by the planner). The initial world is described by 222 predicate instances, about half of
which were deduced from SIPE’s deductive operators. The description of possible actions in
SIPE includes 25 action-describing operators and 25 deductive operators. The operators use
four levels of abstraction in the planning process. The planner produces primitive plans that

provide actual commands for controlling the robot’s motors.

The most abstract level of the planning process reasons about the tasks that can be
performed, such as preparing a report or delivering an object. Our simple domain requires
only one level for this, but the description of more complex tasks might require several
abstraction levels. The first level below the task level (referred to as the INROOM level,
since INROOM is the crucial predicate) is the planning of navigation from room to room.
This plans a route that may require many planning levels for all the necessary operators to
be applied, but it does not involve any reasoning about specific doors or locations. High-level
predicates describing connections indicate that it is reasonable to move from one room to
another, but without first considering any details as to how this might be done or whether
it might even be possible in the current situation. When such a move is planned to a lower

abstraction level, it may fail or many actions may have to be performed to clear a path.

Below the room level is the NEXT-TO level, which plans movements from one important
object (that the robot is next to) to another. For example, to copy a paper, the robot will
have to get next to the door of the copy center, then pass through the doorway, then get next
to the desk of the operator, etc. This abstraction level plans high-level movements within a
room, but is still not concerned with actual locations. NEXTTO is the crucial predicate at

this abstraction level.
The lowest level is the location level, where SIPE plans movements down to the level of

the actual locational grid it has been given. This may involve planning to move obstacles so as

to clear particular paths. AT is the crucial predicate at this abstraction level. The symbolic




locations vary in size, but any place of interest could be one. They are small enough so that
the controller called to do the path planning can easily solve the problem of getting from one
location to the next. For example, each doorway is a location, while long segments of the
hall are also single locations. Each location hag various attributes within SIPE; among these
are the actual two-dimensional extent of the location, the coordinates of a focus, and the
coordinates of a focus next to a door, if one exists. From these data the ’pla.nner can compute

the symbolic location of any given real coordinate that might be returned by a sensor.

The predicates used to describe this domain are summarized briefly below. No claim
is made that this ontology is optimal in any way - in fact, some predicates were chosen
merely to test certain capabilities of the planner. The sort hierarchy includes (among other
more obvious classes) BORDERSs, which are boundaries between rooms that may or may
not coincide with doors, AREAs, which include rooms, halls, and lobbies, and LOCATIONSs,

which are the symbolic locations described above.
The predicates named below never change value as actions are performed in the world:
(CONNECT BORDER AREA AREA}

These (i.e., all instances of the CONNECT predicate} are given or deduced initially and, for

each door, specify which two rooms it connects. They are used to plan room-level paths.

(ADJACENT AREA AREA)

These are all deduced from CONNECT and are used for room-level path planning.

(ADJ LOCATION LOCATION)
These are given or deduced for all adjacent locations (most are deduced). Used for path

planning at the lowest level.

(MAILBOX HUMAN OBJECT)

These are all given initially and are used to accomplish DELIVER actions.

(ONPATH LOCATION LOCATION LOCATION}

10




These give an intermediate location between the two outermost nonadjacent locations and

are used for planning a path between the latter.

(DOOR-LOC BORDER AREA LOCATION)
These are all deduced. They tell which location in each room is next to the given door and

are used in planning to go through that door.

In contrast to the above group, the predicates named below change as actions are per-

formed:

(AT OBJECT LOCATION)
Most ATs must be given, except that every object that is ON something has AT deduced. AT
specifies an object’s location at the lowest abstraction level of symbolic locations. Because

many deductions are made from it, it is the most important predicate at that level.

(ADJ-LOC OBJECT LOCATION)

These are given or deduced initially for all objects. They tell which locations an object
is adjacent to and are used for positioning one object next to another. During planning,
these are deduced from ATs. Keeping a current list of ADJ-LOC instances may not be the
most efficient way to encode this domain, but it provides a good test of the new deductive

capabilities of the planning system.

(INROOM OBJECT AREA)
Most initial INROOMs are deduced. INROOM specifies an object’s location at the room level
and helps solve problems of abstraction-level coordination (see later discussion on hierarchical

planning).

(CONTAINS LOCATION AREA)
Similar to INROOM, but is added dynamically because it is used to coordinate levels of ab-
straction (see later discussion on hierarchical planning). These are posted as effects involving

uninstantiated LOCATION variables, so that the room containing them can be known even

11




though their instantiation is not. INROOM could have been used, but it is clearer to separate

the different function performed by CONTAINS.

(OPEN BORDER)

Given initially for borders and specifies whether they are clear.

(ON OBJECT SUPPORT)
These are given initially and trigger many deductions. They are used For noting that an

object is on some support (which will determine its location and what it is adjacent to).

(CLEAR LOCATION) (CLEAR BORDER)
All given initially, these specify whether a location is clear enough for the robot to navigate

through.

The problem given the planner was to get an object from a corner of a distant room
and deliver it to a desk in another room. The planning process required seven levels of
planning and took 30 seconds to execute a Symbolics 3600. About half this time was spent
processing constraints that kept open (until the very end) the possibility of using either of two
alternative paths to the critical locations. There was no backtracking. The planner produced
194 goal/process nodes and 70 additional control nodes in the plan; the most primitive level
contained 58 goal /process nodes. 228 plan variables weré created during the planning, most
of them for deductions. This plan can be executed on our robot simulator, for which it
generates actual motor commands intended for the robot. During execution the planner can
be told that:. a path is blocked or a door shut. When this happens, the planner correctly
replans to take a different path to the goal location or, alternatively, to procure the object

from a different location.

