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Abstract

We analyze the logical form of the domain knowledge that grounds analogical
inferences and generalizations from a single instance. The formn of the assumptions
which justify analogies is given schematically as the “determination rule”, so called
because it expresses the relation of one set of variables determining the values of
another set. The determination relation is a logical generalization of the different
types of dependency relations defined in database theory. Specifically, we define
determination as a relation between schemata of first order logic that have two
kinds of free variables: (1} object variables and (2) what we call “polar” variables,
which hold the place of truth values. Determination rules facilitate sound rule
inference and valid conclusions projected by analogy from single instances, without
implying what the conclusion should be prior to an inspection of the instance.
They also provide a way to specify what information is sufficiently relevant to
decide a question, prior to knowledge of the answer to the question.



1 Introduction to the Problem

In this paper we consider the conditions under which propositions inferred by analogy
are true or sound. As such, we are concerned with normative criteria for analogical
transfer rather than a descriptive or heuristic theory. The goal is to provide a reliable,
programmable strategy that will enable a system to draw conclusions by analogy only
when it should.

Reasoning by analogy may be defined as the process of inferring that a conclusion
property @ holds of a particular situation or object T' (the target) from the fact that T
shares a property or set of properties P with another situation/object 5 (the source)
that has property @. The set of common properties P is the similarity between S and
T, and the conclusion property @ is projected from S onto T. The process may be
summarized schematically as follows:

P(S)AQ(S5)
P(T)
QT)-

This form of argument is nondeductive, in that its conclusion does not follow syn-
tactically just from its premises. Instances of this argument form vary greatly in
cogency. Bob’s car and John’s car share the property of being 1982 Mustang GLX V6§
hatchbacks, but we could not infer that Bob’s car is painted red just because John’s
car is painted red. The fact that John’s car is worth about 33500 is, however, a good
indication that Bob’s car is worth about $3500. In the former example, the inference
is not compelling; in the latter it is very probable, but the premises are true in both
examples. Clearly the plausibility of the conclusion depends on information that is not
provided in the premises. So the justification aspect of the logical problem of analogy,
which has been much studied in the field of philosophy (see, e.g. [5], [13], [16], [31]),
may be defined as follows:

THE JUSTIFICATION PROBLEM:

Find a criterion which, if satisfied by any particular analogical inference,
sufficiently establishes the truth of that inference.

Specifically, we take this to be the task of specifying background knowledge that, when
added to the premises of the analogy, makes the conclusion follow soundly.

It might be noticed that the analogy process defined above can be broken down
into a two-step argument as follows: (1) From the first premise P(S5)A Q(S), conclude
the generalization Yz P(z) = Q(z), and (2) instantiate the generalization to T and
apply modus ponens to get the conclusion @(T). In this process, only the first step is



nondeductive, so it looks as if the problem of justifying the analogy has been reduced
to the problem of justifying a single-instance inductive generalization. The traditional
criteria for evaluating the cogency of enumerative induction, however, tell us only
that the inference increases in plausibility as the number of instances confirming the
generalization increases (without counter-examples) and is dependent on the conclusion
property being “projectible” (see [11]). If this is the only criterion applied to analogical
inferences, then all projectible conclusions by analogy without counter-examples should
be equally plausible, which is not the case. For example, if inspection of a red robin
reveals that its legs are longer than its beak, a projection of this conclusion onto unseen
red robins is plausible, but projecting that the scratch on the first bird’s beak will be
observed on a second red robin is implausible. A person who has looked closely at
the beak of only one red robin will have no counter-examples to either conclusion,
and both conclusion properties are projectible, so the difference in cogency must be
accounted for by some other criterion. The problem of analogy is thus distinct from
the problem of enumerative induction because the former requires a stronger criterion
for plausibility.

