MORPHOLOGY WITH TWO-LEVEL RULES
AND NEGATIVE RULE FEATURES

Technical Note 462

March 20, 1989

By: John Bear
Computer Scientist
Artificial Intelligence Center
Computer and Information Sciences Division

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

This research was funded by the Defense Advanced Research Projects Agency
under the Office of Naval Research contract N00014-85-C-0013.

SR nternationsl

333 Ravenswood Ave. ® Menlo Park, CA 94025
14151 326-6200 » TWX: 910-373-2046 » Telex: 334-486

o |
7 7T NN
International
NS [ 7

LN T ®



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
20 MAR 1989 2. REPORT TYPE 00-03-1989 to 00-03-1989
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Mor phology with Two-L evel Rules and Negative Rule Features £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 8
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



Morphology with Two-Level Rules
and
Negative Rule Features

John Bear
Artificial Intelligence Center and
Center for the Study of Language and Information
SRI International
" 333 Ravenswood Ave
Menlo Park, California 94025

March 20, 1989

Abstract

Two-level phonology, as currently practiced, has two severe limitations. One is that phonological
generalizations are generally expressed in terms of transition tables of finite-state automata, and these
tables are cumbersome to develop and refine. Tle other is that lexical idiosyncrasy is encoded by
introducing arbitrary diacritics into the spelling of a morpheme. This paper explains how phonological
rules may be employed instead of transition tables and describes a more elegant way of expressing
phonological irregularity than with arbitrary diacritics, making use of the fact that generalizations
are expressed with rules instead of automata.

Topic Area: Morphology



1 Introduction

The theme of this paper is how to deal with the phonological or orthographic half of the problem of
computational morphology, i.e., how to handle the various problems associated with the spellings of
morphemes. The examples in this paper have been drawn from English orthography but it is easy
to find examples from other languages where these techniques would be applicable as well.

In an earlier paper [2], I presented a formalism for two-level phonological (or orthographic) rules
very similar to Koskenneimi’s [8] and described how rules in that formalism could be interpreted in a
computational system. There were problems with both my formalism and Koskenniemi’s that could
have been solved with the device of negative rule features. In this paper I discuss these problems
and their solutions.

2 Historical Note

The formalism described here was developed with the goal of allowing the linguist to write rules with

similar or even identical contexts and still have a way of processing them. This stands in countrast to

Koskenniemi’s formalism, which, in its initial formulation, seemed to rule out pairs of such rules.
For instance, in Koskenniemi’s formalism, as originally stated, the two rules below,

g:b<=a_p
g:c4=a_p,

would clash. Together they assert that a lexical character fa/, preceded by a sequence of character
pairs a and followed by a sequence of character pairs 3, must correspond to both /b/ and /c/ on the
surface.

The orthographic rules described here are used in a morphological analysis system that is based
on the work of Koskenniemi, Karttunen, and Wittenburg [8,5]. Its morphosyntactic component
uses, instead of continuation classes, an extension of PATR type rules including a device described
by Karttunen [4] for handling disjunction. One version of this system also uses a definite-clause
grammar in addition to the PATR-type unification, and disjunction. It has been implemented in
Prolog and runs on a Sun.

3 Summary of Alternative Rule Formalism

The basic idea behind the notion of two-level rule (due to Koskenniemi [8]) is that there are two
levels of linguistic information to which a rule may refer. One has to do with how a morpheme is
spelled in the lexicon. That is called the lexical level. The other has to do with how a morpheme
appears in text, i.e., the surface representation. There is no way for rules to apply one after the
other, creating and referring to intermediate levels of representation. Instead, rules are viewed as
constraints on mappings between surface and underlying forms of morphemes., They stipulate how
to get from underlying to surface form, and vice versa.

Two-level rules in the alternative to Koskenniemi’s formalism that I proposed in an earlier paper
[2], take one of three forms:

Da—bfa_p
2) afb allowed ja_ §
3) a/b disallowed fo_ 3



The « and g in the contexts of these rules represent strings of character pairs where one character
of the pair refers to the lexical level of representation and the other refers to the surface.

