
Efficient On-Demand Routing Using Source-Tracing in Wireless Networks

Jyoti Raju J.J. Garcia-Luna-Aceves
jyoti@cse.ucsc.edu jj@cse.ucsc.edu

Computer Science Department Computer Engineering Department
University of California University of California
Santa Cruz, CA 95064 Santa Cruz, CA 95064

jyoti@cse.ucsc.edu jj@cse.ucsc.edu

Abstract— With on-demand routing, a router maintains routing information for
only those destinations that need to be reached by the router. The approaches used to
date to eliminate long-term or permanent loops in on-demand routing consist of ob-
taining complete routes to destinations dynamically, or obtaining only the next hops
to destinations and validating the information using sequence numbers or internodal
synchronization. We present a new approach to on-demand routing, which we call
the DST (dynamic source tree) protocol. To eliminate looping, routers in DST com-
municate paths to destinations; however, only incremental updates to such paths are
communicated by specifying the second-to-last hop and distance to each node in the
subpath to the destination that must be updated. Simulations experiments are used
to show that, in terms of control packet overhead, DST outperforms substantially the
Dynamic Source Routing (DSR) protocol which is arguably one of the most efficient
on-demand routing approaches to date, while achieving similar performance in terms
of the average delay and throughput of data packets.

I. INTRODUCTION

On-demand routing protocols have been designed to limit the amount
of bandwidth consumed in maintaining up-to-date routes to all destina-
tions in a network by maintaining routes to only those destinations to
which the routers need to forward data traffic. The basic approach con-
sists of allowing a router that does not know how to reach a destination
to send a flood-search message to obtain the path information it needs.
There are several recent examples of this approach (e.g., AODV [11],
ABR [12], DSR [8], TORA [10], SSA [3], ZRP [7]) and the routing
protocols differ on the specific mechanisms used to disseminate flood-
search packets and their responses, cache the information heard from
other nodes’ searches, determine the cost of a link, and determine the
existence of a neighbor. However, all the on-demand routing propos-
als use flood search messages that either: (a) give sources the entire
paths to destinations, which are then used in source-routed data packets
(e.g., DSR); or (b) provide only the distances and next hops to desti-
nations, validating them with sequence numbers (e.g., AODV) or time
stamps (e.g., TORA). One problem with source routing is that it results
in long data-packet headers as the network size increases. On the other
hand, protocols that use sequence numbers or timestamps incur addi-
tional overhead in resetting the sequence number and timestamps in the
presence of partitions and node failures.

In this paper, we introduce and analyze the DST (dynamic source
tree) protocol, which constitutes a new approach for on-demand dis-
tance vector routing in ad hoc networks. As in other on-demand rout-
ing algorithms, DST acquires routes to destinations only when traffic
for those destinations exists and there is no correct route to the des-
tination. The acquired route does not have to be the shortest path; it
has to be valid and of finite metric value. DST does not use source-
routed packets or time stamps to validate distance updates. DST uses
a source-tracing algorithm similar to the one advocated in prior table-
driven routing protocols in which routers maintain routing information
for all network destinations [9]. Using information about the length
and second-to-last hop (�����������	��
�
�
�� ) of the shortest path to all known
destinations, the source tracing algorithm reduces the number of loops
and removes the counting to infinity problem of the distributed Bellman
Ford algorithm.

This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under
grant F30602-97-2-0338.

There are three key contributions of this paper: (i) introducing a new
approach that uses a source-tracing algorithm for on-demand routing,
(ii) presenting the design of a protocol that does not use sequence num-
bers or internodal synchronization to ensure correctness and (iii) show-
ing through simulations that DST incurs less control overhead than
DSR in most situations.

Section II gives a detailed description of DST and presents examples
illustrating the working of the protocol. Section III uses simulations to
compare DST’s performance with the performance of DSR using the
same simulation code and model used in [1] to compare DSR against
other on-demand routing protocols.

II. THE DST PROTOCOL

A. Network Model

To describe DST, a network is modelled as an undirected graph with�
nodes and � links. A router has a single node identifier, and a node

has radio connectivity with multiple nodes through a single physical
radio link. We map a physical broadcast link connecting a node and
its multiple neighbors into point-to-point links between the node and
its neighbors. Each link has a positive cost associated with it. If a link
fails, its cost is set to infinity. A node failure is modelled as all links
incident on the node getting set to infinity.

