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Abstract

We review previous efforts to recover surface shape from image irradiance in order to
assses what can and cannot be accomplished. We consider the informational requirements
and restrictions of these approaches. In dealing with the question of what surface parameters
can be recovered locally from image shading, we show that, at most, shading determines
relative surface curvature, i.e, the ratio of surface curvature measured in orthogonal image
directions. The relationship between relative surface curvature and the second derivatives
of image irradiance is independent of other scene parameters, but insufficient to determine
surface shape. This result places in perspective the difficulty encountered in previous
attempts to recover surface orientation from image shading.

1. Introduection

The determination of land cover from aerial imagery is a task that photo interpreters
accomplish by using hoth the image data and their knowledge of the structure of the world.
The image data encodes the complex process whereby light is reflected from a surface. The
surface shape, the surface albedo, the position of the lighting sources, and the functional
form of the reflectance properties of the material are elements of this encoding. The human
visual system interprets image data as a 3-D model of the scene, distinguishes among different
surface materials, and ascertains the position of the lighting sources. It is difficult to believe
that a machine vision system can achieve, say, surface material differentiation without
simultaneously being able to recover the surface shape and the other parameters that are
needed to explain the detected image intensity. Of course, it may be possible to use special
sensors and multiple information sources to make it unnecessary to reconstruct a complete
3-D model of the scene, but it would be surprising if such specialization could retain sufficient
generality to be useful over a range of remote sensing tasks, e.g., in both renewable and
nonrenewable resources.

The machine vision approach of simultaneously recovering all the parameters necessary
to account for image intensity is expressed in the notion of intrinsic images [1] {or the 21-
D sketch [2]). These intrinsic images can be thought of as overlays, each specifying the
value of one parameter that goes into the formula for calculating the image intensity. The

The research reported herein was supported by the Defense Advanced Research Projects Agency under
Contract MDA903-83-C-0027 and by the National Aeronautics and Space Administration under Contract
NASA 9-16664. These contracts are monitored by the U.S. Army Engineer Topographic Laboratory and by
the Texas A&M Research Foundation for the Lyndon B. Johnson Space Center.
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images are not independent; if one is to be varied, the others must be also — so that
the predicted image intensity remains invariant (and equal to the observed value). The
notional division of an image into particular intrinsic images would be of little merit unless
one believed that estimates of each intrinsic image could be obtained by models that were
largely independent of the other intrinsic images. While models have been proposed to
recover various intrinsic images, there have been considerable efforts made to recover the
scene's 3-D shape,! in particular the surface orientation at each image point. These ‘shape-
from-..." models embody a structure that would allow shape to be recovered principally
from a single measure, e.g., texture, contour, or shading. While ‘shape-from-..."” models are
not seen as complete solutions to shape reconstruction, there is an implicit expectation in
their title that shape estimates can be calculated from their respective measures. Here we
review the work we and others have done towards the goal of recovering surface shape from
image shading. Is it attainable — or is it myth?

The importance of shape recovery is clear; if the shape is known, surface albedo, and the
other parameters that determine image intensity are obtainable. Land cover differentation
is dependent on knowing the [relative] surface albedo, rather than image parameters, such
as intensity. If we cannot recover shape, the intrinsic image approach offers little as a model
for perception. Shading is only one source of shape information. Edge information is of
great importance, but there is little occlusion in aerial images. The ability to recover shape
from shading seems more critical in the case of aerial imagery than for most other types of
imagery.

We first review three research efforts: those of Horn and his colleagues [3-8], Pentland
[9], and our own [10], — to determine what can and cannot be accomplished, and to consider
the informational requirements and limitations of these approaches. We discuss the dilemma
of local computation versus global constraint propagation and seek to ascertain what can
be computed locally, and how information can be propagated across an image. Finally, we
seem to be left with the conclusion that shading, when viewed as a single source of shape
information, is an insufficient source for the recovery of surface shape. Shape cannot be
obtained from shading alone. However, we are able to characterize the scene information
that shading provides.

An alternative approach to recovering shape from shading is model based. Can we
determine which model, from a set of models, best describes the image data? This approach
is dependent on discovering a small set of easily distinguishable models that adequately
describe the surfaces encountered. Industrial inspection, rather than remote sensing of the
environment, appears better suited to a model based procedure. In this assessment we do
not consider this related, but essentially different approach.

1We use the expression surlace shape to denote both the intrinsic properties of the surlace, e.g., cylindrical,
and the orientation of the surlace in space. Elsewhere, shape is sometimes used to denote only the intrinsic
properties of the surface, not its orientation in space.
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2. Approaches to Shape from Shading

2.1 Horn and Colleagues

A study by Horn [3,4,11] of the relationship among image irradiance,® surface shape,
surface albedo, and illumination conditions led te formulation of the image irradiance
equation, which states that image irradiance is proportional to scene radiance.® This is

expressed by the equation
I=R ,

where I is the image irradiance as a function of the image coordinates, and R is the scene
radiance as a function of the scene parameters. Of course, this equation relates the image
irradiance at an position in the image to the scene radiance at its corresponding scene
position. lmplicit in this equation is an assumption of orthographic projection. However,
such an assumption, to avoid complexity in the mathematical formulation, is a minor
restriction and does not detract from the generality of the model.