Rule (1) is very similar to a standard phonological rule. It means roughly that lexical /a/ must
correspond to surface /b/ in the context given. A more accurate and detailed description is as
follows: if lexical /a/ occurs in the given context, then it may not correspond to what it normally
would correspond to, but it may correspond to surface /b/.

Rule (2) means that lexical /a/ is allowed to correspond to surface /b/ in the context given, but
not elsewhere. More precisely, the rule allows the pair fa:b/ (lexical /a/ corresponding to surface
/b/) to occur in the context given and, unless there are other rules licensing the pair in other contexts,
the context given is the only place where that correspondence is allowed.

Rule {3) says that lexical /a/ may not correspond to surface /b/ in the context given. Both rules
(1) and (2) mention a character’s default. A normal alphabetic character in this system defaults to
itself. This means that a pair of alphabetic characters /a:a/ does not need to be licensed by a rule.
In contrast to alphabetic characters (a through z), there are diacritic characters such as the plus sign
(+) for morpheme boundaries. In Karttunen and Wittenburg’s system, [5] there is also a backquote
() for representing stress; Koskenniemi uses several others as well, (8]. The default for lexical-level
diacritics, at least in the system described here, is that they correspond to the null surface character,
which is frequently written with a zero.

4 Negative Rule Features

There is a problem with previous accounts of English that have been done in terms of two-level rules.
There is no easy way to let the phonological rules know about individual idiosyncrasy in the lexical
items. In the work of Koskenniemi [8] and Karttunen and Wittenburg [5], diacritics are put into the
lexical representation of a word in order to allow the linguist to write a phonological rule that applies
in some words and not others according to the presence or absence of the diacritic. The diacritic is
mentioned in the rule. The words that do not contain the diacritic do not undergo the rule.

In old-fashioned generative phonology, there was the notion of a negative rule feature to handle
such cases. One could say of certain morphemes that appeared to be exceptions to certain phono-
logical rules that such morphemes possessed a feature specifying that some particular phonological
rule did not apply to them!.

The idea of negative rule features has an advantage over the use of diacritics mentioned above
in that it allows simplification of the phonological rules and the lexicon. It seems to me more
strajghtforward to have a lexical item that says minus such and such a rule than to have the lexical
item contain a colon or quotation mark whose function is to assert that some rule does not apply.
"The complexity of the lexical items is the same, but in the first case, at least, the phonological rule
can be made simpler by omission of the arbitrary diacritic.

There are three examples from English orthography that will be used to help demonstrate how
negative rule features may be employed.

The analysis of consonant gemination in Xarttunen and Wittenburg’s paper, [5], relies on the use
of diacritics of just the sort mentioned above. A simplified version of the rule is given below.

Gemination: _

+iel«= " C*V =:icl _V;whereclisin {b,d,f,g,I,m,n,p,r,s,1}.
This rule uses a plus sign (+) for morpheme boundaries, and a backquote (*) for accent where accent
is important. It correctly describes the following data:

1For instance, see Schane [11], pp. 108-109



questioning versus *questionning,
debiting versus *debitting,
eating versus *eatting.

The rule also correctly describes the {ollowing data, provided the lexical entry contains a backquote
in the right place.

referred versus. *refered (spellings in lexicon are “refer” + “ed”).

In order to get the facts right for monosyllabic words, Karttunen and Wittenburg’s rule also mentlons
that, instead of a backquote, a word boundary (#) will do.

The only point of contention here is that their system requires the the lexical entry to contain
a diacritic (and furthermore the diacritic must be correctly located within the word). That the
diacritic is reminiscent of an accent mark is no accident. Stress is clearly a factor in English consonant
gemination. Their solution is to find a way to represent stress in the orthography. The alternative
proposed here is to express it in the form of a negative rule feature on the following sample lexical
items. The rule is again simplified.