For the purpose of routing-table updating, a node � considers an-
other node � as its neighbor if � receives an update from neighbor � .
Node � is no longer node � ’s neighbor when the medium access pro-
tocol at node � sends a signal to DST indicating that data packets can
no longer be sent successfully to node � .

Routing messages are broadcast unreliably and the protocol assumes
that routing packets may be lost due to changes in link connectivity, fad-
ing or jamming. Since DST only requires a MAC indication that data
packets can no longer be sent to a neighbor, the need for a link-layer
protocol for monitoring link connectivity with neighbors or transmit-
ting reliable updates is eliminated, thus reducing control overhead. If
such a layer can be provided with no extra MAC overhead, then DST
can be made more proactive by identifying lost neighbors before data
for them arrives, resulting in faster convergence and decreased data
packets losses.

B. Routing Information maintained in DST

A router in DST maintains a routing table, a distance table, a data
buffer and a query table.

The routing table at router � contains entries for destinations needed
by the router. Each entry consists of the destination identifier � , the suc-
cessor to that destination 
��� , the second-to-last-hop to the destination
� �� , the distance to the destination � �� and a route tag ����� �� . When the
element ����� �� is set to ��
�������� � , it implies a loop-free finite value route.
When it is set to � �"!#! , it implies that the route still has to be checked
and when it is set to ������
�� , an infinite metric route or a route with a
loop is implied.

The distance table at router � is a matrix containing, for each $&%(' �
(where ' � is the list of known neighbors) and each destination � needed
by such neighbor, the distance value of the route from � to � through $ ,
� ��*) and the second-to-last hop � ���) on that route. � ���) is always set



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2000 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2000 to 00-00-2000  

4. TITLE AND SUBTITLE 
Efficient On-Demand Routing Using Source Tracing in Wireless
Networks 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

5 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



equal to � �
)��� ! �) , where � �

)� is the distance reported by $ to � in
the last routing message and ! �) is the link cost of link ( ��� $ ).

The data buffer is a queue that holds all the data packets waiting for
routes to destinations. There are various schemes to do buffer manage-
ment but we chose to use the scheme used by most existing on-demand
routing protocols. Each data packet also has a time value, which is set
to the time when the packet is put into the buffer. A packet that has been
in the buffer for more than � ����� � $�� ����� ��
 � � seconds is dropped. The
data buffer is checked periodically for any packets that may be sent or
dropped.

The query table is used to prevent queries from being forwarded in-
definitely. As in DSR, there are two types of queries; queries with
zero hop count which just get propagated to neighbors and queries
with maximum hop count that are forwarded to a maximum distance
of � �	� 
���
�� hops from the sender. For a destination � , the query
table contains the last time a maximum hop query was sent � 
 �� , the
last time a zero hop query was sent ��� 
��� , the hop count of the last
query sent ��� 
 �� , the last time a query was received � � �� . At the source
of the flood search, two maximum hop count queries are always sep-
arated by ��� ����� 
�� � � ����� ��
 � � seconds. A query is forwarded by a
receiver only if the difference between the time it is received and � � �� is
greater than ��� ����� ������� ��� � ����� ��
 � � , where ��� ����� �����	� ��� � ����� ��
 � �
is slightly lesser than ��� ����� 
�� � � ����� ��
 � � .
C. Routing Information exchanged in DST

There are two types of control packets in DST - ��� ��� � ��
 and
� ��� ��� ��
 . All control packets headers have the source of the packet
(� $���� 
	��� ), the destination of the packet (� $���� � 
 � ), the number of hops
(� $���� � 
 � 
 ) and an identifier � $���� � ���"� that can be set to � � �!�#" or
�$
 � �	% � . Each packet has a list of routing entries, where each en-
try specifies a destination � , a distance to the destination � � �� and a
predecessor to the destination �*� �� .

If the MAC layer allowed for transmission of reliable updates with
no retransmission overhead, only incremental routing updates could be
sent. In this paper, however, we assume a MAC protocol based on
collision avoidance, in which sending larger control packets does not
decrease throughput at the MAC layer, because the overhead for the
MAC protocol to acquire the channel does not depend on packet size
[5], [6]. Therefore, in the rest of the paper, we assume that routers
transmit their entire routing tables when they send control messages.
Control packet size may affect the delay experienced by packets in the
MAC layer. However, as our simulations show, this does not affect
data packet delays because the number of control packets we generate
is substantially low.

