Triton Reference Manual

Version 0.7.3

Dennis Heimbigner

CU-(CS-483-91 Revised 31 Jan. 1991

University of Colorado at Boulder
Technical Report CU-CS-483-91

Department of Computer Science
Campus Box 430
University of Colorado
Boulder, Cyo].orado 80309

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
31 JAN 1991 2. REPORT TYPE 00-01-1991 to 00-01-1991
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Triton Reference Manual Version 0.7.3 £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Colorado at Boulder ,Department of Computer REPORT NUMBER
Science,Boulder,C0O,80309-0430

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 31
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Triton Reference Manual

Version 0.7.3

Dennis Heimbigner

Revised 31 Jan. 1991

1 Introduction

Triton is a program for providing access to persistent typed objects. It provides an interface
by which other programs may dynamically create new types, new methods (in the behavioral
object oriented sense), and new instances of the types. These instances are persistent, which
means that they exist when the program that created them terminates, unless that program
deliberately destroys the objects. These objects can also persist over instantiations of Triton,
with each new instantiation having access to the objects that existed at the termination of the
previous instantiation.

Triton is often referred to as an “object manager,” but is more appropriately termed an
“object manager shell.” The term shell is used to indicate that while the Triton interface
provides many of the services available through object managers, Triton itself is wrapped around
an existing object manager, with the intent that Triton can provide some services not provided
by the underlying object manager.

In this case, that object manager is Exodus, which comes from the University of Wisconsin.
Exodus provides a low level storage manager to manage storage objects. A storage object
is a contiguous sequence of bytes with an associated unique identity. These objects are kept
on disk and cached in buffers in main memory as required. Exodus also provides a persistent
programming language called E, and which is derived from C++. Thus the data model provided
by E consists of the normal C type system (int, char, struct, array, etc.) plus classes, which
encapsulate data and methods (procedures) that operate on that data. Classes may be arranged
in a subclass tree and methods may be inherited down that tree. Multiple inheritance is not
provided in this version of E, since it is based on C++ version 1.2.

E-Mail Address: dennis@cs.colorado.edu

This material is based upon work sponsored by the Defense Advanced Research Projects Agency under
Grant Number MDA972-91-J-1012. The content of the information does not necessarily reflect the position or
the policy of the Government and no official endorsement should be inferred.

2 Required Reading

This document assumes some significant knowledge about Exodus and Q. In particular, it
assumes some knowledge about the basic structure of E, and it assumes that you have some
understanding about remote procedure calls and how to use Q to encode and decode procedure
arguments. In section 17, it is assumed that the reader is familiar with APPL/A.

3 Triton Architecture

An instance of Triton is a server. This means that it runs as a single Unix process and com-
municates with clients via remote procedure calls. The protocol used is the Sun RPC/XDR
protocol over TCP/IP stream connections. Multiple clients may access the same server and
their requests will be handled on a first-come, first-serve basis. At the moment, Exodus provides
no transaction management facilities. However, a rudimentary form of atomicity is provided
by the server in that each client request is executed to completion before any new request is
processed.

A Triton server has some detailed interior structure (see Figure 1). At the lowest level is the
exodus storage manager. On top of that there is the code for a collection of E class methods
and functions. This code is intended to represent client application, and this code can be added
dynamically to the Triton server as new applications come into being and use the server.

In addition to this application code, there is code to maintain a catalog of information about
the client application classes, methods, and functions that are known to the server. There is
also a small amount of code to support the remote procedure call interface.

4 Invoking Triton

In order toinitiate a Triton server, a number of resources must be established. First, a database
volume must be established as a file into which Triton will store persistent data. As a rule,
every running server should have its own volume file in its own directory. There are two reasons
for this:

1. At the moment, no two servers can correctly share a single volume.

2. The server, when running, will create server-specific files in the current working directory
that is in force when it starts.

The volume file needs to be created and initialized by running the Exodus utility “formatvol”
using a sequence of commands such as:

rm -f $EVOLUME
formatvol
8

8
8
8

where the sequence of 8’s defines the various parameters for the disk file. There is nothing magic
about 8. If the triton server crashes, then it is possible that the data volume is corrupted. If you

suspect that it is, then you will have to re-format the file and reload the schema and re-create
the instances.

A number of environment variables must be defined at the time the server is started. Ad-
ditionally, some variables may optionally be defined:

EPATH: This variable should point to the directory containing the Exodus system.

EVOLUME: This variable gives the name (possibly as an absolute path) of the file to use as
the data volume for the server.

TRITONPATH: This variable should point to the directory containing the Triton system
corresponding to the executing server. Usually this variable need not be specified since
the default is constructed at system configuration time to be correct.

TRITONSEARCHPATH: This is a search path in the same format as the PATH variable
(i.e., colon separated paths). It is used by the server to locate the object files specified
during dynamic loading. If you do not set this variable, then you will generally need to
specify absolute path names for the dynamic loader. A utility function is provided for
adding to this searchpath. It has the following signature.

char* triton_searchpath_add(char* dir, int first=1);

This adds the directory specified by the string first argument to the current searchpath
list. If first is one, then it is added at the front, else at the back. A corresponding Ada
procedure is also available.

TRITONRPCPROTOCOL: This is a string with either the value "TCP”, or "UDP” to
indicate what protocol the server should use for its remote procedure call servicing.

TRITONRPCNUMBER: This is a string representing a small integer. It indicates what
program number the server should use for its remote procedure call servicing. In previous
versions of the server, it was impossible to have more than one server per host machine.
Now, however, if each server is started with a different value of this environment variable,
then multiple servers may co-exist on a single machine, subject to still using different data
volumes in different directories.

Note that if the variables TRITONPRCNUMBER and TRITONRPCPROTOCOL have
different definitions between the server and client, no communication will be possible. Section
10.8 on properties has some more information on other, possibly useful, environment variables.

Once the above resources are satisfactorily established, starting up Triton requires nothing
more than invoking the Triton program. If the command line has arguments, then they are
assumed to be the names of object files to be pre-loaded into the server. Once started, clients
may begin to make calls to the server to perform any of the Triton interface functions. Orderly
shutdown of Triton is best performed using the “tmcd” utility (see Section 16.2).

As a server starts up, it will check to see if a conflicting server already exists on the same
machine. If one is detected, it will print a message, and ask if it should continue or abort. If it
is told to continue, the previous server will be requested to shutdown.

5 Client Access To Triton

In order for a client program to properly access the server, it too must establish a number of
resources. In particular, a number of environment variables may be defined at the time the
client is started. All of these variables have defaults, but you may not want to use them.

TRITONHOST: The name of the machine containing the server with which the client is
supposed to interact.

TRITONRPCPROTOCOL: This is a string with either the value ”TCP”, or "UDP” to
indicate what protocol the client should use for its remote procedure call servicing.

TRITONRPCNUMBER: This is a string representing a small integer. It indicates what
program number the client should use for its remote procedure call servicing.

