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Abstract

Theory resolution constitutes a set of complete procedures for incorporating theories into a
resolution theorem-proving program, thereby making it unnecessary to resolve directly upon
axioms of the theory. This can greatly reduce the length of proofs and the size of the search
space. Theory resolution eflects a beneficial division of labor, improving the performance
of the theorem prover and increasing the applicability of the specialized reasoning proce-
dures. Total theory resolution utilizes a decision procedure that is capable of determining
unsatisfiability of any set of clauses using predicates in the theory. Partial theory resolution
employs a weaker decision procedure that can determine potential unsatisfiability of sets
of literals. Applications include the building in of both mathematical and special decision
procedures, e.g., for the taxonomic information furnished by a knowledge representation
system. Theory resolution is a generalization of numerous previously known resolution re-
finements. Its power is demonstrated by comparing solutions of “Schubert’s Steamroller”

challenge problem with and without building in axioms through theory resolution.






1 Introduction

Incorporating a theory into derived inference rules so that its axioms are never resolved upon
has enormous potential for reducing the size of the exponential search space commonly en-
countered in resolution theorem proving [11,17,5,38]. Theory resolution is a method of
incorporating specialized reasoning procedures in a resolution theorem prover so that the
reasoning task will be effectively divided into two parts: special cases, such as reasoning
about inequalities or about taxonomic information, are handled efficiently by specialized
reasoning procedures, while more general reasoning is handled by resolution. The connec-
tion between the two reasoning components is made by having the resolution procedure
resolve on sets of literals whose conjunction is determined to be unsatisfiable by the special-
ized reasoning procedure, rather than by just using ordinary unification of complementary
literals. The objective of research on theory resolution is the conceptual design of deduction
systems that combine deductive specialists within the common framework of a resolution
theorem prover. l

We are incorporating our work on theory resolution in the development of a deduction
system [31] for use in the KLAUS nat.ural-l_anguage-understanding system [14]. The use of
theory resolution to help incorporate theories of taxonomies, orderings, etc., should be very
beneficial, given the pervasive need for these forms of reasoning in carrying out the task of
understanding language and the real world.

Concern has often been expressed about the ineffectiveness of applying resolution the-
orem proving to problems in artificial intelligence. Theory resolution is designed to partly
address this concern by providing a means for incorporating specialized reasoning proce-
dures in a resolution theorem prover. The division of labor achieved in the reasoning process
by theory resolution is intended to produce the dual advantages of improving the theorem
prover’s performance by the use of more efficient reasoning procedures for special cases and
of increasing the range of application of the specialized reasoning procedures by including
them in a more general reasoning system.

Past criticisms of resolution can often be characterized by their pejorative use of the




terms uniform and syntacéic. Theory resolution meets these objections head-on. In theory
resolution, a specialized reasoning procedure may be substituted for ordinary syntactic
unification to determine unsatisfiability of sets of literals. Because the implementation of
this specialized reasoning procedure is unspecified—to the theorem prover it is a “black
box” with prescribed behavior, namely, able to determine unsatisﬁabiiity in the theory
it implements—the resulting system is nonuniform because reasoning within the theory
is performed by the specialized reasoning procedure, while reasoning outside the theory
is performed by resolution. Theory resolution can also be regarded as being not wholly
syntactic, since the conditions for resolving on a set of literals are no longer based on their
being made syntactically identical, but rather on their being unsatisfiable in a theory, and
thus resolvability is partly semantic.

Besides being a higher-level inference rule than ordinary resolution by virtue of its use
of specialized reasoning procedures, theory resolution is also a higher-level rule because, as
in hyperresolution, it allows inferences requiring more than two parent clauses.

Theory resolution can be seen partly as an extension of the work on building in equa-
tional theories (i.e., theories that can he expressed as a set of equalities) [26]. This consisted
of using special unification algorithms and reducing terms to normal form. This work has
been extended substantially, particularly in the area of development of special unification
algorithms for various equational theories [29].

Not all theories that it would be useful to incorporate afe equational. For example,
reasoning ahout orderings and other transitive relations is often necessary, but using or-
dinary resolution for this is quite inefficient. It is possible to derive an infinite number of
consequences from a < b and (z < y) A (y < z) D (z < z) despite the obvious fact that
a refutation based on just these two formulas is impossible. A solution to this problem is
to require that use of the tramsitivity axiom be restricted to occasions when either there
are matches for two of its literals (partial theory resolution) or a complete refutation of the
ordering part of the clauses can be found (total theory resolution).

An important form of reasoning in artificial intelligence applications embodied in knowl-



edge representation systems [10] is reasoning about taxonomic information and property
inheritance. One of our goals is to be able to take advantage of the efficient reasoning
provided by a knowledge representation system by using it as a taxonomy decision proce-
dure in a larger deduction system. This makes sense because it relieves the general-purpose
deduction system of the need to perform taxonomic reasoning and because it extends the
power of the knowledge representation system towards greater logical completeness. Other
researchers have also cited the advantages of integrating knowledge representation systems
with more general deduction systems [9,27). KRYPTON [8,25] represents an approach to
constructing a knowledge representation system composed of two parts: a terminological
component (the TBox) and an assertional component (the ABox). For such systems, theory
resolution indicates in general how information can be provided to the ABox by the TBox

and how it can be used by the ABox.

2 Theory Resolution

We will now define the theory resclution operation and, in succeeding sections, discuss
various useful restrictions on theory resolution. We will limit our discussion to the variable-
free “ground” case of theory resolution, since lifting to the general case is straightforward.
In the general case, it is required only that all ground theory resolvents of instances of the
formulas be represented as instances of general theory resolvents.

We will assume the standard definitions of a term, an atomic formula {atom), and a
literal. In forming literals from etomic formulas, the symbol = will be used to represent
negation. It is also used to represent the operator that forms a literal of the opposite
polarity, e.g., if L is the literal A then =L denotes A.

We will consider a clause to be a disjunction of n > 0 literals. If n = 0, the clause is
the empty clause O. If n = 1, the clause is a unit clause. The disjunction connective V is
assumed to be associative and commutative, i.e., ordering of the literals in a disjunction is
immaterial; V is also assumed to be idempotent, i.e., forming the disjunction of two clauses

which contain literals in common will result in only one occurrenee of each such literal



appearing in the resulting disjunction. The empty clause O is the identity element for V.
We will generally make no distinction between a unit clause and the single literal of which
it is composed.

We will also use the standard A (conjunction), O (implication), and = (equivalence)
connectives in examples.

We will assume the standard definitions of an interpretation, an interpretation satisfying
or falsifying a formula or set of formulas, and a formula or set of formulas being satssfiable
or unsatisfiable.