Image irradiance is a function of the image coordinates z and y, but scene radiance
is a function of the illumination strength, its position, the surface albedo, and the surface
orientation. For the formulations reviewed here, we find that a number of assumptions are
made so that scene radiance can be considered a function of the surface orientation variables
only; constant values are used for the illumination strength, its position, and for the surface
albedo. That is, shape-from-shading is analyzed for the simplified case of a constant light
source and constant surface albedo. The restriction to a constant light source is not only a
good approximation of the situation we experience daily (and an excellent approximation for
a photograph), but also corresponds to the difficulty confronting the human visual system
when this constancy is not met, e.g., under strobe lighting. The assumption of constant
albedo is harder to justify, since nature obvicusly exhibits variable albedo. Still, when we
consider the manner in which facial make-up is used to alter the perceived shape of the
face, it may well be that continuous changes in albedo are processed by the human visual
system as if they were constant. Notwithstanding the justification for constant albedo, it is
unlikely that shape-from-shading can be solved for the case of variable albedo if it cannot
be solved for constant albedo. Such a restriction is in effect a case analysis to determine if
shading provides sufficient shape information in a less-than-general model.

[n the formulations under review, various parameterizations of surface orientation have
been used. The two we specify are (i) surface gradients, i.e., the partial derivatives of depth,
z, with respect to the scene (and image) coordinates z and y, and (ii) components of the
surface normal, i.e., [ and m, the 2 and y components of the surface normal. Using the
notation, p = 4%, and g = g—; , we note the equivalence of the parameterizations

- -
p=————— ,and g= i

I—P=—m? VI—E—mZ

2Image irradiance is the light flux per unit area falling on the image, i.e., incident fAux density.

3Scene radiance is the light flux per unit projected area per unit solid angle emitted from the scene, i.e.,
emitted flux density per unit sclid angle.
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The image irradiance equation is usually expressed as
I(z,y) = R(p,q) ,or I(z,y)=R(l,m) ,

and we shall use both forms to express the relationship between image irradiance and scene
radiance for the case of constant illumination and constant albedo. Asp = g—;—, and g = g—;,
we see that the image irradiance equation is a first-order partial differential equation and,
if I and R are known, we could (at least in principle) solve the differential equation and
recover the depth, z.

To have an explicit form for R, we must have a model for the type of reflection occurring
at the scene surfaces. ln the work reviewed here the surface is assumed to be a perfectly
uniform diffuse reflector, i.e., the scene radiance is isotropic.* While this mode! is invalid
as a description of specular reflection, scene radiance in the natural world, (except for
specific situations, such as water surfaces), may be approximated by such a description.
The expression for scene radiance in this case is [10]

Rim)=al+bm+cV1—17 —m?

or, equivalently,
(—ap—bg+c)

V1+p2+g?
where ¢,b, and ¢ are constants expressing illumination strength, its position, and the surface
albedo.

The approach taken by Horn and his colleagues [3-8] is to solve the first-order partial
differential equation,

R(p,q) =

(—ap —bg+¢c)
V1+p2+g®

assuming that a,b, and ¢ are known — i.e., the surface albedo, and the illumination strength,
and its position. While this need to know scene parameters may seem over-restrictive, such
information may come from other components of a vision system. The need to know the
illumination position does not seem to be a major drawback of this approach, but the
requirement that the scene albede be known is trouhlesome. If the conceptual model of
intrinsic images is to be followed, the inability to decouple surface orientation from surface
albedo would seem fundamental. Regardless of this difficulty, the question of whether shape
can be recovered in a limited domain is basic to the investigatton of vision.

Two approaches to solving the image irradiance equation are direct integration [3,4],
and iterative/relaxation techniques [5-8]. The direct integration approach has been carried
out generally in those circumstances in which I(z,y) and its derivatives can be determined
for all z and y, i.e., for a spatially unquantized, continutous-tone image. The method used
is the standard technique of characteristic strips for solving a first-order hyperbolic partial

I(z,y) =

1This situation is also called Lambertian reflectance, after Lambert, who proposed a point reflection model
{(in which the reflected Aux per unit surface area per unit solid angle varied as the cosine of the angle
between the surface normal and the viewing direction) to account for the observation that matt surfaces
looked equally bright from any viewing position.

4



differential equation [3,4]. Starting with a point at which the surface orientation is known,
integration moves along a curve in the image. This curve is dictated by the image. Adjacent
curves generally are not ‘pardllel’, which makes it difficult to get complete coverage of the
image. Interpolation between these curves — or strips, as they are usually called — to find
initial values to commence an intervening strip integration, involves complex procedures.
As far as digital images are concerned, direct integration would he hard to organize, even
if we were first to model the intensities to obtain a continuous form for I(z,y).

As is the case with most partial differential equations, it should be noted that the image
irradiance equation has many solutions [12]. The boundary conditions (in the above method
the initial values for a strip) are vital in selecting the solution that describes the surface in
the image. Should the image irradiance equation be ‘underconstrained’ in the sense that, for
a given I(z, y), it admits solutions that encompass a wide range of surface types with similar
boundary values, we might then expect numerical error to defeat attempts at numerical
integration. In such cases, errors ‘mix in' other solutions that can eventually dominate the
recovered solution, even though they may be excluded by the boundary conditions. The
method of direct integration has been demonstrated on simple images [3). These examples
required only 2 small number of integration steps. Numerical instability has also been
reported [12].