Note that if the variables TRITONPRCNUMBER and TRITONRPCPROTOCOL have
different definitions between the server and client, no communication will be possible. Section
10.8 on properties has some more information on other, possibly useful, environment variables.

6 The Triton Type System

The Triton type system was deliberately chosen to be subset of the E type model so that E
programs could be used to provide behavioral components for the model. In retrospect, this
may not have been such a wise idea due to the compleicity of the E type model. But given that
choice, we can see that classes, methods, and functions are the basic schema elements that an
application can define to Triton. Methods may be viewed as functions that are associated with
specific classes, while functions are free-standing and not associated with any class.

Classes are of three basic kinds: base, generic, and derived. Unless otherwise specified, the
term class will refer to a base class. A generic class is one that can be instantiated to produce
a new, derived, class. For a detailed understanding of generic and derived classes, refer to the
E reference manual.

Methods are functions associated with classes. The primary difference between a function
and a method is that a method takes a pointer to an instance of the class as an implicit first
parameter. This parameter can be referenced through the pseudo-variable “this,” just as in
C++. Functions are not associated with any class, and so their arguments are all explicit.
Both methods and functions have typed, formal arguments, and typed return values (possibly
void). The allowable types of arguments and return values is specified by a component of the
Triton type model called the representational type system (RTS) The Triton RTS model is a
subset of the E model, and consists of the following elements:

The typical C scalar types (void, char, short, int, long),

Floating point types (float and double),

Pointers (void*),

Null terminated strings (char*),

Byte strings (char*),

o E Pointers (dbvoid*),
¢ QDR(=XDR) encoded values, !
o Uninterpreted values.

Ignoring issues of implementation, all of the above should be obvious except the last three:
E pointers, QDR values, and uninterpreted values. Discussion of QDR and uninterpreted types
will be deferred.

In E, some types are distinguished as potentially persistent. These types are named like
the ordinary C++ types, but preceded by the letters “db”: dbint, dbstruct, etc. Because
instances of these types may potentially be made persistent, pointers to instances of them must
be capable of referring to a very large disk space into which persistent objects are stored. In
order to accommodate very large data spaces, E pointers to such objects are 16 bytes long as
opposed to the 4 bytes of a normal C/C++ pointer. It is true that an E pointer could have
been treated as a byte string, or a structure, but it is so common that it is useful to provide a
separate type for it.

You may have noticed that there is no structure type in the above list. This is intentional
and the reason will be discussed in a subsequent section.

7 Passing Values to Triton

The principal operation that a client requests of Triton is to invoke some function (or method)
with some set of arguments. This presents some serious problems because the function is in
one process, Triton, and the argument values are in the client process. So, it is necessary to
copy the arguments from the client to Triton before executing the function.

This problem is not unique to Triton, of course, but is in fact inherent in any remote
procedure call system. Triton uses the Q system to provide its remote procedure call and
argument copy facilities.

In Q, as in RPC/XDR, the client arranges to copy arguments by providing a type specific
procedure (a qdr procedure) that linearizes a given instance of an object. This means that
the qdr procedure walks the object, including pointer following, and encodes the object into a
linear string of bytes in some standardized form.

As a consequence of the way RPC is set up, every remote function must be defined to
take one, read-only, argument, which is an input, and return a single value which must encode
all returned values. In practice, this means that a multi-argument function must treat its
arguments as if they were elements of a structure that is to be linearized. Attempts to provide
read/write arguments are typically doomed since the inputs, being copies, will be discarded
after the function returns.

Once the arguments for a function have been linearized, they may be sent to the server,
Triton in this case. At the server, the linearized arguments must be de-linearized into an
instance of the object. Note that this object is a copy of the original object, and in fact may
not be identical if the linearize procedure chooses not to encode all information associated
with the object on the client side. However, the qdr procedure was written by the application

'Q is a variant of the Sun XDR protocol, but it uses the same data structures, so QDR for our purposes is

the same as XDR. The primary difference is that a QDR encoding must be preceded by the size of the encoded
data.

programmer, and so it is assumed to linearize as much information as is needed on the server
side.

Thus the basic operation in Triton consists of receiving a request that specifies a function
and a linearization of the arguments to that function. Triton then de-linearizes the arguments,
calls the function, takes any result from the function, linearizes that result, and returns the
result to the client.

8 Special Argument Types

If triton recorded the complete structure of all argument types and all result types 2 then it
could automatically linearize and de-linearize any instance of a type for whose structure it had
a representation. Unfortunately, the E type system is very complicated, so the current version
of Triton only records limited information about types.

In the current implementation, if a function is defined to have arguments only of types
scalar, float, E pointer, null-terminated string, or byte string (fixed length, or variable), then
Triton can automatically extract the arguments from the linearization and pass them to the
function.

We can now see why structures are not currently supported. If the argument was a structure,
and its size was known, but not its interior structure, then it could be de-linearized by treating
it like a fixed length byte string. This decoding, however, would not be correct if the encoded
fields of the encoded structure differ from the decoded fields. For example, in Q, the linearized
form of a floating point number is not the same as the machine form for that number. Thus,
a structure that contained a floating point number would not be correctly handled by Triton.
Until Triton contains a more complete representation of the type structure, it was felt that
structures should not be provided as it was too easy to make this mistake.

A more serious problem concerns pointers, and especially linked list structures. If a structure
contains a pointer to some other object, then in the linearization, the pointed-to object probably
should be linearized as well. On de-linearization, the pointer and the pointed-to object must
be reconstructed. Triton does not record enough structure at the moment to do that correctly.
Instead, Triton provides a couple of escapes to deal with this problem (as well as the opaque
structure problem).

In Triton, it is possible to say that some argument of some function is of type “RLI_.QDR,”
and to specify some other function whose purpose it is to de-linearize objects for that argument.
Then, when Triton encounters an argument of this type, it invokes the second function, gives
it the linearization, and expects in return a pointer to the de-linearized object. It then passes
that pointer to the original function as the argument.

In some cases, it may be impossible to specify to Triton anything about the arguments of
a function, a function with variable numbers of arguments, for example. In this case, termed
RLI_LENCODED, the function is defined to take exactly one argument: the encoded lineariza-
tion. It is the total responsibility of that function to decode the linearization into any needed
arguments.

?Something we hope it will do in the not too distant future.

9 Special Result Types

As with argument types, the simpler result types for functions and methods can be specified
and handled correctly by Triton. This includes scalars, floats, and E pointers.

If the result is a null terminated string, then it is assumed that the function returns a pointer
to that string. Note that at the moment, there is no way to automatically free the space for
the return string if it was dynamically allocated, and so you may have a memory leak in your
system for this case.

If the result is a byte string, then it is assumed that, again, a pointer to it is returned. But,
it is assumed that the byte string is exactly as long as the size associated with the type, so
variable length byte strings cannot be returned this way. Again, there is no way to recover the
space if the byte string was dynamically allocated.