12



4 Deduction

A number of extensions were added to SIPE to enable the robot-world problern to be encoded
efficiently. The most important addition was a complete redesign of the deductive capabil-
ity to enable more powerful and useful deductions. Domain-independent planners that have
used a NOAH-like approach (as distinct from a theorem-proving approach) have not had a
deductive capability. In addition to operators describing actions, SIPE allows specification of
operators that are used to deduce effects of an action in the cutrent world state. These oper-
ators can be viewed as causal rules which the system uses to reason about what a particular
event causes. An action will generally have many effects that are conditional on the environ-
ment in which the action is performed. By representing these conditional effects in causal
rules, it is possible to use one action description to cover many situations, thus reducing the

number of actions the system must consider in the plamning process.

As more complex domains are represented, it becomes increasingly important to deduce
the effects of actions from causal rules about the world, rather than represeﬁ‘ting these effects
explicitly in operators. Besides being necessary for execution monitoring, deduction is im-
portant for determining both side effects and conditional effects of an action. This capability,
which distinguishes SIPE from its predecessors, is the primary reason the extension described

herein significantly expands the ability of the system to deduce formulas.

Since deductive operators in SIPE have already been described in some detail {14}, we
shall summarize them briefly. The following subsections give detailed descriptions of the
recent extensions. SIPE maintains strict control over the application of deduction so as to
prevent a combinatorial explosion, while still providing a powerful enough capability to be
useful. All deductions that can be made are performed at the time an operator is expanded.
The deduced effects are recorded in the procedural net and the system can then proceed just
as if all the effects had been listed in the operator. Deductions are not attempted at other

points in the planning process. Deductive operators have triggers to control their application.

13




If the precondition of a deductive operator holds, its effects can be added to the world model

(in the same context in which the precondition matched) without modifying the existing plan.

The two major changes in the system’s deductive capability are the ability (1) to perform
chains of deductions and (2) to encode deductive operators by using “universal” variables.
The former enables many more deductions to be made by the repeated application of deduc-

tive operators. The latter permits the expression of more powerful deductive operators.

4.1 Deductive Chains

Initially, only deductive operators whose trigger predicate matches a node-specified effect
are applied, thereby producing an additional set of [deduced] effects for that node. SIPE
previously stopped the deductive process at this point; only one-step deductions were allowed,
with the process kept under strict control and deductive loops precluded. SIPE has been
extended to allow deductive chains of arbitrary length. After all deductive operators have
been applied, the system determines which newly deduced effects were not already true in
the given situation and permits the deductive operators to trigger on these recursively. This
process continues until no effects are deduced that were not already true. This deductive.
capability allows more powerful deductions while maintaining contrel of the deductive process

and preventing deductive loops.

There is one problem in the foregoing scheme. Namely, the possibility exists that a later
deductive operator might deduce a predicate that negates a predicate deduced by a previous
operator. Which of these conflicting deductions should the system allow to stand as an effect?
In general, deductive operators should be written to avoid this kind of conflict. However,
there is a situation, which was first observed in the -mobile robot domain, in which it is
desirable to deduce effects that would be conflicting if they were to be matched directly
against each other, but become a valid non-conflicting representation of effects when they are

recorded in the order they are deduced. This situation, described in detail below, involves

14



the deduction of a predicate with a “universal” variable (defined in the next section) that

negates particular nonuniversal instances of the predicate that have already been deduced.

This can be useful because the matching algorithm in SIPE matches formulas agzinst ef-
fects in the order they are listed. Thus, one can initially deduce (ON OBJECT1 OBJECTZ2),

where the objects are not universals {they may be variables that are not yet instantiated but

eventually will be to one particular object), and later deduce (NOT (ON OBJECT1 OBJECT?3)),

where OBJECTS3 is universal. These will be recorded in the given order which effectively
encodes the fact that OBJECT]1 is on OBJECT2 only. More precisely, any formula. of the
form (ON OBJECT1 X) will match positively if X can be constrained to be the same as
OBJECT?Z2, negatively in all other cases. If conflicting deductions are made in other cases,
SIPE provides user-selectable options of signaling an error, recording the first deduction, or
recording the second deduction, with all choices terminating the deductive chain. The user

can choose whichever action is most appropriate in his domain.

4.2 TUniversal Variables

SIPE fomerly permitted universal variables only when they occurred in the effects of an
operator, but has now been extended to allow the presence of “universals” in preconditions
of deductive operators. The use of universals in preconditions involves a major change in the

basic matching process of the planning system.

The semantics of a universal in a SIPE precondition differs significantly from the use
of universal 'qua.ntiﬁers in formal logic (hence the previous quoting of “universal”). Let us
suppose that X is a universal variable in P, a precondition. This does not mean that the
systern must prove the precondition true for all possible instantiations of X (i.e., Vz.P(z)),
rather it means that only instantiations such that P is true will be considered for X heretofore
(i.e., z | P(z)). During matching of such a precondition, the system will generate constraints

enabling the variable to match all and only those objects for which the precondition is true.
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This capability to form subsets is very useful and powerful. It exploits SIPE’s representation
and algorithms for the purpose of representing a number of predicates compactly as a single
predicate with a universal variable. A primary advantage of this is the gain in efficiency that
is achieved by matching the deductive operator only once, instead of having to match it once

for each possible match of the universal variable.

For example, suppose we wish to deduce something about all the blocks that are on a
table. The precondition of a deductive operator can specify (ON BLOCK1 TABLE), where
BLOCK]1 is a universal variable, When SIPE matches this formula, it will post constraints
on BLOCKI1 that allow it to match only those blocks that are on the table. This effectively
picks out the subset of blocks that interests us and allows their efficient representation. The
constraints specify that BLOCK1 must match one of a set of N planning variables. Some of
these variables may not yet be instantiated, but eventually they will. Perhaps they will be
instantiated to N different blocks, or they may all be instantiated to the same block. There is
no problem matching because the constraints on each of the N planning variables specify all
relevant information (e.g., which variables and blocks these N planning variables are/aren’t

identical to).

