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ABSTRACT

Local analysis of image shading, in the absence of prior knowledge about the viewed
scene, may be used to provide information about the scene. The following has been proved.

Every image point has the same image intensity and first and second derivatives as
the image of an umbilical peint (a point with equal principal curvatures) on a Lambertian
surface; there is ezactly one combination of surface orientation, curvature, (overhead}
illumination dircction and albedo times illumination intensity that will produce a particular
set of image intensity and first and second derivatives. A solution for the unique combination
of surface orientation, etc., at umbilical points is presented

This solution has been extended by using general position and regional constraints to
obtain estimates of the following:

¢ Surface orientation at cach image point

¢ Wlhether the surface is planar, singly or doubly curved at cach point

e The mean illuminant direction within a region

e Whether a region is convex, concave, or is a saddle surface.

Algorithms to recover illuminant direction, identify discontinuities, and estimate sur-
face oricutation have been cvaluated on both natural and synthesized images, and have been
found to produce useful information about the scene.



PENTLAND LOCAL SHADING ANALYSIS

1. Introduction

A spatially restricted analysis of an image is logically the first stage of any visual
system. This initial stage of analysis is especially important because it determines what
information will be available to the remainder of the visual system; if a rich description
of the world can he computed locally, there is a smaller computational load placed on the
remainder of the system. It is, therefore, important to acertain as much ahout the world as
possible at this first stage of processing.

Biological visual systems conform to this principal. There is overwhelming evidence

that they devote a large percentage of their neurons to an initial local analysis of the image.
Thus, assessment of the limits and potential uses of a local analysis can be expected to
provide insight into both machine and biological vision problems.
‘What information is available locally? When we examine a small neighhorhood around
an image point, we often find only small changes in shading {changes in image intensity! ). It
is unusual to find a contour passing through an image point. Thus, if we are to learn about
scene characteristics from local examination of an image, we must concern ourselves with
shading® The main question posed in this paper will therefore be: What information can, or
cannot, be recovered from an unfamiliar image through a local analysis of shading? In the
following sections I shall first discuss the limitations that are inherent in any local analysis
of image shading, and then show how information about the scene can be determined by
means of additional constraints derived from general position and the distribution of data
within homogeneous image regions. Proofs of the various propositions are presented in the
appendix.

Previous work. Horn and his colleagues [2], [3] have analyzed the process of image forma-
tion and have developed several numerical integration schemes for using image intensity to
solve for object shape. These shape-from-shading techniques, however, require considerable
a priort knowledge of the scene, and they function by propagating constraint from houndary
conditions (such as those provided by smooth occluding contours) over the surface whose
shape is to be estimated. These techniques, therefore, cannot he applied to an unfamiliar,
unanalyzed scene and do not perform the purely local analysis I wish to consider here.
Bruss [4] has addressed the question of whether shape can be derived from shading
using a purely local analysis (again with a considerahle a priori knowledge of the scene
assumed). She proved that no shape-from-shading technique can yield a unique solution
without additional constraints which, in certain restricted cases (most importantly electron
1To avoid confusion, the term “image intensity” will be used throughout this document, rather than the
technically more correct “image irradiance,” both for the flux per unit area [alling on the image plane

and for the measured image irradiance. The two may be assumed to be numerically equal; and thus the
distinction has little significance for the task at hand.

2For the purposes of this paper we shall restrict our attention to shading, because the problem of estimating
shape from local texture information has already received much attention, e.g., [17] and [18].
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Figure 1. A simple model of Image generatlon. N is the surface normal, L the illumination
direction, ¥V the viewer’s direction. If X is the flux emitted toward the surface, p the average reflectance of
the surface, and we assume distant light source and a Lambertian reflectanee function for the surface, then
the image intensity T is given by J = pA(N -L).

micrograpbs), may be provided by the bounding contour of the surface. Bruss, however,
dealt mostly with the question of what cannot be obtained from an analysis of shading;
tbe question of what can be accomplished with a local analysis of shading was not fully
explored. It is this, consequently, that we discussed below.

A. Image Formation

Before we can make quantitative statements about the limitations or usefulness of
a local analysis of shading, we must first develop a mathematical model of the image
generation process. Figure 1 shows a simple model of image generation: a distant point-
source illuminant at direction L, a patch of surface with surface normal N, and a viewer
in direction® V. We will assume orthographic projection; note, however, because the model
is purely local orthographic and perspective projection are identical except at points of
discontinuity.

The surface normal N, the viewer's direction V and the illuminant direction L are
unit vectors in Cartesian three-space. As they are unit vectors, two parameters suffice to
specify them, the third being determined by the constraint that they have unit magnitude.
Two parameters that are often chosen are the slant & and the tilt . The tilt of a surface
is the image-plane component of surface orientation and is equal to tan™!(yx /zx), where
z, and yy are the  and y components of the surface normal. The slant of the surface is
the depth component of surface orientation and is equal to cos™!(zn), where 2, is the 2

2Al boldface variables (e.g., N, L, p etc.) represent three- dimensional vectors (2,y, z), all other variables
are scalars. The [z, y) plane is taken parallel to the image plane, so that V = (0,0,1).

3
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component of the surface normal.
The image intensity I is in general given by

I = pA\N-L)R(N,L, V)N . V)~!

where p, the albedo, is the portion of incident light that is reflected, A is the amount of light
incident upon the surface and R(IN,L,V) is the reflectance function, which describes how
much of the reflected light leaves in each direction. The amount of incident light reflected in
the viewer's direction V is a function of the illuminant direction L+ and the surface normal
N. The term (IN: L) describes the amount of light incident upon the surface, while the term
{IN - V)~ ! describes the foreshortening that occurs during projection into the image? . A
Lambertian reflectance function, an idealization of rough, matte surfaces, is defined as

R(N,L,V)=N-V

which is proportional to the reciprocal of the foreshortening caused by the projection term.
Thus, for a Lambertian surface the refleetance function and the eflect of projection cancel
each other, and the equation for image intensity becomes

I = p\(N-L) (1)

Thus, the assumption of a Lambertian reflectance function is equivalent to the assumption
that the scattering of incident light is isotropic. We shall assume a Lambertian reflectance
function.

Generality of the assumptions. The assumption of a distant point-source illuminant
and a Lambertian reflectance function is not as restrictive as it might at first seem. We
note, for instance, that for a Lambertian surface any constant distribution of illumination
is equivalent to a single distant point-source illuminant; this follows from application of the
mean value theorem. Because we are concerned only with local analysis, the requirement
that the distribution of illumination be constant is almost trivially met® . Therefore, local
inferences derived with this single-illuminant/ Lambertian model will generally be valid
whenever the surface scatters incident light in an isotropic manner, regardless of the actual
distribution of illumination.

B. The Derivatives Of Image Intensity

The image intensity I and the surface normal N are different at each point (z,¥) in
the image, and thus are perhaps better written I(z, y) and N(z,y). However, when they are
discussed at a particular point P, they will be written as simply I and N. Similarly, we
shall write dI and dN to designate the first derivative of image intensity and the surface
normal, respectively, at a point P in the direction (dz,dy). The partials of I, N, and other
variables will be denoted by subscripts, ie., I, = 8I/8xz and N, = dN/dy.
4In other terminology, IN - L is equal to the cosine of the incident angle, and IN - ¥V is equal to the cosine
of the exitent angle.

50Only illumination near the “horizon™ of the surface patch causes a problem; in this case there is some
self-occlusion and thus somewhat different illumination at neighboring points.
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If we arc examining a small, homogencous region of an image, it is reasonable to
assume that the illumination and albedo of the surface change very little, and so we may
treat L, p, and X as constants. If we also assume a Lambertian reflectance function, so that
Equation (1) applies, then

dI = d(pMN-L)) = pA(dN-L) + pA(N - dL) = pMdN - L) (2)

The term {IN - dL) is zero because L was assumed constant. Similarly, the second derivative
of image intensity is

d®1 = d(pMdN - L)) = pMd*N - L) + pMdN - dL) = pA\(d*N - L) (3)

Thus, the seccond derivative of image intensity depends upon the second derivative of the
surface normal, just as the first derivative depended upon the first derivative of the surface
normal.

II. Local Shading Information: Limitations And Potential

. Before we can know what is possible to accomplish with local shading information, it
is important to characterize what cannot be done. The following proposition describes the
fundamental limitation which is inherent to any local analysis of image shading:

Proposition 1. The image of a Lambertian umbilical point (a point with
equal principal curvatures) can produce any combination of image intensity 7
and derivatives I, Iy, Izz, Iy, and I,.