Data packets in DST only need to have the source and destination in
the header, rather than the source routes as in DSR.

D. Creating Routes

When a network is brought up, each node ( � ) adds a route to itself
into its routing table with a distance metric ( � �� ) of zero, the successor
set equal to itself ( � ) and the tag ( ����� �� ) set to correct. To differentiate
a route to itself from all other routes, a node sets the local host address
( &('�)*� +,� +*�-& ) as the predecessor to itself.

When a data packet is sent by an upper layer to the forwarding layer,
the forwarding layer checks to see if it has a correct path to the desti-
nation. If it does not, then the packet is queued in the buffer and the
router starts a route discovery by broadcasting queries. Route discov-
ery cycles are separated by query receive timeout seconds. One zero
hop query and one maximum hop query are sent in every cycle. A
zero hop query allows the sender to query neighboring routing tables
with one broadcast. If the zero hop query times out ((present time -
��� 
 �� ) ./� ����
 � ��� 
�� � � ����� ��
 � � ), then an unlimited hop query (with� $���� � 
 � 
 set to � �#� 
���
�� ) is sent out. Consider the six-node net-
work in Fig. 1.a where all link costs are of unit value and where node �

broadcasts a query for destination � , with the � $���� 
	��� set to � , � $���� � 
 �
set to � , and � $���� � 
*� 
 set to � �#� 
���
�� . The parenthesis next to
each node in the example depicts the routing table entry (distance, pre-
decessor) for destination � . The symbol !0� stands for local host address
(127.0.01). The query packet contains a list of all the routing table en-
tries of the sender � . The entries are shown within the square brackets,
each entry in the (destination, distance, predecessor) form. The entries
are in a increasing distance order, such that a node � receiving a query
from an unknown neighbor $ , adds the neighbor $ to its distance tables
on reading the first entry in the query and proceeds to consider all other
entries as the distances reported by $ .

Consider the node � , where a query is received. To process the
query, each entry (����� �21� � � � 1� ) is read. If the entry is for an un-
known destination, then the destination is initialized ( � ��43 5 ,
� �� � 
 �� 3 '6�$787 � � �2� ; � ���) 395 , � ���) 3 '6�$787 � � �2�: $ % ' � . Then, the distance table entry for neighbor � is updated.
Since the distance � � 11 is equal to zero, � is marked as a neighbor.
The value for � reported by other neighbors whose path contains � is
also updated. This step helps prevent permanent loops by preemptively
removing stale information.

Finally, routing table entries are updated to pick as successor a neigh-
bor $ to destination � if both the following conditions are true
1. $ offers the shortest distance to all nodes in the path from � to � .
2. the path from � to $ does not contain � and does not contain any
repeated nodes.
If either of the two conditions are not satisfied, then ����� �� is set to ������
�� .
Else, it is set to �*
���� ��� � and neighbor $ is designated the successor and
the distance value to � is set to � ��*) and the predecessor is set to � ��*) .

After processing all entries and updating the routing table, the node �
checks to see if it has a route to � . Since there is no route, a query packet
is broadcasted with the same header fields as the processed query, be-
sides � $���� � 
 � 
 which is decremented by one if (a.) a node does not
have a route to � $���� � 
 � , (b.) � $���� � 
 � 
 is greater than one, and (c.)
if the time elapsed since the last query was received is greater than
��� ����� � ����� ��� � ����� ��
 � �

The routing entries added to the forwarded query reflect the rout-
ing table entries of current node � . The packet is then broadcasted to
the limited broadcast address. In Fig. 1.b, nodes � , ; and � broadcast
queries.

In Fig. 1.c, we see that nodes � , ; , � do not send any more
queries because the time elapsed since the last query sent is lesser than
��� ����� � ����� ��� � ����� ��
 � � . On the other hand, at nodes � and < , a finite
and valid route to � is found and a reply update is sent. A reply update
sent by a node � has a different structure than a regular update, which
has � $���� � 
 � set to the limited broadcast address and � $���� 
���� set to � .
The reply update sent by < has field � $���� � 
 � set to the � $���� 
	����= � of
the query and the field � $���� 
���� set to the � $���� � 
 � = � of the query. All
updates are broadcast to the limited broadcast address.