The further planning of actions occurring either earlier or later will not affect the validity
of the universal variable in the ON predicate. This is true by virtue of the place where the
predicate is recorded in the plan as well as because of the matching algorithm employed by
SIPE [14]. Suppose N1 is one of the N planning variables that will match the universal vari-
able. If a later action specifies (NOT (ON N1 TABLE)) as an effect, this latter predicate will
always be matched to a formula before the predicate with the universal variable (since SIPE
regresses through the plan attempting to find matches). Thus, the appropriate relationship
between N1 and the corresponding variable in the formula being matched will already be
determined and will not be affected by any subsequent attempt to match the same formula

with the predicate containing the universal variable. Further planning of an action before

16



the one containing the ON predicate as an effect will be done at the next lower (hierarchical]
planning level (as defined in next section). In this case, SIPE recomputes all deductions that
follow this one at the next planning level. Thus, a new universal variable will appear with

constraints that have been properly calculated for the new situation.

This use of universals involves a2 major change in the matching algorithm used by SIPE
to determine the truth of a predicate. Before this extension, a universal variable matched
any other variable in its class exactly. Consequently, the matcher had to look no further for
possible matches of a predicate. Allowing constraints on universals means that now they no
longer match exactly, but are instead only potential matches that depend on the instantiation
of variables in the predicate being matched. The matching process must therefore continue
collecting other potential matches and let the system generate additional constraints upon

the possible ways the predicate could be made true.

5 Hierarchical Planning

Anrother problem that arose during encoding of the robot domain involved hierarchical plan-
ning levels. The task of describing this problem involves explicating the considerable ambigu-
ity involved in hierarchical planning, as well as distinguishing two distinct notions: abstraction

level and planning level.

It is generally recognized that planning in realistic domains requires planning at different
levels of abstraction [5]. This allows the planner to manipulate a simpler but computationally
tractable theory of its world. The combinaterics of concatenating the most detailed possible
descriptions of actions would be overwhelming without the use of more abstract concepts.
This has n.asulted in numerous hierarchical-planning systems. However, hierarchical levels
and hierarchical planning mean quite different things in different planning systems, as is

explained in the next section.
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In our view, the essence of hierarchical planning (and a necessary defining condition) is the
use of different levels of abstraction — both in the planning process and in the description of
the domain. An abstraction level is distinguished by the granularity [5], or fineness of detail,
of the discriminations it makes in the world. From a somewhat more formal standpoint,
a more abstract description (in whatever formalism is being used) will have a larger set of
possible world states that satisfy it. When less abstract descriptions are added, the size of
this satisfying set diminishes as things in the world are discriminated with increasingly finer
detail. In complex worlds, these abstract descriptions can often be idealizations. This means
that a plan realizable at an abstract level may not be realizable in a finer grain {i.e., the
gatisfying set might reduce to the null set). For example, one might ignore friction in an
abstraction of the domain, yet find that the abstract plan cannot be achieved at the lower

abstraction level when the effects of friction are included in the world description.

To see how hierarchical planning can help avoid the combinatorial explosion involved in
reasoning about primitive actions, let us consider the task of planning to build a house. At
the highest abstraction level might be such steps as site preparation and foundation laying.
The planner can plan the sequence of these steps without considering the detailed actions
of hammering a nail or opening a bag of cement. Each of these steps can be expanded into
more detailed actions, the most primitive of which might be nail-driving and wire-cutting.
Hierarchical abstraction levels provide the structure necessary for generating complex plans

at the primitive level.

5.1 The Many Guises of Hierarchical Planning

The planning literature has used the term “hierarchical planning” not only to describe levels
of abstraction, but also to describe systems containing various hierarchical structures or
search spaces, metalevels, and what we shall call planning levels. Examples of each of these

are given below. Planning levels are of particular importance because confusing them with
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abstraction levels causes a problem in various implementations of hierarchical planning that

will be discussed in the remainder of this paper.

Many planners produce hierarchical structures (e.g., subgoal structures) during the plan-
ning process or explore hierarchically structured search spaces. Generally having nothing to
do with abstraction levels, they occur even in nonhierarchical (by our definition} planners
that allow only one level of abstraction. STRIPS [1], while nonhierarchical, could be regarded
as producing plans with a hierarchical structure, e.g., its triangle tables. The Hayes-Roths [4]
use the term ht’erarcﬂt’cal to refer to a top-down search of the space of possible plans in which
more abstract plans are at the top of this space. This involves a hierarchical search space

that contains abstraction levels; the latter, however, do not define the levels in the hierarchy.

Hierarchical planning is also used to refer to metaplanning. Reasoning at a metalevel
involves reasoning about the planning process itself. This is an entirely different domain,
not merely an abstraction or idealization of the original domain. Stefik [11] states that
“. . .layers of control (termed planning spaces) . . . are used to model hierarchical planning in
MOLGEN”. In this case, the three planning spaces are being used to implement metaplanning
and, respectively, represent knowledge about strategy, plans and genetics; the first two are
not abstractions of the genetics domain. (MOLGEN does pro_vide for planning at different

levels of abstraction through its constraints.)