Rule

gemination:

+ —cl/C V cl .V; where cl isin {b,d, f,¢,l,m,n,p,7,5,1}

Words

refer (default is that it is consistent with all rules)

bother

-gemination (means that the gemination rule does not apply to this word)

There are other sets of data for which this technique is useful. The case that comes to mind most
readily deals with combining a noun or verb stem ending in fof with an fs/ morpheme representing,
respectively, plural for nouns and third person singular for verbs. The following rules do well at
describing these facts about English orthography.

EPENTHESIS RULES:

epenthesisl:

4+ —efo_s

epenthesis2:

+/e allowed in context o _ s.
DATA:

potato+s = potatoes, *potatos (need an /e/)

do+s = does, *dos (need an [e/)

piano+s = pianos, ¥pianoces (can’t have an /e/)
piccolo+s == piccolos, *piccoloes (can’t have an fe/)
banjo+s = banjos or banjoes {both are acceptable)
cargo+s = cargos or cargoes {both are acceptable)

The first of the epenthesis rules describes /potato+s/ = [potatoes] and /do+s/ == [does] correctly,
but incorrectly states that the plural of /piano/ is */piances/. The second rule is weaker, generating
all of the correct forms — but all of the wrong ones too, so that it achieves the right results for
/banjo+s/ = [banjoes] or [banjos] and likewise for /cargo+s/, but yields both the right and the
wrong results for the others.

The way to get the facts right is to put negative rule features on the lexical items in question, as
shown here:



LEXICON

piano

- [epenthesisl epenthesis2]
piccolo

- [epenthesis] epenthesis2]
banjo

- epenthesisl

cargo

- epenthesisl

potato

do

The alternatives are either to list some forms as being irregular or to insert diacritics into some of
the words so that the rule(s) will apply only to the correct lexical items. To list some of the forms
as irregular is to miss the generalization that they are all irregular in exactly the same way. To use a
diacritic (or possibly two) to describe the facts correctly may lead to making other, unrelated rules
more complicated. Furthermore, it seems to be an attempt at expressing historical information, such
as a word’s provenance, in terms of abstract phonological segments.

In general, the device of negative rule features seems to be well suited to the task of passing
information between a lexical entry and the plonology component. This is a useful capability. It is
perhaps analogous to employing augmented phrase-structure rules in syntax when, at least in theory,
pure context-free rules would do.

The main idea here is that there is a way to let phonological {or orthographic) rules refer to
features of a morpheme that may not be easily represented as phonemic segements. As regards the
gemination rule mentioned earlier, the right procedure might be to let the rule mention stress and
store values for that feature in the lexical entries.

5 Computer Interpretation of the Rules

What makes these rules interesting is that there is a way to apply them in a morplological parser or
generator. What follows is a description of the algorithm used by the code that I have implemented
in Quintus Prolog on a Sun. When the rule epenthesisl is read in, it is decomposed into two rules.
This rule,

epenthesisl:
+—efo_s,

yields these rules:

epenthesisl:

+/e allowed in context o __ s
epenthesisl:

+/0 disallowed in context o _ s.

These rules are then stored as lists of character pairs:

epenthesisl:

allowed: ofo . + [e s/s
epenthesisl:

disallowed: ofo + [0 s/s.



6 Basic Algorithrh

The rules are sequences of character pairs. A mapping between a string of lexical characters and a
string of surface characters may also be considered to be a list of character pairs. No disallowed-type
rule may be a substring of a mapping between a lexical string and a surface string.

The rule checker proceeds down the list of character pairs, looking for any substring that is the
same as one of the disallowed-type rules. If it finds one, the string of character pairs it was considering
is not a valid mapping from a lexical form (word) to a surface form.

The other type of rule, the allowed-type rule, is somewhat different. A dot is put into the rule
right after the end of the left context to mark the next character pair as being the main pair of
the rule. Any character pair that is the main pair for one of these allowed-type rules needs to be
surrounded by the right and left contexts of one of these rules. The way that is checked for in this
system is as follows. The string of charcter pairs is scanned from left to right. Each time a pair is
encountered that is the same as the first pair of some allowed-type rules, the rules are put into a set.
As more character pairs are scanned, they are compared with the sets of rules already encountered.
Rules that do not continue to match the scanned input are ejected from the set. When the main pair
of a rule in one of these sets is scanned, it is removed from the set it was in and put into a new one.
The rules in this set are compared with scanned input in the same manner as before except that, if
the last pair of some rule matches a pair that is being scanned, the whole set is discarded as no longer
of interest. Conversely, if there is not at least one rule in the set that matches the scanned input all
the way to the end, then the input being scanned is not an allowable mapping between lexical and
surface forms.