A function result may be specified to be of type RLI_QDR, in which case the function is
expected to return a pointer to an object to be linearized by the associated qdr function.

Similarly, a function may be designated as returning a result of type RLI_LENCODED. In
this case, the function is expected to return a QDR _Handle as its result, and it is assumed that
any returned result has been encoded into the buffer associated with the returned handle. Note
that this differs from RLI_QDR in that the function must itself invoke any encoding function,
whereas with RLI_.QDR, Triton will invoke the encode function.

As an example, suppose that function “f” has been defined to Triton as returning a result
of type RLI_LENCODED. Its code will look something like the following:

QDR_Handle f(...)

{
<compute>
<encode result into QDR_Handle x>
return x;

}

The only question is: where does the QDR_Handle in x come from? There are two answers to
this.

First, you can create it yourself:

QDR_Handle f(...)

{
QDR_Handle x;
<compute>
x = qdr_create();
<encode result into QDR_Handle x>
return Xx;
}

This has the disadvantage that a new buffer will be created on every call to f, rather than
reusing the same buffer. This can be alleviated by code such as this:

QDR_Handle f(...)

{
static QDR_Handle x = NULL;

<compute>

if(x == NULL) x = qdr_create();
<encode result into QDR_Handle x>
return x;

As an alternative and a convenience, Triton calls such functions with an extra argument

which is a QDR_Handle into which the function can encode its arguments. Such a function
would look like this:

QDR_Handle f(...,QDR_Handle x) // note the extra argument

{
<compute>
<encode result into QDR_Handle x>
return Xx;

}

10 The Triton Interface

The Triton interface is divided into several parts:
1. Triton initialization/finalization,
2. Schema definition operations,

Schema lookup operations.

LS

Schema element destruction operations.
5. Instance manipulation operations,

6. Dynamic loading operations,

7. Dynamic unloading operations,

8. Property manipulation operations.

10.1 Initialization and Finalization

Assuming that a triton server is operating on host “X”, a client application must first connect
to that server before attempting to perform any operations. When the client is finished, it
must disconnect from the server. This does not cause the server to terminate. Under rare
circumstances, the client may need to terminate the server as well. These activities are handled
by the following operations:

Initialize_triton: The argument to this function is the name of the host machine on which the
Triton server resides or is null. If the argument is null, then the property “TritonHost”
is used to determine the host machine on which the server is running. Normally, the
null value should be used. This operation should be called once, and before any other
operations.

Finalize_triton: This operation is intended to clean up on the client and to notify the server
that the client will no longer be using the server (at least until another initialize is per-
formed).

Shutdown_triton: This operation is intended to cause the server to clean up and exit. The
caller should provide an exit code to be used by the server when it exits. Before Triton
0.7.2, this operation always complained about RPC timeout because the implementation
was not completely clean.

10.2 Schema Definition Operations

The term schema is used here to mean the collection of types, classes, functions, and methods
known to Triton. You should always refer to the actual files containing the interface when
programming as this document may be somewhat out of date. The C/E/C++ interface is in
the files STRITONHOME/include/Triton.h, $TRITONHOME/include/TritonClient.h, $TRI-
TONHOME/include/TritonUtil.h, and $STRITONHOME/include/TritonDestroy.h and the Ada
interface is in the files STRITONHOME/src/ada/triton.a, STRITONHOME/src/ada/triton_util.a,
and $TRITONHOME/src/ada/triton.relation.a. The term “STRITONHOME” is intended to
stand for the path to the top level directory containing the Triton system.
The primary interface operations include the following.

Create_Type: This function takes as its arguments an indicator of the type, the size, a name
for the type (possibly null), and possibly a handle to a qdr function if the first argument
is RLI.QDR. If the size is unknown, -1 should be specified. A handle (an E pointer) is
returned as a result. This handle can be used in any other operation argument where a
type definition is required.

Create_Class:
Create_Class_Generic:

Create_Class_Derived: These three operations take a name and a parent class reference,
define a class to Triton and return a handle for referencing the newly created class. For
non-derived classes, the class becomes a subtype of the parent class. For derived classes,
the parent specifies a generic class from which the derived class was generated.

Create_Function: This returns a handle for referencing a function of a given name and with
a given result type. If the result type is null, then the default is type “void.”

Create_Method: This returns a handle for referencing a method of a given name and with a
given result type and within a given class.

Create_Method_Inherited:

Create_Method_Derived: Each Method in E is associated with a class, but some methods
are actually inherited from a parent class or are derived from some generic class. These
operations are defined by specifying the operation (basemethod) from which they are
inherited or derived, as well as the class with which the method is associated. Be careful;
the parent argument here is the subclass (for inherited methods) or the derived class (for
derived methods). It is not the parent class (the superclass or generic class). By default,

the new method will use the same name and result type as defined for the basemethod.
These defaults can be overridden by the last two arguments to this operation.

Create_Formal: The arguments to a function or method are created using this operation. it
takes a name for the formal, a function with which the formal is associated, and a type
for that formal. A null formal type defaults to type “long.” Note that at the moment,
arguments do not inherit from supertypes or generics, so you will need to re-define the
argument types for each function, inherited or not.

10.3 Schema Lookup Operations

Again, refer to STRITONHOME/include/TritonClient.h to see the Triton interface operations
for converting names to references. In the case of lookup_method, it is necessary to specify a
reference to a class since methods of the same name may exist in different classes. Similarly,
formal argument lookups must specify the function or method in which to look.

10.4 Destroying Schema Elements

Deleting a type from a database is a tricky problem. What about instances of that type? What
about things that point to instances of that Type? General answers to these problems are
difficult, and it is often claimed that types should never be deleted, but instead, versions of
them should be created 3.

Triton does not yet provide versioning, but for purposes of debugging, it was felt essential
to provide some means for destroying schema elements. The best way to use this feature is
when you are creating schema elements and before any instances are created, or if you don’t
care about the instances. There is only a single operation:

Destroy_schema_object: This operation takes a handle to some schema element, presumably
produced by a lookup operation or a create operation, and removes it from the schema.
If a class is removed, then all of its subclasses, derived classes (if the deleted class is a
generic), and all of its methods are also deleted. If a method or function is deleted, then
all of its formal parameters are deleted. Note that this means that it is illegal to use
the same formal parameter object in more than one method or function. Deletion of any
of these elements will not cause any non-class types (defined using “create_type”) to be
deleted. Deleting a non-class type should not be done unless all references to it have
already been destroyed. Suggestions are being taken as to the desired behavior when a
type is deleted that still has references to it. One suggestion is to replace all references
to the type with a reference to the type “void.”

10.5 Instance Manipulation Operations

Once a schema is created, it must be possible to populate it with instances and then access
and manipulate those instance. The file $TRITONHOME/include/TritonClient.h shows the
interface operations for accomplishing those capabilities.