The above instances of the term “hierarchical planning” describe processes or structures
that are unrelated to the use of abstraction levels. Therefore, any confusion generated is
terminological and does not reflect possible conceptual problems within the planning system
itself. Planning levels, on the other hand, have been confused with abstraction levels -
which, as we shall see, can lead to problems within the planner, particularly if the planner
incorporates the STRIPS assumption [13]. Planning levels are artifacts of particular systems
and may vary considerably from planner to planner. They are not defined by a different

level of abstraction in the descriptions being manipulated, but rather by some process in the
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planning system. Most systems have a central iterative loop that performs some computation
on the plan during each iteration. This may involve applying schemas, axioms, or operators
to each element of the existing plan to produce a more detailed plan. To the extent that such
an iteration takes one well-defined plan and produces another well-defined plan, we will call it
a planning level. In some systems, planning levels may correspond exactly to the hierarchical
structures discussed earlier, but this is purely coincidental. They are déﬁned by the planning
proceés, not; data structures, and may or may not correspond to hierarchical data structures
within a particular system. The term is admittedly vague, but in many Al planning systems

of interest it nevertheless has a very precise definition.

In particular, all planning systems in the NOAH tradition, including SIPE, NOAH [10],
NONLIN [12], and ABSTRIPS [9], have distinct and well-defined planning levels. In these
systems, a new planning level is created by expanding each node in the plan with one of
the operators that describe actions. In the literature these levels are often referred to as
hierarchical, which implicitly associates them with abstraction levels. The fact is that they
are independent of abstraction level; a new planning level may or may not result in a new
abstraction level, depending upon which operators are applied. For example, in the blocks
world described by Sacerdoti [10], there is only one abstraction level. CLEARTOP and
ON are the only predicates and each new planning level simply specifies in greater detail a
plan involving these predicates. Thus, all the hierarchical levels in the NOAH blocks world
are actually planning levels that result in adding further detail to the plan at the same
a.bstra.ction. level. Others have described such a prior omission of detail as an “abstraction”,
but we specifically require an abstraction level to involve different predicates with different

grain-sizes.

Planning systems not in the NOAH tradition also have planning levels. Rosenschein’s
planning algorithm, using dynamic logic [7], attempts to satisfy a set of planning constraints.

The result of running his “bigression algorithm” on each constraint in the set (which, he
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contends, is a straightforward extension of his system) would constitute a planning level.
Agenda-based planning systems also have natural planning levels that are defined by the
execution of one agenda item. These planning levels would be somewhat different from
the others we have discussed, as they might not involve performing some operation on each
element of a complete plan. Consequently, they are not likely to be confused with abstraction

levels.

5.2 A Problem Encountered with Current Planners

There is a problem that can arise when planning and abstraction levels are interleaved in a
planner making the STRIPS assumption, as they are in the aforementioned systems. (The
STRIPS assumption states that things remain unchanged during an action unless specified
otherwise.) This problem exists in many NOAH-tradition planners but has never been doc-

umented.

In such a planner, one element of the plan can attain a lower abstraction level than another
element at the same planning level, depending upon which operators are applied. Thus, the
plan at the current planning level could be P1;Q1;G, where P1 is an action making the
predicate P true, Q1 an action making the more abstract predicate Q true, and G a goal
that depends upon the truth of P for its achievement. With the STRIPS assumption, the
planning system will find that P is true at (, since Q1 does not mention changes involving
any less abstract predicates (such as P). In fact, the truth of P may depend upon how Q1 is
expanded to the lower abstraction level, since it may or may not negate the truth of P. Thus,
conditions may be evaluated improperly in these planners, resulting in incorrect operator

applications.

For these planners to test the truth of a condition correctly at time N in the plan, they
must ensure either that all relevant information at the proper abstraction level is available

for the actions preceding N or that subsequent expansions to lower abstraction levels will not
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change the truth-value of the condition. However, many existing planners (e.g., NOAH and
SIPE) do not provide this assurance. There are good reasons for this. Various solutions to
the above problem are discussed later in this paper, but the most straightforward one is to
impose a depth-first, left-to-right planning order that is sensitive to any change in abstraction
level. This means that, when a condition with predicates of abstraction level M is checked
at time N in the plan, all possibly relevant information at abstraction level M or higher will

be available for every plan element occurring prior to N.

However, this is not always desirable, since many advantages can be gained by planning
certain parts of the plan expedientially (or opportunistically) to lower abstraction levels. For
example, in planning a trip from Palo Alto to New York City, it might be best to plan the
details of the stay in New York first, as this could determine which airport would be best to
fly into, which in turn could determine which Bay Area airport would be the best departure
point. Thus, we do not want to restrict ourselves to depth-first, left-to-right planning, which

would require choosing the Bay Area airport before the one in New York.

While the foregoing problem will be discussed in this paper in the NOAH-like terminclogy
of “operators” and “goals”, it applies equally well to any planner that must coordinate
deductions over different abstraction levels. For example, Rosenschein’s hierarchical planner

based on dynamic logic [7] must address this issue in order to produce correct plans.

The definition of the problem will be made more concrete by viewing it in the context
of an indoor robot domain. The problem of coordinating abstraction and planning levels
arose during. the planning depicted in Figure 2. The initial goal produced three INROOM
goals at the first planning level. Of these three subtrees, the first and last were transformed
into the lowest abstraction level at planning level 2 (intervening NEXTTO goals have been
disregarded for the sake of simplicity). The middle subtree, however, is still at the room
abstraction level on planning level 3, as this subfree required several operator applications

to find a path through the rooms to accompiish its goal,
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TOPGOAL level:
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INROOM INROOM INROOM 1
INROOM INROOM (AT L7) 2

(AT Li) INROOM INROOM INROOM 3

Figure 2: Hierarchical Plan in Robot Domain

Now, when the planner applies an operator to the (AT L7) goal at planning level 2, any
precondition that queries the AT predicate will find (AT L1) to be valid, since that is the
last place at which AT is affected and the STRIPS assumption assumes that all actions leave
predicates unchanged unless they. explicitly indicate otherwise. But this is not correct, as
AT may be affected after the middle subtree has been expanded to the lowest abstraction
level. If the operator depends critically on the value of the AT predicate, its application

o (AT L7) may be incorrect. The resulting plan will have commands that move the robot
from location L1 to location L7, whereas the robot is not likely to be at L1 when that part
of the plan is executed (because of movements made in the middle subtree}). Whether such
an operator application will prevent the correct plan from being found depends on how a

particular planner detects invalid plans and how the search space is organized.
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5.3 Solutions