This proposition says that when we view a point on a surface, regardless of what the
actual surface curvatures are or what the actual surface reflectance function is, the resulting
image point always looks like an umbilical point on a Lambertian surface. This proposition
implies, thercfore, that it is impossible for a local analysis of the image to determine
unambiguously whether a surface is Lambertian and whether the principal curvatures are
equal; there will always be the possibility that the observed point is an umbilical point on a
Lambertian surface. We cannot resolve these ambiguities by resorting to higher derivatives
of image intensity because, although more measurements are obtained by measuring the
higher derivatives, each additional derivative brings in more unknowns than measurements.

We can see by the following argument that this proposition is likely to be true.
Consider that at each point in an image we can measure the intensity, and its first and
second derivatives to obtain six independent measurements, which are I, I, Iy, Iz, Iyy
and I,. To specify the image intensity of an umbilical point on a Lambertian surface®
requires six independent parameters: r the surface tilt? , o the surface slant® R the radius
of curvature, {1,l2, /1 — [% ~ %) the illuminant direction, and pA the surface zlbedo times
illuminant intensity. Solving for these six unknowns requires at least one measurement for

8The set of allrpossible images of umbilical points is obtained by considering surfaces of the form z(z, y) ==
\/R? —~ 22 — y2 for particular valuesof R> 0, R 2>z > —R, R>y > —-R.
7Tilt is the image-plane component of surface orientation.

83lant is the depth-component of surface orientation.
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cach unknown; thus, the measurement of intensity, first and second derivatives can at most
establish the six parameters required to specify a Lambertian umbilical point. No additional
measurements are available to determine whether the surface curvatures are unmequal or
whether the reflectance function is Lambertian.

Proposition 1 leaves open the possibility that there may be a great many combinations
of surface orientation, curvature, etc., corresponding to each combination of image intensity
and its derivatives. I the equations for image intensity were linear, there would be exactly
one combination of the six parameters that would correspond to the observed measurements.
Although the equations are not linear, the following proposition shows that there are only
two possible combinations of these factors that will yield a particular combination of image
intensity aud derivatives.

Proposition 2. Given the image of an umbilical point on a Lambertian
surface with image intensity / and derivatives I, I, I, I,, and I, there are
two possible combinations of surface orientation, curvature, illuminant direction
and surface albedo times illuminant intensity, one with the illuminant direction
above the line of sight, the other exactly opposite surface tilt and illuminant
tilt.

Thus, the ambiguity present in local image shading is not much greater than was
evident from the first proposition; there is only the additional amhiguity that arises from
a symmetry involving the illuminant direction and the tilt of the surface. This symmetry
results in the intcrrelation of the direction of illumination and the convexity of the surface;
if the illuminant direction is taken to have the opposite tilt (e.g., from above the line of
sight to below it) the convexity of the surface will reverse. Therefore, one cannot determine
the convexity of the surface unless something is known about the illuminant direction [1],

Using propositions 1 and 2, we can produce an exhaustive characterization of the
limitations of any local analysis of shading. A local analysis of shading cannot

e Determine the sign and magnitude of the surface curvatures® c.g., whether the

surface is convex, concave or a saddle-shaped and whether or not the curvatures
are unequal.

¢ Determine the surface reflectance function.

» Separate the surface albedo from illuminant intensity.

A. Solving For Image Formation Parameters At An Umbilical Point

The amount of information we can extract from a local analysis of shading (given that
we are viewing the image of a Lambertian umbilical point) is surprising. For such image
points we can solve for every parameter in the image formation process. This seems to
indicate that there is approximately two degrees of freedom left undetermined by the local
shading information when we view a point within a homogeneous region of an image: the
ratio of the surface curvatures and the degree to which the surface is non-Lambertian.

The umbilical-point case is the most complex situation in which all of the image
formation parameters may be recovered locally. The fact that there are only relatively

9With the additional constraint provided by general position, we can determine when the curvatures are
zero. This is shown in the following section.
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Figure 2. The manner In which image curvature “spreads” indlcates the tilt of the
surface. This may be understood by imagining that we could observe the lines of curvature on a surface
directly. They would look just like the lines drawn in this figure. If we were looking straight down on the
surface of a sphere, the lines of curvature would appear perpendicular, as in (a). As we tilted the surface to
one side, the lines of curvature would appear progressively more spread, as in (b} and (c). Different directions
of tilt cause spreading in diflerent directions, as demonstrated in (d). The amount of spread depends on the
slant of the surlace.

few additional parameters required to obtain a reasonably general model suggests that the
umbilical-point solution may provide us with a useful (albeit simplified} model of how the
various portions of the image formation process evidence themselves in the image, and may
also prove useful as a tool for analyzing image points. The umbilical-point solution for
surface orientation, for example, is instructive to examine. How can surface orientation be
determined from local shading information?

Imagine that we could observe the lines of curvature on a surface directly. They would
look like the lines drawn in Figure 2. If we were looking straight down on the surface of a
sphere, the lines of curvature would appear perpendicular, as in Figure 2 (a). As we tilted
the surface to one side, the lines of curvature would appear progressively more spread, as in

7
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Figures 2 (b) and (c). Different directions of tilt would cause spreading in different directions,
as demonstrated in (d).

We cannot observe lines of curvature on the surface directly, of course, but we can
observe the interaction of surface curvature with the illuminant in the second derivatives
of image intensity. The second derivative of image intensity has three components: I, and
Iy, the “curvature” of image intensity along the x and y axes, respectively, and Iy, the
“spread” of those curvatures. Just as with the spread of the lines of curvature, the direction
in which the spread term is greatest is also the direction of the surface tilt. The direction in
which this spread is greatest also turns out to be the direction along which d*I is greatest,
and hence the following proposition:

Proposition 3. Given the image of an umbilical point on a Lambertian
surface, the tilt of the surface r is the image direction in which the second
derivative of image intensity d°/ is greatest.

Thus, for Lambertian umbilical points the tilt may be determined from the second
derivative of image intensity directly, without a priori knowledge. This leaves only the
surface slant to he determined.

In Figure 2 the direction of the spread indicated the tilt of the surface. Similarly,
the amount of the spread indicates the slant (depth} component of the surface orientation.
Measuring the magnitude of this spread relative to the total curvature (as measured by
the Laplacian) provides an indicator of the surface slant, as described in the following
proposition.

Proposition 4. Given the image of an umbilical point of a Lambertian
surface, the surface slant ¢ is given by

) cogt [FRI = (B + D)Ly
kV2I + (k% + D,

where £ =tan" ! 7.

The slant and the tilt propositions together determine surface oricntation exactly. Note
that neither the slant nor the tilt estimate requires any knowledge of illuminant direction,
surface albedo, curvature, or illuminant intensity.

B. Unlikely Umbilical-Point Solutions: Constraint From General Position

Although the umbilical-point solution will always provide us with an interpretation
that is consistent with the local image data, it sometimes yields an interpretation of an
image point that strikes us as unlikely because the umbilical-point solution requires an
unlikely conliguration of orientation, illumination, or viewer direction.

When we observe an image point for which the umbilical-point solution requires an
unlikely configuration, we have availahle the additional constraint provided by general
position to belp us interpret the image data. This additional constraint allows us to reject
the umbilical-point solution and infer that something special has occurred in the image
formation process — something that may permit further analysis.

Zero second derivative. One such case arises when one or both of the second derivatives
are zero. When one of the second derivatives is zero, the umbilical-point solution is a

8
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Figure 3. Surface types. Sur{aces may be classified into five types: planar, cylindrical, convex, concave,
or saddle surface, The classification of a surface depends on whether the two principal curvatures 1 and
ra are positive, negative, or zero.

surface patch whose orientation is exactly perpendicular to the line of sight. When both
of the second derivatives are zero, the umbilical-point solution requires that the illuminant
direction be exactly in tbe image plane. These interpretations of the image point are unlikely
because precise alignment of surface orientation or of illuminant direction is necessary, i.e.,
this interpretation of the image point presupposes a violation of general position. The
more likely inference when a zero second derivative is observed is that one of the surface
curvatures is zero. The fact that this inference is valid (shown in the appendix) allows us
to partially classify the surface type.

Surface points may be classified into five types: planar, cylindrical, convex, concave,
or saddle surface. These five types are shown in figure 3. The classification of a surface
depends on whether the two principal curvatures x; and kg are positive, negative, or zero:

9
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plane £ =0 ko =20

eylinder Ky #£ 0 Ka =0
conver Ky <0 Ko <0
concave £ >0 Ko >0
saddle sur face Ky >0 Ko <0

One important step in identifying the type of surface is determining when the principal
curvatures are zero, as this allows us to classify the surface as planar, cylindrical, or doubly
curved.