The other approach used to solve the image irradiance equation is relaxation.
Relaxation procedures avoid numerical instability, but face the problem of convergence.
However, they do have the advantage of being directly applicable to digital images, i.e.,
spatially quantized, discrete-tone images. The relaxation (or iterative) approach views the
image irradiance equation not as a differential equation, but as an algebraic constraint. For
pixel (¢, 7),

Ii; = Rlpi;, 9i.5) >

where I; ; is the image irradiance for the (s, 7)th pixel, and p; ;,and g; ; specify the surface
orientation of the surface patch that is imaged at pixel (3, 7). As an algebraic constraint, the
image irradiance equation relates image irradiance to the two surface orientation variables,
pij.and g;;. In viewing the image irradiance equation as a algebraic constraint, we lose
the interrelationship of p;;, i, and their neighboring values, a relationship inherent in
the differential equation. To compensate for this loss, an additional constraint must be
introduced that relates p;j,and g;; to their neighboring values. Such a relationship is
essential for a relaxation procedure. The relationship usually introduced attempts to capture
the notion of surface smoothness [7,8, 10,13]. The particular form of the smoothness
constraint may, for example, require that p;;,and g;; be equal to the mean values of
neighboring p’s and g¢’s. For any trial values for p;j,and gy, the constraint imposed by
the image irradiance equation and the constraint resulting from surface smoothness will not
be completely satisfied. The residual equation formed from each constraint specifies how
well that constraint is satisfied. If £;; is the sum of the [absolute values of the] residuals
from both the image irradiance constraint and the surface smoothness constraint for the
(¢, 7)th pixel, then, for trial values of p and g for every image pixel, the total residual error

= Z €i

1S
i,JEimage
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The allocation of surface orientations to all pixels should minimize this total error — that

s,

98 =0 Vi, 7€ image |,
0pij

9¢ =0 V1,7 € image
09:,5

From these equations we obtain an iterative scheme for updating the values of p and g so
that they are compatible with their neighboring values, as well as with the image irradiance
equation [7,8,10]. If such a scheme is convergent, we have a procedure for obtaining shape
from shading.

It should be noted that the relaxation schemes, that use the foregoing approach are
possible only because the smoothness constraint relates the values at one pixel to those of its
neighboring pixels. The boundary conditions needed for selecting a particular solution from
the solution set of the iterative scheme are propagated by the smoothness constraint, not
the image irradiance equation. Compared with the direct-integration approach, information
propagation in the relaxation scheme uses a different mechanism. We must remember this
when we assess results.

Success with these methods has generally been limited to small images, (usually fewer
than 30 x 30 pixels), of nearly spherical or saddle surfaces [7,8,10,14]. For an eflective
relaxation scheme, the initial solution should have no effect on the surface recovered. This
unfortunately is not the case [10]. Boundary conditions are not propagated more than
a few pixels by the smoothness constraints [7,10]. Surface recovery from large images,
(bigger than 30 x 30 pixels), is ineffectual for this reason. As a consequence of the fact
that smoothness is used as information propagator, assumptions (albeit weak ones) have
been made about surface shape. Shading as a constraint, and smoothness as a surface type,
appears insufficient to provide a basis for an effective shape-from-shading algorithm.

2.2 Pentland

The approaches to solving the shape-from-shading task that we have discussed so far
have all been based on constraint propagation. Direct integration is a spatially serial solution
to the propagation problem, while relaxation attempts to achieve this propagation with a
temporally serial solution; in other words, relaxation employs local processing, but it must
iterate until enough cycles have passed to allow information to propagate spatially. Purely
local computation of scene parameters, on the other hand, is not a propagation method.
While this kind of computation can use neighboring data — and not just of the nearest
neighbors — it must provide an instant solution. It cannot iterate and therefore it does
not provide a temporally serial solution. Such an approach to scene parameter computation
avoids the numerical instability of direct integration methods, as well as the convergence and
propagation problems of relaxation, but it cannot use spatially distant scene information.
A local computation can use global information, such as the position of the light source,
but it cannot use scene details, such as the position of a distant edge. Of course, the reason
for carrying out purely local computation stems from the hypothesis that such scene detail
is not involved in the computation at this level in the visual system. Can shading provide
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sufficient local information to allow recovery of surface shape by purely local computation?
This is the question addressed by Pentland [9].

The inadequacy of local image measurements for specifying surface orientation can he
understood by counting the variables needed to specify various image measurements. Let
us consider the case of a uniformly diffuse reflecting surface. Image irradiance (1 measure-
ment) is a function of surface orientation (2 parameters), the product of surface albedo and
illumination strength (1 parameter), and the position of the light source (2 parameters). The
gradients of image irradiance {2 measurements) are functions of the same variables as image
irradiance and, additionally, are functions of surface curvature (3 parameters). The second
derivatives of image irradiance {3 measurements) are functions of all the variables men-
tioned above, plus the rates of change of curvature (4 parameters). Because higher image-
irradiance derivatives introduce more surface shape derivatives, we have more parameters
than measurements. It should be noted that a knowledge of global quantities, such as the
illumination position and the product of surface albedo and illumination strength, is not
sufficient to allow the surface orientation to be computed locally. If we make assumptions
about the relationship among some of the above parameters, we can produce a system of
equations from which surface orientation can be calculated.