There are many alternative solutions to the problem discussed above. They range from cal-
culating all possibly relevant information before it may be needed to ignoring the problem
altogether and simply letting the user beware of the consequences. The former — and most
straightforward - is to force the planner to plan in temporal order and to provide for calcu-
lation of all the predicates at one abstraction level that may be needed later. Many planners
do this, though it is usually not made clear that they depend on several assurmptions to avoid
subtle problems such as this one. ABSTRIPS (9] is an example of planners that employ this
approach, It assigns abstraction-level numbers to the predicates and plans a lower level only
when all necessary computations have been made. SIPE provides, as a user-selectable option,
the ability to control hierarchical planning in this manner. This is useful for comparing the

performance of the techniques described below.

The problem with this approach is that the planner is limited as to the sequence in which
it can process goals. Quite often the order imposed will not be optimal (as in the Palo Alto-
to-New York example). The flexibility to plan certain parts of the plan expédientially to lower
abstraction levels is lost. Constraints generated during such lower-level planning can narrow
down the search, thus resulting in potentially large gains in efficiency. For these reasons,
planners like SIPE, NOAH, and NONLIN allow the mingling of planning and abstraction

levels.

The approach used in these latter planners is susceptible to the level coordination problem
and therefore requires the user to be alert. Erroneous checking of conditions similar to the
one described can occur in these systems, depending on the task and the encoding of the
operators. This can result in incorrect operator a.pplica.tions. The planning system may have
mechanisms that subsequently detect incorrectness of the plan, as SIPE and perhaps NONLIN
do. However, the proper solution may not be found if the operator applied incorrectly is the

one actually needed for the correct solution, since it may not be retried. Its premature
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application should have been delayed one or more planﬁing levels so that other parts of
the plan could be planned to a lower abstraction level. The user is responsible for writing
operators that will accomplish this delay. This process is facilitated by certain features of

SIPE, as we shall see.

It is appealing to look for a technique between the inefficiency of computing everything
in a certain order and the expediential behavior of systems that perhaps miss valid solutions.
This would involve reasoning about what properties will remain invariant during the further
planning of certain goals. For example, in Figure 2 the planner might calculate whether the
possible expansions of the middle subtree will affect the value of the AT predicate. If not,
planning can proceed expedientially. This is all the more appealing because reasoning about

concurrency depends on determining invariant properties of a sequence of actions,

Despite the attraction of this approach, there are severe difficulties entailed in computing
these invariances. It would be best if they could be computed automatically from the oper-
ators without requiring the user to supply additional knowledge. (The STRIPS assumption
effectively makes this computation for predicates at one abstraction level, but the compu-
tation must be done for predicates at other abstraction levels.) In general, however, this is
not computationally tractable. It is similar to the problem of regressing conditions through
actions ([7],[13]), except that the regression must be done through every possible expansion
of the actions for an indeterminate number of planning levels. Furthermore, simple schemes
that merely check for possible changes in predicate names will probably find very few invari-
ances. In the robot domain, for example, every high-level goal will alter the values of AT
predicates at the lowest level. More sophisticated schemes that check possible values for the
arguments of the predicates, perhaps determining the ranges of values they might acquire in

all possible expansions, would themselves necessitate solving a large search problem.

An alternative is to have the user provide information about what remains invariant over

actions. While this may be useful for some domains, in general the same criticisms made
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OPERATOR: not-yet
ARGUMENTS: robotl location2,areal locationl;
PURPOSE: (at robotl location2);
PRECONDITION: (at robot1 locationl),
{inroom robotl areal),
{not (contains locationl areal));
PLOT: COPY
END PLOT END OPERATOR

Figure 3: Operator for Delaying Operator Application

above apply to this case. There will generally not be many things (at lower abstraction levels)
that are invariant; moreover, it may even be difficult to indicate explicitly what they are, as
the invariance may involve complex constraints on the allowable arguments to predicates. In
addition, one of the chief advantages of abstraction levels is that specifying details is unnec-
essary at higher levels. Computing invariants would require information as to which lower
levels are affected in what way by each higher-level goal, thus removing some of the advantage
gained by not planning at the lowest level from the very beginning. The computational costs

of this can quickly become overwhelming, as we shall see in the next section.

5.3.1 Delaying Operator Applications in SIPE

For reasons given above, SIPE allows the user to assume the burden of encoding the domain in
such a way that incorrect evaluation of conditions will not produce applications of operators
that prevent solutions from being found. We have solved this problem in two ways within
SIPE for the indoor robot domain (in addition to the option of using the ABSTRIPS solution).
One solution involves delaying the application of certain operators while the other entails the

introduction of certain less abstract predicates at earlier planning levels.

The first solution involves a novel use of operators, developed during implementation of
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the robot domain, that effectively defers the achievement of certain goals until the appropri-
ate juncture, as long as the latter can be ascertained by conditions that are expressible as
preconditions of a SIPE operator. We can best show this by reintroducing the robot domain

example.

In the robot domain, only the planning of AT goals is affected when abstraction levels
vary in the plan. Figure 2 depicts the type of situation in which the accomplishment of an
AT goal must be delayed. This is done in SIPE by using the operator shown in Figure 3. It
postpones the solving of AT goals until the part of the plan preceding them has been brought
to the same level of abstraction. This is done by checking whether the AT location of the
robot is in the same room as its INROOM location. If the precondition of this operator
matches, it means that the last AT predicate specified as an effect of an action came before
the last INROOM predicate specified as an effect. Consequently, the latter action must still

be planned to the lower level of abstraction. ?