One approach to the analogy problem has béen to regard the conclusion as plausible
in proportion to the amount of similarity that exists between the target and the source
(see T19]). Heuristic variants of this have been popular in research on analogy in Al
(see, e.g. [3] and [32]). Such similarity-based methods, although intuitively appealing,
suffer from some serious drawbacks. Consider again the problem of inferring properties
of an unseen red robin from those of one already studied: the amount of similarity is
fixed, namely that both things are red robins, but we are much happier to infer that the
bodily proportions will be the same in both cases than to infer that the unseen robin
will also have a scratched beak. In other words, the amount of similarity is clearly
an insufficient guide to the plausibility of an analogical inference. Recognizing this,
researchers studying analogy have adverted to relevance as an important condition on
the relation between the similarity and the conclusion ([15], [27]). '

To be a useful criterion, the condition of the similarity P being relevant to the
conclusion ¢ needs to be weaker than the rule Vz P(z) = Q{z), for otherwise the
conclusion in plausible analogies would always follow just by application of the rule
to the target. Inspection of the source would then be redundant. So a solution to
the logical problem of analogy must, in addition to providing a justification for the
conclusion, also ensure that the information provided by the source instance is nsed in
the inference. We therefore have the following:

THE NON-REDUNDANCY PROBLEM:

The background knowledge that justifies an analogy or single-instance gen-
eralization should be insufficient to imply the conclusion given information



only about the target. The source instance should provide information not
otherwise contained in the database.

This condition rules out trivial solutions to the justification problem. In particular,
though the additional premise Yz P(z) =+ Q(z) is sufficient for the truth of the infer-
ence, it does not solve the non-redundancy problem and is therefore inadequate as a
general solution to the logical problem of analogy. To return to the example of Bob’s
and John's cars, the non-redundancy requirement stipulates that it should not be pos-
sible, merely from knowing that John’s car is a 1982 Mustang GLX V6 hatchback and
some rules for calculating current value, to conclude that the value of John’s car is
about $3500—for then it would be unnecessary to invoke the information that Bob’s
car is worth that amount. The role of the source analogue (or instance) would in that
case be just to point to a conclusion which could then be verified independently by
applying general knowledge directly to John’s car. The non-redundancy requirement
assumes, by contrast, that the information provided by the source instance is not im-
plicit in other knowledge. This requirement is important if reasoning from instances
is to provide us with any conclusions that could not be inferred otherwise.

This seems like an opportune place to draw a distinction between this work and
that-of many others researching analogy. There has been a good deal of fruitful work
on different methods for learning by analogy ([1], [2], [3], [10], [12], [15], [32]), in
which the logical problem is of secondary importance to the empirical usefulness of
the methods for particular domains. Similarity measures, for instance, can prove to
be a successful guide to analogizing when precise relevance information is unavailable
([24]). However, when studying any form of inference, it behooves the researclier to
at least consider what the basis of the inference process might be; for tlie most part
such consideration has been lacking, with the result that analogy systems have yet to
demonstrate any wide applicability or reliable performance. Qur project is to provide
an underlying justification for the plausibility of analogy from a logical perspective,
and in so doing to provide a way to specify background knowledge that is sufficient
for drawing reliable analogical inferences. The approach is intended to complement,
rather than to compete with, more heuristic methods.

2 Determination Rules as a Solution

If we think about the example of the two cars (Bob’s and John’s), it seems clear that,
while we may not know what the value of a 1986 Mustang GLX V6 hatchback is prior
to knowing the value of Bob’s car, we do know that the fact that a car is a Mustang
GLX V6 hatchback is sufficient to determine its value. Abstractly, we know that either
all objects with property P also have property @, or that none do:

(x) (Vo P(z) = Q(2)) V (YaP(z) = ~Q(z)).
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Having' this assumption in a background theory is sufficient to guarantee the truth of
the conclusion Q(T) from P(S) A P(T) A Q(S) while at the same time requiring an
inspection of the source S to rule out one of the disjuncts. It is therefore a solution to
both the justification problem and the non-redundancy problem.

As a way of describing the relation between P and @ in the above disjunction,
we might say that P decides whether @ is true for any situation z. Of course, one
might notice that the background knowledge we bring to the car example is more
general in form. Specifically, we have knowledge of what is called in database theory a
“dependency” relation ({28]), that the make, model, design, engine, condition, and year
of a car determine its current value. Abstractly, a functional dependency is defined as
follows ([29]): _

(%) Vz,y F(z) = F(y) = G(z) = G(y).