When node � receives an update, it checks the value of � $���� � 
 � . If it
is set to a value other than the limited broadcast address, then the up-
date being sent is a reply update, else it is a regular update. The entries
are processed in a manner similar to the entries of the query. A regular
update is broadcast in response to a regular update, with � $���� � 
 � set to
the limited broadcast address and � $���� 
	��� set to � if (a.) the distance
to a known destination increases, or (b.) if a node loses the last finite
route to a destination. The reply update has different rules for propaga-
tion. In Fig 1.d , a reply update is rebroadcasted by � with the original� $���� � 
 � and � $���� 
	��� , because (a.) a finite path to � $���� � 
 � = � exists,
and (b.) the distance to � $���� 
	���>= � changes from infinite to finite after
processing the reply update. Nodes � and < do not rebroadcast reply up-
dates because the second condition is not satisfied. Node � gets a reply
update from node � and will set its successor to node � after processing
the entries in the query. Node � does not send any more reply updates.
However, a regular update will be sent if any of the two conditions for



[(d,0,lh)]

[(d,0,lh)]

[(d,0,lh)]

a (0,lh)

b(1,b) c(_,_)

e(_,_)

d(_,_)f(_,_)

[(e,0,lh),(d,1,e)] [(e,0,lh),(d,1,e)]

[(f,0,lh),(d,1,f)]

[(c,0,lh),(d,1,c)][(c,0,lh),(d,1,c)]

a (0,lh)

b(1,b) c(_,_)

e(_,_)

d(_,_)f(_,_)

(a) (b)

(b,1,a),(d,2,e)]
[(a,0,lh),(e,1,a)

(c,1,b),(d,2,c)]
[(b,0,lh),(a,1,b)

a (0,lh)

b(1,b) c(_,_)

e(_,_)

d(_,_)f(_,_)
(d,1,c),(a,2,b)]

[(c,0,lh),(b,1,c),

(d,1,e),(b,2,a)]
[(e,0,lh),(a,1,e),(f,1,e),

(d,1,e),(b,2,a)]
[(e,0,lh),(a,1,e),(f,1,e),

(d,1,c),(a,2,b)]
[(c,0,lh),(b,1,c),

b(1,b) c(2,b)

e(1,e)

d(_,_)f(_,_)
a (0,lh)

(c) (d)

Fig. 1. Example of the Query-Reply process in DST. Node � is searching for destination � . The parenthesis contains the distance and predecessor values for � .

regular updates are satisfied.
Using the above procedure, DST allows a source to get multiple

paths to a required destination. By forwarding a reply update only when
the route to the required destination changes from infinite to finite, the
number of updates is reduced at the expense of non-optimal routes. The
same reasoning motivates not sending regular updates when a new des-
tination is found or when a distance to a destination reduces. However,
distance increases prompt updates because a loop can occur only when
a node picks as successor a neighbor that has a distance greater than
itself.

E. Maintaining Routes

DST does not poll neighbors constantly to figure out link connec-
tivity changes, which avoids control overhead due to periodic update
messages, but may result in sub-optimal routes and longer convergence
time. A link to a neighbor is discovered only when an update or a
query is received from that neighbor. On finding a new neighbor $ the
neighbor is added to the distance table. An infinite distance to all des-
tinations through $ is assumed, with the exception of node $ itself and
any destinations reported in the received routing message.

A failure of a link is detected when a lower-level protocol sends an
indication that a data packet can no longer be sent to a neighbor. The
neighbor is removed from the distance table and the routing table is
updated.

DST provides two conditions to prevent data packets from looping.
A data packet is dropped and a regular update is sent if (a.) the data
packet is sent by a neighbor that is in the path from the present node
to the destination of the data packet, or (b.) the path implied by the
neighbor’s distance table entry is different from the path implied in the
routing table.

F. Packet Forwarding

The data packet header contains only the source and the destination
of the data packet. When a data packet originated at a node arrives at its
forwarding layer, the packet is buffered if there is no finite route to the
destination. The node then starts the route discovery process. If a finite
and correct route is found, then the packet is forwarded to the successor
as specified by the routing table.

If a data packet is not originated at a node, then the data packet is
only buffered if there is no entry in the routing table for � $���� � 
 � . In
this case, route discovery is started by the intermediate node. If there
is a correct and finite route then the data packet is first checked for
conditions a and b described in section II-E. If the two conditions are
satisfied, the data packet is forwarded to the successor 
 �� )���� 1 �

� . If there

is route with infinite distance, then the packet is dropped and a regular
update is broadcast to all neighbors. Eventually, the source of the data
will learn of the loss of routes and it will restart the route discovery
process.