Any satisfiable set of formulas that we wish to incorporate into the inference process can
be regarded as a theory. This definition of a theory being a set of formulas is used in defining
T-unsatisfiability, ete., but should not be taken too seriously for implementation purposes.
An objective of theory resolution is the incorporation of theories into the inference process
so that it will be unnecessary to resolve directly upon the axioms of the incorporated theory.
Moreover, theory resolution does not require any direct representation of the formulas of
the theory in the definition of the inference operations either. For example, the decision
procedure that theory resolution requires can be a computer program, and the formulas that
comprise the theory could only be ascertained by examining the structure and behavior of

the program.

Definition 1 A T-interpretation is an interpretation that satisfies {the formulas of] theory
T.

For example, in a theory of partial ordering ORD consisting of ~(z < z) and (z <
y) Ay < 2) O (z < £), the predicate < cannot be interpreted so that a < a has value true
ora < ¢ has value falseif a < band b < ¢ both have value true. In a taxonomic theory TAX
including Boy(x) O Person(z), Boy(John) cannot have value true while Person(John) has

value false.

Definitlon 2 A set of clauses S is T-unsatisfiable iff no T-interpretation satisfies S. S is

minimally T -unsatisfiable iff S, but no proper subset of S, is T-unsatisfiable.



Definition 8 Let Cy,...,Cy, (m = 1) be a set of nonempty clauses, let each C; be de-
composed as K; V L; where K; is a nonempty clause, and let Ry,..., R; (n > 0) be unit
clauses. Suppose the set of clauses Ki,...,Km, R),..., Ry is T-unsatisfiable. Then the
clause Ly V++*V Ly, VR V- -- ¥V 2Ry, is a theory resolvent using theory T (T -resolvent)
of C1,...,Cm. The theory resolvent is called an m-ary theory resolvent {(unary ifl m = 1,
binary iff m = 2). It is a total theory resolvent ifl n = 0; otherwise it is partial. K,..., Kn,
is called the key of the theory resolution operation. For partial theory resolvents, R,,..., R,
is a set of conditions for the T-unsatisfiability of the key. The negation =R, V:--V =R, of
the conjunction of the conditions is called the ressdue of the theory resolution operation. It

is a narrow theory resolvent iff each K; is a unit clause; otherwise it is wide.

The definition above classifies individual theory resolution operations according to whether
they are total or partial and wide or narrow. Theory resolution procedures are classified
according to the operations allowed: partial theory resolution permits total as well as par-
tial theory resolution operations, while total theory resolution permits only total theory
resolution operations; wide theory resolution permits narrow as well as wide theory res-
olution operations, while narrow theory resolution permits only narrow theory resolution
operations. Thus partial theory resolution includes total theory resolution and wide theory

resolution includes narrow theory resolution.

Example 4 A set of unit clauses is unsatisfiable in the theory of partial ordering ORD iff
it contains a.chein of inequalities ¢} < -+ < #,(r > 2) such that either ¢, is the same as
t, or =(t; < i,) is also one of the clauses. P is a unary total narrow OR D-resolvent of
(s < a)VP. PVQ i8 a binary total narrow ORD-resolvent of (a < b)V P and (b <a)V Q.
PVQVRVS is a 4-ary total narrow OR D-resolvent of (s < b)VP, (b < e)VQ, (¢ <dIVR,
and —{a < d) v §. This can also be derived incrementally through partial narrow ORD-
resolution, i.e., by resolving (¢ < 5}V P and (b < ¢) V Q to obtain (a < ¢)V PV Q, resolving
that with (¢ < d) V R to obtain (a < d)V PV @ V R, and resolving that with ~(a < d)Vv §
to cbtain PVY@QV RV S.



Example 5 Suppose the taxonomic theory TAX includes a definition for fatherhood
Father(z) = [Mon(z) A 3yChild(z,y)]. Then Father(Fred) is a partial wide theory
resolvent of Child(Fred, Pat) Vv Child(Fred,Sandy) and Man(Fred). Also, O is a to-
tal wide theory resolvent of Child(Fred, Pat) V Child(Fred,Sandy), Man(Fred), and
. —Father(Fred).

Thus, the type of reasoning that is employable in the decision procedure can be quite
different from and more effective in its domain than resolution.

Note that the definition of a theory resolvent includes ordinary resolvents since the
unsatisfiability of pairs of complementary literals implies their T-unsatisfiability.

The following proves the soundness of theory resolution.

Theorem 6 Let T be a theory, S a 2et of clauses, and C g T-resolvent of S. Then every

T -snterpretation I that satisfies S also satisfies C.

Proof: Let I be any T-interpretation that satisfies S. Consider any decomposition of
clauses in § into K; and L; leading to T-resclvent C being Ly V-V L, VR V- VR,
Suppose I satisfies some L;. Then I also satisfies C. Alternatively, suppose I falsifies every
L;. Because [ satisfies S, I must satisfy every K;. But since K,,...,Km, R1,...,Rn 1s
T-unsatisfiable, J must falsify at least one R;. Thus, J must satisfy at least one = R; and

consequently C.

Definition-3 states what can be inferred by theory resolution and Theorem 6 confirms
that the inferences are all valid. However, not all instances of theory resolution satisfying
the definition need actually be inferred for completeness. This is important because the
definition of theory resolution is too general to be usefully applied directly. For example, if
Ci1,...,Cn, is any T-unsatisfiable set of clauses then O is always derivable from Cy,...,Cp,
in a single total wide theory resolution step with each C; decomposed into K; = C; and
L; = O. This will be necessary for some sets of clauses, but to require it always would

make the definition of theory resolution essentially useless.



In the following sections, we will explore some possible restrictions on the definition of
theory resolution that make it practical to apply while preserving completeness. The first
restriction we will consider is an instance of total wide theory resolution. In this form of
total wide theory resolution, clauses are divided into two subclauses—one using predicates
in the theory, the other not. If for some set of clauses the conjunction of the theory
subclauses (the key) is T-unsatisfiable, then the disjunction of the nontheory subclauses
can be derived by theory resolution. This is a powerful and general procedure, but has the
disadvantage that deciding T-unsatisfiability of sets of clauses may be too difficult. Certainly
it is infeasible for some specialized reasoning procedures, such as taxonomic reasoning in
knowledge representation systems, that are incapable of dealing with disjunction.

More generally, it is often convenient to be able to use a simpler decision procedure
than one capable of deciding T-unsatisfiability of sets of clauses. Narrow theory resolution
is proposed for such cases. In narrow theory resolution, only T-unsatisfiability of sets of
literals, not clauses, must be decided. Total and partial narrow theory resolution are both
possible. In total narrow theory resolution, the resolved-upon literals (the key) must be
T-unsatisfiable. In partial narrow theory resolution, the key must be T-unsatisfiable only
under some conditions. The negated conditions are used as the residue in the formation
of the resolvent. Partial narrow theory resolution generalizes results presented in [32] by
aliowing resolution with any number of key literals, i.e., by not being limited to binary

theory resolution.

2.1 Total Wide Theory Resolution

Suppose we have a decision procedure for T that ie capable of finding all minimally 7T-
unsatisfiable subsets of any set of clauses containing only predicates in T'. This procedure
could then be applied to § with all literals having predicates not in T removed. For each
minimally T-unsatisfiable subset discovered, a total wide theory resolvent, which contains
no occurrences of predicates in T, can be derived.