In this case, we say that a function (or set of functions) F' functionally determines
the value of function(s) G because the value assignment for F' is associated with a
unique value assignment for G. We may know this to be true without knowing exactly
which value for G goes with a particular value for F. A taxonomy of the forms for
the relation “F(z) determines G(z)"” has been worked out by researchers in database
theozy, in which such dependencies are used as integrity constraints ([28]). If the
example of Bob’s and John’s cars (Carg and Cary respectively) from above is written
in functional terms, as follows:

Make(Carg) = Ford A Make(Cary) = Ford
Model(Carg) = Mustang A Model(Car;) = Mustang
Design(Carg) = GLX A Design(Cary) = GLX
Engine(Carg) = V6 A Engine(Cary) = V86
Condition(Carg) = Good A Condition(Cary) = Good
Year(Carg) = 1982 AYear(Cary) = 1982
Value(Carg) = $3500

Value(Cary) = $3500,

then knowing that the make, model, design, engine, condition, and year determine
value thus makes the conclusion valid. In our generalized logical definition of deter-
mination (see the section on “Representation and Semantics”), the forms (*) and (**)
are subsumed as special cases of a single relation “P determines Q”, written as P > Q.

Assertions of the form “P determines " are actually quite common in ordinary
language. When we say “The IRS decides whether you get a tax refund”, or “What
school you attend determines what courses are available”, or, quoting a recent television
advertisement, “It’s when you start to save that decides where in the world you can

on



retire to”, we are expressing an invariant relation more complicated than a purely
implicational rule. At the same time, we are expressing weaker information than is
contained in the statement that P implies @. If P implies ¢ then P determines @),
but the reverse is not true, so traditional implication falls out as a special case of
determination. That the knowledge of a determination rule is what underlies preferred
analogical inferences seems relatively transparent once the problem is set up as we
have done. We therefore find it surprising that only recently has the possibility of valid
reasoning by analogy been recognized (in [30]) and the logical form of its justification
been worked out in a way that solves the non-redundancy problem (in [6]). Most
research on analogy and generalization seems to have assumed that an instance can
provide at most inductive support for a rule. Qur work suggests that rule formation
and analogical projection are better viewed as being guided by higher level domain
knowledge about what sorts of generalizations can be inferred from an instance. This
perspective seems consistent with more recent Al techniques for doing induction and
analogy (e.g. [l4], [15]) which view such inferences as requiring specific knowledge
about relevance rather than just an ability to evaluate similarity. We have concentrated
on making the relevance criterion deductive.

3 -Representation and Semantics

To define the general logical form for determination in predicate logic, we need a repre-
sentation that covers (1) determination of the truth value or polarity of an expression,
as in example cases of the form “P(z) decides whether or not Q(z)” (formula (*) from
previous section), (2) functional determination rules like (**) above, and (3) other
cases in which one expression in first order logic determines another. Rules of the first
form require us to extend the notion of a first order predicate schema in the following
way. Because the truth value of a first order formula cannot be a defined function
within the language, we introduce the concept of a polar variable, which can be placed
at the beginning of an expression to denote that its truth value is not being specified
by the expression. For example, the notation “i P(z)” can be read “whether or not
P(z)”, and it can appear on either side of the determination relation sign “>” in a
determination rule, as in
Pl(ﬂ.':) A ing(:r) b ng(z).

This would be read, “Pj(z) and whether or not P,(z) together jointly determine
whether or not Q(z),” where i; and i, are polar variables.

The determination relation cannot be formulated as a connective, i.e., a relation
between propositions or closed formulas. Instead, it should be thought of as a relation
between predicate schemata, or open formulas with polar variables. For a first order
language L, the set of predicate schemata for the language may be characterized as



follows. If Sis a sentence (closed formula or wif) of L, then the following operations
may be applied, in order, to S to generate a predicate schema:

1. Polar variables may be placed in front of any wifs that are contained as strings

m S5,

2. Any object variables in S may be unbound (made free) by removing quantification
for any part of S, and

3. Any object constants in S may be replaced by object variables.

All of and only the expressions generated by these rules are schemata of L.