7 Algorithm With Negative Rule Features

Thus far, nothing has been said about how negative rule features enter into the picture. When a
morpheme boundary is encountered, a morpheme has just been looked up in the lexicon. At that
point, if it has some negative rule features on it, it is a simple matter to sort through the list of rules
that have partially matched the input and discard those that the morpheme says do not apply. If
that entails eliminating the last rule in some set of allowed-type rules that have all already matched
past the main pair of the rule, then the input being scanned is not allowable as a possible mapping
between lexical and surface forms. Otherwise one should just go on as before, comparing the rules
with the input being scanned.

8 Conclusion

A general procedure for using phonological or orthographic two-level rules has been presented. These
rules are much easier to refine and develop than automata transition tables. In addition, a method
has been presented for listing which morphemes are exceptions to which [orthographic] rules, and an
algorithm has been described that makes it possible to use this information in a straightforward way.

Furthermore, these are two-level rules. As Koskenniemi has noted, [8], since these rules simply
state correspondences between surface strings and underlying strings, they may be used either for
doing generation or recognition. The device of negative rule features proposed here has the same
power as Koskeniemi’s device of putting arbitrary diacritics into selected classes of morphemes and
rules, but is argued to be simpler.



Acknowledgments

I would like to thank Meg Withgott for helpful comments on this topic. I have also benefited greatly
from conversations with Lauri I{arttunen and Kimmo Koskenniemi regarding the general problem of
two-level phonology. This research was funded by the Defense Advanced Research Projects Agency
under Office of Naval Research Contract N00014-85-C-0013.

References

[1] Bear, John (1985) “Interpreting Two-level Rules Directly,” presented at a Stanford workshop on
finite-state morphology.

[2] Bear, John (1986) “A Morphological Recognizer with Syntactic and Phonological Rules,” COL-
ING 86.

[3] Karttunen, Lauri (1983) “Kimmo: A General Morphological Processor,” in Tezas Linguisiic
Forum #28, Dalrymple et al., eds., Linguistics Department, University of Texas, Austin, Texas.

[4] Karttunen, Lauri (1984) “Features and Values,” in COLING 84.

[5] Karttunen, Lauri and Kent Wittenburg (1983) “A Two-level Morphological Analysis Of English,”
in Teras Linguistic Forum #22, Dalrymple et al., eds., Linguistics Department, University of
Texas, Austin, Texas.

[6] Kay, Martin (1983) “When Meta-rules are not Meta-rules,” in K. Sparck-Jones, and Y. Wilks,
eds. Automatic Natural Language Processing, John Wiley and Sons, New York, New York.

[7] Kay, Martin (1987) “Nonconcatenative Finite-State Morphology,” paper presented at a workshop
on Arabic Morphology, Stanford University, Stanford, California.

[8] Koskenniemi, Kimmo (1983) Two-level Morphology: A General Compuiational Model for Word-
form Recognition and Production. Publication No. 11 of the University of Helsinki Department of
General Linguistics, Helsinki, Finland.

[9] Koskenniemi, Kimmo (1983) “Two-level Model for Morplological Analysis,” IJCAT 83, pp. 683-
685.

[10] Koskenniemi, Kimmo (1984) “A General Computational Model for Word-form Recognition and
Production,” COLING 84, pp. 178-181.

[11] Schane, Sanford (1973) Generative Phonology, Prentice Hall, Englewood Cliffs, New Jersey.
[12] Selkirk, Elizabeth (1982) The Syntaz of Words, MIT Press, Cambridge, Massachussetts.

[13] Shieber, Stuart (1986) An Introduction to Unification-Based Approaches to Grammar, CSLI
Lecture Notes Series, Stanford University, Stanford, California.