When one of the principal curvatures is zero, the surface normal does not change as
we travel along the surface in the direction of that principal curvature. Because the surface
normal N does not change along that direction {let us specify the direction by (dz, dy)), we
know that!® dN = 0 along (dz, dy). Since

dl = pAdN-L (2)

we see that d] must also be zero along (dz, dy). Unfortunately, the reverse infercnce is not
generally true, because dI is zero along seme direction for every image point. Therefore,
we cannot infer that dIN = 0 in direction (dz, dy) just because d = 0 along that direction.
That problem does not occur when we observe d° = 0 along a direction (dz, dy).
When the surface normal does not change along a direction (dz,dy), then d*N = 0 along

(dz,dy). Since
d2] = pAd*N - L (3)

we see that, when d°N = 0 along (dz, dy), then d>I must also be zero along (dz, dy). For the
second derivative, the reverse inference — that d2N = 0 because d2/ = 0 — is generally
valid, for when we observe that d2] = 0 along direction (d2,dy), we can conclude that
either (1) d®N is perpendicular to L or (2) that d°N == 0. As it is unlikely that d*N
is perpendicular to L for any distance, we may legitimately conclude that, if we observe
that d%7 = 0 for some distance along direction (dz,dy), then d°IN = 0. This implies that
dN is constant along (dz,dy), and, if dN remains constant for some distance, we may use
the constraint of gencral position to conclude that N is also constant (this is shown in the
appendix).

We can now begin to classify the surface. If we observe that d°J = 0 along a line in the
image, then N does not change along that lecus and we have a surface that is cylindrical
along that line. If we observe that d2I = 0 along a direction {dz,dy) throughout some
region in the image, then the surface 13 a cylinder with an axis whose projection points in
the (dz, dy) direction. Similarly, if we observe that d°J = 0 along two orthogonal directions,
then N does not change along either direction and thus the surface is planar. Finally, if
d*I5£0 in all directions, then the surface must be doubly curved, i.e., it is convex, concave,
or a saddle surface. We can not distinguish among these alternatives on the basis of local
shading information alone — a consequence of the previous propositions. Thus, we have
the following proposition: -

10Here the ‘0" in ‘dN = 0’ is the zero vector,

10
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Proposition 5. The surface type at a point is partially determined by the
number of directions in which d2] = 0.

d>] = 0 in no directions = convez/concave/saddle sur face
d®I = 0 in one direction = cylinder

d?] = 0 in all directions = plane

It is interesting to note that linear intensity gradients do not invalidate this classification
scheme.

The detectton of lines along which a surface is cylindrical is of considerable importance
because it is only at such cylindrical lines that changes occur in the surface type (e.g., change
from a convex to a saddle surface). As the surface changes from one type to another, the
sign of at least one of the principal curvatures changes from positive to negative, or vice
versa. In the course of a sign change the curvature is briefly zero, and so the surface is
cylindrical along the locus where the surface changes type!! Thus, lines along which d°1 =
0 are places where the surface is undergoing a change of type, and the set of such lines
divides the surface into regions that are of the same surface type.

III. Generalization Of The Results: Regional Constraints

In real images, relatively few points are umbilical and relatively few surfaces are
Lambertian. Therefore, we must find some additional constraints in order to obtain
generally applicable formulas for surface orientation, illuminant direction, and so forth.
Unfortunately, the thrust of the preceding propositions is that there is no point-wise local
assumption that will generally be true; there will always be at least a two-parameter family
of possible solutions.

One way we can obtain additional constraint is to expand our view: to consider regions
rather than single points only. Once we allow discussion of regions, we find that there are
many possibilities for obtaining a good estimate of the mean value of particular parameters
within the region, by using inferences about the range or distribution of image data within
the region. Having obtained an estimate for the mean value of a parameter, we can then solve
for other parameters by assuming the already estimated value — i.e., by bootstrapping.

The mean value of a parameter within a region may be used either to comment upon
the average properties of the region, or we may assume that the parameter is constant
throughout the region and thus obtain point-by-point estimates. If we comment only about
average properties, then the validity of our deductions depends solely on the accuracy of
the initial estimate. If we desire point-by-point estimates, the validity of our inferences is
also conditional upon the intraregional variance of the estimated parameter.

In the remainder of this paper [ shall discuss results obtained by estimating the mean
value of one parameter within a region and then using this estimate as an assumption to
infer other properties of the scene. Examples of both regional and point-by-point inference
will be presented. Estimates of average properties of a region, such as illumination direc-
tion and surface type (e.g., convex, concave, saddle, etc.), have been made by using the

111t the change takes place over an extended area, both curvatures will be zero and so the surface will be
planar instead of cylindric.

11
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maximum-likelihood estimate of change in surface normal. Point-by-point estimates of sur-
face orientation have been made by using an estimate of the curvature within the region.

A. Finding The Illuminant Direction

Estimating the iluminant direction is difficult because image data are determined by
both the surface normal and the illuminant direction. Since evidence relating to illuminant
direction is confounded with the unknown direction of the surface normal, estimating the
direction of illumination secems to require making some assumption about surface orientation
or its derivatives.

One useful assumption is that change in surface orientation (dIN) is distributed isotropi-
cally within each image region. It is true that dIN is isotropically distributed when considered
over all scenes; furthermore, there is a large class of common image regions for which dN is
isotropically distributed. This class of image regions includes all images of convex objects
bounded entirely by a gradual occluding contour!? , such as the image of a smooth pebble.

Given the assumption that changes in surface orientation are isotropically distributed,
we can devise a procedure for estimating the illuminant direction L by looking for the
regular biasing effect of the illuminant direction on dI, the mean value of dI, along various
image directions (dz, dy). The eflect of the illuminant direction is to make d1, vary according
to _ -

dl = pAdN-L
= pMdZnzy + dYnyL +dEnzL)

where dN = (dZj,d§,,dZn) is the mean change in dN measured in image direction
(dz,dy), and L = (24, yr, z1) is the illuminant direction. Under the assumption that change
in surface normal is distributed isotropically within a region, then, along any one image
direction (dz, dy) we find that dzx is proportional to dz, the z-component of the image
direction, that di, is proportional to dy, the y-component of the image direction, and that
dzy is zero. (see [5]) Therefore,

dI = k(zpdz + yrdy) (4)

where k is a constant determined by the albedo, illuminant strength, and the variance of
the distribution of dIN witbin the region.

Using (4), we can set up a linear regression that employs the mean of df as measured
along various image directions to obtain a maximum-likelihood estimate of the ratio of the
unknowns z; and yr. This ratio is the tilt of the illuminant direction, which we shall
use in identifying surface type. The constant & (and from this the values of z;, y; and
z1) can be estimated from the mean and variance of the distribution of dI along various
image directions. In this procedure, most of the information about the illuminant direction
comes from image points where there are large changes in image intensity, e.g., edges and
specularities. This seems to agree with our introspective impression as to how we determine

12This may be proved by noting that the surface normals on such an object are perpendicular to V at the
image boundary of such an object, and thus (given that the object is strictly convex) we may form a 1-1
onto map between the surface normals of the object and the Gaussian sphere, which has sum dN equal to
Zero.

12
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the illuminant direction. Note that this estimation procedure establishes the tilt of the
illuminant direction to within +x/2, leaving an ambiguity regarding illuminant position
that is identical to the human perceptual ambiguity that obtains in the absence of cast
shadow information.

Evaluation of the illuminant direction estimator. This illuminant estimation pro-
cedure has been compared with the answers given by fifteen human observers on a series of
digitized pictures of natural objects, such as rocks and logs. The photographs of these ob-
jects were made in natural illumiration, so that the imaged scenes do not have a Lambertian
reflectance function or true point-source illumination. Digitized versions of the pictures were
shown to the human subjects, so that both they and the computer procedure would receive
exactly the same image information.

Figures 4 (a) and (b) show a comparison of human and computer estimates of illuminant
direction. Previous experiments have documented that the fifteen subjects’ mean estimates
exhibit a standard error of ten degrees in this experimental condition. Thus, the human
and computer estimates shown in Figure 4 concur to within experimental error.

Otber evidence concerning the equivalence of human and computer estimates comes
from the variance of the two estimates. The illuminant direction estimator generates a
confidence statistic for each image, along with its estimate, This confidence statistic is
proportional to the variance of the estimate for that image (given the assumptions of the
procedure). We can compare the variance of human estimates for a particular picture with
the variance of the maximum-likelihood estimate (as predicted by the confidence statistic).
This comparison is shown in Figure 4 (c). There is a correlation of 0.63 between the
variance of the two sets of estimates, significant at the p = 0.05 level. The linear regression
line relating the human and maximum-likelihood variance is shown as a dashed line; the
coefficients of the regression are significantly different from zero at the p = 0.01 level. The
significant relationship between the variance of the two estimation procedures (human and
computer) shows that, when one of them finds enough information in the image to make a
low-variance estimate, so does its counterpart. :

One of the images employed is of particular importance, because it is an example of
incorrect estimation by humans of the illuminant direction. When the image of the rock
shown in Figure 4 (d) was presented to human subjects, they misestimated the illuminant
direction by about 120 degrees (it is actually illuminated from top left, not top right as all but
two of the fifteen subjects reported). The computer generated estimate, interestingly, agrees
with the human ones — even though in both cases the estimates are objectively wrong. This
image must violate the assumptions on which the human estimates of illuminant direction
are based, because the human estimate is objectively wrong. The special significance of this
case is that it also violates the assumptions of the computer estimation procedure in such
a manner tbat it produces exactly the same estimate as the human subjects. This is strong
evidence that the algorithm people employ to estimate illuminant direction is similar to the
one described above.