To motivate the definition of determination, let us turn to some example pairs of
schemata for which the determination relation holds. As an example of the use of polar
variables, consider the rule that, being a student athlete, one’s school, year, sport, and
whether one is female determine who one’s coach is and whether or not one has to do
sit-ups. This can be represented as follows:

EXAMPLE 1:

_(Athlete(z) A Student(z) A School(z) = s A Year(z) = y A Sport(z) =
z A i) Female(z))
> (Coach(z) = ¢ A 1251t — ups(z)).

As a second example, to illustrate that the component schemata may contain quantified
variables, consider the rule that, not having any deductions, having all your income
from a corporate employer, and one’s income determine one’s tax rate:

EXAMPLE 2:

(Tazpayer(z) A Citizen(z, US)A
(—3d Deductions(z,d)) A (Vi Income(i, z) =
Corporate(i)) A PersonelIncome(z) = p)

> (TazRate(z) = 7).

In each of the above examples, the free variables in the component schemata may
be divided, relative to the determination rule, into a case set z of those that appear
free in both the determinant (left-hand side) and.the resultent (right-hand side), a
predictor set y of those that appear only in the determinant schema, and a response
set z of those that appear only in the resultant.}. These sets are uniquely defined for
each determination rule. In particular, for example 1 they arez = {z}, y = {s,¥, 2,41},
and z = {¢,i2}; and for example 2 they are z = {z}, y = {p}, and z = {r}. In general,

1Readers familiar with statistical modeling might notice that the terms for these sets of variables
are borrowed {rom regression analysis. For a discussion of the statistical analogue of determination,
and its relations to regression and classificiation, see [7]



for a predicate schema % with free variables z and y, and a predicate schema X with
free variables z (shared with ) and 2z (unshared), whether the determination relation
holds is defined as follows:

THE DEFINITION OF DETERMINATION:

Iz, y] - X[z, 2]
iff
Vy,2(3z Zlz, y] A X[z, 2]) = (Y2 Z[z, 3] = X[z, 2]).

In interpreting this formula, quantified polar variables range over the unary Boolean
operators (negation and affirmation) as their domain of constants, and the standard
Tarskian semantics is applied in evaluating truth in the usual way (see [9]). This
definition covers the full range of determination rules expressible in first order logic, and
is therefore more expressive than the set of rules restricted to dependencies between
frame slots, given a fixed vocabulary of constants. Nonetheless, one way to view a
predicate schema is as a frame, with slots corresponding to the free variables.

4 “Use in Reasoning

Much of the work in machine learning, from the early days when Shakey was learn-
ing macro-operators for action ([21]) to more recent work on chunking ([22]) and
explanation-based generalization ([20]), has involved getting systems to learn and rep-
resent explicitly rules and relations between concepts that could have been derived
from the start. In Shakey’s case, for example, the planning algorithm and knowledge
about operators in STRIPS were a sufficient apparatus for deriving a plan to achieve
a given goal. To say that Shakey “learned” a specific sequence of actions for achieving
the goal means only that the plan was not derived until the goal first arose. Like-
wise, in EBG, explaining why the training example is an instance of a concept requires
knowing beforehand that the instance embodies a set of conditions sufficient for the
concept to apply, and chunking, despite its power to simplify knowledge at the appro-
priate level, does not in the logician’s terms add knowledge to the system. By defining
determination rules prior to the acquisition of case data, we can enable the system to
generalize appropriately without making the rules it will generate implicit from the
start.

Determination rules are the kind of knowledge that programmers of an intelligent
system often have. We may not know very many specific rules about which coaches
instruct which teams, but we still know that the latter determines the former, and this
knowledge has the potential to generate an infinite number of more fine-grained rules.
In addition to enhancing the power of intelligent systems, the logical formulation of



analogical inference enables it to be used reliably in the logic programming and expert
system contexts. A logic programming implementation is described in the next section.
Determination rules may be useful in knowledge engineering for two reasons:

1. In many domains a strong (implicational) theory may not be available, whereas
determination rules can be provided, and the system can gain expertise through
the acquisition of examples from which it can reason by analogy.

2. Even when a strong theory is available, its complete elucidation may be difficult,
and it may be easier to elicit knowledge using questions of the form “What are the
factors which go into making decisions about @77, i.e., to extract determination
rules.