This is a particular case of wide theory resolution in which the literals that are resolved




upon by means of theory resolution are determined by their predicate symbols. Following

is a completeness proof for this form of wide theory resolution.

Lemma 7 Let S be an unsatisfiable set of clauses and P a set of predicates. Let S be
decomposed into § = Sp U Sp so that every clause in Sp has an occurrence of a predicate
" in P and no clause in Sg has an occurrence of a predicate in P. Each clause C; in Sp 13
of the form K; V L;, where all predscates sn K; are in P and all predicates sn L; are not in
P. Each K; 1s nonempty, but L; might be empty. Let X be the set of all clausea such that
Ciyy«++y Ci,n are clavses in Sp, K;,, ..., K;,, ts a minimally unsatisfiable set of clauses, and

the clause in X is of the form L;, V---V L; . Then S5U X is unsatiafiable.

Proof: Because S is unsatisfiable, and by virtue of the completeness of A-ordered
resolution,' there exists an A-ordered resolution refutation of S with predicates in P pre-
ceding predicates not in P in the A-ordering. The refutation contains a possibly empty set
X' of derived clauses that contain no predicates in P but whose parents contain predicates
in P, By removing the derivations of clauses in X' from the refutation of S, we obtain
a refutation of Sp U X'. Thus SpU X' is unsatisfiable. When we look at the A-ordered
derivation, it is apparent that each clause in X' must be of the form L;, vV -+ Vv L;_ and
that the corresponding set Kj,, ..., Kj,, must be unsatisfiable. If K;,,..., Kj,, is minimally
unsatisfiable, then the clause in X' also Belong}. to X. If K,,..., K;_, is not minimally un-
satisfiable, then the clause in X" is still subsumed by (possibly identical to) an element of X.
Because X contains each element of X' or an element that subsumes it, the unsatisfiability

of §5 U X follows from the unsatisfiability of SgU X'. i

Theorem 8 Let S be a T-unaatisfiable set of clavses. Then there is a refutation of S

{derivation of O from S ) using total wide theory resolution with theory T.

Proof: Consider representing the theory T as a set of clauses also called 7. Because

S is T-unsatisfiable, § U T is unsatisfiable. Let P be the set of predicates occurring in 7.

A-ordered resolution [11,17] is a refinement of resolution that permits resolution only on the literals of

each clause whose atoms appear earliest in a fixed ordering (the A-ordering).



By the lemma, (S U T)p U X, which equals S5 U X since T = @, is unsatisfiable. Each
clause in X is of form L;, V-V L;_  and depends on the unsatisfiability of a set of clauses
Ki..., K;,. Some of these clauses K;; may be in T'. Then the remaining clauses K;, are
T-unsatisfiable; the clause in X is a total T-resolvent of the clauses C;, and is thus derivable
by total wide theory resolution with theory T'. Because S5 U X is unsatisfiable, it can be
refuted by ordinary resolution, a special case of total wide theory resolution. Thus S has a

refutation using total wide theory resolution with theory 7. i

There are limitations to the use of total theory resolution. The requirement that the
decision procedure for the theory be capable of determining unsatisfiability of any set of
clauses using predicates in the theory is quite strict. Reasoning about sets of clauses is
probably an excessive requirement for such purposes as using a knowledge representation
system as a decision procedure for taxonomic information, since such systems are often
weak in handling disjunction. This tends to limit total resolution’s applicability to build-
ing in mathematical decision procedures that handle disjunction. For example, a decision
procedure for Presburger arithmetic (integer addition and inequality) might be adapted to
meet the requirements for total theory resolution.

Some care must be taken in deciding what theory T to incorporate. The theory must be
capable of deciding sets of clauses that are constructed by using any predicates appearing
in T. Thus, if we try to use total theory resolution to build in the equality relation with
equality substitutivity (i.e., z=y > (P{---z--+) D P(--+y--+)) for each predicate P), the
decision procedure will have to decide all of S.

There may be a large number of T-unsatisfiable keys that do not result in useful T-
resolvents. It would be 2 worthwhile refinement to monitor the finding of T-unsatisfiable
sets of clauses to verify that the substitutions made do not preclude future use of the

T-resolvent. This is like applying a purity check in A-ordered resolution.

10



2.2 Narrow Theory Resolution

Narrow theory resolution is a form of theory resolution that requires a less complex decision
procedure than does wide theory resolution. Unlike the latter, which must consider T-
unsatisfiability of sets of clauses, narrow theory resolution considers T'-unsatisfiability of
" sets of literals. Thus, the requirement for the decision procedure for T' to handle disjunction
is eliminated.

Two principal variations of narrow theory resolution are considered here: total narrow
theory resolution and partial narrow theory resolution.

In total narrow theory resolution, if Cy, ..., Cy, is a set of clauses, each C; is decomposed
as K; VvV L;, where K is a single literal, and K,,..., K,, is minimally T'-unsatisfiable, then
LiV:-+V L, is a T-resolvent of Cy,...,Cpm. The procedure remains sound if Ky,...,Km
is nonminimally T'-unsatisfiable. However, completeness generally requires the absence of
extraneous literals.

Partial narrow theory resolution is more general and includes total narrow theory reso-
lution as a special case,

In partial narrow theory resolution, if Cy,...,Cp, is a set of clauses, each C; is de-
composed as K; V L; where K; is a single literal, Ry,..., R, is another set of literals, and
Ky,...,Km, R1,..., By is minimally T-unsatisfiable, then Ly V---V L, V=R V---V=R, is
a T-resolvent of Cy,...,Cm. Ky,..., K, is called the key set of literals or key. Ri,...,Ra
are conditions for the T-unsatisfiability of Ky,..., Kn, i.e.,if n > 0, then Kj,..., K,, isnot
T-unsatisfiable, but Kj,..., K., conjoined with R),..., R, is. = Ry,...,= Ry is called the
residue sel of literals or residue. The procedure remains sound if Ky,..., K, Ry,..., Ry is
nonminimally T-unsatisfiable. However, completeness again generally requires the absence
of extraneous literals.

Sometimes it is onerous to have to decide T-unsatisfiability of arbitrarily large sets
of literals, as total narrow theory resolution reguires. In these situations, partial narrow
theory resolution can be used. The decision procedure for T must recognize the potential

T-unsatisfiability of a set of literals, i.e., the set of literals is T-unsatisfiable under some

11



condstions. The partial narrow theory resolvent will include (as the residue) the negation
of the conditions for the T-unsatisfiability of the set of literals resolved on (the key) in the
partial narrow theory resolution operation. The residue must be removed by later resolution
operations for the resofvent to be used in a refutation, Partial narrow theory resolution
thus finds T-unsatisfiable sets of literals incrementally by resolving on key sets of literals,
adding residue sets of literals in the resolvent, and then resolving these away in further
resolution operations.

