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COMPLEXITY AND AUTOMATION DISPLAYS OF AIR TRAFFIC CONTROL:
LITERATURE REVIEW AND ANALYSIS

INTRODUCTION

Traditionally, air traffic controllers use a radar screen 
and flight progress strips as separate representations of 
aircraft. The radar screen shows the spatial position, al-
titude, and progress of aircraft, while the strips contain 
discrete information about the origin, destination, route, 
aircraft type, and requested altitude of aircraft. In the 
course of their work, air traffic controllers cognitively in-
tegrate these two representations and then make decisions 
accordingly (Moertl, Canning, Gronlund, Dougherty, 
& Johansson, 2002). Occasionally such tasks have the 
potential to create an overload condition as the complex-
ity of air traffic increases. To help controllers manage the 
increasing volume of air traffic, many automation tools 
have been provided, such as the User Request Evaluation 
Tool, Center-Tracon Automation System. 

Air traffic control (ATC) is a dynamic environment 
where controllers constantly receive a large volume of 
information from multiple sources to monitor the changes 
in the environment, make decisions, and perform effective 
actions in a timely manner. While ATC automation tools 
are designed with the objectives of increasing capacity and 
reducing workload, controllers need to combine informa-
tion from automation displays with information from the 
radar screen to plan their activities. Those activities must 
be synchronized with rapid information evolution. With 
automation tools, new tasks of interface management 
and consultation are added to traditional control tasks. 
Moreover, the use of new tools requires that controllers 
integrate the interaction demands of the new system into 
the management of their cognitive resources (Bressolle, 
Benhacene, Boudes, & Parise, 2000). Not surprising then, 
the introduction of new systems can introduce additional 
complexity to ATC task management. What’s more, if 
information provided by the tools overwhelms controllers’ 
cognitive capacities, critical information could be either 
missed or misinterpreted and put performance at risk. 

The importance of understanding the complexity of 
ATC tasks has been widely acknowledged. While many 
studies have been conducted to assess the complexity 
of air traffic control (Mogford, Guttman, Morrow, & 
Kopardekar, 1995; Guttmann 1995; Laudeman, Shel-
den, Branstrom, & Brasil, 1998), little effort has been 
devoted to assessing the complexity of ATC automation 
displays. Given the fact that many new automation tools 
are being developed and are projected to be fielded over 

the next several years, it is necessary to develop methods 
to assess the complexity of the tools. In this report, we 
will review the studies on complexity and analyze their 
application to ATC displays. The ultimate objective of 
the report is to identify methods from the literature that 
are applicable to ATC displays. To accomplish this, we 
organized the report into two main sections: first, we 
will review the literature about complexity measures and 
analyze the potential to apply these methods to assess 
the complexity of ATC displays; second, we will discuss 
several issues in the evaluation of ATC tools.

DEFINITIONS AND MEASURES OF 
COMPLEXITY

In this section we will review some definitions of com-
plexity and methods for measuring it. Note however, that 
the review is not exhaustive. Rather we intend to review 
only the approaches that are generically relevant to the 
concept of complexity and visual displays. One excep-
tion is air traffic complexity. We will introduce air traffic 
complexity because it is relevant to air traffic control and 
has been studied with respect to controller workload. 
This section is organized into four parts: We first discuss 
some concepts and definitions of complexity to provide a 
basic understanding about what complexity is. We then 
introduce the two major threads of the issue: informa-
tion complexity and cognitive complexity followed by 
a presentation of complexity measures related to visual 
displays. Finally, we will summarize the definitions and 
measures. 

General definitions of complexity
Although the term “complexity” has proven to be 

difficult to define, many attempts exist in the literature. 
The difficulty exists because complexity depends on 
which aspect you are concerned with. Moreover, com-
plexity only makes sense when considered relative to a 
given observer (Edmonds, 1999). With this in mind, 
the objective of this report is to evaluate the complexity 
of ATC displays composed mainly of graphical symbols 
and text. It is with these displays that air traffic control-
lers acquire information to help them make predictions 
about future situations and identify actions that should 
be taken. With regard to complexity, however, we are not 
simply concerned with the complexity of the interface 
itself. Rather, we are interested in the complexity that the 
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interface imposes on controllers. Thus, the complexity 
of an ATC display makes sense only when it is specified 
relative to controllers. 

In perhaps a very straightforward way, complexity has 
been associated with concepts such as numeric size of 
basic elements, variety, and internal structure. However, 
while to some extent a larger numeric size corresponds 
to a higher degree of complexity, size, nevertheless, is a 
weak definition of complexity. Edmonds (1999) pointed 
out that, by using size for complexity, the parts of the 
system are neither inter-related nor interconnected. 
One example demonstrating that size cannot quantify 
complexity would be counting peas in a basket. While 
it takes more time to count peas in a full basket than a 
half basket, the complexity of the task remains the same. 
That is, the task of “counting peas” is the same in both 
situations.

Variety has also been used to describe complexity. In 
fact, the concept of variety or disorder has been widely 
used in various applications as the measure of complexity. 
Yet variety alone, like numeric size, is not sufficient to 
describe complexity. Several studies in different areas have 
made the same comment that complexity lies somewhere 
between order and disorder (Drozdz, Kwapien, Speth, 
& Wojcik, 2002). One example would be Grassberger’s 
study of image complexity (Grassberger, 1991). Figure 
1 shows the three images Grassberger used. The disorder 
or variation increases from the left to the right. However, 
human eyes perceive the image in the middle as the most 
complex. The reason is that humans interpret the image 
on the right as representing a situation with no rules.