III. PERFORMANCE EVALUATION

We ran a number of simulation experiments to compare DST’s av-
erage performance against the performance of DSR, which has been
proved very efficient in earlier studies [1]. Both protocols are imple-
mented in

� 
$% , which is a C++ based toolkit that provides a wire-
less protocol stack and extensive features for accurately simulating the
physical aspects of a wireless multi-hop network. The stack uses IP as
the network protocol. The routing protocols uses UDP to transfer up-
date packets. The MAC layer implements IEEE 802.11 standard based
collision avoidance and the physical layer is based on a direct sequence
spread spectrum radio with a link bandwidth of 1 Mbit/sec.

To run DSR in CPT, we ported the DSR code available in the � 
 ' [4]
wireless release. There are two differences in our DSR implementation
as compared to the implementation used in [1]. Firstly, we do not use
the ����
 �(� 
	� � 
 � 
 listening mode in DSR. We, however, implement the
promiscuous learning of source routes from data packets. This follows
the specification given in the Internet Draft of DSR. Our reason for
not allowing promiscuous listening is that, besides introducing security
problems, it cannot be supported in any IP stack where the routing pro-
tocol is in the application layer and the MAC protocol uses multiple
channels to transmit data. Secondly, we do not reschedule packets that
have already been scheduled over a link (for both protocols) since the
routing protocol in our stack does not have access to the MAC and link
queues. Tables I and II show the constants used in the implementation
of DSR and DST, respectively.

TABLE I

CONSTANTS USED IN DSR SIMULATION

Time between ROUTE REQUESTS 500 msec
(exponentially backed off)
Size of source route header carrying 4 � +4(bytes)
carrying � addresses
Timeout for Ring 0 search 30 msec
Time to hold packets awaiting routes 30 sec
Max number of pending packets 50



TABLE II

CONSTANTS USED IN DST SIMULATION

Query send timeout 5 sec
Zero query send timeout 30 msec
Data packet timeout 30 sec
Max number of pending packets 50
Query receive timeout 4.5 sec
MAX HOPS 17

A. Scenarios used in comparison

We compared DSR and DST using two types of scenarios. In both
scenarios, we used the “random waypoint” model described in [1]. In
this model, each node begins the simulation by remaining stationary for
pause time seconds and then selects a random destination and moves to
that destination at a speed of 20 m/s. Upon reaching the destination, the
node pauses again for pause time seconds, selects another destination,
and proceeds there as previously described, repeating this behavior for
the duration of the simulation. We used the speed of 20m/s, which
is the speed of a vehicle, because it has been used in simulations in
earlier papers [1], [2] and thus provides a basis for comparison with
other protocols. In both scenarios, we used a 50 node ad-hoc network,
moving over a flat space of dimensions 7 X 6 miles (11.2 X 9.7 km)
and initially randomly distributed with a density of approximately one
node per square mile.

Two nodes can hear each other if the attenuation value of the link
between them is such that packets can be exchanged with a probabil-
ity � , where � . + . Attenuation values are recalculated every time a
node moves. Using our attenuation calculations, radios have a range of
approximately 4 miles (135 db).

We have random data flows, where each flow is a peer-to-peer con-
stant bit rate (CBR) flow and the data packet size is kept constant at 64
bytes. Data flows were started at times uniformly distributed between
20 and 120 seconds and they go on till the end of the simulation. The
total load on the network is kept constant at 80 data packets per second
(40.96 kbps) to reduce congestion. Our rationale for doing this is that
increasing the packet rate of each data flow does not test the routing
protocol. On the other hand, having flows with varying destinations
does so. We also vary the pause times: 0, 30, 60, 120, 300, 600 and 900
seconds as done in [1].

In the first scenario, there are 20 CBR sources, each of which estab-
lishes a connection with a randomly picked destination.

In the second scenario, the number of sources is fixed at 10 sources
with 60 flows and each source has peer-to-peer connections with 6
destinations. This scenario helps us evaluate the scalability of the ap-
proaches with respect to the number of outward flows each source has.

B. Metrics used

In comparing the two protocols, we use the following metrics:
� Packet delivery ratio: The ratio between the number of packets re-
ceived by an application and the number of packets sent out by the
corresponding peer application at the sender.