Create_Instance: The basic functionality of create_instance is to create an instance of a spec-
ified class. Dynamically created objects may be created as persistent if and only if they

3Versioning has its own problems.

10

are created as elements of a persistent “collection”. In E, the class “collection” is generic
and is typically instantiated with some class as its parameter. Collections can themselves
be dynamically created as instances of other collections, but eventually, there must be
persistent variable (declared using the “persistent” keyword) containing an instance of
some collection. In E terms, the call

create_instance(cl,qargs,coll)
is loosely equivalent to the E expression
in (coll) new cl(qargs).

Normally, when an instance is created, it must be initialized by constructor method for
the class. A constructor is a method with the same name as the class. The constructor
may need arguments in order to initialize the instance. These arguments are encoded in
the second argument to this operation.

Evaluate: This operation is used to invoke a method or a function in the Triton schema. It
requires a handle to the function, the linearized arguments, a place to put the linearized
result, and if it is a method, then an instance of the class of the method.

Destroying an element can be done by defining and evaluating (see Section 10.5) the de-
structor function on the class and evaluating it with the object to be destroyed as instance. At
this point, the pointer to the instance is no longer meaningful, and attempts to use it will cause
fatal errors.

10.6 Dynamic Loading Operations

As described above, the actual code for methods and functions must be dynamically loaded into
the server. In order to do this, Triton keeps around a copy of the symbol table produced by the
loader when Triton was loaded. As new object files are added to Triton, successive versions of
this Triton symbol table file are produced. In addition, the E compiler (as modified for Triton)
can output extra definition information (e.g, class sizes). This information should also be given
to the server, and in fact is essential if the “create_instance” operation is used.

Figure 2 shows the correspondence between various schema elements and the object and
definitions files. Compiling an E program produces an object file containing the actual code for
a method or function. The definitions file contains Class size information.

Dynamic loading adds the code of the object file into the Triton server, and “binds” the
code to the appropriate schema element: function or method. This is shown in Figure 3. Note
that a sequence of dynamic loads is recorded in Triton as a “stack” of object files pushed on
the stack in order of loading. This stack is termed the “registry stack.” Entries in this stack
are named by the the immediate file name of the load file or defines file associated with that
registry. Thus, if the registry was created by loading “/moet/staffl/arcadia/point.0” then its
name is “point.o.”

There are several operations involving dynamic loading.

Bind_Initial_Symbols: It is possible to pre-load commonly used classes into the Triton server.
In order for the methods of these classes to be accessible, this operation must be invoked.

11

It scans the current symbol table looking for values for methods and functions found in
the catalog. If it is given an argument, then it assumes that it is a definitions file, and it
searches that file for the sizes for any classes in its schema.

Load_and_Bind: This operation specified an object file containing the code for methods and
functions to be dynamically loaded into Triton. It is assumed that appropriate creation
operations have already been invoked to define the methods and functions being loaded.
If a definitions file is available, it should also be specified. This has the side effect of
creating a new symbol table file.

10.7 Dynamic Unloading

In order to debug a set of methods, it is necessary to load them into Triton, and then test them
out. If an error is discovered, it would be nice to “unload” those methods and try again 4.

The “unload_thru” operation provides just such a capability. It takes as its argument the
name of a previously loaded object file and, in effect, pops the registry stack until the named
file has been removed. If no argument is specified, or the name is of length zero, the the whole
stack is popped. This has several consequences:

1. All symbol tables produced at or before the load of the specified argument will be purged.
2. All code loaded at or after the specified file will be removed from Triton.

3. Any class sizes, method bindings, and function bindings will be invalidated in the schema.

10.8 Property Manipulation Operations

Beginning with Triton version 0.7.2, both clients and servers maintain named sets of “proper-
ties.” The idea is to mimic the Unix environment capability in which it is possible to define
(name,value) pairs for parameters that will influence the behavior of the client and/or server. It
is possible to interrogate the server or client for the values of various properties. Additionally,
some of those properties may be modified. All property values are passed as strings, even if the
underlying type of the property is some other type.

10.8.1 Programmatic Interface
The primary interface for obtaining property values is the function
extern char* get_triton_property_value(char* propname);

This function takes the name of some property and returns a string which is an encoding of
the value of that property. If there is no such property, or some other error occurs, then this
function will return a null pointer.

It is also possible to modify properties using the function

extern int set_triton_property_value(char* propname, char* newvalue);

*Unfortunately, the most common effect of a bad methods is to crash the server, but there is little that can
be done about that problem in the current compiler-based implementation.

12

This function takes the name of a property and a string encoding the new value to be assigned
to that property. It will return a value greater than zero if it succeeded, and a value of zero or
-1 if it failed.

At the moment the value string should be one of three kinds: integer, pathlist, or a string.
An integer is a possibly signed sequence of digits. A path list is a sequence of strings encoded as
a single string by using a colon (‘) as a separator. This means, obviously, that the consituent
strings may not contain colons. For example, the string “abc:defig” is a sequence of three
strings: “abc”, “def”, and “g”. It should be obvious that this form was chosen deliberately
to match the form used by environment variables such as PATH. Finally, a string is any other
sequence of characters. The proper choice of format is determined by the type of the property
being set (see tables 1 and 2).

In case a program needs to see the complete list of properties, the following function may
be used.

extern char* get_triton_property_list();

This function returns a sequence of strings, separated by colons, where each string is the name
of a known property.

The above functions manipulate properties in the server. A corresponding set of operations
can be used to manipulate properties in the client.

extern char* get_client_property_value(char* propname) ;
extern int set_client_property_value(char* propname, char* newvalue);
extern char* get_client_property_list();

Some (but not all) of the properties in the client have the same name as some (but not all)
properties in the server.

In both the client and the server, each property is associated with a global variable which
has type “int” for integer values, “char*” for strings, or “char**” for path lists. Dynamically
loaded code in the server, and any client code, can access these values.

10.8.2 Property Initialization
The properties will be initialized as part of a call to any of the following functions:

¢ initialize_triton

get_client_property_value

set_client_property_value

get_client_property_list

®

get_triton_property_value

set_triton_property_value
¢ get_triton_property_list

At that point, any of the global variables will have a properly defined value and may be accessed.
In most cases, the initial value of a property is taken first from some specified environment
variables and second from some specified default.

13

10.8.3 Client Defined Properties

At the moment, the following properties are defined for the client with the following names and
semantics. Case in the names is significant. Table 1 summarizes information about the client
properties, while the list below defines their semantics.

ClientVersion: This is the version number for the client library code.

TritonRPCProtocol This specifies what protocol the client should use for its remote proce-
dure calls. Acceptable values are "TCP”,”Tcp”,”tcp”, "UDP”,”Udp”,”udp”.

TritonRPCNumber This specifies what program number the client should use for its remote
procedure calls.

TritonRPCVersion This specifies what version number the client should use for its remote
procedure calls.

TritonHost This specifies the machine on which the server is assumed to be running.