Since partial narrow theory resolution will often examine sets of ciauses that are smaller
than those used for total narrow theory resolution, it may be less expensive to compute
partial narrow theory resoivents than total narrow theory resolvents. Offsetting this advan-
tage is the risk that more of the resolvents produced will be useless because their residues
cannot be resolved away.

We do not want to require the derivation of sll partial narrow theory resolvents permit-
ted by the definition. Since partial narrow theory resolution includes total narrow theory
resolution, this would require the derivation of all total narrow theory resolvents, thereby
defeating the purpose of partial theory resolution.

It would also require the derivation of obviously unnecessary resolvents. For example,
we could resoive (a < §) V P and (¢ < d) V R, since, under some conditions such as
(b<e)A(d<a),a<band ¢ < dare T-unsatisfiable, But it would be silly to draw such
inferences. If we permit inferences from a < b and ¢ < d, which have no terms in common,
the theory resolution procedure would not be very useful. If resolving a < b and ¢ < d were
to actually lead to a refutation—i.e., conditions for their T-unsatisfiability do hold—then
some of these conditions, e.g., (b < ¢) A (d < a), must have arguments in common with
a < b and ¢ < d. We should restrict partial theory resolution to cases in which the literals
are suitably related.

To justify such pragmatically necessary restrictions on theory resolution, we offer the
following criterion for the selection of key sets of literals that provides a sufficient condition

for the completeness of partial narrow theory resolution.

12



In essence, the key selection criterion requires that every T-unsatisfiable set of literals
have one or more subset key sets of literals that can be T-resolved. For example, in theory
ORD, in refuting sets of positive inequality literals, we might select only pairs of literals
matching £ < ¢y and y < z as key sets of literals. Thus, in refuting the set {a < 5,6 <
. ¢,¢ < d,d < e}, we would be permitted, for example, to resolve upon a < b and b < c,
but not ¢ < b and ¢ < d. Key sets of literals have one or more residues associated with
them such that every minimally T-unsatisfiable set includes a key with a residue that can
be refuted by resolving away the literals in the residue. With literals matching z < y and
y < z selected, it is sufficient to derive T-resolvents with residue = < z. For example, a < §
and § < ¢ can be T-resolved with a < c as the result. This can then be resolved with ¢ < d

to derive a < d that can be resolved with d < ¢ to derive 3.

Key selection criterion.

¢ For any minimally T-unsatisfiable set of literals S, there is at least one key set of
literals K such that K € 5. K has at least two literals (one literal if S has only one
literal).®> Each K is recognizable by the decision procedure for T and will comprise
the key for possible theory resolution operations, if clauses containing the key literals

are present.

¢ For any such key set of literals K, there is at least one, possibly empty, residue set
of literals R such that K U - R is minimally T-unsatisfiable, where ~R denotes the
set {~Ry,...,mR,} when R = {R,,...,Rs}. Each =R is & set of conditions for the
T-unsatisfiability of key set K. Each R is computed from K by the decision procedure

for T and is used as a residue for theory resolution operations that resolve on key K.

e It must be the case that, for some key set of literals K and associated residue set of

literals R, (S ~ K)U{VR} is minimally T-unsatisfiable, where VR denotes the clause

*The requirement that K have at least two literals unless S has only one literal conveniently eliminates
the possible derivation of unary theory resolvents with nonempty residue. The use of such valid but
unnecessary resolvents in a derivation can be supplanted by the use of higher-arity theory resolution

operations.

13



RiV---VR, when R = {R;,...,R;}. This ensures that key selection and residue
computation will be sufficient for completeness—any T-unsatisfiable set of literals S
has a T-resolvent using a key K € S and residue R computed from K such that the

T-resolvent is contradicted by the remaining literals S — K.

In total narrow theory resolution, we uniformly take the key K to be the entire minimally
T-unsatisfiable set of literals 5. The residue R is always empty.

In partial narrow theory resolution, we will try to minimize the number of residue
sets of literals. Thus, for K = {a < b,b < ¢} we might have residues R} = {a < c},
Ry = {—(c < 7y),~(z) < a)}, Rs = {~(c < z1),~(21 < 22), ~{z2 < @)}, etc. However, only
Ry need be used, since, in the theory T, Ry implies every other R;. R) can be regarded as
the strongest consequence of a < b and b < ¢ in theory T.

There may still be more than one partial theory resolution operation with the same key
but with different residues, because the key can be extended to a T-unsatisfiable set in more
than one way. For example, given

triangle(a, b, c)
triangle(d, e, f)
length(a) = length(d)
length(b) = length(e)
length(c) = length(f)

we could infer, using a theory of geometry, each of

angle(a, b) = angle(d, ¢)
angle{a,c) = angle(d, f)
angle(b, c) = anglefe, f)

as residue.

The following theorem proves the completeness of narrow theory resolution with arbi-
trary selection of key sets of literals satisfying the key selection criterion. The completeness
of total narrow theory resolution follows as an immediate corollary because total narrow
theory resolution is just a special case of narrow theory resolution, where the key set of

literals is selected to be the entire T-unsatisfiable set of literals and the residue is empty.
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Theorem 9 Let S be a T-unsatisfiable set of clauses. Then there i3 a refutation of S
{derivation of O from S ) using partial narrow theory resolution with theory T for arbitrary

selection of key sels satisjying the key selection criterion.

Proof: If O € S, then S is trivially refuted.

Otherwise we will prove the theorem by induction on complexity measure ¢(S5), where
¢(8) = (|S],k(S)), where |S] is the number of clauses in S and k(S) is the ezcess literal
parameter [2]. The excess literal parameter is defined to be the number of literals (i.e.,
literal occurrences) in § minus |S|. The ordering of ¢(S) is defined by ¢(5)) < ¢(S:) iff
[$1] < 182}, or |S:1| = |S2| and k(S,;) < k(S2).

Case ¢(S) = (m,0). Every clause must be a unit clause. Because S is T-unsatisfiable,

it must include a minimally T-unsatisfiable subset S'.

Subcase |S’| < 2. By the key selection criterion, S’ must be selected as a
key. The empty clause O is derivable in a single unary or binary T-resolution

step from S’ and hence from S.

Subcase |S'| > 2. By the key selection criterion, there exists a key K C S
with | K| 2 2 and (possibly empty) residue R such that §" = (8' — K)uU {VR}
is minimally T-unsatisfiable. ¢{S") < ¢(S') =% ¢(S). Thus, by the induction
hypothesis, O is derivable from S". Since VR is a T-resolvent of K C §, O is

derivable from S.

Case c(S). = (m,n), n > 0. Select a nonunit clause C' € §. Decompose C into unit clause
A and clause B, ie., C = AV B. Because S is T-unsatisfiable, both §4 = (§ - {C}) U {A}
and Sp = (S —{C})U{B} are T-unsatisfiable. Both ¢(S4) < ¢(S) and ¢(Sg) < ¢(S). Thus,
by the induction hypothesis, there must exist derivations of OO from each of S4 and Sp.