This operator is applied before any other to an AT goal. The plot (i.e., consequent) of
not-yet is simply the token COPY that copies the goal from the preceding planning level. It is
necessary to use a special token rather than specify the AT goal in normal syntax. Normally
SIPE inserts the precondition of an operator into the plan and maintains its truth. In this
case the precondition will not be true in the final plan, so the COPY option inserts the
appropriate goal without first inserting the precondition. With this feature and the above
operator, SIPE can mix abstraction and planning levels freely in the robot domain without
missing a solution to our test problems. Nonetheless, there may still be problems in the

domain that cannot be solved without creating additional delaying operators.

2 Of course, this operator could still be fooled if one planned a circular route that ended in an INROOM
goal for the same room that contained the preceding AT location. However, this would cause a problem only if
the eventual location reached in the expansion of the INROOM goal were different from the one in the earlier
AT goal. This situation never arises in our domain.
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5.3.2 Introducing Low-Level Predicates in SIPE

Instead of using the not-yet operator, the second solution involves introducing lower-level
predicates at higher abstraction levels to prevent the STRIPS assumption from causing a
problem. In this case, we add a lower-level AT predicate (which includes an uninstantiated
locational variable) to every higher-level NEXT-TO goal as a placeholder for the predicate
that would be produced during some future expansion. When the NEXT-TO goal is expanded
to the lower level, the location actually reached will eventually become the instantiation of the
locational variable introduced. At the planning level of the NEXT-TO goal, any AT predicate
in a condition being tested will match the newly inserted AT predicate, thus preventing the
planner’s incorrect assumption that the NEXT-TO goal does not affect the truth-value of

the condition.

This solution takes advantage of SIPE’s ability to post constraints on variables. The newly
introduced AT predicates effectively document the fact that the AT location may eventually
change during any expansion of the NEXT-TO goal (even though the location is not yet
known). Before and during such an expansion, the locational variables can accumulate con-
straints on their possible values, so the planning process will not be hindered. The matching
of conditions will always be correct because these AT predicates are present wherever the AT

location might change.

Incorporating this change into the SIPE operators written for the first solution was easy.
Only three operators of the 25 posted NEXT-TO goals, so only those three had to be changed.
The process of converting these three operators is illustrated by contrasting the original
FETCH operator shown in Figure 4 with the FETCH operator including AT predicates that
is shown in Figure 5. In the plot, each goal and process with a NEXT-TO predicate in its
effects is given an additional effect that is an AT predicate involving a new locational variable.
The latter is included in the arguments of the goal or process so as to permit appropriate

matching with the variables in the operators that solve NEXT-TO goals. The locational
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OPERATOR: fetch
ARGUMENTS: robotl,objectl,areal;
PURPOSE: (holding robotl objectl);
PRECONDITION: (inroom objectl areal);
PLOT: '
GOAL: (inroom robotl areal);
MAINSTEP: (holding robotl objectl);
GOAL: (nextto robotl objectl);
PROCESS
ACTION: pickup;
ARGUMENTS: robotl, objectl;
EFFECTS: (holding robot1 objectl);
END PLOT END OPERATOR

Figure 4: Original FETCH Operator

OPERATOR: fetch
ARGUMENTS: robotl,objectl,areal locationl;
PURPOSE: (holding robotl objectl);
PRECONDITION: (inroom objectl areal),
(contains locationl areal);
PLOT:
GOAL: (inroom robotl areal);
MAINSTEP: (holding robotl objectl);
GOAL: (nextto robotl objectl);
ARGUMENTS: robotl, objectl, areal, locationl;
EFFECTS: (at robotl locationl);
PROCESS
ACTION: pickup;
ARGUMENTS: robotl, objectl;
EFFECTS: (holding robot1 objectl);
END PLOT END OPERATOR

Figure 5: FETCH Operator with AT Predicates
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variable is added to the arguments of the operator, whose precondition can also specify any
predicate that constrains the variable. As a minimum, the variable can be constrained by

the room in which it is located; stronger constraints can sometimes be specified.

Once the three operators had been converted in this manner, SIPE was able to solve all
the problems in our test domain. This solution appears robust and should not prevent the
planner from_ dealing successfully with any problems it might solve with an ABSTRIPS-like
approach. Characteristics of the domain are again exploited in this solution. By having
to plan about less abstract entities at a more abstract level, we are giving up some of the
advantage gained by planning hierarchically. However, it is reasonable to do 80 in this case
because we need introduce only one lower-level predicate early (albeit the most important
one}, and we need introduce it only a single abstraction level early. There is no difficuity in
coordinating any other pair of abstraction levels in this domain. However, the introduction of
more variables and constraints increases the effort required significantly. Using this technique
to solve problems in the robot domain takes from an additional one-third to twice as long as

using the not-yet operator (see next section)}.

5.4 Comparison of Solutions

The two techniques described above were tested on three problems in the robot domain. The
ABSTRIPS control regime was also used to solve these problems. {(The operators were the
same as those utilized while delaying operator application, except that the not-yet operator
was eliminated.) The original robot problem involved a choice of different paths and entailed
seven planning levels for producing a primitive plan with 58 process/phantom nodes. The
other two problems are similar — but one requires a shorter path to be found, the other
a longer path. Figure 6 depicts the CPU time and number of planning levels required for
each problem. It is no surprise that the ABSTRIPS control regime is as efficient as delaying

operator application, since the solution to these particular problems cannot be simplified by

30



Problem: NOT-YET introduce AT ABSTRIPS

Original 29.5 (7) 54.2 (7) 32.1 (11)
Shorter path 24.8 (7) 46.7 (7) 25.1 (8)
Longer path 43.7 (7) 57.4 (T) 35.7 (10)

Figure 6: Symbolics 3600 CPU Time and Planning Levels for Solutions

planning later parts of the plan to a lower abstraction level. For problems and domains with
this property, ABSTRIPS-like coordination of levels is preferred because it is both efficient

and correct. (It does, of course, require more planning levels.)