B. Using The Iluminant Direction To Type The Surface

Once we have an estimate of L for a region, we can use this estimate as a basis for

13
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Flgure 4. A comparison of hurnan and ecomputer estimates of {lluminant direction in
images of natural objects. Part (a) shows the comparison for the tilt component of the illuminant
direction, and (b) shows the comparison for the slant component of the illuminant direction. Part (¢} shows
the relationship between the variance of human estimates of illuminant direction and the variance of the
computer's estimate of illuminant direction. There is a correlation of 0.63 between the variances of the two
sets of estimates, significant at the p <X 0.05 level. The dashed line is the linear regression line relating the
variance of the two estimation procedures. Part (d] is a picture of a rock for which both human estimates
ol illuminant direction and the maximum likelihood estimate agreed, but were objectively wrong. Actual
illumination direction is top right, not top left as reported by all but two of the fifteen human subjects.

acquiring further information about the image formation process. One important use of L
is to provide sufficient constraint to identify the surface as convex, concave or saddle — thus
completing the typing of the surface.

Figure 5 contains an example of the “crater illusion.” In this image, the shadow
information is not prominent enough to determine the illuminant direction; consequently,

14
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Figure 6. The Crater Illusion. Pictures of craters can look like bumps instead of depressions if we
imagine the light source to be at the bottom of the picture rather than at the top; to see this, turn the
figure upside down. This picture is of an ash cone in the Hawaiian Islands (courtesy of W. Richards).

no matter how the picture is turned the illumination is always (by default) seen to be
coming from above'® Thus, the direction of illumination (relative to the image) changes as
the image is turned upside down. When the direction of illumination changes, the convexity
of the imaged surface also changes — thereby demonstrating that people use the direction
of illumination to determine the convexity of the surface.

How can information about the direction of illumination be used to determine the
surface convexity? When we invert Figure 5, the sign of d as we move toward the apparent
illuminant reverses, because the perceived image-plane component of the illuminant direction
shifts by =/2 radians. Let us consider what the sign of dI tells us about the convexity of
the imaged surface.

Equation (2) shows that the change in image intensity df is dependent upon dN, the
change in the surface normal:

dI = d(pMIN - L)) = pA(dN - L) + pA(IN - dL)) = pA(dN - L) (2)
It turns out that dN is always perpendicular to N, which can be sbown by observing that

2dN-N = d(N -N) = d(1) = 0

13This is an example of the above-mentioned £m/2 ambiguity in illuminant direction.
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Figure 8. Estimatlon of surface type. {a) For a convex surface, dIN measured along image direction
(dz, dy) typically points in the direction (dz, dy, 0), so that, if the image direction (dz, dy) is toward the light
source, then df = ph\dN - L is positive. For a concave surface, dIN measured along image direction (dz, dy)
typically points in the direction {—dz, —dy,0), so that df = pAdN - L is negative. Thus, the sign of df
in relation to the illuminant direction gives an estimate of the surface convexity along that direction. (b)
The illuminant direction may be used to provide sufficient constraint to determine the qualitative type of
surface. Each type of surface has a generic appearance, which may be characterized by the angle between
ra, the direction in which df = 0, and 7, the illuminant direction. The distribution of 75 — 7, is shown
for each surface type, assuming that the change in surface normal is isotropically distributed, and taking
df > 0 to the right of 19. It can be seen that the appearance of the different types does not overlap much,
so that a good tdentification of the surface type within the region may be made from this angle.

Whether d7 is positive or negative along a particular direction depends upon whether
dN points toward or away from the illuminant direction L. This is illustrated in Figure 6

(a).

If we assume that change in surface orientation is isotropically distributed within an
image region, then, for a convex surface, d/ measured in the image direction (dz,dy) will
typically be positive if (dz,dy) is toward L. The sign of d[ is positive because, for a convex
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surface, dN measured along image direction (dz, dy) points on the average in the direction
(dz,dy,0), so that dI = pAdN - L is positive. In contrast, if the surface is concave dI will
typically be negative because, for a concave surface, dN measured along image direction
(dz,dy) points on the average in the direction (—~dz,—dy,0), so that dI = pgAdN - L is
negative. Thus, the sign of dI as we measure toward and away from the light source gives
us an estimate of the convexity of the surface in that direction.

Unfortunately, dN mecasured along (dz, dy) does not usuaily point precisely along either
the direction (dz, dy,0) or (—dz, —dy,0). Thus, even if we are given L and N, there remain
too many unknown factors to establish the surface type with certainty. Each surface type,
however, does have a typical or generic appearance. Therefore, given the tilt of L and the
assumption that change in surface orientation is distributed isotropically within a region,
we can estimate the surface type by observing the sign of dI measured toward and away
from the illuminant.

Sufficient information for estimating the surface type is provided by the angle between
79, the direction along which df = 0, and 7z, the tilt of the illuminant direction, as the
sign of d is positive on one side of 7y, negative on the other. Thus, knowing ry and rp
enables us to estimate the surface type. Figure 6 (B) shows the probability distribution of
7o for each surface type given rp, the tilt of the illuminant direction!® , and the assumption
that surface orientation is isotropically distributed within the region. As can be seen by
comparing the overlap between these probability distributions, the likelyhood of a correct
identification is guite good.

Note that the ambiguity of £x/2 in the estimation of illuminant direction tilt leads
to a global convexity/concavity ambiguity. Thus, just as with human perception, when a
scene is sufficiently simple as to make L uncertain, the direction of illumination may be
“switched” by m/2, which causes all the convexity/concavity determinations to change, as
in Figure 5.

C. Estimation Of Surface Orientation

Although in real images relatively few points arc umbilical and relatively few surfaces
are Lambertian, the solution for surface tilt turns out to be fairly robust. The slant equation,
however, depends critically on equal surface curvatures and on exact knowledge of the
surface tilt. We must look further to find an estimator of surface slant that will be generally
serviceable.

When a patch of surface is slanted away from the viewer, projection foreshortening
occurs along the direction in which the surface tilts, causing an apparent increase in the
surface curvature along that direction. This results in an increase in image curvature, i.e.,
the second derivative of the image intensities. Thus, for umbilical points (where the surface
curvature is constant), the direction in which the second derivative of image intensity is
greatest turns out to be the tilt of the surface. The slant of the surface can be measured
by the amount of increase in image curvature.

The fact that increasing the surface slant results (all else being constant) in increased
image curvature suggests that a measure of image curvature might be a good estimator of

4 These distributions were determined by means of a Monte Carlo simulation.
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slant. Image curvature, however, also depends on surface albedo, strength of illumination,
surface curvature, and other factors. Still, if we investigate a homogeneous, uniformly lit
region of a natural image we find that there is a good correlation between the values of a
measure of image curvature such as the Laplacian (V2]) and the surface slant. If the surface
albedo or the illumination changes, however, there will be large changes in the Laplacian
that have nothing to do with the surface slant — because the Laplacian values are directly
dependent upon the surface albedo p and the illuminantion strength X.

If we divide the Laplacian values by the image intensity values, we can remove the
dependence on p and A, thus eliminating two of the most important confounding factors
(see Equations (2) and (3)). The division of V2/ by I also introduces a factor that is
dependent upon the illuminant direction; however, this dependency does not seem to affect
performance seriously — especially in natural imagery where there is a large amount of
diffuse and reflected light. Thus, the division of V2] by [ yields a measure that depends
primarily upon the surface curvature and surface slant. Thus, we are led to the following
estimator of surface slant, which is analyzed in the appendix.

Proposition 6. Given the image of an umbilical point on a Lambertian
surface and R, the radius of surface curvature, the following is an estimate of
zny the z component of the surface normal, equal to the arccosine of the surface

slant:
V2 -%
Ak —R-2)

—~ D=1

This estimate of surface slant turns out to be much more robust than the umbilical-
point solution for surface slant, degrading slowly as the surface curvatures become progres-
sively more unequal or as the reflectance function becomes non-Lambertian.

Estimation of R. To use this estimator, the constant  must be determined. A good
estimate of the mean R within an image region can be made by applying the constraint that
the resulting zp must satisfly the inequality 0 > zpy 2 —1 - i.e., visible surfaces must be
facing the viewer. We can determine a likely value for R by using this constraint and the
equation for zx in light of the range of values of V27/I within a region.