TritonRPCTimeout This specifies how long (in seconds) the client will wait for the server
to respond to its remote procedure calls.

Client APPLADebugLevel: This specifies an integer (encoded as a string) defining the level
of debug output to be produced by all APPL/A relations on the client side.
10.8.4 Server Defined Properties

At the moment, the following properties are defined for the server with the following names and
semantics. Case in the names is significant. Table 2 summarizes information about the server
properties, while the list below defines their semantics.

TritonVersion: This is the version number for the server.

EPath: This string specifies the path for the E system. It is assumed that immediately below
this directory is a directory named lib containing libE.a.

TritonPath: This specifies the path to the directory containing the Triton system. It is
assumed that immediately below it is a bin directory containing, among other things, the
triton executable from which the server was instantiated, and a lib directory.

TritonDebugLevel: This specifies an integer (encoded as a string) defining the level of debug
output to be produced by the server.

APPLADebugLevel: This specifies an integer (encoded as a string) defining the level of
debug output to be produced by all APPL/A relations.

TritonRPCProtocol This specifies what protocol the server should use for its remote proce-
dure services. Acceptable values are "TCP”,”Tcp”,”tcp”, 7UDP”,”Udp”,”udp”.

TritonRPCNumber This specifies what program number the server should use for its remote
procedure services.

14

TritonRP CVersion This specifies what version number the server should use for its remote
procedure services.

TritonHost This specifies the machine on which the server is running.

TritonSearchPath This is a path list specifying a search path to be used by the dynamic
loader in trying to locate the object file to be loaded.

11 Triggers

Triton provides the ability to trigger on the invocation of methods or functions. This means
that one can associate trigger functions with some specified target function or method and have
those triggers be automatically invoked before and/or after the target function is executed.
This is typically used to provide unobtrusive monitoring and to provide forward and backward
inferencing, as in APPL/A. The interface is in $TRITONHOME/include/TritonClient.h.

Add_Trigger: This operation specifies a target function on which to trigger, an indication of
when to invoke the trigger (before, or after or both), and the trigger function. It returns
an integer identifier for referring to this trigger.

Remove_Trigger: This takes a target handle and a trigger identifier and disassociates the
corresponding trigger from that target.

In theory, the trigger id determines the exact combination of when, trigger, and target. In
order to avoid long searches of all targets looking for an id match, it is required to be specified
in the context of a specific target, and this is why “remove_trigger” takes two arguments.

Any defined formal arguments for trigger functions are ignored when the trigger is invoked.
Instead, all triggers are assumed to have the following signature ‘

void trigger(
QDR_Handle gargs,
QDR_Handle qresult,
dbvoid* instance,
T_function_p target,
trigger_id id,
T_function_p trigger

)

The “qargs” argument is the linearized input arguments for the target function, and the “qre-
sult” argument is the linearized output from the function. This argument will be NULL in the
case of a “before” trigger. If a method is the target, then the “instance” argument is the object
to which the method was being applied. This will be NULL if the target is not a method. The
next two arguments duplicate the arguments to “remove_trigger” so that a trigger can, if it
wants, remove itself. The last argument is the handle for the trigger function. There are two
things to note. First, since the arguments are linearized, the trigger function must know how
to decode them if it wishes to look at the individual arguments. Second, it is possible for the
trigger to change the inputs before they are passed to the target function. It is also possible to
change the result from the target before returning the result to the client.

15

A utility function, “create_trigger_function_schema”, can be used to define a schema element
for a trigger function with the correct formal parameters. It takes as arguments a function name
and, if it is supposed to be a method, the name of the parent class.

12 Constructing a Triton Client Program

In order for a client program to use Triton, several software pieces must be constructed. First,
the client must have an E source file that defines the structure of the client data to be stored
in Triton. For purposes of this discussion, we will use an example in which the client wishes to
store points consisting of x and y coordinate pairs. Further, assume the client wishes to keep a
persistent set of all points defined.

The file STRITONHOME/src/tests/point.e contains the E code for the point class defini-
tion. It declares a class point with two fields: x and y. It has a constructor (method “point™)
and two other methods: “get_point” and “set_point.” Since get_point must return two values,
it is defined to return a value of type “struct xy”.

After the definition of the point class in the file, there is a declaration of a point_collection,
which is a class derived from the built-in generic class “collection.” Then, a persistent instance
of point_collection is declared (in the variable named “point_s.” Finally, a function is defined
whose sole purpose is to return a handle to the persistent set.

Once the client definition file has been defined, it should be compiled by the E compiler
using a command of the form

EC +tpoint.d -I$TRITONDIR/include -I$QDIR -c¢ point.e

The “4t” argument causes the compiler to place extra definition information into the file
“point.d.” ® The “I$TRITONDIR” denotes the fact that your program will generally include
the triton header file “Triton.h.”. The macro $TRITONDIR is supposed to represent the path
to the directory containing Triton. Similarly, “6QDIR” points to the Q directory. It is needed
since “Triton.h” depends on “QDR.L.”

If the object file contains the code for a derived class, then it must be further processed by
the “makeglobal” utility provided with Triton (see Section 16.1).

Now consider STRITONHOME/src/tests/cl.e, which is an example of a client program.
Generally, the client will invoke the following sequence of triton operations:

1. Initialize_triton(),
2. A sequence of schema definition operations (create_class, etc),

3. Load.and_bind(codefile,deffile), where for example, codefile is “point.0” and deffile is
“point.d.” 6

At this point, the code is client dependent. The first function invoked is “get_point_space”,
whose handle has been placed in the variable “f space.” It takes no input argument, but its

®Caution: the “4+t” argument should be the first argument to the EC command; other placement may or may
not work.

°If the environment variable TRITONSEARCHPATH contains the path $TRITONHOME/src/tests,
then the strings “point.o”, and “point.d” can be used. Otherwise, the absolute paths “$TRITON-
HOME/src/tests/point.o” and “STRITONHOME/src/tests/point.d” must be used.

16

result is an epointer handle to the persistent point collection. There is a bit of trickery here
involving E pointers and normal pointers (see section 15). but the result is to leave the point
collection handle in the variable “points.”

Next, this client creates an instance of class point with initial value x=>5 and y=18. To do
this, the two arguments are linearized, and then create_instance is called to create and initialize
the instance.

The next action of the program is to invoke “get_point” to retrieve the contents of the
created point, and print them out.

Finally, “finalize_triton” is called to clean up, and the client exits.

If the client is executed again, then it will again attempt to create the schema and load
“point.o.” The server is defined so that redefining schema objects does not create duplicates
in the schema. Further, object files that it believes to have been loaded correctly will not be
reloaded. This has merits and demerits. It means that many clients can be run several times
without problems. It means that debugging schemas and dynamically loaded objects files is
difficult. One has to either deliberately restart the server (typically using “shutdown_triton”)
to remove the dynamically loaded code, or use the tcmd “unload” command (see section 16.2).