Pentland investigates the case in which an image patch of a uniformly diffuse reflecting
surface can be considered identical to a point on an illuminated sphere whose reflection is
also uniformly diffuse [9]. He calculates the orientation of the surface patch on the sphere
that has the same appearance as the surface patch in the image. Not all image patches can
be represented by points on an illuminated sphere. Spheres whose reflection is uniformly
diffuse have the property

b

|

2220,
¥

-

where subscripts denote partial differentation with respect to those subscripts. There are
surfaces, e.g., a sinusoidal surface, for which f?*:‘ can be negative. The procedure for estimat-
ing surface orientation that is based on the assumption that surfaces can be approximated
by locally spherical patches is applicable only to parts of an image. Notwithstanding these
restrictions, an important aspect of the assumption of local sphericity is that the surface
orientation is calculated by using the second derivatives of image irradiance only, i.e.,

lm Ly '’
1-0 _ Ly
im Iny

These equations are derived by differentiating the image irradiance equation and noting
that, for a sphere, {; = 1,1, =0, m; =0, and my; = 1, where r is the sphere's radius.
In this model, surface orientation is directly dependent on neither image irradiance
nor on the first derivatives of image irradiance. It may be estimated even in images
that exhibit linear changes in irradiance induced by artifacts, and in images that exhibit
constant illumination levels induced by atmospheric effects, such as backscatter. More
importantly, the formulas are independent of the illumination parameters and the surface
albedo. In exchange for acceptance of a restrictive assumption with respect to surface type,
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one acquires not only a means of calculating surface orientation, but a procedure that needs
po information other than image measurements — a procedure, in effect, that is matched
to the notion of intrinsic images.

Even in those areas of an image to which this approximation can be applied, the
assumption that a surface can be approximated by a patch with the same curvature in
any direction needs experimental verification. The world is obviously not composed of such
surfaces, but it is the difference between the estimated and the actual surface orientation
that is more important than the error made in approximating the surface by a spherical
patch. Application of the above formula yields qualitative agreement between the estimated
and actual shape in synthetic images and in natural images of simple objects [9], (for which
;’T: is generally positive). Shape estimates from synthetic images of ellipsoidal surfaces
are 'flatter’ than the actual shapes. [t should be noted that shape estimates, which are
integrated surface orientations, often appear ‘better' than what might be expected on the
basis of the surface orientation error. An algorithm based on approximating 2 surface patch
by a spherical one seems better suited for computing the qualitative shape of a surface
than the orientation of surface elements. Such an algorithm is applicable only to thoses
image patches that are consistent with the interpretation of such patches as points on a
sphere. The conditions necessary for enabling this kind of interpretation have not been fully
characterized. Alternative models, that are applicable when an image patch is inconsistent
with an interpretation that it is a point on a sphere, are currently unknown.

In principle, because image irradiance is not differentiable at boundaries, we cannot
apply the above method there. However, unlike propagation methods require our knowing
boundary positions in order to stop computation, the local-computation approach may
accomplish this simply by indicating (through its failure at a boundary) where the boundary
is.

Pentland's approach hinges on the local-sphericity assumption. In restricted cir-
cumstances he is able to estimate surface orientation directly from the second derivatives of
the image irradiance. What other, perhaps less specific, assumptions can be made that allow
shape to be estimated locally? Before attempting to answer this, we review the shape-from-
shading formulation we have previously proposed [10,15], — first, to assess its performance,
then to provide the requisite analytical tools for answering questions about local computa-
tion.

2.3 Smith

The approach taken by Horn and his colleagues provides a formulation of the shape-
from-shading task that requires knowledge of scene parameters, but places no restriction
on the surface shape. Calculation of surface orientation is not a local process, and, if
surface orientation is to be recovered, knowledge of boundary conditions is necessary.
Pentland, on the other hand, restricts the surface shape but requires no scene parameters, no
boundary conditions, and derives surface orientation by purely local computation. Is there
an intermediate position? Is there a formulation that neither restricts the surface shape nor
requires knowledge of scene parameters?! Of course, local computation seems desirable —
but is it worth the concomitant cost of surface type restriction or the requirement that scene
parameters be known a priori? The formulation previously described by us, takes such an
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intermediate position.
For a uniformly diffuse reflecting surface, surface orientation is related to image ir-
radiance by the second-order partial differential equations [10]

all,, + f0m,, — a"f’:y - ﬂ'?mzy =x0l., — X"/Izy '
ally, + BOmy, — abl,, — Bbmzy = x01yy — 6Ly ,

where
o = Ixmy - ym: 3

B=1Il,—Li, |

y= L1 —-m?) +m 21— 3)+ 2mim

§ = 1,1 —m?) +m,*(1 - P) + 2ymylm ,

0 = I1,(1 — m®) + mymy(1 — ) + (lomy + lymz)im

x=bLmy—Ilym,

These equations are derived from the image irradiance equation. The assumption of
uniformly diffuse reflection relates some of the scene parameters, thereby allowing elimina-
tion of parameters that specify surface albedo and illumination conditions.