Imitate the derivation of 00 from Spg, using C instead of B. The result will be a
derivation of either O or A from S. In the latter case, extend the derivation of A from S

to a derivation of O from § by appending the derivation of O from 54. B
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Corollary 10 Let S be a T-unsatisfiable set of clauses. Then there i3 a refutation of S

{derivation of O from S} using total narrow theory resolution with theory T .

Although the theorem proves completeness of narrow theory resolution, its proof does
not preclude the need for tautologies in a refutation. Indeed, it is the case that tautologies

may have to be retained for a refutation to be found.

Example 11 Let T be the theory in which P, ¢}, and R are all equivalent. Let S be
{PVQV R,-PV=QV-R}. There is a single-step wide T-resolution refutation of S.
However, although there do exist refutations of S by narrow T-resolution,® all require
retention of tautologies, since all narrow T-resolvents of PV Q V R and =PV —-Q V ~R are

tautologies.

The theorem justifies the sufficiency of dealing with only single pairs of literals at a time,
i.e., using binary partial narrow theory resolution. In this type of theory resolution, every
theory resolvent has two parents (or maybe one, with no residue), provided key literals are
selected in conformance with the key selection criterion.

This is often a very useful instance of theory resolution. It includes resolving on comple-
mentary pairs of literals {ordinary binary resolution) and on T-unsatisfiable pairs of literals.
It also includes formation of partial theory resolvents for selected pairs of potentially T-
unsatisfiable pairs of literals, including, for example, the derivation of the O R D-resolvent
6 < ¢ from a < b and b < ¢. Despite the usefulness of binary partial theory resolution, there
will be occasions when it is better to use nonbinary partial theory resolution to result in a
smaller search space.

Finally, note that heuristic restrictions of theory resolution (such as discarding all tau-
tologies, not recognizing all cases of T-unsatisfiability, or not computing all residues), though

incomplete, may be very useful in practice.

3For example, resolve on P in (1) PVQV R and —Pin {2) P V-QV ~R to obtain (3) QVRV-QV-R;
then resolve on P in (1) and ~@Q in (3) to obtain (4} Q V R V —R; finally resolve on P in (1) and -R in
{(4) to obtain (5) Q vV R. There is a similar derivation of (6) =Q V =~R. Just as (5) and (6) were derived

from (1) and (2), the contradictory unit clauses R and =R can be derived from (5) and (6).
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2.3 Theory Matings

The theory matings procedure is another method of incorporating theories that is similar to
the total narrow theory resolution method, in the sense of imposing the same requirements
on the decision procedure for T, i.e., determining T-unsatisfiability of sets of literals, but
that does not depend on performing resolution inference operations. Hence it also overcomes
the difficulty in total narrow theory resolution of retention of tautologies.

The theory matings procedure is an extension of Andrews’s matings procedure [3] (see

also Bibel’s connection method [5]).

Definition 12 Let Cy,...,Cm (m = 1) be a set of clauses. Then each set of literals

Ki,..., K such that each K; is a literal of C; is a path through Cy,...,Cpn.

A path consists of one literal from each clause; it can also be regarded as one row of the
dual, disjunctive normal form of the set of clauses.
The most important theorem for the application of the matings procedure is the follow-

ing.

Theorem 18 Let S be a set of clauses. Then S 18 unsatisfiable iff every path through S

contains a complementary pair of literals.
This can be easily extended to the theory matings procedure that builds in a theory T.

Theorem 14 Let S be a set of clauses. Then S 18 T-unsatisfiable iff every path through S

contains a T-unsatisfiable set of hiterals,

Proof:

If part. Soundness. Assume that every path through S contains a T-unsatisfiable set
of literals and is thus T-unsatisfiable. For S not to be T-unsatisfiable, there must be a
T-interpretation [ that satisfies each clause in S. To satisfy each clause in S, J must satisfy
at least one literal of the clause. It must thus satisfy at least one path through S. But since

every path is T-unsatisfiable, there is no such I. Hence S is T-unsatisfiable.
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Only if part. Completeness. Assume that S is T-unsatisfiable. Suppose some path
through S does not contain a T-unsatisfiable set of literals, Then that path has a T-
interpretation I that satisfies it. But I would also satisfy S, since it satisfies a literal of
each clause of 5. This contradicts the assumption that S is T-unsatisfiable. Hence every

path through S must contain a T-unsatisfiable set of literals. B

2.4 Moetatheory Resolution

We regard the “black box” nature of the decision procedure being built in by means of
theory resolution to be an important aspect of theory resolution because it allows flex-
ibility in implementation of the decision procedure by not requiring it to employ clause
representation, resolution, or other arbitrary restrictions.

However, one interesting possibility for implementation of decision procedures for theory
resolution entails using, in the decision procedure, a resolution theorem prover whose domain
of discourse is the language of the outer theorem prover.

We could axiomatize the T-unsatisfiability relation and use these axioms together with
information on what literals are present to identify, by means of resolution, prospective key
sets of literals to resolve upon. This reasoning system could itself depend on additional
layers of theory resolution to establish its own inference operations.

This procedure of having successive layers of deduction systems determining unsatisfia-
bility in successive theories in order to apply resolution operations could be called metatheory

resolution.

3 Examples of Theory Resolution

Theory resolution is a procedure with substantial generality and power. Thus, it is not
surprising that many specialized reasoning procedures can be viewed as instances of theory
resolution, perhaps with additional constraints governing which theory resolvents can be
inferred. We believe that the success of these specialized reasoning procedures helps to

validate the concept of theory resolution.
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First of all, we should note that there is a relationship between theory resolution and
hyperresolution. Although further constraints (e.g., on the polarity of the literals) are
often prescribed, the essence of hyperresolution is the derivation of Ly V---V L, V R from
the electron clauses K;V L;, where Kj is a literal and L; is a [possibly empty] clause and the
nucleus clause ~K; V.-V -K,,V R, where Ris a [possibly empty] clause. This corresponds
to a theory resolution operation using theory 7', where =K V-:-V-K; V R is a consequence
of T, Ky,...,K,, is the key set of literals, and R is the residue.

Theory resolution is also related to procedural attachment [23], whereby expressions
are “evaluated” to produce new expressions. Ordinary procedural attachment can be re-
garded as unary theory resolution. Theory resolution in general can be considered as an
extension of the notion of procedural attachment to sets of literals. Where ordinary proce-
dural attachment permits the replacement of 2 < 3 by true, theory resolution, in effect, can
attach a procedure to the < relation that permits derivation of @ < ¢ from ¢ < b and b < ¢.

Two previous refinements of resolution that resemble partial theory resolution are Z-
resolution and U-generalized resolution.

Dixon’s Z-resolution [13] is essentially binary total narrow theory resolution with the
restriction that 7 must consist of a finite deductively closed set of 2-clauses (clauses with
length 2). This restriction does not permit inclusion of assertions like -=Q(z) V Q(f(z)),
~(z < z),or (z < y) Ay < z) D (z < z), but does permit efficient computation of T-
resolvents (even allowing the possibility of compiling T to LISP code and thence to machine
code). Z-factoring and Z-subsumption operations are also defined.