We can then assume that the estimated value of R holds throughout the region, and
thus obtain an estimate of intraregional slant. If the variance of R is small we will obtain a
good estimate of surface orientation. It can happen, however, that the value of R will vary
considerably from point to point — unless we can place bounds on the range of R so that
its variance is reduced to an acceptable level.

Using the values of d27 to identify planar and near-planar regions (as discussed in the
previously), we can place a bound on the minimum value of B. We can also place a bound
on the Jargest value of R by blurring image of the region in which slant is to be estimated!®
Such blurring also has the effect of removing highlights, specularities, marks, textures, and
the like, thus making the imaged surface more homogeneous and Lambertian. By bounding
15Noting that F @ G = pAMN - L) ® G = pA(N & G} - L) = p:(N - L) where G is a two-dimensional
Gaussian and (& designates convolution, we see that a smoothed version of I may be considered the image

of a surface with normal N = N@QG = (N; ® G, N, ® G, N; ® G), i.e., a smoothed version of the original
surface.
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R the variance can apparently be reduced to acceptable levels!® , so that one may expect
to obtain a useful estimate of surface shape within a homogeneous area.

Estimating tilt from the slant estimates. The umbilical-point solution for the surface
tilt is the direction in which d?I attains its maximum. To calculate the maximum, therefore,
we require either the values of d21 along many different orientations, or quite accurate values
of'? I, I,y and I,,. This is a fair number of image convolutions; besides, biological visual
systems seem to manage with only V2I-like convolutions. It is, therefore, worth inquiring
whether there exists a method of determining 421 along a particular direction from the
values of V21,

Let us examine the convolution filters required to calculate d21 and V21, the differential
quantities used to define the tilt and slant estimates, respectively. We can calculate the
second derivative d27 in the z direction by convolving the image with d2G(z, y,0)/dz?, where
G(z,y,0) is a two-dimensional Gaussian in the variables (z,y) with variance o. Similarly,
we can calculate the Laplacian V2] by convolving V2G(z,y, &) with the image'® These two
filters are closely related: if we sum d°G(z,y,0)/dz? and its 90° rotation, d*G(z,y, ¢)/dy?,
we obtain V2G(z,y,0). We can obtain an approximation to the second-derivative filter
d2G(z,y,7)/dx® by using a weighted sum of several Laplacians along a straight line in the
perpendicular y direction, e.g.,

d*G(z,y,0)/da” ~ ) G(e,0)V>Glzo, 30 + ¢,0)
€

where G(e,0) is a one-dimensional Gaussian, and G(zg,yp,o) designates a Gaussian
centered about the point (2o, ). In this manner we can obtain a close approximation to
d%G(z,y,0)/dz? from VZG(z,y) filters (see [15], [16]). Applying this result we see that if we
were to sum the quantity VZI/I (the input data for the slant estimator) along a straight line,
we would obtain an approximation to d2f/I. This approximation allows us to compute the
dircction of maximum 427 from the slant estimation data without additional convolutions:
we nced only find the orientation along which the sum of V2I/J is a maximum.

In practice this approximation to d2I results in slightly better performance than using
the filter that corresponds exactly to d2J. The difference arises primarily in low-slant regions
where the slant estimator (and thus its gradient and this approximation) is more stable than
the straightforward tilt estimator.

Evaluation of the surface orientation estimate with an analytic model. To
asecrtain how well the slant and tilt estimators might be expected to perform under ideal

1% although we can reduce the variance of R, we cannot remove systematic bias. Thus, for example, if
our viewpoint and the surface shape such that the surlace curvature varies inversely with the surface slant
{e.g., a parabolic solid viewed point-on), we will obtain a poor estimate of slant. It is worth noting that
people also perform poorly under such conditions. Luckily, such arrangements are unusual in natural scenes
because surface slant depends on viewpoint, unlike surface curvature; thus, the two are rarely inversely
related.

17Possession of these three values allows analytic solution for the direction of maximum d2[; the solution
is shown in the appendix.

18These convolutions may be regarded as calculating the exact values for a blurred version of the image;
or, as mentioned earlier, the blurred image may be regarded as an exact image of a smmoothed version of
the original scene.
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conditions, a computer program was written that used the analytic formulas to calculate
the derivatives for images of a wide range of ellipsoidal solids. A Lambertian reflectance
function was assumed and a wide range of ilumination directions used. Three sets of solid
shapes were utilized. The first set consisted only of spheres, so as to test the validity of the
program. The second set consisted of ellipsoidal solids with a ratio of principal curvatures
which ranged from 2:1 through 1:1 to 1:2. The third set consisted of ellipsoidal solids with
a ratio of principal curvatures which ranged from 10:1 through 1:1 to 1:10. Thus, the third
set of solids encompassed shapes ranging from almost completely cylindrical to spherical.
Points were then sampled evenly from across the entire imaged surface and error statistics

computed.
A summary of results for the tilt estimator over the three sets of solids, k) = «»
{a sphere), £, /x2 = 2:1 (shapes between elongated eggs and spheres, i.e., common non-

cylindrical shapes) and «,/xs = 10:1 (shapes between cylinders and spheres, i.c., virtually
all ratios of curvatures) is shown in Table 1. The direction of surface tilt was computed by
using the approximation to the direction of maximum d®I discussed in the appendix. All
error figures are given in radians.

Table 1. Tilt estimator over all surface slants

r Ratio Of Curvatures Error: Bias, Variance Correlation
K — kg | 0.00, 0.052 0.891
K.]/RQ = 2:1 0.00, 0.097 0.786
£y fkg = 10:1 0.00, 0.114 0.742

Although the tilt estimator of Proposition 3 performs perfectly on spheres, the ap-
proximation used here shows some small errors. This loss of accuracy is offset by the greater
stability that the approximation exhibits in low-slant regions. This table shows that as
the range of curvatures increases the performance of the estimator degrades considerably.
However, it is only in high-slant regions that errors in the tilt cause serious miscalculations in
determining the surface shape; therefore, if the tilt estimator performs well in these regions
the resulting shape estimate will still be accurate. Table 2 summarzes the tilt estimator’s
performance in the critical high-slant regions.

Table 2. Tilt estimator over surface slants greater than 30°

Ratio Of Curvatures Error: Bias, Variance Correlation
K1 = Ko 0.00, 0.020 0.950
kifre = 2:1 0.00, 0.066 0.835
kyfke = 10:1 0.00, 0.070 0.816

Table 2 describes the performance of the tilt estimator when the surface slant is greater
than 30°. It can be seen that the tilt estimates remain quite reasonable for both the 2:1
and the 10:1 range of curvatures. Thus, the tilt estimator makes most of its errors in
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low-slant regions, where such errors are relatively unimportant. Furthermore, if the slant
estimator provides consistent estimates, we should be able to use it to distinguish between
more reliable and less reliable tilt estimates.

Table 3. The slant estimator

Ratio Of Curvatures Error: Bias, Variance Correlation
K] = K2 0.201, 0.012 0.924
Kifre =21 0.182, 0.034 0.843
Ky [k = 10:1 0.137, 0.101 0.674

Table 3 shows that the slant estimator, although biased, performs quite well on spheres.
As the range of curvatures increases, the performance of the estimator degrades — but, even
for the 10:1 range of curvatures, it is still good. For all these cases one estimate of R was
used; therefore, in all except the case of spheres the cstimated R is actually in error —
in some instances by a factor of 10. This seems to indicate that the slant estimator is
remarkably robust.

Table 4. The unbiased slant estimator

Ratic Of Curvatures Error: Bias, Variance Correlation
Ky = i 0.00, 0.004 0.967
Kyfre = 2:1 0.00, 0008 0.948
Ky /K2 = 10:1 0.00, 0.028 0.796

The bias of the slant estimator that appears in Table 3 also shows up in the equations
discussed in the appendix; where it is also explained how the bias may be removed. When
the slant estimator i1s made unbiased, its accuracy becomes even better, as shown in Table
4. It turns out that the performance of the slant estimator is approximately as good for
regions of low slant as for those of higher slant. Therefore, the slant estimate produced by
this estimator is useful in assessing the tilt estimator’s reliability.

Evaluation on natural images. The surface orientation estimator (the “shape algo-
rithm”) has been tested on several natural images, and four such examples will be presented
here. The shape algorithm produces estimates of the surface orientation; it was found,
however, that displays of the estimated surface orientation do not allow an observer to
evaluate the performance of the algorithm adequately. Therefore, for purposes of exhibit-
ing the performance of the algorithm, the shape algorithm’s estimates of surface orientation
were integrated to produce a relief map of the surface. As these relief maps were found to
give observers an adequate impression of the estimated surface shape, they constitute the
output shown for the examples presented in this paper even though integration is not part
of the shape algorithm per se.