13 Caveats

Triton is frankly a fragile system, in that it can easily break, or get confused. This section
describes some of the known problems in using Triton.

13.1 RPC Timeout

The remote procedure call mechanism used in Triton is not tolerant of long operations. Un-
fortunately, the “load-and_bind” operation is potentially a long operation, and so it can cause
RPC timeout errors.

There are several work-arounds for this problem.

1. One solution is to check to see if the “load_and_bind” failed. If so, then “sleep” for a
period of time (60 seconds is a good minimum) and then try to load it again. The second
load should succeed. The sleep-load cycle can be repeated several times.

2. As mentioned above, triton will pre-load any object files specified as command line ar-
guments. Thus, if one knows what object files need to be loaded, they can be specified
on the command line. Then, later, when the attempt is made to “load_and_bind” that
object file, it will generally succeed and not timeout because the file was already loaded.
Note that the client still has to invoke the “load_and_bind” operation in order to bind
the symbols into the catalog, it is just that the file will not need to be loaded since it is
already there.

3. (Best) Set the TritonRPCTimeout property to a sufficiently large number.

13.2 Using Generic Classes

Programs dynamically loaded into Triton are free to define generic classes and classes derived
from them. Their are some complications, though, in using methods in derived classes. Normal
class methods take the instance as an implicit first argument. It turns out that methods

17

associated with generic classes take a special argument as a second implicit argument. This
special argument contains information necessary to specialize the generic method to act as a
method for some class derived from that generic class. The consequence for Triton is that it
must be informed of the methods of derived classes that come from the generic class. To this
end, the interface operation “create_method_derived” should be used to define every derived
method that will be used by a derived class. In section 17, on using APPL/A, you can see an
application of this where class “RELATION” is generic, and class “simprel” is a derived class
with derived methods.

Derived methods also introduce another complication. If some of the arguments, or a
result of a generic method depends upon the type of some generic parameter, then some care
must be taken in defining the code for the generic function because Triton has only imperfect
modelling of this feature. In particular, Triton is not capable of correctly handling these generic
parameters. As a result, it is generally best to use the RLI_Q type for arguments and results
of such methods.

As mentioned in section 12, you may also need to apply the “makeglobal” utility to an
object file to be loaded. You must do this if the object file contains a derived class definition.

13.3 Using Subclasses

Similar to derived classes, inherited methods for subclasses must be explicitly defined as part
of the subclass in the schema using “create_inherited_class.” It is possible that in the future,
this requirement can be lifted and automatic inheritance provided.

13.4 Destroying Schema Objects

You should be warned that this is operation has known faults, and so it can sometimes crash
the server; beware.

14 Using Triton to Support APPL/A

One of the purposes of Triton is to provide support for APPL/A relations, both on the E side
and on the Ada side. It does this by providing a generic E dbclass “APPLA_RELATION,”
and a corresponding generic Ada package “Triton_Relation.” FEach generic understands the
protocol used by the other and so by appropriately instantiating both, the E side code can
be used to provide persistent storage and access to APPL/A relations constructed using the
Ada side generic package. This support is presently limited in that Triton relations do not
support constraints or derived data; this is assumed to be provided by the APPL/A program.
It is possible to use Triton triggers on relation methods and these may be able to replace or
augment some APPL/A triggers.

14.1 Dbclass APPLA_RELATION

The file STRITONHOME /include/appla_relation.h shows the class specification for the generic
class “APPLA_RELATION.” This generic class is parameterized by a class “TUPLE” defining
the tuple structure. The file §TRITONHOME/include/appla_relation.h also defines a base class
“APPLA_TUPLE” of which all tuple classes should be defined as a subtype. “APPLA_TUPLE”
provides defaults for all the methods, required and optional, needed by “APPLA_RELATION.”

18

In addition to the normal constructor and destructor methods, the APPLA_ RELATION
class expects the tuple type to provide several methods for its use.

Fieldcount: This returns a constant which indicates how many fields are in the tuple. This

is needed to decode the boolean arrays used in selection_test and selection_update (seee
below).

Equal: The equal method takes a pointer to a tuple and compares it to “this” tuple. It returns
TRUE (1) or FALSE (0) as the tuples are considered equal. Typically, this function
compares each field of the tuples using the appropriate equality for the field type.

Selection_test: This method takes a tuple and a selection list, a vector of booleans (really
integers) of length fieldcount(). The elements of the selection list that contain the value
TRUE (1), determine which fields of the tuple argument and the “this” tuple are compared
for equality. A value of TRUE or FALSE is returned.

Selection_update: This method takes a tuple and a selection list, and a vector of booleans.
The elements of the selection list that contain the value TRUE (1), determine which fields
of the “this” tuple are updated from corresponding fields of the tuple argument. No value
is returned.

Edr: This function is used to linearize or de-linearize a tuple with respect to a QDR_Handle.
When linearizing, the “this” tuple’s fields are linearized into the QDR_Handle. When de-
linearizing, the fields are extracted from the QDR_Handle. This function is called “edr”
rather than, say, “qdr” to indicate that a possibly persistent object is being manipulated.
See Section 15 on handling E pointers for a more detailed discussion.

A number of other methods of “TUPLE” are optional.

Print: This function prints out the value of a tuple on the file (type FILE*) passed as the
argument to this function.

Write_tuple: This function writes some encoding of its tuple value onto the file (type FILE*)
passed as the argument to this function. This choice of encoding is purely up to the writer
of this tuple class. If one chooses to use a printable encoding, then it may be possible to
share code with the print function. The intent of this function is to provide a method for
saving the contents of a relation independent of Triton.

Read_tuple: This function is essentially the inverse of “read_tuple.” It reads some encoding
from the file (type FILE*) passed as the argument to this function and stores the values
into its fields.

The file $TRITONHOME/src/appla_relation.e contains the code for the methods for the
class APPLA_RELATION. The argument types should be noted in this file. All the func-
tions that take arguments that depend in the tuple type are defined to be jencoded; (i.e.,
RLI_LENCODED). Also, the find function returns a result that depends on the tuple type, so it
has jencoded as its result type. This is one of the problems in using generic methods in Triton.
Referring to the header file (STRITONHOME/include/appla_relation.h) the definition of each
method has its real argument type in a comment. Thus, method “insert” really is expecting a
linearized tuple instance.

19

The “APPLA_RELATION” class provides a number of methods. A number of the methods
correspond closely to the APPL/A definitions.

int insert(QDR_Handle);
int remove(QDR_Handle);
int update(QDR_Handle);
QDR_Handle find(QDR_Handle,QDR_Handle);

A number of additional methods are provides that may be useful for debugging.

Set_debug: This takes an integer, level, as its argument and sets the level of debug output for
the relation instance to that level. It returns the old level as its result.

Clear: This clears the relation instance by deleting all the tuples in it.

Print: This takes the name of a file as its argument and places a printable representation of
the contents of the relation into that file. If the string is null, then the default is standard
output.