The use of determination rules appears to be a natural stage in the process of
knowledge acquisition, occurring prior to the acquisition of a strong predictive theory;
for example, we have as yet no theory that can even come close to predicting the vo-
cabulary, grammar and usage of an entire language simply from facts about the nation
it belongs to, but we still have the corresponding determination rule that one’s nation-
ality determines one’s native language, with a few exceptions. We have been building
a list of different categories of determinative knowledge. Here are some examples of
processes in which determination rules are found:

s Physical processes: initial conditions determine outcome; boundary conditions
determine steady-state values for whole system; biological ancestry determines
gross physical structure; developmental environment determines fine structure
of behavior; structure determines function; function determines structure (less
strongly); disease determines symptoms; symptoms determine disease (less well);
diet, exercise and genes determine weight; ete.

e Processes performed by “rational agents”: case description determines legal out-
coroe; upbringing and education determine political leaning; social class and
location determine buying patterns; nationality determines language; zip code
determines state; address determines newspaper delivery time; etc.

e Processes in formal systems: program input determines program output; program
specification determines program; etc.

e The system’s own problem-solving processes: all the problem solving abilities
the system has, be they planrning, search, inference, programming or whatever,
can be analyzed into an input P and an output ¢J. Constructive processes, such
as planning and design, which have enormous search spaces, are particularly
amenable to reasoning by analogy. ([4] begins to address these issues, implicitly
using the determination rule that (exact) problem specification determines so-
lution; the key issue to be resolved before such work can succeed is to identify



the various abstracted levels of description for problems and solutions which will
allow use of less specific determination rules that do not require exact matching
-of specifications.)

5 Implementation in a Logic Programming System

Determination-based analogical reasoning can be implemented directly as an extension
to a logic programming system, such as Genesereth’s MRS system (see [23]). The
programmer simply adds whatever determination rules are available to the database
and the system will use them whenever possible to perform analogical reasoning.

Given a query X[T,z], the basic procedure for solving it by analogy is as follows:
1. Find ¥ such that Z[z,y] » X[z, 2] (i.e., decide which facts could be relevant).
2. Find y such that Z[T,y] (i.e., see how those facts are instantiated in the target).
3. Find S such that Z[5,y] and § # T (i.e., find a suitable source).
4-Find z such that X[5,z] (i.e., find the answer to thé c;luery from the source).

5. Return z as the solution to the query X[T,z].

We add this procedure to the system’s recursive routine for solving a goal, so that
it now has three alternatives:

1. Look up the answer in the database.
2. Backchain on an applicable implication rule.

3. Analogize using an applicable determination rule.

To solve goal X([T,z] using determination rule Z{z, y] > Xz, 2], we simply add the
following conjunctive goal to the agenda:

Bty ASls, gl A (s # 1) A X[s, 2]

The subgoals of this can be solved recursively by the same three alternative methods,
thus achieving the procedure given above.

An example may be helpful here. Suppose We have the goal of finding out what lan-
guage Jack speaks, i.e., NativeLanguage(Jack, z). We have the following background
information:
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Nationality(Jack, UK)

Male(Jack)

Height(Jack,6’)
Nationality(Giuseppe, Italy)

M ale(Giuseppe)
Height(Giuseppe, §')

Native Language(Giuseppe, Italian)

Nationality(Jill,UK)
Female(Jill)
Height(Jill,5'10")
NativeLanguage(Jill, English)

and among our determination rules we have that nationality determines native lan-
guage (except for Swiss), as well as other such rules, for instance that nationality and
whether or not one has dual citizenship determines whether or not one needs a visa to
enter the United States and how long one may stay: o

(Nationality(z,n) A ~Nationality(z, Swiss))
> (NativeLanguage(z,!).

(N ationality(z, n) A i) Dualcitizen(z,US))
> (i2NeedVisa(z,US) A Mazstay(z,t)).