The assumption that surface reflection is uniformly diffuse is an assumption about
the physics of image formation. While it does not describe the reflectance properties of
al] surface, it is a reasonable approximation to most surfaces that are encountered in the
natural world. For any formulation of the relationship between shading and shape, some
assumptions are necessary. Those describing properties found in nature are more palatable
than restrictions for which little a priori evidence is available.

A desirable aspect of this formulation is that surface orientation is not related to image
irradiance, but only to its derivatives. The existance of constant illumination levels, from
atmospheric scattering or fogging of photographic images, does not impede the potential
for shape recovery. Linear changes in intensity, however, must affect the shape of any
recovered surface. A more important aspect of this formulation is its independence of surface
albedo. Again we reiterate that, if the notion of intrinsic images is to be useful we must
find models that decouple surface shape from surface reflectance. The fact that knowledge
of the illumination conditions is not required, is certainly an important aspect, but less so
than the formulation’s independence of surface albedo.

The penalty for not making assumptions about surface type and for not presupposing
any knowledge of scene parameters, such as illumination conditions and surface albedo, is
the introduction of higher-order derivatives of surface orientation in the formulation, as
well as the inability to calculate surface orientation by purely local computation. Boundary
conditions are necessary. To formulate a model that relates surface orientation to image
irradiance is one thing; to solve it for that orientation is another.

The second-order partial differential equations (given above) relating surface orientation
and image irradiance are satisfied by solutions to the first-order partial differential equation
x = 0. This is undesirable, as solutions of x = O satisfy the surface-orientation-image-
irradiance equations independently of the image measurements, I;,Iy,I;z, Iyy, and Iy. The
equation x = O characterizes the developable surfaces, e.g., a cylinder or cone (see Appendix
B); derivation of the above surface-orientation-image-irradiance equations is imposstble when
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the surface is developable, i.e., singularly curved. The surface-orientation-image-irradiance
equations are appropiate only when the surface is doubly curved. For singularly curved
surfaces, the appropiate equations relating surface orientation and image irradiance are

LA(my(1 = %) + lyim) = L,2(1,(1 — m®) + m.Im)

I.my—1I,m; =0 ,
ley - Iyl: = D

(These equations are derived independently of any reflection function, i.e., they apply to all
types of reflection, not just uniformly diffuse reflection. See Appendix C.)

If the surface-orientation-image-irradiance equations were solved by analytic proce-
dures, the problems posed by the x = 0 solutions would vanish, as such solutions would
be ruled out by boundary conditions. However, the presence of such solutions heralds
difficulties for numerical methods, as the inevitable numerical errors will mix these solutions
into the recovered surface orientations. T'wo approaches to solving the surface-orientation-
image-irradiance equations have been reported [15]. These approaches are direct integration,
which is implemented by finite-difference formulas, and relaxation. Both require additional
information in the form of boundary conditions. Both fail to recover surface orientation.
Direct integration correctly recovers the surface orientation in the vincinity of the boundary
conditions, but is ineffective elsewhere. The reasons for failure of each method are of inter-
est; direct integration fails because numerical instahility. makes the spatially serial method
of solution impractical; relaxation fails because nonconvergence makes the temporally serial
method of solution infeasible. These direct reasons for failure mask a deeper problem.
The model is ‘underconstrained’ from the standpoint that the equations are insensitive to
surface orientation. They are more sensitive to other surface parameters, such as surface
curvature [15]. Underconstraint of the model can account for lack of convergence of relaxa-
tion methods, but the numerical problems in direct integration highlight the difficulty of
spatial information propagation by a mechanism that is under the control of higher-order
derivatives.

The surface-orientation-image-irradiance equations alone do not form the basis for an
algorithm to recover surface orientation; they do provide a tool, however, for examining the
constraint shading imposes on shape. We shall subsequently use them for that purpose.

3. Local Computation Versus Global-Constraint Propagation

What can we learn from these various approaches to shape-from-shading? Direct
integration of a differential model is an inadequate computational tool. Horn and his
colleagues, using a low-order partial differential equation, show that some propagation of
information is possible — but numerical instability poses a difficulty even for a first-order
equation. This limited success with direct integration is unlikely to be upgradahle to a
solution procedure for natural scemes. Since higher-order formulations are plagued with
numerical instability they do not offer any prospect of success.

A restricting factor in a differential model is the need for knowledge of boundary
conditions. This seems to he a major limitation of such methods. These methods apply
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to continuous surface patches only and require a priori knowledge of solution values at some
points within every region. This means that we must find regional boundaries — perhaps
ascertain their type and estimate values of surface orientation at some points within each
region before we can attempt to recover shape. Is this, in effect, placing the cart before the
horse?

Models of the relationship between image measurements and scene variables that are
formulated as low-order differential equations offer no relief from the necessity of knowing
scene parameters. While information about illumination conditions may be obtainable from
other sources within the image, or maybe calculated in parallel with shape, it is difficult to
envisage a situation in which the surface albedo could be calculated before the surface shape.
Albedo would seem less constrained than shape. The author’s higher-order differential
equations show that derivatives of image irradiance can be used to remove these parameters.