Harrison and Rubin’s U-ganerallzed resolutlon [15} is essentially binary partial nat-
row theory resolution applied to sets of clauses that have a unit or input refutation. They
apply it to building in the equality relation, developing a procedure similar to Morris’s E-
resolution [21]. The restriction to sets of clauses having umit or input refutations eliminates
the need for factoring and simplifies the procedure, but otherwise limits its applicability.
No effort was made in the definition of U-generalized resolution to limit the applicability of

T-resolution to reasonable cases (e.g., formation of an ORD-resolvent of a < b and ¢ < d is
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permitted by the definition).

The linked inference principle by Wos et al. [40] is related to theory resolution
in concept and purpose. The linked inference principle is a somewhat more conservative
extension of resolution than theory resolution, since it stipulates that the theory will be built
in by means of clauses designated as linking clauses. Theory resolution, on the other hand,
allows the theory to be incorporated as a “black box” that determines T-unsatisfiability
questions in an unspecified manner. This facilitates the use of other systems, which do
not rely upon resolution or clause representation, to build in theories. Nevertheless, many
instances of theory resolution can be usefully implemented in the manner of the linked
inference principle. Since the implementation proposal for the linked inference principle
is more concrete, Wos et al. have expended comparatively more effort in determining how
inference using the linked inference principle is to be controlled, including defining linked
variants of resolution refinements such as unit-resulting resofution and hyperresolution.

Paramodulation [39] can be viewed as an instance of binary partial theory resolution
where T is the theory of equality EQ. P(6) is an EQ-resolvent (paramodulant} of P(a} and
a = b. Digricoli’s resolutlon by unification and equality [12] can be viewed similarly.
a # bis an EQ-resolvent (RUE-resolvent} of P{a) and -~ P(b}. Morris’s E-resolution
[21] can be viewed as an instance of total theory resolution. O is a total EQ-resolvent
(E-resolvent) of P(a}, ~P(b), and a = b.

The difference between these equality reasoning procedures, from the standpoint of
theory resolution, is the selection of the key set of literals for theory resolution operations.
The minimally EQ-unsatisfiable set of literals P{a), ~P(b}, and a = b was used for all three
examples. In the paramodulation example, P(a} and a = b were used as the key and P(b}
was derived as the residue. In the resolution by unification and equality example, P(a}
and —P(b) were used as the key and a # b was derived as the residue. In the E-resolution
example, the key set consisted of all of P(a), =P(b), and a = &, and the residue was empty.

Where T consists of ordering axioms, including axioms that show how ordering is pre-

served (such as (z < y} O (Pos(z) D Pos(y)) and (z < y) O (z + z < y + z)}, T-resolution
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operations include Manna and Waldinger’s relation replacement rule (e.g., Pos(}) can
be inferred from Pos(s) and (s < b) and relation matching rule [20] (e.g., -(a < b)
can be inferred from Pos(a) and -Pos{b)), which are extensions of paramodulation and
resolution by unification and equality respectively. 7T-resolution with ordering axioms is
also similar to Slagle and Norton’s reasoning with partial ordering inference rules [30].
Bledsce and Hines’s variable elimination and chaining |7] is a refined method for rea-
soning about inequalities that can be viewed partly as theory resolution for inequality with
added constraints on theory resolution operations. The ORD-resolvent 6 < c of a < b
and b < ¢ is a variable-elimination-pro cedure chain resolvent only if 4 is a shielding term
{nonground term headed by an uninterpreted function symbol). The variable-elimination
rule allows inferring O R D-resolvent (a < )V C from clause (a < z)V(z <)V C only if z
does not occur in a, b, or C, It more generally allows replacement of multiple literals a; < z
and z < b; in a clause by literals a; < b;. This result is obtainable by theory resolution
if we include the axiom =(z < min(z,y)) and a rule to transform min{s;,a;;) < b; to
(ai, < b;) V (ag; < bj).

Allen’s interval-based temporal logle [1] is another prospective system for explana-
tion and implementation by theory resolution. Allen enumerates the 13 mutually exclusive
relations that can hold between any pair of intervals: before, after, during, contains, over-
lapa, overlapped-by, meets, met-by, starts, started-by, finishes, finished-by, and equal. For
each pair of temporal relations ry and r; and intervals A, B, and C such that ry(A, B) and
r2(B,C), interval-based temporal logic defines what temporal relations are possible between
A and C. F;)r example, if A meets B and B is during C, then either A overlapa C, A is
during C, or A atarts C. This corresponds to the theory resolution operation of resolving
during(A, B) and overlaps(B,C) to obtain during(A, C) V overlaps(A, C) V starts(A, C).

It is useful to create predicates that denote each of the 2!'® combinations of possible
temporal relations between a pair of intervals so that uncertainty about which relation
holds will be represented by a predicate rather than a disjunction. Thus, during(A, B)

and overlaps(B,C) would be resolved to obtain [during|overlaps|starts](A,C). With this
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approach, it is possible to relate all the possible relations between A and C at once with
other relations mentioning A or C by using narrow instead of wide theory resolution.

Another application of theory resolution is Konolige’s resolution for modal logic
of belief [16]. Among other things, he defines a resolution procedure that eliminates
modal belief literals by recognizing their unsatisfiability in a subordinate deduction and
then resolving on them in the manner of theory resolution. A simple propositional example
of this is the resolution of DpV A, O(p D q)V B, and ~0O¢VC to obtain AV BVC, since the
conjunction of Op, O(p D g), and ~Ogq is unsatisfiable. For reasoning in his modal logic
of belief, Konolige envisages using a system organized on principles similar to metatheory
resolution.

We have already suggested the importance of theory resolution for taxonomic reason-
ing. This is being explored in the KRYPTON knowledge representation system [8,25]. Fig-
ure 1 contains a nearly verbatim transcription of a proof using KRYPTON-style reasoning.?
The problem is to prove that, if Chris has no sons and no daughters, then Chris has no
children.

The terminological information used in this problem through theory resolution includes
the statements that boys are persons whose sex is male; girls are persons whose sex is female;
“no-sons” are persons all of whose children are girls; “no-daughters” are persons all of whose
children are boys. Relevant portions of this information are included in Formulas 1-6, which
are used to define what theory resolution operations are possible. If complements of the
first two atoms of each formula can be found, they can be resolved upon, and the remaining
part of the formula, if any, would be derived as the residue., Thus, Formula 1 expresses
the unsatisfiability of Boy(John) and - Person(John). Formula 5 permits the derivation
of Girl(Sandy) from NoSon(Mary) and Chisld(Mary, Sandy). These formulas behave

stmilarly to linking clauses in linked inference [40].