Write_relation: This takes the name of a file as its argument and writes the tuples in the
relation to that file. using the “write_tuple” method of the tuple class.

Read_relation: This takes the name of a file as its argument, clears the relation, and retrieves
tuples from the file using the “read_tuple” method of the tuple class.

Finally, a constructor method and a destructor method are part of the definition of “AP-
PLA_RELATION.”

The file STRITONHOME/src/tests/two.e shows an example using the APPLA_RELATION
generic to construct a simple relation. The tuple type is defined by the class “two_tuple” which
has two integer fields: “key” and “field.” The required methods are defined as part of this tuple
class.

The derived class “two_relation” is declared as an instantiation of the generic class “AP-
PLA_RELATION” parameterized by the class “two_tuple.” Next, a persistent instance, “two,”
of this derived relation is declared. Finally, a function, “get_two,” is defined to return a pointer
to the persistent instance variable. This instance is needed as an argument to “evaluate” when
invoking any of the methods of APPLA_RELATION. But Triton only allows values to be ob-
tained as the result of a function evaluation, so a function must be provided to obtain this
instance pointer.

The function “create_appla_relation_schema” in the file $TRITONHOME/src/tritonutil.e
shows how the schema for the derived relation can be defined. It defines a class for the tu-
ple type and then it calls “create_class_derived” to define the derived relation class. This is
followed by calls to “create_method_derived” to define the relation methods, and calls to “cre-
ate_formal” to define the formal argument types. Finally, a retrieve function is defined. This
procedure assumes that the schema already contains the appropriate classes and methods for
class APPLA_RELATION.

As mentioned in Section 12, you will need to apply the “makeglobal” utility to two.o so
that it can be loaded correctly. In this case, the command would be:

makeglobal two.o _two_relation__gtbl __two_relation__ctor

and after this, the file is ready for dynamic loading.

20

14.2 Package Triton_Relation

On the APPL/A (Ada) side, the assumption is that you have an APPL/A relation specifica-
tion and you want to construct a body that will maintain the relation contents persistently
in a Triton server. the basic mechanism for doing this is to define the entries into the rela-
tion body to invoke appropriate procedures in the generic package “Triton_Relation.” This
generic is contained in the files STRITONHOME/src/ada/triton_relation.a and $TRITON-
HOME/src/ada/triton_relation.body.a.

This generic is parameterized by several arguments, not all of which are strictly required.
For upward compatibility, you should not specify these parameters positionally, but rather by
name (e.g., Relation_Name =; “rzz”).

Hostname: This specifies the hostname on which the server is running. With Triton version
0.7.2 and later, this parameter is no longer necessary and defaults to the null string.
Instead, the server name is taken from the TritonHost property.

Relation_Name: This is the name of the APPL/A relation.

E_Relation_Name: This is the name of the APPL/A relation. This name is used as an
argument to “create_appla_relation_schema” to create the Triton side schema for this
relation. If this field has the value “X” then the corresponding E code should have the
following definitions.

dbclass X_relation: APPLA_RELATION[...];
persistent X_relation X;
X_relation* get_X() { return &X;}

Fieldcount: This is an integer defining the number of fields in the tuple type for this relation.
It should correspond to the value of the fieldcount method in the E code.

Loadfile: This is the name of the object file that results from compiling the E code for this
relation. In versions prior to Triton 0.7.2, this should be an absolute path name so that
it is independent of the the directory in which the server is executing. In Triton 0.7.2 and
later, the TritonSearchPath property may be modified to contain the path and then only
a relative name need be used here.

Deffile: This is the name of the definitions file that results from compiling the E code for
this relation with the “+t” option. Typically this has the same value as the “loadfile”
argument but with “.d” substituted for the “.0” ending.

Tupletype: This is the name of the APPL/A tuple type specified in the relation specification.
It is, of course, translated into an Ada record type of the same name. It is assumed that
the structure of this record corresponds to the tuple class defined in the E code. This
correspondence is critical for the proper operation of this package.

Qdr_tupletype: This is a Q encode/decode procedure that is capable of linearizing and de-
linearizing an instance of the tuple type for remote procedure call transmission. It is
assumed that this procedure uses and encoding that is compatible with the “edr()” entry
of the tuple class in the E code.

21

NullTuple: This is an instance of TupleType with null values in all fields.

The files STRITONHOME/src/tests/two.ap and $TRITONHOME/src/tests/two.body.ap
shows the typical construction of an APPL/A relation body to use the generic package. This
example shows the definition of a “two” relation that corresponds to the “two.e” code described
in the previous section.

15 Handling E Pointers

If the client is written in any language but E, then handling E pointers is no particular problem;
just treat them as you would any 16 byte structure. If, however, you are writing a client in E,
then you must sometimes be careful in handling E pointers. In particular, you must remember
that any time you take the address of a db type, including dbvoid* (which is what a E pointer
is), then the result is an E pointer, not a normal C pointer. The obvious place where this is an
issue is in arguments to Q encode/decode functions. Consider the following E code procedure

int qdr_epointer(QDR_Handle qdrs, dbvoid*x ptr)
{

return qdr_opaque(qdrs,ptr,sizeof(dbvoid*));
}

This code will not work correctly because the qdr_opaque function expects a normal C pointer
as its second argument. But the type “dbvoid**” is really an E pointer, and so it is not the
proper argument to qdr_opaque.

The proper way to write this function is as follows.

struct EPOINTER { dbvoid* ep; };

int qdr_epointer(QDR_Handle qdrs, struct EPOINTER* ptr)
{

return qdr_opaque(qdrs,ptr,sizeof(struct EPOINTER));
}

The reason that this works is that taking the address of a normal C type, a struct in this case,
returns a normal C pointer. This is true even when the contents of the structure is an E pointer.
If you examine the code of STRITONHOME/src/tests/cl.e, you will see this fiddling with E
pointers.

As an aside, the type “struct EPOINTER” is defined in the Triton interface header “Triton-
Client.h.” A function called “edr_epointer” is also defined in that interface and is the equivalent
of the function defined above. Other “edr” functions are also defined: edr_integer, edr_floating,
edr_pointer, edr_string, edr_bytes, and edr_array.

16 Utility Programs

Triton clients sometimes require use of some utility programs to accomplish some activities.

22

16.1 Makeglobal

This utility modifies the symbol table for the object file to make specified symbols externally
accessible. As a rule, you should perform the following command for every derived class in the
object file that will be defined in the schema:

makeglobal <object_file_name> _X__gtbl __X__ctor

where “X” is the name of the derived class.

16.2 Tecmd

This utility provides a more-or-less convenient way to invoke many of the triton interface op-
erations without having to write a specific program. The general form of its command line is
one of the following:

temd [<server>] <emd> <argl>...
temd [<server>]

The server is the name of the host on which presumably is running the Triton server of interest.
If no server is specified, then the value of the property "TritonHost” is used. If no command
is given, then tcmd enters interactive mode and will accept commands, one per line of input,
until the “quit” command is given.