While the relaxation schemes used to solve the image irradiance equation are not quite
viable, their drawbacks may be attributed to the weakness of the surface shape constraint,
namely smoothness, rather than an inherent deficiency of relaxation as a technique. For
the higher-order surface-orientation-image-irradiance equations, insensitiveness to surface
orientation does not allow assessment of the strength of surface continuity (the constraint
used in the attempts to solve these equations by relaxation). The results reported from
these relaxation procedures can be attributed to other aspects of the models they embody,
rather than to any deficiency of the relaxation technique itself. Relaxation seems viable as
a method that can satisfy global constraints without being dominated by numerical error.
However, surface shape assumptions, that are more restrictive than those used in the work
reviewed, appear necessary if information is to be propagated effectively over reasonable
image distances. Relaxation schemes that implement low-order differential models seem
practicable; schemes implementing higher-order differential models are too sensitive to noise.

In comparison with information propagation techniques, local computation of surface
orientation, as reported by Pentland, requires strong restrictions on surface shape — and
even these are not adequate to characterize all cases. However, local computation, par-
ticularly when it is based on a model involving derivatives of image irradiance only, does
provide a means for recovering surface orientation without any knowledge of boundary con-
ditions, without a priori regional segmentation (it may even help in this endeavor), and
without knowing the scene parameters, especially albedo. Unfortunately, we shall not get
a solution to surface orientation that is quantitively correct because the surface restriction
is too great. Local computation offers the computational features we want, but the penalty
to be paid — severe surface shape restriction — is far too great.

What, then, seems practical? A relaxation scheme that is more constrained by surface
type than those that have been examined? A scheme that implements a low-order model of
information propagation? A scheme that does a lot of purely local computation? A scheme
that can use boundary conditions wherever they are, but without being overly dependent
on them? Of course, all this is one conjecture. There may well be a group of models that
provide purely local computation, along with a means of determining when each model is
applicable. Higher-order differential models, however, or low-order differential models that
require too much a priori scene knowledge do not appear practicable. For any realistic model
it seems inevitable that local processing must play an important role. Consequently, what
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can we compute locally from the shading data? This is the question we shall now address.

4. Analysis of Local Computation

The relationship between surface orientation and image irradiance for a uniformly
diffuse reflecting surface that is doubly curved is given by the surface-orientation-image-
irradiance equations of Section 2.3. Parameter counting reveals that local image measure-
ments are insufficient to specify surface orientation for the general case, but shape constraints
can overcome these degrees of freedom. Since we wish to calculate surface shape locally, we
consider the case in which we can assume a constant curvature over the small surface patch
from which we draw information for the local calculation. Of course the curvature varies
with direction; we only assume that we can ignore any change in curvature over the surface
patch. Of course, this assumption is not valid in general; we are restricting our attention
to this case to simplify the analysis. If we cannot determine what shape information is
available in this restricted case, we are not likely to understand the general case. For this
case, when we ignore curvature change, ;. = lyy = l;y = m;; = my, = mzy = 0, and
from the surface-orientation-image-irradiance equations we derive the expressions

Lz 21— m®) 4+ m2(1 — B) + 2emzim
Iy (1 =m2)+ momy(1 —2)+ (.my + lym;)Im
lyy _ ly2[1 - m?)+ my2(1 -?)+ 2lymyim

I
Iy (1 —m2)+momy(l = P)+ (Izmy + lym)im

Notice that these relationships are only between surface shape and the second deriva-
tives of the image irradiance. It is the assumption of constant curvature, not the more
restrictive sphericity assumption (used by Pentland to recover surface orientation from the
second derivatives of image irradiance), that is necessary to relate shape and just the second
derivatives of the image irradiance. Image measurements are generally dependent on scene
parameters other than those encoding shape. The first and second derivatives of image
irradiance depend on the lighting position and the surface albedo, but the ratios of second
dertvatives are independent of all scene parameters except surface shape.

Can we use the above expressions to calculate surface orientation? We have previously
[15] pointed to the insensitivity of surface-orientation-image-irradiance equations to surface
orientation. The above expressions are also insensitive to surface orientation. We see this
in the following considerations. Algebraic manipulation of the above expressions yields '

I:: 132 + m:2 - (lzm - lm:)2

-Iy_y 2+ my2—(lym— 1’:‘1'1,,)2

Suppose that over an image patch we know values of { and m that satisfy the above
expression. Consider now this expression for %:: when

! __ !
!'=wl and m' =wym ,
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at each point of the image patch. Using finite-difference formulas to calculate the derivatives
of the surface normal, we obtain

L, _ b7 +ml® —(lm —'ml)°

Ly 024 ml®—(Lm —Um)

2

o, 2 o 2
w2 4 wePm,® — witwo(lom — Imy)

;20,2 + wy2m, 2 — wy 2we(l,m — imy)2
Note that, as the magnitude of w; or wo is varied, the numerator and denominator of

l‘:ll

vary in like manner; both either increase or decrease; T}i remains approximately equal to

{'—’ . The ratios of the second derivatives of i image irradiance are not sensitive to surface
orientation. We cannot get further shape information from other image measurements, as
the first and second derivatives of image irradiance are dependent on the surface albedo and
the lighting conditions, and the image irradiance is dependent on surface albedo, lighting
conditions, and the level of constant illumination from such sources as atmospheric scatter
and the dark current of the sensor. Surface orientation can be computed locally only when
very restrictive assumptions about surface shape are made. Without such restrictions there
is not enough information in the shading to decouple surface orientation effects from those
of albedo and illumination.