*This proof was done by the KLAUS deduction system{14,31] rather than KRYPTON however. Pigman [25]
presents an actual KRYPTON proof of this problem, but it differs from this one, since different decisions

were made as to what theory resolution operations to perform using the same terminological information.
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2-ary rule 1. Boy(z) D Person(z)
2-ary rule 2. [Boy(z) A Sez(z,y)] D Male(y)
2-ary rule (not used) 3. Girl(z) D Person(z)
2-ary rule 4. [Girl(z) A Sez(z,y)] D Female(y)
2-ary rule 5. [NoSon(z)A Child(z,y)] D Girl(y)
2-ary rule 6. [NoDaughter(z) A Child(z,y)] > Boy(y)
7. Person(z) O Sex(z,skl(z))
8. Male(z) = ~Female(z)
9. NoSon(Chris)
10. NoDaughter(Chris)
negated conclusion 11. Child(Chris, 3k2)
tesolve 11 and 9 using & 12. Girl(sk2)
resolve 11 and 10 using 6 13. Boy(sk?2)
resojve 13 and 7 using 1 14. Sex(sk2, sk1(sk2))
resolve 13 and 14 using 2 15. Male(skl(sk2))
resolve 12 and 14 using 4 16. Female(sk1(sk2))
resolve 16 and 8, simplify by 15 20. 0O

Figure 1: KRYPTON-style Proof

The assertional information used in this problem includes the information that every
person has a sex; males and females are disjoint; Chris has no sons and no daughters. From
these facts, and the built in terminological information, a refutation is completed starting
with the negation of the desired conclusion that Chris has no children. skl and sk2 are
Skolem functions.

The following table compares the statistics for proofs completed with and without For-
mulas 1-6 built in through theory resolution. The proof strategies used and meaning of the

statistics are essentially the same as described in Section 4.

Built In Inputted Derived Retained  Successful Time Proof
Axioms Formulas Formulas Formulas Unifications (seconds) Length
none 11 10 20 33 1.0 9
1-6 5 9 11 24 0.5 6

There is a noticeable improvement resulting from using theory resolution, but because
the problem is so small, the difference is not large. Harder problems (like the one in
Section 4) can be used to demonstrate much greater improvement.

Theory resolution for taxonomic reasoning also incorporates many elements of reasoning

in a many-sorted logic. For example, in Walther’s ERP-calculus {many-sorted resolution
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and paramodulation) [33,35], sort declarations, subsort relationships, and sort restrictions
on clauses are all incorporated into the unification procedure, and eliminated from the
clauses in the statement of a problem. Thus, the ZRP unification procedure implements a

theory of sort information.

4 Experimental Results

Although the relationship of theory resolution to many other extensions of resolution (as
discussed in the preceding section) and experience with numerous small examples support
the practical value of theory resolution, we will not elaborate on these, but will rather

bolster our claim with an examination of experimental results for “Schubert’s Steamroller”

challenge problem.

Schubert’s steamroller problem is

Wolves, foxes, birds, caterpillars, and snails are animals, and there are some of
each of them. Also there are some grains, and grains are plants. Every animal
either likes to eat all plants or all animals much smaller than itself that like to
eat some plants, Caterpillars and snails are much smaller than birds, which are
much smaller than foxes, which in turn are much smaller than wolves. Wolves
do not like to eat foxes or grains, while birds like to eat caterpillars but not
snails. Caterpillars and snails like to eat some plants. Therefore there is an
animal that likes to eat a grain-eating animal.

In reporting a solution to this problem, Walther [34] states, “this problem became weli 4
known, since, in spite of its apparent simplicity, it turned out to be too hard for existing
theorem provers because the search gpace is just too big.” We will discuss his and other
solutions at the end of this section.

An English-language solution to the problem is

Every animal either likes to eat all plants or all animals much smaller than itself
that like to eat some plants. Snails are much smaller than birds and like to eat
some plants. Because birds do not like to eat snails, it must be the case that
birds like to eat all plants, including grains. Wolves do not like to eat grain.
Therefore they must like to eat all animals much smaller than themselves that
like to eat some plants. Because foxes are much smaller than wolves and wolves
do not like to eat foxes, it must be the case that foxes do not like to eat plants.
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Wolf(z) D Animal(z)
Foz(z) D Animal(z)
Bird(z) D Animal(z)
Caterpillar(z) D Animal(z)
Snail(z) D Animal(z)
Grain(z) D Plant(z)
Wol f(a-wol f)
Foz(a-foz)
9. Bird(a-bird)
10. Caterpillar(a-caterpillar)
11. Snasl{a-anasl)
12. Grasn(a-grain)
13. Animal(z) D [[Plant(y) D Likes-to-eat(z, y))
V|[[Animal(z) A Much-smaller(z, z) A Plant(w) A Likes-to-eat(z, w)]
D Likes-to-eat(z, z))|
14. [[Bird(y) A[Snasl(z) V Caterpillar(z)]] V [Bird(z) A Foz(y)]
V[Foz(z) AWolf(y)]] > Much-smaller(z,y)
15. [[Wolf(z) A [Foz(y) vV Grasn(y)]] V [ Bird(z} A Snail(y)]] D =Likes-to-eat(z,y)
16. [Bird(z) A Caterpillar(y)] O Likes-to-eat(z,y)
17. [Caterpsilar(z) vV Snail(z)] D [Plant(sk1(z)) A Likes-to-cat(z, sk1(z))]
18. =Animal(z) V =Animal(y) V -Grain(z) V =Likeas-to-cal(y, z) V ~Likes-to-cal(z, y)

P NP N

Figure 2: Steamroller Axioms

Therefore foxes like to eat birds since birds are grain-eating animals that are
much smaller than foxes.

Our formulation of Schubert’s steamroller problem appears in Figure 2. The objective
is to refute Formula 18 by Formulas 1-17. We used a-wolf, a-foz, etc., in Formulas 7-12
as the Skolem constants introduced by the assertions 3z.Wolf(z), 3z.Foz(z), etc. skl in
Formula 17 is a Skolem function.

We present statistics on several solutions of Schubert’s steamroller problem found by
our theorem prover [31]. The first is 2 proof that does not use theory resolution; the second
is a proof using theory resolution to implement the taxonomic information in the problem
(Formulas 1-6); the remaining proofs show the results of using theory resolution to build
in each of Formulas 14-17 successively.

The same strategy was used for all of the proofs. Nonclausal connection-graph reso-

lution was the principal inference rule. Factoring was not employed, Pure, variant, and
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tautologous formulas were eliminated.

Single literal formulas were used for both forward and backward demodulation. In a
technical sense, however, this is not demodulation—which is really a rule for simplification
by equalities—but it performs a similar function. For example, if A is an atomic assertion,
it could be used to simplify formulas containing atom A’, an instance of A, by replacing
A" by true in the formula. Similarly, A could be used to replace instances A’ of A by
false. These could be construed as demodulation by the equivalences A = true and A =
false, respectively. Depending on the polarity of the atoms, the effect is essentially unit
subsumption by the single literal formula or unit resolution with it.