The first solution (not-yet) accomplishes the delayed application of operators when neces-
sary, but permits expediential planning in other cases. This solution retains flexibility while
remaining efficient by not regressing conditions through possible expansions of actions. As no
lower-level predicates are introduced early, full advantage is taken of hierarchical planning.
The disadvantages of this approach are that the user (though relieved of the necessity of
specifying invariance properties for higher-level goals) must write appropriate delaying oper-
ators and, furthermore, must anticipate all possible situations in which operators would need
to be delayed. In complex worlds, this means that novel problems might not be solvable.
In addition, it may not always be possible to express the appropriate delaying conditions as
a SIPE preconditic;n. In an application in which efficiency is of paramount importance and

failure to solve a particular problem can be tolerated, this may be a desirable approach.

The second solution (AT) is more robust and less likely to fail on novel problems. It was
surprisingly easy to implement in SIPE. However, when low-level predicates are introduced
at a higher abstraction level, it is significantly less efficient. The advantages of hierarchical
planning can be readily observed, as the introduction of only one predicate (albeit the crucial

one) at the next higher abstraction level nearly doubles the cost of computation.
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6 Intermingling Planning and Execution

Planners in the NOAH tradition have historically planned every step of each plan to the
lowest level of detail. This is the reason the plan described in the last section took over 30
seconds to generate. Such detailed planning can often be undesirable [2]. It can take a long
time, preventing the planner from reacting quickly to events. Furthermore, as actions are
planned farther into the future, it becomes less likely that they will be useful. The probability
increases that some unexpected event will render the remainder of the plan unsatisfactory.
(In our interface, the robot is under the control of a low-level program during the planning

process, so it has some capability to react to events.)

Fortunately, there is no inherent reason t.hat' NOAH tradition planners have to plan
everything to the lowest level of detail, so SIPE has been extended to intermingle planning
and execution. This was a fairly simple task. SIPE’s operator description language now allows
users to encode domain-dependent information about which goals and actions can have their
planning delayed. The user can simply include the word “DELAY” in the description of a
node in the plot of an operator. The system will then not plan any such geal or action until a
plan suitable for execution has been generated. The planning of the delayed goals is started

as a background job as soon as the original plan is ready for execution.

The original plan is used by -the execution monitor until either an unexpected event
happens or the goals whose planning has been delayed are reached. In both cases, SIPE
retrieves the plan produced by the delayed planning process (possibly waiting for the process
to finish), and updates it with information about nodes that have already been executed.
Execution proceeds on this updated plan while another background job continues to plan
any delayed goals in this new plan. When SIPE attempts to retrieve the results of the
delayed planning process, it may notice that the delayed planning fails, in which case the

system tries again to solve the original problem.
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The encoding of domain-dependent knowledge for this purpose is effective because such
knowledge is generally available. For example, in the robot problem previously described,
the robot can obviously begin executing its plan to get to the object to be picked up before
planning what to do after picking up the object (assuming the robot does not make hallways
impassable as it travels down them). Thus, the operator for fetching and delivering an object
had a delay put on its second goal. Goals should not be marked for delayed planning unless
there is a high probability that they can be achieved, or it is known that their solution is
independent of the solutions chosen for prior goals. The planner can begin execution with
some assurance that its initial plan should be the beginning.of a valid solution for the whole
problem. Domain-independent criteria for delaying planning, e.g., delaying planning after a
certain number of actions have been planned, would be arbitrary and would not be able to

provide this assurance.

The delay described above (on the deliver goal following the fetch) is the only one intro-
duced into the SIPE operators used to solve the problems described in the previous section.
With this minor addition, SIPE produces a plan for the same problem that is ready for
execution in only 9 seconds (as opposed to 35). The remainder of the plan is usually filled
out in complete detail before the robot gets very far down its first hallway. This enables
SIPE to react much more quickly to situations, and reduces the time spent waiting on the
planner. It is also easy to envision more options than simply planning delayed goals in a
background job. O.n the basis of domain-dependent knowledge, they could alternatively be

planned immediately or left unplanned until execution reaches that point in the plan.

7 Efficiency Considerations

Efficiency considerations affect both the manner in which a domain is encoded in SIPE
and the design of the system itself. The following subsection describes issues that must be

addressed during encoding (in particular, of the robot domain). In addition to the complete
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redesign of the deductive capability already described, a number of extensions were added
to SIPE to enable the robot-world problem to be encoded efficiently. Most of these are of
such a technical nature that they will not be mentioned here, but a few examples will be
described in order to illustrate the kind of detail that must be dealt with to produce an
effective implementation. Much of the theoretical work done in planning has simply ignored

these practical issues.

7.1 Constraint Efficiency

Constraint efficiency is a problem that arose during the encoding of the robot domain. It
is fairly easy to write operators that will produce constraints that are computationally too
expensive. The person writing the operators must therefore be careful to formulate things
in such a way as to ensure that this computational cost will be reasonable. We encountered
this problem during deduction of the ADJ-LOC relationships. This predicate denotes all the
locations that are adjacent to a given object. In SIPE, the deduction of this relationship
after an object has moved involves both eliminating the old ADJ-LOCs that no longer hold
(which is accomplished by adding new negated ADJ-LOCs that will match future conditions

before the old ones) and adding the new ones that have now become true.