If shading is insufficient to allow surface orientation to be recovered, what then does
the shading specify? Does it specify curvature? Can we compute it locally? Consider the
above expressions for %i-:, and ;:—E Suppose that we know the correct values for { and m
at an image point and we want to calculate i ,ly,m;, and my. If I;,l,,mz, and my is a
solution, then so is wlz,wly,wm_, and wm,, where w is any constant. Curvature cannot be
computed locally (without further shape assumptions). The ratios of second derivatives of
image irradiance contain shape information, yet are insensitive to surface orientation and
do not allow computation of the curvature. What information about the surface do they
encode? '

To answer this question, we first rewrite the expressions for ﬁ: and %;L in vector dot
product form:

L. |&0m VIZEZm2) [, m, VT= E=m)]

Lpy o [%(l,m, V1-12 - m2):|.[é’;y(l,m, 1= —m?)| ’
ﬂr_g [a%(lm\/l—[zum2][%(lm\/1—!2—m2)]
Ly  [&(mVI-E—mI)[&1,mVI=F —m?)

Using the notation N = (I, m, V1 — {2 - m?), for the unit surface normal, we obtain

Iz: _ Nz-Nz
L, N.N, '’
Ly _ NN, N
Ly NN, '

where N, = % and Ny = %.
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For the case studied — when curvature changes are ignored — the ratios of the second
derivatives of image irradiance measure the relative squared curvature of the surface. In
other words, the ratios measure the relative change of the surface normal as we move along
orthogonal image directions. However, relative curvature calculated locally at each image
point constitutes insufficient information to allow surface shape reconstruction in the absence
of further information about surface parameters. From shading information alone shape is
an unattainable goal.

If we can find surface shapes, however, for which knowledge of relative curvature
implies stronger information about the surface, e.g., surface orientation as in the case of a
sphere, and if these surface shapes are reasonable approximations of the surfaces found in
nature, then we may be able to recover stronger shape information locally. Locally there is
not enough information to calculate surface shape without further knowledge, or without
additional assumptions about surface shape. Pentland's work shows that an assumption
of sphericity is strong enough to allow surface orientation to be calculated locally. Is this
ability to calculate surface orientation specifically related to sphericity — or is it a feature
that is generally true when we restrict the surface shape to cases in which the number of
free parameters is no more than that for a spherical surface? In the foregoing discussion
we have assumed that the surface is doubly curved. We shall now consider the images of
singularly curved surfaces.

Just as we did for doubly curved surfaces, we assume that the derivatives of sur-
face curvature can be ignored when we consider local computation of surface parameters.
Diflerentiating the image irradiance equation, we obtain the same expression as before for
the doubly curved surface, namely,

L. L2+ m.2— (Ilzm— lrﬂz)2

Ly 12+ my2 = (lym— Imy )

For a singularly curved surface (I;my — lym. = 0} when surface curvature is locally
constant, the second derivatives of image irradiance are not independent, [.,[;y = Izyz.
Consequently, we can derive only one expression relating shape and the second derivatives
of image irradiance, rather than the two expressions we derived for doubly curved surfaces.

As before, it follows that
L. NN

I!J'!J' NS"N!J

At first, it might appear that there is more shape information in the first derivatives of
image irradiance for
ILmy—Im.,=0 |,
Lily— I, =0

But this is not the case, as the first and second derivatives of image irradiance are not
independent. For singularly curved surfaces, when we ignore curvature change, ﬁ—f = (%)2

For the singularly curved and doubly curved surfaces studied, local shading specifies
the relative curvature of the surface along orthogonal image coordinates, which is the most
we cal hope to recover by local computation. In general, we cannot ignore curvature change
over a patch. In this case, the information available locally in the image combines data on
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relative curvature and curvature change. In the restricted case in which the the surface is
assumed to be spherical the surface orientation can be calculated. However, this appears to
be a very special situation based on the sphericity assumption rather than on a restriction
in the number of parameters needed to specify the surface. Since surfaces in general are not,
locally spherical, one is forced to conclude that shading alone cannot enable prediction of
surface shape by purely local computation.

5. Conclusions

The recovery of a scene’s surface shape from its image is fundamental to the vision
process. Qur purpose in processing an image is the recovery of scene properties, not those
of the image per se. In remote sensing it is these scene properties that we wish to measure,
but, to extract them, we have to understand how these scene properties are manifested in
the image data. A conceptual model of the relationship between scene and image parameters
is provided by intrinsic images. Each intrinsic image specifies, for each point in the image,
the value of one of the scene parameters that contribute to the measured image intensity. -
Vision models try to recover these parameters as best they can, whereupon a type of
relaxation process adjusts their values so that they constitute a consistent interpretation
of the scene’s structure. Which parameters are specified by separate intrinsic images and
which are composite is unknown, but it is essential that they be estimable without the need
to know the values of the other intrinsic images. Shape-from-shading proposes a source of
information, namely shading, from which shape information is to be recovered — but what
shape information does it actually encode?