� Control Packet Overhead: The total number of routing packets sent
out during the simulation. Each broadcast packet is counted as a single
packet.

� End to End Delay: The delay a packet suffers from leaving the sender
application to arriving at the receiver application. Since dropped pack-
ets are not considered, this metric should be taken in context with the
metric of packet delivery ratio.
Packet delivery ratio gives us an idea about the effect of routing policy
on the throughput that a network can support. It also is a reflection of
the correctness of a protocol.

Control packet overhead has an effect on the congestion seen in the
network and also helps evaluate the efficiency of a protocol. Low con-
trol packet overhead is desirable in low-bandwidth environments and
environments where battery power is an issue.

Average end-to-end delay is not an adequate reflection of the delays
suffered by data packets. A few data packets with high delays may
skew results. Therefore, we plot the cumulative distribution function
of the delays. This plot gives us a clear understanding of the delays
suffered by the bulk of the data packets. Delay also has an effect on the
throughput seen by reliable transport protocols like TCP.

C. Simulation results

C.1 Scenario 1

Scenario 1 is identical to the one presented in [1]. There are 20 CBR
sources each of which picks a random destination to send traffic to.

Fig. 2 shows the control packet overhead for varying pause times. An
obvious result is that the control packet overhead for both the protocols
reduces as the pause time increases. DST is about 34 % better than DSR
at pause time zero. At low rates of movement, DST is a clear winner
with one tenth the control packet overhead of DSR. Clearly, the fact that
the updates in DST contain the entire routing table, means that nodes
running DST have a higher chance of knowing paths to destinations for
whom no route discovery has been performed in the past. We are able
to mimic the behavior of table-driven routing protocols in low topology
change scenarios, in that we almost have information about the entire
topology with very few flood searches.

As shown in Fig. 3, at lower pause times, DSR has the same packet
delivery ratio as DST. However, as the pause time decreases, DSR suf-
fers due to data packets getting dropped at the link layer, indicating
that the routes provided in the source routes are not correct any more.
At lower pause times, links get broken faster. Even though this results
in higher control overhead, the routes obtained are relatively new. As
mentioned earlier, we keep the load on the network constant. Since this
load is divided among a large number of flows, we see very little con-
gestion and therefore most packets get through at higher pause times
during which the topology is close to static.

Fig. 4 shows the cumulative delay of the protocols. The graphs
shown are logarithmic in time to accommodate the wide variation. Al-
most all packets are sent within 8 seconds in DST while some packets
in DSR take almost 30 seconds. This is because a packet is allowed
to stay in a buffer for a maximum of 30 seconds before it is dropped.
These are packets that found the path just in time.

C.2 Scenario 2

Fig. 5 show the amount of control packet overhead each protocol
incurs for varying pause times. In both protocols control packet over-
head is a function of the workload and the changes in link connectivity.
The control overhead of DSR is substantially higher than DST, almost
580% higher. Due to the nature of on-demand routing protocols, both
protocols show higher overhead when there are flows to more destina-
tions.

Fig. 6 shows the percentage of data packets received. This metric
shows very similar behavior for both DSR and DST, rising rapidly af-
ter pause time 15. Since there is very little congestion due to control
packets at the higher pause time, most of the data packets get through.

Fig. 7, show the delay behavior of the data packets and DSR per-
forms marginally better.

IV. CONCLUSIONS

We presented DST, which is an on-demand routing algorithm based
on a source tracing algorithm. DST does not use sequence numbers and
therefore is not prone to inefficiencies in the presence of node failures;
this leads us to suggest that our scheme of using only local timestamps
to prevent indefinite route queries can be adopted by other one-demand



0

2000

4000

6000

8000

10000

12000

14000

16000

0 100 200 300 400 500 600 700 800 900

N
um

be
r 

of
 c

on
tr

ol
 p

ac
ke

ts

Pause time in seconds

Control packets for varying mobility

DSR
DST

Fig. 2. Number of control packets sent for 20 sources picking random destinations for
peer-to-peer flow

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900

P
er

ce
nt

ag
e 

of
 d

at
a 

pa
ck

et
s 

re
ce

iv
ed

Pause time in seconds

Percentage of data packets received for varying mobility

DSR
DST

Fig. 3. Percentage of data packets received for 20 sources picking random destinations for
peer-to-peer flow