Figure 7 (a) shows the image of a log, together with the relief map generated from
the shape algorithm’s estimates of surface orientation. Figure 7 (b) shows the image of a
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Figure 7. Evaluation on two natural Images. (3a) An image of a log and the reliel map generated

by the shape algerithm for that image. (b) An image of a rock and the relief map generated by the shape
algorithm for that image.

rock, together with the relief map generated from the shape algorithm's estimates of surface
orientation. The relief maps in Figure 7 (a) and 7 (b) correspond closely to the actual shapes
of these two objects. The reader should compare his impression of shape from the images
with the relief maps of Figure 7 (a) and 7 (b).

Figure 8 shows (a) the digitized picture of a small portion of a face (belonging to a
woman named Lisa), and (b) a reliel map of the surface slant estimated for that image (eye
and eyebrow regions were masked out by hand). No relief map of the estimated surface
shape is shown because the complexity of the shape made it difficult to integrate the slant
and tilt esttmates. In this slant-map representation regions with higher relief face toward
the viewer, while lower relief regions face away from him. Note that many important details
of the surface shape are apparent in this representation; for instance, the structure of the
nose, the cheeks and the eyebrow ridges is plainly visible.

Figure 9 shows (a) the digitized image of Tuckerman's ravine (a skiing region on Mt.
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Figure 8. The Lisa Image. (a) The digitized image of Lisa and (b) a relief map showing the estimated
surface slant in this image. High-relief areas in this representation correspond to regions facing the viewer,
low-relief regions to regions slanting away from the viewer. Eye regions and eyebrow regions were masked
out by hand. The integration of estimated slant and estimated tilt to show surface shape proved difficult
because of the complexity of the surface. Nole that many important details of the surface shape are apparent
in this representation; for instance, the structure of the nose, cheeks and eyebrow ridges is plainly visible.

Washington, in New Hampshire), (b) a relief map showing a side view of the estimated
surface shape, obtained by integrating the slant and tilt estimates. This relief map may
be compared directly with a topographic map of the area; when we compare the estimated
and actual shape, we find that the roll-off at the top of Figure 9 (b) and the steepness of
the estimated surface are correct for this surface!® ; this area of the ravine has a slope that
averages 60°.

The comparison with a topographic map also shows that the relief of the lower right-
hand portion of the image is somewhat underestimated. When people are asked to look at
this image, however, it becomes clear that they also fail to perceive the shape of the ravine

19 And people ski down this inclinel
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Figure 9. Tuckerman’s Ravine. (2) The digitized image of Tuckerman’s ravine and (b) a relief map
showing a side view of the surface estimated for this image. Comparing a topographic map of the area with
the estimated surface shape, we find that the roll-off at the top of (b) and the steepness of the estimated
surface are correct for this surface. However, the relief of the lower right-hand portion of the image is
somewhat underestimated. The underestimation of relief is similar to human perception of this image.

correctly: they also underestimate the relief of the lower right portion of this image?° .

Evaluation On An Electron Microscope image. In addition to natural images,
the electron microscope {EM) image shown in Figure 10 {a) was selected from the book
Magni fications by D. Scharf [6]. People can use the shading information in EM images
to perceive shape, as Figure 10 (a) confirms. This is surprising because these images have
a reflectance function not found in natural scenes. This image, therefore, provides a criti-
cal test of the similarity between the human use of shading and this estimator of surface
orientation.

Ikeuchi and Horn [3] measured the reflectance function for this image and found that
the image intensities may be reasonably well described by

I=KN-V)!

where k is approximately 0.8. If we carry out the required computations, we see that the
tilt is still the direction along which d?[ is greatest, and that the z-component of the surface
normal is approximately proportional to V2I/I, as in normal images. We can thus expect to

20However, when people are able to view the original higher-resolution image or the entire image they
perceive the surface correctly.
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Figure 10. An eleciron mieroseope Image. Part(a) is an electron microscope image of resin nodules

on 3 flower of cannabis sativa, and the portion of the image for which shape was estimated. Part {b) shows
a relief map showing a side view of the surface estimated for this image. The fact that both people and
this algorithm can correctly use the shading information in electron microscope images may have important
implications for understanding human vision.

obtain a reasonable shape estimate for EM images by using the same estimation technique
developed for normal images.

Figure 10 (b) the portion of 10 (a) for which shape was estimated. Figure 10 (c) is a
relief map showing a side view of the estimated surface shape, again obtained by integrating
the slant and tilt estimates for this image. It can be seen that the estimated surface shape
is quite accurate.

IV. Discussion

The preceding portions of this paper have shown that it is possible to obtain useful
estimates of scene properties from natural images by using a local analysis of image shading.
The analysis does not assume that any scene information is known beforehand; no knowledge
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of scene characteristics or boundary conditions is used. Thus, the techniques are applicable
to “raw” images. Because no a priors information is assumcd, however, the recovery of
information about the scene is necessarily imprecise.

One major problem which is inherent in obtaining shape from shading under general
viewing conditions is that the measured image intensities are not equal to the image ir-
radiance. Film, video camera, and other image transcription methods produce image inten-
sity measurements which are (generally) non-linear transformations of the image irradiance.
It is, therefore, surprising to note that humans have no problem in utilizing the shading in
sueh transformed images cven though the relationship between the transformed image and
the original image irradiance is unknown. Thus, any shape-from-shading technique which
will be as generally useful as the human capaeity must function despite such transformations
of the data.

The shape-from-shading techniques described in this paper are relatively unaffected
by smooth, monotonic transformations of the image data — in marked contrast to previous
methods of inferring shape from shading. This robustness is achived by dividing the
Laplacian of the image intensities by the intensities themselves, thus removing the primary
effects of any multiplicative terms in the image irradiance equation., The division also
removes the effects of any linear scaling of the image intensity. Thus, division of the
Laplacian by the intensity compensates for any transformation of the image irradiance which
is locally approximately linear.

What is the use of a reasonably accurate, but certainly not infallible, local estimate
of scene properties? Several potential applications spring to mind: to provide an initial
“guess” for a more global shading analysis [20], to constrain stereo matching by providing
a qualitative estimate of shape, or to help in the estimation of albedo. One other use that I
have begun examining is classification of the type of imaged contours. This serves as a good
demonstration of the potential usefulness of a reasonably accurate local estimate of surface
orientation.

Once we are given the location of a contour we should be able to use our local estimate
of surface orientation to acertain whether a contour is a smooth occluding contour (i.e.,
a contour formed by the surface curving smoothly out of sight, such as is found at the
edge of an image of a sphere) by checking whether our estimates of surface orientation are
appropriate for that contour. If the surface adjoining one side of a contour has a large slant
and a tilt perpendicular to the contour, then it is likely a smooth occluding contour. On
the other hand, if the estimated slant is small, or if the tilt is not perpendicular, then it is
quite probably not a smooth occluding contour.

Figure 11 shows the results of applying this typing strategy to the contours extracted
from two natural images. Part (a) of this figure shows the Moore sculpture image, and
part (d) the Tuckerman’s ravine image. Parts (b) and (e) depict the discontinuity contours
found in these images. Parts (c) and (f) of this figure show the contours that were adjoined
by regions whose estimated surface orientation was consistent with the contours’ being a
smooth occluding contour. When we compare the contours identified as smoothly occluding
with the original images, we find that this criterion is quite apt in identifying the smooth
occluding contours in these images.

Biological Vision Systems. The shape-from-local-shading theory presented in this paper
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Figure 11. Results of typing the contours extracted from two natural images. Part (a)

of this figure shows the Moore sculpture image, and part (d) shows the Tuckerman’s ravine image. Parts
{b) and (e} show the discontinuity contours found in these images. Parts (¢) and ([) show the contours
which were adjoined by regions whose estimated surface orientation was consistent with the contour being
a smooth occluding contour. When we compare these contours to the original images, we find that this
criterion does quite well at identilying the smooth oceluding contours in these images.

seems to have considerable utility as a model of one aspect of the functioning of biological
visual systems. It is known from studies of neurophysiology [8], [9] and human psychophysics
[10], [11] that the retinal receptive fields in mammals have a center-surround organization
that is well modeled by the filter V2G(z,y,0). In addition, the responses of these retinal
neurons are logarithmically scaled by the intensity, so that their response r to an image
point I{zg, y¢) can reasonably be modeled by the following convolution and division:

: 26(1: Y, Cl) ® j['r':(l: yO)
r =
1(101 yD)

The quantity r is the measurement needed by the slant estimator. Thus, it seems that the
information required to estimate slant is present in the output of the mammalian retina.
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It is also well established [12], [13], [14] that many (perhaps most) cortical neurons in
the primary visual cortex have oriented receptive ficlds whose responses characteristics are
closely modeled by the filter d°G(z,y,0)/dz®. Moreover, there is very strong evidence [15],
[16] that these cortical neurons are constructed by summing the center-surround receptive
fields described by Equation (5), just as was done here. Thus, not enly does it seem that
the image data required by the tilt estimator is present in the mammalian primary visual
cortex, but the information is apparently derived from the image by means of the same
steps that have been employed here.