Heuristic search, guided by a simple weighted function of the deduction level of the
parents and the expected size of the resolvent, was used to decide which inference operation
should be performed next. The set of support strategy (with only Formula 18 supported)
and an ordering strategy that designated which atoms in a formula could be resolved upon
were used to limit the number of alternative inference operations.

In using theory resolution, connection graph links were created from key sets of literals
in the theory being incorporated. Formulas 1-6 and 17 were implemented by binary total
narrow theory resﬁlution links and Formulas 14-16 were implemented by 3-ary tota! nar-
row theory resolution links. For example, Welf(t) and = Animal(t) could be linked, and
Bird(t;), Snaisl(t;), and Likes-to-eat(t;, t2) could all be linked. Theory resolution was also
used in demodulation—e.g., Wol f(t) could be used to demodulate Animal(t) to true. This
was accomplished by automatically adding extra demodulators such as Animal(t) = true
for Wolf(t).

Following are the statistics for the various solutions of Schubert’s steamroller problem.
Included in the statistics are the number of formulas inputted to the theorem prover, the
number of formulas derived in the course of searching for a proof, the number of inputted and
derived formulas still present when a proof was found, the number of successful unification
attempts during the search for a proof (including unification during link inheritance), the

time required for the proof (on a Symbolics 3600 personal LISP machine), and the length
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of the proof in resolution steps.

Built In Inputted Derived Retained  Successful Time  Proof
Axioms Formulas Formulas Formulas Unifications (h:mm) Length
none 18 2,717 595 216,987 2:53 59
1-6 12 889 246 44,928 0:20 37
1-6, 14 11 408 68 5,018 0:01.3 32
1-6, 14-15 10 320 63 4,555 0:01.1 32
1-6, 14-16 9 212 57 3068 0007 32
1-6, 14-17 B 262 24 7,711 0:01.6 24
MKRP 27 60 83 0:04.4 55
MKRP ERP 12 10 13 48®  0:00.2 9
ITP 0:06

Thus, very substantial reductions in both the size of the search space and the length of
the proof resulted from building in some of the axioms by theory resolution.

Also included in the table are statistics we know for solutions of Schubert’s steamroller
problem by other systems.

The MKRP solution was done by Walther [36] using the Markgraf Karl Refutation
Procedure [6]. This proof relied heavily on the MKRP TERMINATOR module {4], which is
essentially a very fast procedure for finding unit refutations. A superior proof by Walther
[34] used his ERP calculus [33,35] in the MKRP system to perform many-sorted resolution
on a much reduced set of clauses. This proof also used the TERMINATOR module, but,
given the reduction in the number of clauses and literals made possible by using many-
sorted resolution and its restrictions on unification, here its use was not essential to finding
a solution with reasonable eflort. MKRP is written in INTERLISP and was run on a Siemens
7760 comput;ar.

Our first theory resolution proof, in which only the taxonomic information of Formu-
las 1-6 is incorporated, has some similarity to a many-sorted resolution proof. In the MKRP
ERP proof, Wolf, Foz, Biwrd, Caterpillar, and Snaisl were declared to be subsorts of sort An-
smal and Grarn was declared to be a subsort of sort Plant. The unification algorithm was

restricted so that a variable can be unified with a term if and only if the term is a subsort

5This figure is for a solution without factoring (like ours) and excludes unifications perforrned inside the

TERMINATOR module.
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of or equals the sort of the variable. For building in just this taxonomic information, many-
sorted resolution is stronger than this particular instance of theory resolution. Although
theory resolution handles the sort literals more effectively than ordinary resolution, many-
sorted resolution dispenses with them entirely. Also, many-sorted resolution is used to build
in the sort information for Skolem constants and functions so that, in Schubert’s steamroller
problem, Formulas 7-12 are supplanted by type declarations. This woﬁld have the effect of
eliminating the formation of atoms like Wol f(a-foz) (if the predicate Wolf were used at
all). In somewhat similar fashion, we have been successful in substantially decreasing the
effort required to solve Schubert’s steamroller problem by adding sort disjointness informa-
tion through theory resolution, so that, for example, Wol f(a- foz) is evaluated to be false.
However, this is really an extension of Schubert’s steamroller problem, and it is conceivable
for the disjointness information to contribute to an invalid solution of the problem, instead
of it just being used to reduce the size of the search space.

The ITP solution was found by the automated reasoning system ITP (written in PAS-
CAL) developed at Argonne National Laboratory [19]. This solution used qualified hyper-
resolution [18,37] and was completed in about six minutes on a VAX 11/780 computer [24].
Like the theory resolution and MKRP ERP solutions, this solution treated the taxonomic
sort information in the problem specially. In qualified hyperresolution, some literals in a
clause can be designated as qualifier literals that contain “conditions of definition” for terms
appearing in the clause. Qualifier literals are ignored during much of the inference process—
e.g., a clause consisting of a single nonqualifier literal and some qualifier literals is handled
as if it were a unit clause—with the conditions imposed by the qualifier literals checked
only after the qualified terms are instantiated. Thus, sort restrictions can be specified in
qualifier literals and deductions can be performed using only the nonsort information. The

deductions are then subjected to verification that terms are of the correct sort.
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5 Conclusion

Theory resolution is a set of complete procedures for incorporating decision procedures into
resolution theorem proving in first-order predicate calculus. Theory resolution can greatly
decrease the length of proofs and the size of the search space. Total theory resolution can
be used when there exists a decision procedure for the theory that is capable of determining
unsatisfiability of any set of clauses using predicates of the theory. This may be a realistic
requirement in some mathematical theorem proving.

Partial theory resolution requires much less of the decision procedure. It requires only
that conditions for unsatisfiability of sets of literals be determinable by the decision pro-
cedure for the theory. This makes it feasible, for example, to consider use of a knowledge
representation system as the decision procedure for taxonomic information.

Theory resolution is also a generalization of several other approaches to building in
nonequational theories.

We are implementing and testing forms of theory resolution in the deduction-system
component of the KLAUS natural-language-understanding system [14,31]. This system
demonstrated substantial improvement in performance when theory resolution was used on
Schubert’s steamroller challenge problem. The KRYPTON knowledge representation system
[8,25] is also applying the ideas of theory resolution to combine a terminological reasoning
component and an assertional reasoning component (for which they are also utilizing the
KLAUS deduction system).

Theory reésolution is a procedure with substantial power and generality. It is our hope
that it will serve as a base for the theoretical and practical development of a methodology
for combining the general reasoning capahilities of resolution theorem-proving programs
with more efficient specialized reasoning procedures.

One important area for further research on theory resolution is finding restrictions on
the need for retention of tautologies and determining compatibility with other resolution
refinements.

Another important research question is handling combinations of theories (beyond the
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trivial case of totally disjoint theories). Successful combining of multiple deductive spe-

cialists within a resolution framework awaits further development in this area. The work

of Nelson and Oppen [22] and Shostak [28] on combining quantifier free theories may be

relevant.
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