Arguments are one of the following types:

keyword: There are a number of words and symbols reserved as keywords: help, quit, ping,
create, destroy, load, unload, shutdown, immutable, print, report, debug, properties, prop-
erty, type, class, generic, derived, function, method, inherited, formal, relation, relations,
trigger, triggers, is, on, over, via, off, returns, return, all, set, ::, :, , =

Identifier: An identifier is any sequence of characters from upper or lower alphabetic or digits
or one of the special characters with the constraint that it may not start with a digit.
The set of special characters is: /#$*& ?_/.+-

Integer: Any sequence of digits, possibly with a leading plus or minus sign.

String: Any sequence of characters enclosed in double quotes. A Double quote may be included
if it is preceded by the backslash as an escape character.

Literal: Any sequence of characters enclosed in single quotes. A single quote may be included
if it is preceded by the backslash as an escape character.

There are several commands:
Help: Provide a detailed listing of the command for “tcmd.”

Ping: Test to see if the server is responding. As a side effect, it will obtain the version of the
server and print it out.

Load: Load a specified object file and optionally an associated definitions file into Triton. This
command may suffer from the timeout problem.

23

Unload: Given the name of an object file, it unloads the registry stack through that file.
Shutdown: Shutdown the specified server in an orderly fashion.

Print: Cause the server to dump its schema onto its standard output. Note that this will in
general not be your terminal.

Report: Cause the server to report to standard output, any unbound methods, functions, class
sizes, and more. Note that this will in general not be to your terminal.

Create: Create a specified schema element. The options and syntax here are a bit tricky, so
read the help carefully. All schema elements are specified by name, so all create commands
require the specification of a name.

Destroy: Destroy a schema element.

Property: Tcmd allows query and modification of server properties using three command
forms:

properties
property <property name>
property <property name> = <newvalue>

The first command prints the names and values of all properties known in the server. The
second command prints the value of a specified property. The third command sets the
value of a specified property and prints the old and new values. Both property names
and values may be specified as identifiers, strings, literals, or integers. Thus the following
commands are equivalent:

tcmd property TritonDebugLevel = "5"
tcmd property TritonDebuglevel

1]
(¢4

17 Using Triton with Ada

There is an Ada version of the client interface to Triton that matches closely the C inter-
face. This version has almost all of the same operations as are available through the C in-
terface. Of course, the argument types are defined slightly differently, due to language dif-
ferences. To see the interface, examine the file $TRITONHOME/src/ada/triton.a and $TRI-
TONHOME/src/ada/tritonutil.a. In $TRITONHOME/src/tests, there a couple of test pro-
grams that illustrate the construction of Ada clients. A comparison with the corresponding E
programs is instructive.

Beginning with version 0.7.2, all clients must be loaded with the client side library (“$TRI-
TONHOME/lib/tritonlib_ada.a”) in order to access the property facilities.

18 Changes from version 0.7.2

Version 0.7.30f Triton differs from version 0.7.2in the following ways.

24

. The generic relation package for APPL/A relations has another parameter, E_Relation_Name,
that stands for the name of the E-code relation. the parameter Relation_Name now stands
for the name of the APPL/A relation. For backward compatability, E_Relation_Name uses
Relation_Name as its default value. The primary reason for thsi change is to provide better
client side debug output.

. The generic relation package for APPL/A relations has another parameter: NullTuple.
This is an instance of TupleType with null values in all fields. It is used inside the generic
body to make sure that the initial value of the output result tuple in find has a null value.

. The APPLADebugLevel property was added to the client side property list.
. The set of allowable special characters in identifiers in tcmd has been increased.

. A literal argument type (in single quotes) has been added to tcmd.

25

Property Name Global Variable Obsolete | Mutable | Type
ClientVersion ClientVersion No No String
TritonRPCProtocol ServerRPCProtocol No Yes String
TritonRPCNumber ServerRPCNumber No Yes Integer
TritonRP CVersion ServerRP CVersion No Yes Integer
TritonHost ServerHost No Yes String
TritonRPCTimeout ServerRPCTimeout No Yes Integer
Client APPLADebuglLevel | Client APPLADebugLevel | No Yes Integer
Property Name Environment Variables Default
Client Version N.A. _ 0.7.3
TritonRPCProtocol TritonRPCProtocol, TRITONRPCPROTOCOL | "TCP”
TritonRPCNumber TritonRPCNumber, TRITONRPCNUMBER 2
TritonRPCVersion TritonRP CVersion, TRITONRPCVERSION 1
TritonHost TritonHost, TRITONHOST Same machine as client
TritonRP CTimeout TritonRPCTIMEOUT, TRITONRPCTIMEOUT | 100
Client APPLADebugLevel | Client APPLADebuglevel 0

Table 1: Client Properties.
Property Name Global Variable Obsolete | Mutable | Type
TritonVersion TritonVersion No No String
EPath EPath No Yes String
TritonPath TritonPath No Yes String
TritonDebugLevel TritonDebugLevel No Yes Integer
APPLADebugLevel | APPLADebugLevel | No Yes Integer
TritonRPCProtocol | TritonRPCProtocol | No No String
TritonRPCNumber | TritonRPCNumber | No No Integer
TritonRPCVersion | TritonRPCVersion | No No Integer
TritonHost TritonHost No No String
TritonSearchPath TritonSearchPath No Yes Pathlist
Property Name Environment Variables Default
Triton Version N.A. 0.7.3
EPath EPATH, Epath Makefile constant
TritonPath TritonPath, TRITONPATH Makefile constant
TritonDebugLevel | TritonDebugLevel 0
APPLADebuglLevel | APPLADebugLevel 0
TritonRPCProtocol | TritonRPCProtocol, TRITONRPCPROTOCOL | "UDP”
TritonRPCNumber | TritonRPCNumber, TRITONRPCNUMBER 2
TritonRPCVersion | TritonRPCVersion, TRITONRPCVERSION 1
TritonHost TritonHost, TRITONHOST Server machine
TritonSearchPath TritonSearchPath, TRITONSEARCHPATH Makefile constant

Table 2: Server Properties.

26

E Program

|

E
Compiler

Object Code

Application

Catalog

Trigger
Manager

Application
Objects

Program

Exodus Storage Manager

Triton Object Manager

Figure 1: Triton Architecture.

27

Function Class
F C
Method Method
M1 M2
OBJECTUFILE X.o DEFINITIONS FILE X.d
Function F Method M1 | Method M2 Class C
Code Code Code Size
V\ PR
EC -¢ x.e +tx.d

Figure 2: Schema and Object File Correspondence

28

LOADED OBJECT
REGISTRY STACK

Def File
F1.d

Function

Q

Object File
Fl.o

\

/

Def File
F3.d

Object File
F2.0

Object File

F3.0

A

/ ¥
Method
M1
Class
C
Method
M2

Figure 3: Loaded Files Stack

29