Acknowledgments. I would like to thank my fellow graduate students, including Dr.
Andy Witkin, Donald Hoflman, Joseph Scheuhammer and Dr. Eric Grimsen, who helped
in the refinement and development of this work.
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V. Appendix

In this section the previous five propositions will be proved. The strategy of proof
will be to start with the six values for I, I, I, I, Iy, and I, and then solve for surface
orientation, curvature, illuminant direction and albedo times illuminant intensity under the
assumption that the point is an umbilical point on a Lambertian surface. This solution will,
at the same time, prove Propositions 1, 2, and 4. Some additional calculations using the
results of this solution will then prove Propositions 3, 5 and 6.

A. Solution For Umbilical Points

Consider the surface of a sphere of radius E:

Z(z,y)= VR — 2% - y?

This equation, with R > 0O R > 2 2> —R and R > y 2 —R, describes the set of all
umbilical points. From this equation we see that Z, = —z7~!/2 and Z, = —yT~2 where
T = R? — 22 — y°. Assume that the illuminant is unknown, so that we must consider all
illumination directions L = ({;,{2,!3). Then, if the surface is Lambertian, we have

PMZz, 2y, —1) - (h,l2,13) _ P

VZi+Z2+1 E

where p is the surface albedo and X is the illuminant intensity at the surface. The first and

I{z,y) = pAN L = (—zly — ylo — 3T'/?) (1)

second derivatives are then

I, = %(—1, + 2l T~1/?) (2)
A -
I, = B2 (=l + ylsT™2) (3)
Loz = %(13:"—'/2 + 22, T73/2) {4)
A
Ly = (T2 4+ P72 (%)
A
Ly = T eyl T™*/?) (©)

Assume that the values of I, I, I, I, Iy, and I,y are known; we may now solve for
surface orientation, curvature, iluminant direction and alhedo times illuminant intensity.
Solution

Using Equation (6) to solve for %— we obtain
A _ LT @)
R zyls
Using Equations (7) and {4) we obtain
3/2 T 2
(=112 4 2y 32PN —vy2 , oy p-aeyiz T Tz
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and using Equation (7) with Equation (5) we obtain

L,T*? T +y?

A
. — —1/2 4 G20 P32\ 0N __  p-1/2 2y p-3/2
yy = (3T +y°ia )R (I3 + y“ T ) zyla - Mzy  (9)
Using Equations (8) and (9) we sce that
zyl,. o zyly, o
T=——-z"=—"—"—y 10
Ly L, Y (10}
Using Equations (9) and (10) we see that
T+ y°
Iyy = ( Mzy
zylas _ o2 4 2
o Ly Tty . (11)
zy i

T ¥
=f . ——I. + =1
zI yzy zzy

Letting k = ; we see that Equation (11) is a quadratic in &, which we can solve to obtain

'_(Izz - Iyy) + \/(Iz:: - :IJ':.F)2 + 4[3‘,

k=
o (12)

From this we may obtain the surface tilt r = tan™! k Thus the tilt of the sphere’s surface
may be determined without knowledge of the illuminant direction, the illuminant strength,
the surface albedo or the surface curvature. To prove Proposition 3, which stated that the
tilt of the surface is in the direction of maximum d2/, it remains only to show that this
solution for the surface tilt is the direction of maximum d%J. The remainder of the proof
will be presented in the following subsection.

Is this solution unique? Equation (12) yiclds two possible solutions:

=2 =%

x) T2

Note that we may also solve Equation (12) for £~*; this yields

~(Loz — Iyy) £ \/(I,, — Iy, )2 + 412,

k—l
—21,,

(13)

Equation (13) also gives two solutions, k3 and &y,

ks =k =2 p=pt =2
in L
As the left-hand side of Equation (12) is the negative of the left-hand side of Equation (13)
we find that either k3 = —k7 ", which leads to a contradiction, or k3 = ~k3'. Thus
R
1 2
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This proves that the two solutions of Equation (12) are perpendicular. We shall see later that
this allows us to discard one of the solutions, because it results in an illuminant direction
that is behind the observed object.

Once the tilt r is known, the only remaining component of surface orientation is &,
the slant of the surface, which is equal to the arccosine of the z component of the surface
normal, zp. Noting that

-1 —R2 —z2 — 42

N = =
VEE+ZE+1 R

we find that we can use Equation (10) to determine the surface slant. We may average the
two expressions for T in Equation (10) to obtain

2 _ #y(lzz + Iyy) (22 +y%)  2yVPT (2% +F) (14)
2Ly 2 2y 2

T=R*-2"~y

If we add z? + y® to both sides of Equation (14) we then obtain

_ Vi + (2% +¢?)

R2
2I:y 2

(15)

Thus, from Equations (14) and (15):

e R2 — 22 — g2
zhl’ At R2
zyV3i (2 +¢%)
i

= ng:I + (z“-;-y’)
_ ayVEI— (2% + y?)loy
CayV2RI 4 (22 + v,
_ kVEI— (k2 + 1)1y

VI + (k2 + 1)1,

(16)

From 2%, we can obtain the surface slant ¢ = cos™!/z% This concludes the proof of
Proposition 4. Note that there is only one solution for the surface slant, as 0 > zp > —1.
With both the slant and tilt determined, we now know the surface orientation. Once again,
this has been accomplished without prior knowledge of illuminant direction, illuminant
strength, surface curvature, or surface albedo.

We may now proceed to solve for the remaining unknowns. Because we know the
surface orientation, we can compute x = z/R and v = y/R.

X = costsing ~4 =sinrsine

The quantities ¥ and ~ may be thought of as the z and y coordinates normalized to the
unit sphere. Using x and <, we may define I, a unit sphere analogue to T

T
F=1—x2—»r2=ﬁ
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Going back to Equation {7) we now konow all of the terms on the left-hand side except {3,

thus, let us write
PNy _ L,T*? _ L,T*?R

R 2y XY
and so 32 2
oAy = PR (17)
X
We may then subsitute this equation into Equations (2) and (3) to give
2
oMy = By p (18)
nd I,TR?
o= _ R (19)

If we now convert Equation (1) to the variables x, v and I, we may substitute Equations
(17), (18) and (19) into (1) to obtain a quadratic in R:

I= %"(-z:. —yly — T1/24)
= pM—xhh —la — Fl/213)

I,TR® I,,TR? LyT2R? (20)
= —x(—— —-LR)—y(——— - L,R)— ——
x{ ~ 2 R) { X yR) X
I.yTR?
= (xI: + yI;))R — =
(X z y) X
We may solve this for R to obtain
4l I, TR?
X'T((XIz +11y) £ \/(XIz +11y)? - P )
R= 21
21, TR? (21)

Because L is a unit vector, we may now use Equations (17), {18) and (19) to determine (pX)2:

(07)? = (pM1) + (pNa)® + (pNa)°

_ (IzyT‘R" s 3)2 N (I:,,I“R" . 3)2 . (IzyF3f2R2)2 (22)
— . g L L
X

a X

As p\ > 0, we may discard the negative root of /ph, so that p) is uniquely determined.
Using this value of pA, we may now substitute into Equations (17), (18) and (19) to obtain
[1, [2 and 13.

Note that the signs of Iy, o and {3 depend on the signs of x and 4. Thus, in solving
Equation (12) one of the two solutions will make x~ negative making I3 negative — which
corresponds to an illuminant behind the observed surface. Therefore, only one of the two
solutions of (12) is physically possible.
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Because Equation (12) gives only the solution for y/z, there are two possible pairs
(z1,y1), (z2,y2) such that & = yyf/z;y = yafz2. These two solutions are each other's
negative, i.e., ; = —za, §y; = —Yo; consequently, the surface tilts for these two solutions
are 180° apart so that one corresponds to a convex surface, the other to a concave surface.
Because it is the signs of x and 4 that determine the signs of {; and I3, choosing one of the
(z,y) pairs results in an illuminant direction that is overhead (i.e., L -(0,1,0) > 0), while
picking the other results in an illuminant direction that is below the viewing line. Thus, if
we specify an illuminant direction which must be overhead and in front of the illuminated
object, there is only one possible solution to Equation (12). The symmetry between the
signs of z, y and {;, {3 is commonly familiar as the crater illusion, in which the convexity of
the surface changes as the perceived illuminant direction shifts from overhead to below the
viewing line.