Using the first of these determination rules, the system generates the new goal:

(Nationality(Jack,n)A
aNationality(Jack, Swiss))A
(N ationality(s,n) A ~Nationality(s, Swiss))A
s # JackA
NativeLanguage(s, z),

which is solved after a few simple deduction steps, with Jill as the source s. One may
observe that the more “similar” source Giuseppe is ignored, and that the irrelevant
facts about Jack and Jill are not examined. When the facts satisfying the various
subgoals of the analogy are not explicitly available in the database, the system will of
course attempt solutions by further reasoning, either analogical or implicational. For
example, if Nationality(Jill,UK) were replaced by Birthplace(Jill, London), then
the analogy could still succeed if a rule relating BirthAplace and Nationality were
available. Thus we have a natural, goal-directed reformulation which reveals implicit
similarities in an efficient manner.

In comparison to the more traditional, heuristic approaches to analogy, the use
of determination rules has significant efficiency advantages in addition to its other

11



properties. Winston ([32]) and Greiner ({12]) point out the enormous complexity of
matching the target against all possible sources in all possible ways to find out the
most similar source; as we observed in the implementation example, finding the de-
termination rule first enables us to pick out the relevant target facts and use those to
index directly to an appropriate source, thus overcoming the matching problem. We
also render irrelevant the problem of finding a suitable similarity metric, and transform
the reformulation problem (which arises when a change of representation might reveal
a previously hidden similarity) from an open-ended nightmare of forward inference into
a relatively controlled, goal-directed process.

The ability of determination-based analogical reasoning to avoid unnecessary match-
ing makes it a reasonable alternative to traditional rule-based logic systems. For some
problems, analogy is more efficient than using a corresponding set of implication rules.
A determination rule P(z,y) > ¢(z,2) and a set of instances replace a set of implica-
tion rules:

VYo P(z,Y)) = Q(z,Z))

¥z P(z,Y,) = Q(z,Z,),

where = can be arbitrarily large. Furthermore, since it must test the premises of every
rule that could imply a goal until it finds the right one, a backward chaining system
requires a lengthy search that can be avoided by using a determination rule.

A common form of reasoning that displays this behavior is taxonomic inheritance,
for which we might use a rule such as

Yz IsA(z,73DodgeV an) = Valueln87(z,$650)

to conclude the current resale value of one of our cars. With 7500 models in our
database, this would take us 7500/2 backchains on average. Replacing the implication
rules with a determination rule fsA(z,y) > ValueIn86(z,z) and a collection of proto-
typical instances {exactly analogous to the TypicalElephant frames in semantic nets)
we can solve our goal in four backchaining steps.

Another example is that of diagnostic reasoning, in which the (simplified) tradi-
tional approach uses a collection of rules of the form:

Yz HasSymptoms(z, < Symptom — listy >)
= HasDisease(z, < Disease; >).

These implication rules would be replaced by a determination rule HasSymptoms(z,y) >
HasDisease(z, z) and a case library.

12



6 Conclusion

There are 2 number of problems related to analogy that we have not solved. What we
have is a method for generating correct generalizations and analogical inferences, given
correct determination rules. At the same time, our work has created new problems: a
reasonable next step is to work out how determination rules can themselves be acquired.
Some early thought on the determination rule acquisition problem points to four basic
methods:

1. Deduce a determination rule from other known facts (For an example, see [26]).

2. Induce a determination rule from instances (essentially calculate the empirical
degree of determination of X by £—see and [7], [25]).

3. Induce a determination rule from a collection of specific rules.
4. Generalize from a collection of more specific determination rules.

Because we have a formal definition for determination, inductive acquisition of
determination rules is conceptually straightforward, if pragmatically troublesome. Ac-
quisition experiments on a broad knowledge base are currently under way using the
CYC system ([17}). We are also building determination-based expert systems by in-
duction from examples in the domains of market forecasting and mechanical device
diagnosis from acoustic emission. The results so far seem very promising.

A full understanding of the human processes of analogical inference and general-
ization will surely require further investigations into how we measure similarity, how
situations and rules are encoded and retrieved, and what heuristics are used in project-
ing conclusions when a valid argument cannot be made. But it seems that logic can
tell us quite a lot about analogy, by giving us a standard for evaluating the truth of
its conclusions, a general form for its justification, and a language for distinguishing it
from other forms of inference. At the same time, we have found a consideration of the
logical problem to be of practical benefit, for reasoning by analogy using determinative
knowledge appears to give a system the ability to learn reliably new rules that would
otherwise need to be programmed.
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