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100

P
er

ce
nt

ag
e 

of
 d

at
a 

pa
ck

et
s

Delay in seconds

Cumulative distribution of delay

DSR
DST

Fig. 4. Cumulative delay for pause time 0, 20 sources picking random destinations for
peer-to-peer flow

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900

N
um

be
r 

of
 c

on
tr

ol
 p

ac
ke

ts

Pause time in seconds

Control packets for varying mobility

DSR-60flows
DST-60flows

Fig. 5. Number of control packets sent for 60 flows - 10 sources, 6 destinations

80

85

90

95

100

0 100 200 300 400 500 600 700 800 900

P
er

ce
nt

ag
e 

of
 d

at
a 

pa
ck

et
s 

re
ce

iv
ed

Pause time in seconds

Percentage of data packets received for varying mobility

DSR-60flows
DST-60flows

Fig. 6. Percentage of data packets received for 60 flows - 10 sources, 6 destinations

0

0.2

0.4

0.6

0.8

1

0.1 1
P

er
ce

nt
ag

e 
of

 d
at

a 
pa

ck
et

s
Delay in seconds

Cumulative distribution of delay

DSR-60flows
DST-60flows

Fig. 7. Cumulative delay sent for 60 flows - 10 sources, 6 destinations (pause time 0)

routing protocols to prevent routing inefficiencies. DST also does not
use reliable updates or polling of neighbors. This implies that DST cre-
ates substantially less overhead than protocols that use the above fea-
tures. We introduce conditions that reduce control packet overhead at
the expense of non-optimal routes, all the while preventing permanent
looping of data packets.

Simulations were used to compare our protocol against DSR, which
is arguably one of the most efficient on-demand routing protocols re-
ported in literature. For all scenarios, DST performs consistently better
than DST with respect to control overhead. The results for delay, hop
count and percentage of data packets received are mixed, which leads
us to believe that both protocols are at par when performance in these
metrics is taken into consideration. Our simulations results show that
DST is very suitable for ad-hoc networks and incurs limited control
overhead, even in cases of high mobility.

REFERENCES

[1] J. Broch et. al. A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Proto-
cols. In Proc. ACM MOBICOM 98, Dallas, TX, October 1998.

[2] Per Johansson et. al. Scenario Based Performance Analysis of Routing Protocols for Mobile Ad-Hoc
Networks. In Proc. ACM Mobicom’99, Seattle, Washington, August 1999.

[3] R. Dube et. al. Signal Stability-Based Adaptive Routing (SSA) for Ad-Hoc Mobile Networks. IEEE
Pers. Commun., February 1997.

[4] Kevin Fall and Kannan Varadhan. ns notes and documentation. The VINT Project, UC Berkeley,
LBL, USC/ISI and Xerox PARC, 1999. Available from http://www-mash.cs.berkeley.edu.

[5] C.L. Fullmer and J.J. Garcia-Luna-Aceves. Solutions to Hidden Terminal Problems in Wireless
Networks. In Proc. ACM SIGCOMM’97, Cannes, France, September 1997.

[6] J.J. Garcia-Luna-Aceves and A. Tzamaloukas. Reversing The Collision-Avoidance Handshake in
Wireless Networks. In Proc. ACM/IEEE Mobicom’99, Seattle, Washington, August 1999.

[7] Z. Haas and M. Pearlman. The Performance of Query Control Schemes for the Zone Routing Proto-
col. In Proc. ACM SIGCOMM ‘98, Vancouver, British Columbia, August 1998.

[8] D. B. Johnson and D. A. Maltz. Dynamic Source Routing in Ad-Hoc Wireless Networks. Mobile
Computing, 1994.

[9] S. Murthy and J.J Garcia-Luna-Aceves. An Efficient Routing Protocol for Wireless Networks. ACM
Mobile Networks and Applications Journal, 1996.

[10] V. D. Park and M. S. Corson. A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless
Networks. In Proc. IEEE INFOCOM’97, Kobe, Japan, April 1997.

[11] C. E. Perkins. Ad Hoc On-Demand Distance Vector (AODV) Routing. Internet Draft–Mobile Ad
hoc NETworking (MANET) Working Group of the Internet Engineering Task Force (IETF). To be
considered Work in Progress., November 1997.

[12] C.K. Toh. Associativity-Based Routing for Ad-Hoc Mobile Networks. Wireless Personal Commu-
nications Journal, Special Issue on Mobile Networking and Computing Systems, Kluwer Academic
Publishers, 4(2):103–109, Mar. 1997.