We have now solved for each of the unknown quantities, and, by so doing have shown
that to each set of measurements I, I, Iy, I;;, I, and I, there corresponds exactly one
combination of surface orientation, curvature, (overhead) illuminant direction, and factor
pX for a Lambertian umbilical point. This concludes the proofs of Propositions 1 and 2.

B. Proposition 3
In the preceding subsection it was shown that
r=tan tk=tan" 'Y
z

where

( zz — yy)ﬂ: \/(Izz —_ Iyy)2 + 413y

k= ol,,

(12)

It remains to show that this solution is equivalent to the proposition that the tilt is the
image direction in which d27 is greatest.

We know that, given I:», Iyy and I, we may obtain these quantitites in any other
image plane coordinate system (z”,y") that is a rotation of (z,y} by the angle £. First we
note that

dz dy _, dz dy

I-—I—+I . S
dz*  dz y dy*  Tdy

The standard rotation transformation is
z = Teg + y8e
y' = “386 + yCE

where s¢ and cg are the sine and cosine of the angle €. The inverse of this rotation

transformation is
1=z ee — y 8¢

. »
y=z 8¢+y ¢
Thus,
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and so .
Iz = I3C5 + Iﬁaf

I, = —Ls¢ + Iyce

Similarly,
dils) dz |, dlT,e) dy
dz 4, dy dz*
_ d(Iy')d_Z' d(Iy') dy
VY T 4z dy* dy dy'
d(I) d= | d(I,) dy
L R e + —
dz  gy* dy dy

I=.=. —

L,

resulting in

Io» = Irzcf + Iyysf + 2Ly sece

Iy = Lo 8% + Lyycg ~ 2Lpy8ece

Iz'y- = —IZZSECE + IW3€C€ + I,y(c% - 8%)
To find the direction for which d27 attains its maximum, we find the angle £ for which I - -
attains a maximum over all rotations of the image plane coordinate system. As I =,- is

equal to
Iz':' = Ix:c% + va'ﬂg + 2Izyafcﬁ

the maximum of I+ » occurs at

_ d(I:-:-

=~

= (Iyy — T2z )28¢cc + 2Izs.r("-'% - 3%)
== (Iﬂf - 123)825 + QIgyC2E

0

which was obtained by using the relations sin 26 = 2sin £ cos £ and cos 26 = cos? ¢ —sin® €.
Solving this for € we see that the angle £ for which d*I attains its maximum satisfies

oL,

tan 26 = ———
an 2£ T — Iy

Using Equations {4), (5) and (8), we see that for a sphere

ot — ey RlakTT) 2y
Ly — Iy  BM22,T-3/2 — y2U,T-3/2) 2% —y?
However, noting that for a sphere tan7 = y/z and that tan 2r = 2107 we have
tan 2r — 2tant 22.'-:y i
1—tan?r T ¥

Thus, £ = r and so Proposition 3 is proved.
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C. Proposition &

Let us assume that we have observed that d?J = d2IN-L = 0 in the dircction (dz, dy),
and that this situation continues for some distance along (dz, dy). In this situation, either
(1) d®N is perpendicular to L or (2) the magnitude of d?N is zero. It is unlikely that &*N
is perpendlicular to the illuminant over any distance; thus, if we sce that d°I = 0 it must
be the case that the magnitude of d®*N is zero. Therefore, dN is some constant vector as
we take a step along (dz, dy).

If the magnitude of dIN along (dz, dy) is zero, then at least one of the surface curvatures
is zero, i.e., the surface is cylindrical or planar. If the magnitude of dIN is not zero, then,
when we take a step in the direction (dz, dy) there is some change in surface orientation. In
this case, either the amount of forshortening that occurs with each infinitesimal step along
(dz, dy) will change or N will be constant, contrary to the assumption that dIN was not zero.
If there is change in the foreshortening and yet dIN remains constant, the surface orientation
relative to the viewer and the intrinsic surface curvature are in an exactly reciprocally
relation, which is a violation of general position.

Thus, when d°I = 0 for some distance along a direction {(dz,dy), the surface is either
cylindric or planar. If it is planar, d®J = 0 in all directions. The converse — that if we also
observe d°7 = 0 along the direction orthogonal to (dz,dy) the surface is then planar — is
also true. From the previous reasoning, d2J = 0 implies that dN is zero along that direction
(if general position is assumed). If dN is zero in two directions, the surface is planar.

D. Proposition 6

Proposition 6 suggests that the following equation is a uscful estimator of zpx, the 2
component of the surface normal, equal to the arccosine of the surface slant:

V2I —-1/2
N = —C(l—I—l - 62)

where ¢ is a constant related to the surface curvature.
We may examine this estimator in the context of the calculations presented so far.
First we use Equations (4) and (5) to find that

A
Ve =L, +1, = %(213:"-‘/2 + (22 + ), T3/2)

Thus,
V21 B (2LTYV2 + (2% + v )T ~%/2)
I £ (—zl; — ylo — LLT1/2)
If we assume that —zl; — ylo is zero (as is true on the average, although not neccessarily
true for any one image point) Equation (23) becomes

(23)

v2I
|T| =oT"! +(:B2 +y2)T"2
_ 2R2 _ 2 _ y2 (24)
o (R2 — 22 — y2)2
R*2+T
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To show how this estimator might work, let us first take ¢ = T-1/2 =
(R? — 2% — y?)~/2; we then find that, in fact,

vz _ L fRE+T 1\V?
_C(l i I_C2) l/2=_T 1/2(—____)

The problem with actually using this choice of ¢ is that it requires prior knowledge of
the surface slant. We must find a constant for our choice of ¢. If we take ¢ = 1/R, then we
find that

(25)

where
(26)

Because ¢ is a term in zy' the estimated surface slant will be larger than the actual one,
introducing a bias into our estimate. This bias can be removed, however, as follows. Let
8= c(|y-;—’| — ¢2)~1/2 be the estimated surface slant. Then, comhining Equations (25) and
(26), we have

2 T

8 =
R? — R2(:}, - 277)

Then T
82 (1 — 2% + 237) = = 2

so that we obtain a quadratic in 2%
(L+ 6%)zp — 822% — 82 =0 (27)

Equation (27) can then be solved to obtain an unbiased estimate of zp

, \/32+\/482+534
N = —

2 4 252

(There is only one solution as 0 > 2z 2> —1.) This concludes the proof of Proposition 5.

This estimate of zp, while unbiased, is not exact because it was necessary to assume
that —zf; — ylo = 0. If we examine the conditions under which this factor causes significant
error, we see that there will be large errors only when all of the following conditions occur
simultaneously:

(1) The surface slant is relatively large

(2) The z-component of the illuminant direction, I3, is small

(3) The surface faces closely toward or away from the illuminant.

36



PENTLAND LOCAL SHADING ANALYSIS

Imege
Intensity
Profile

Est imated

2 Value

Profile

Actual

2 Value

Profile -—

L= 19.0, 9.0, 1.8) L=(8.3, 6.9, 8.95)  L=(8.6, 0.9, 0.8) L=(0.9, 0.8, 9.44)

Figure 12. Blas due to illumlnant directlon. This figure shows the image intensity profile, the
profile of the true surface shape (a sphere) and the profile of the reconstructed surface for four illumination
conditions. In each case the profile is taken along the image line which goes through the center of the sphere
and directly toward the illuminant. This is the direction along which the estimation errors are largest. The
distributions of illumination are extended sources, such as would occur if the imaged sphere were placed on
a desktop which was near a window. The leftmost distribution shown is centered directly behind the viewer
at (0.0,0.0,1.0}, the next (proceeding left to right) is centered at (0.3,0.0,0.954), the next at (0.6,0.0,0.8),
and the rightmost at (0.9,0.0,0.436).

Figure 12 shows the bias due to illuminant direction which occurs during the estimation
of surface orientation for the image of a sphere. This figure shows the image intensity
profile, the profile of the true surface shape (a sphere) and the profile of the reconstructed
surface for four illumination conditions. In each case the profile is taken along the image
line which goes through the center of the sphere and directly toward the illuminant. This
is the direction along which the estimation errors are largest.

The distributions of illumination are extended sources, such as would occur if the
imaged sphere were placed on a desktop which was near a window. The leftmost distribution
shown is centered directly behind the viewer at (0.0,0.0,1.0), the next (proceeding left
to right) is centered at (0.3,0.0,0.954), the next at (0.8,0.0,0.8), and the rightmost at
(0.9,0.0,0.438). Note that the rightmost distribution of illumination results in an almost
linear gradient across the image. Thus, these examples approximately span the range of
illumination directions found in natural scenes.

Comparing the true surface shape, shown across the bottom of Figure 12, to the
reconstructed surface shape?! shown across the middle of Figure 12, we see that the bias
due to illuminant direction does not cause large errors

21 A5 obtained by integrating the estimated surface orientation.
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