The problem surfaced during removal of the old ADJ-LOCs that were now invalid. It
seemed natural to write a deductive operator that deduced a negated ADJ-LOC for every
location that, was not adjacent to the object’s new location. This works fine when the location
being moved to is instantiated; when it is not, however, the number of things that can be
not adjacent to it is enormous. A constraint is added to the variable in the negated ADJ-
LOC effect in SIPE that must later be processed frequently during the matching required
to determine the truth-value of predicates. The computation involved in processing this

constraint slowed the system down unacceptably.

Fortunately, we were able to find an elegant solution in SIPE by making use of the
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DEDUCTIVE.OPERATOR: updateadj
ARGUMENTS: objectl,locationli,
location2 is not locationi,
location3 is not locationl class universal,
location4 is not location3 class universal;
TRIGGER: (at objectl locationl);
PRECONDITION: (at objectl location2),
(adj location1 location3);
EFFECTS: (adj-loc objectl location3),
(not (adj-loc objectl location4));
END DEDUCTIVE.OPERATOR

Figure 7: Operator for Coordinating Levels

universal variables and the NOT-SAME constraint supplied by the system. The removal
of invalid ADJ-LOCs is now done by the same operator that deduces new ADJ-LOCs; the
operator simply uses a universal variable that is NOT-SAME with the universal variable in
the new ADJ-LOCs. In other words, if a location is not the same as an ADJ-LOC of the new
location, then it is not an ADJ-LOC of the new location. The operator that deduces this is

shown in Figure 7 asg it is inputted to SIPE.

7.2 Practical Considerations

To illustrate the practical issues that must be resolved in ar implementation, this section
describes two of the many extensions added to SIPE to improve efficiency. The first involves
the use of NOT-SAME universal variables, as shown in Figure 7. It has ﬁroved useful in
the mobile robot domain to deduce all positive as well as negative occurrences of a certain
predicate using universal variables for both deductions. Once the proper constraints have
been generated for the universal variable in one of these deductions (whether it be the positive
or the negative one), the universal variable in the other deduction can simply be constrained

to be not the same as its counterpart. Since this appears to be a generally useful technique,
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SIPE includes a check for such NOT-SAME universals so as to make the matcher more

efficient.

When looking for potential matches of a predicate, SIPE checks to determine whether
two possible matches are negations of each other, with exactly the same arguments save one.
If this one argument is a universal variable in both possibile matches, and if the variables are
constrained to be NOT-SAME with each other, then the system knows that all possibilities
have been covered and so ends its search for matches. The fact that this application of NOT-
SAME universals is of general utility justifies inclusion of the foregoing check. This check for
NOT-SAME universals exemplifies the details that must be considered if an implementation

is to be efficient.

A second efficiency consideration involves the amount of checking and posting of con-
straints that is done during the formula-matching process. As the matcher accumulates
possible matches, it may generate constraints based on them that it would then propagate
while checking their interaction with constraints on other variables. This would be expensive,
as maximum effort would be invested to make sure that no match is permitted that might
subsequently turn out to be invalid. Previously, to avoid this expense, SIPE did not post
constraints during the matching process. An invalid match will always be detected later by
the system (usually between planning levels). The cost of permitting invalid matches is that
the search must explore blind alleys. In addition, the system could fail to solve problems if
the deductive operators were complex enough to trigger these invalid matches. In the toy
domains on which SIPE was initially tested, these invalid matches rarely occurred and the

simpler matching algorithm was preferred.

However, the complexity of the mobile robot domain triggered problems caused by in-
valid matching. The matcher was therefore rewritten to devote considerably more effort to
matching formulas correctly. The matcher now posts constraints during the matching pro-

cess itself. By posting constraints after the first predicate in a formula has been matched,
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the planner can shorten the search entailed in matching the other predicates. Several com-
plications had to be dealt with, however. The constraint must be removed if the match of
a subsequent predicate fails. One reason for not adding constraints originally was that the
most concise constraint cannot be formulated until all predicates have been matched. Thus,
the constraints added earlier might be large and could slow down all future matching. This
was averted by implementing a chéck for constraint subsumption. The concise .constra.ints

are still computed and added after all predicates have been matched, but, if they subsume

(or are subsumed by) any constraint already present, the subsumed constraint is removed.

8 Summary

We have addressed some of the practical issues involved in controlling a mobile robot with a
domain-independent planning system. A method for implementing the interface between the
planner and the low-level controllers on the robot was outlined. This approach is heuristic
and requires that a new interface be designed for each controller. It defines an appropriate
level for the planning performed by the highest-level planner, but makes no premature com-
mitments to the design of lower-level modules. Although this leaves many difficult problems
unsolved, it nevertheless permits us to begin using the SIPE planner while research continues

on alternative approaches to the problems addressed by lower-level routines.

The redesigned deductive capability of the planner was described in some detail. This is a
crucial feature in SIPE’s ability to represent a larger class of problems than its predecessors.
The extended deductive capability described here significantly increases the types of domains
that can be encoded in the system, while retaining efficiency. The intermingling of execution

and planning within the system provides more flexibility and greater reactivity.

Along with an explication of hierarchical planning in general, a problem, uncovered during

this application, that applies to all hierarchical planners was described, and various solutions
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were presented and evaluated. A few examples illustrating the kind of detail that must be
dealt with to produce an effective implementation were included. These practical issues have

simply been ignored in much of the theoretical work done in planning.

Many central problems remain to be solved. Appropriate low-level controllers need to
be developed. The interfaces between each controller and the planning system must be
designed. In particular, the translation of sensory input into appropriaﬁe levels of description
for the planner is still a major problem. While the approach discussed here is aimed at the
short-term incorporation of domain-independent planners into integrated robots, additional
problems must be resolved before a robust system capable of operating in an unconstrained

environment can become reality.
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