Local shading specifies no more than the relative curvature of the scene’s surface
along orthogonal image directions. In general, even the recovery of relative curvature is
complicated by change in the curvature of the surface. However, surface shape variables
are related to image measurements in a fashion that is not dependent on knowing the other
scene parameters. Shading provides direct shape information, but this is not enough for
reconstruction of the surface shape. Further relationships between shape variables and image
properties must be established before shape recovery is possible.

The various approaches reviewed have attempted to recover surface orientation from
shading. To do so they have added extra information, such as known boundary conditions
or constraints upon surface shape. The performance of these various models allows us to
draw the following conclusions:

» Direct integration of differential models of scene properties requires much a priori
information and has to contend with major computational problems.

s Local computation must play a major role in the recovery of scene parameters, but the
models used have been overly restrictive in an effort to recover particular information.

s A relaxation mechanism, based on a strong low-order differential model, seems a viable
means of propagating spatial information and constraints.

Shading provides a basis for an intrinsic image, specifying relative surface curvature and
curvature change, but this intrinsic image alone is insufficient for surface shape recovery.
Other models incorporating other image measurements are needed to complement shading.
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Such models should utilize the advantages of local computation.
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Appendix A
If a surface is twice differentiable, then
L(1 —m?)+ mylm = m,(1 — ¥)+ L,Im
We call this the surface continuity equation, even though surface continuity is less demanding

than the requirement that the surface be twice differentiable.
Proof: For a continuous twice-differential surface,

Tzy = Zyx
But p = z» and g = 2y, so
Py = Qz
However,
-1
pP=——————
V11— —m?
_ —m
V1—PB—m2
Hence,
L T Y B
my(1 =12+ LIm
gz = —

(1 -2~ m?)3

Then, substituting in py, = g, yields

L(1—m®)+ mylm=m,(1 - F)+1,Im

Appendix B
Developable surfaces are characterized by the differential equation
lemy—Ilym, =0

Proof: With the exception of a cylinder whose axis is parallel to the z axis, the differential
equation defining all developable surfaces is [16]

2
Zrp2yy — Zpy” =0
As the surface is twice differentiable, then z.y = zy. so

ZzzZyy — ZzyZyz = 0
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As p =1z, and g = z, then
Pz9y — Pydz =— 0

But
-1

VI—E—m2

—m

VI—E—mZ

Hence,
(1 — m?)+ m.im

p==—- (1_[2_m2)g_ H
=_Iy(1—m2)+mylm
Py (1—f—m2)i '
. omy(1-B)+ Lim
T 1-k-m2)i
_ _my(l —B)+l,m

W= (1 —12 —m?)3

Substituting in prqy — pygz: = 0 gives

l;my —lym; =0

Appendix C

The relationships between surface orientation and image irradiance for a developable
surface are

Lmy—IL,m;, =0 |,
Ll,— Il =0

Proof: Differentiating the image irradiance equation, I(z,y) = R({, m), we obtain

I, =Ry + Rpmy
I, = R;ly + Rmmy
Now
LAmy(1— )+ ldm) = REL(l,m,(1— )+ Il,Im)
+Rm2my(momy(1 — I%) + lym,lm)
+2R( R lz(mzmy(1 — &)+ lymzim) |
L2L(1— m®) + moim) = REL(I1,(1 — m?) + l,m,Im)

+Rm2my(lzmy(1 — m?) + mymylm)
+2R R ly(lemy(1 — m®) + mymylm)
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But, for a developable surface I;my = lym_, (see Appendix B); hence

LA(my(1 — B)+ Idm) = RAL(l,m.(1— 2) + .1 lm)
+Rp2im (momy(1 — %) + [,myIm)
+2R(Rimlz(memy(1 — B) + l,mylm) ,
L2(l(1— m?) + modm) = RAL(I.1,(1 - m?) +,mylm)
+Rp*my(lym.(1 — m?) + m.m,lm)
+2R Rl (lym, (1 — m*) + mymylm)

Therefore,

L (my(1 — #) + Iydm) =(Ri*lly + Rn®memy + 2R Rnlomy)(ma(1 — B) + IIm)
Iyz(lz(l — m®) + m_Im) =(R¢21’,ly + Rm2m,my + 2R Ry lym )1, (1 — m?) + mylm)

However, the surface continuity equation, (see Appendix A), is
(1 — m®)+ mylm = m (1 — B)+ I,lm

We have the required result, i.e., that the relatlonshlp between surface orientation and image
irradiance for a developable su.rface is

L2 (my(1 = #) + lylm) = L2(1,(1 — m?) + m,lm)
In terms of p :;nd q, the equivalent form is
L®qy—I,°p: =0
In terms of depth 2, the equivalent form is
L%z, — 172, =0
Note that, in addition,

Izmy - Iymz = R‘([zmy - [ymz) ¥
Lly — Il, = Ru(lym, — lmy)

Hence, for a developable surface {;m, — [,m; = 0, we obtain the required results

Izmy— ymz =0 ¥

Ll ~ Ll =0

19