Indeed, the structural rules of a system seem to con-
tribute to its complexity. That is, individual parts of a 
system are held together through rules of internal structure. 
Rules determine the interconnections between parts of 
an object. According to the Random House dictionary, 
something that is complex is defined as being “composed 
of interconnected parts.” So images like the one on the 
right in Figure 1, although graphically complex, are not 
perceived as such by humans because there appear to be 
no structural rules. In contrast, a chess pattern may be 
viewed as quite complex because of many rules embed-
ded in it. 

Edmonds (1999) analyzed various concepts that are 
generally assumed to be associated with complexity. He 
proposed a more sophisticated definition of complexity. 
Specifically, he defined complexity as “That property of a 
language expression which makes it difficult to formulate 
its overall behavior, even when given almost complete 
information about its atomic components and their in-
ter-relations.” This is a very general definition that can 
have different interpretations in different contexts. Here 
“language” is meant in a general sense while “atomic com-

ponents” refer to irreducible signs in a chosen language 
of representation. This definition relates the difficulty 
in formalization of the whole to that of its fundamental 
parts. For air traffic control, this definition suggests that 
complexity reflects the difficulty to formulate an accurate 
representation of the situation, given many sources of 
information about aircraft, sectors, and flight rules. 

Ultimately, the concept of complexity is multi–dimen-
sional and cannot be sufficiently described with a single 
measure. Such conclusions are not unique as Burleson 
and Caplan (2002) defined complexity as the “diversity 
of forms, to emergence of coherent patterns out of ran-
domness and also to some ability of frequent switching 
among such patterns.” Likewise, Drozdz et al. (2002) 
viewed complexity as a trinity of coherence, chaos, and 
the transition between them. In this definition, coherence 
constitutes the essence as it makes patterns and structures; 
chaos is needed in a system as it allows switching one 
pattern of activity to another; the gap allows the struc-
tures to be identifiable. All three are needed in parallel 
to describe complexity. 

In a sense then, this trinity corresponds to the three 
factors of complexity we reviewed above: coherence cor-
responds to the numeric size of basic elements, chaos 
corresponds to variety, and gap corresponds to structural 
rules. As we introduce additional complexity definitions 
in the following sections, it will become apparent that 
nearly all the definitions are concerned with some or all 
of the three factors. 

Information complexity in information theories
Definitions of information complexity

Complexity has been extensively studied within the 
field of information theory, where the term “information 
complexity (IC)” is frequently used to describe complex-
ity from the perspective of a system. There have been 
many attempts to quantify IC theoretically. Below we list 
some widely used complexity measures. These measures 
do not necessarily exclude each other. Instead, they em-
phasize different aspects of complexity and are somewhat 
complementary. 

Kolmogorov complexity. According to information 
theories, the most straightforward definition of complex-
ity is the minimum description size. Hence Kolmogorov 
complexity is defined as the minimum possible length of a 
description in some language (Casti, 1979). For instance, 
if a description can be greatly compressed without loss 
of meaning, then it is considered simpler than one that 
cannot. By this definition, highly ordered expressions 
appear as simple and random while maintaining maximal 
complexity. For example, the numeric string (1 1 1 1 1) 
is less complex than the string (1 5 3 2 4) because the 
former can be easily compressed into a description “five 
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ones.” Unfortunately, this definition corresponds to the 
difficulty of compressing a representation with little di-
rect connection to the practical aspects of a functioning 
organism. Indeed, it is only concerned with the numeric 
size factor of complexity. 

Topological complexity. Crutchfield and Young 
(1989) extended the concept of Kolmogorov complex-
ity by defining complexity as the minimal size of a model 
representation of a system that can statistically reproduce 
the observed data within a specified tolerance. Consider, 
for example, two air traffic cases. In the first case, ten 
aircraft are flying on two fixed routes that have one in-
tersection. In the second case, ten aircraft are flying off 
the routes, which can create many potential conflicts. 
A controller can build a model of the first case that has 
two flows of aircraft and one crossing point, while a 
model of the second case has to be composed of many 
flows and crossings. Thus the topological complexity of 
Case A is less than Case B. This definition takes into 
account both the minimal size and the fixed hierarchy 
or structural rules of a system. One shortcoming of the 
definition is that it does not provide a unique measure of 
complexity for a system because there is not necessarily 
a “minimal” model for it (Pressing, 1999). That is, users 
may construct different models of the same system. In 
addition, neither this nor the definition above is sufficient 
to describe complexity because they only emphasize the 
storage resource that it takes to solve a class of problems. 
In reality, the resource is not always a sensible measure 
of complexity (Holm, 1993). 

Mutual information. Complexity is indicated by 
levels of mutual information that measure the correla-
tion between information at sites separated by time and 
space (Langton, 1991). This definition describes the 
computational power requirement. For example, if each 
controller only needs to handle aircraft within one’s sec-
tor regardless of traffic in the next sector, the task would 
be less complex because traffic in the next sector is not 
relevant to his or her problem space. 

Logical depth. Logical depth is defined as the com-
putational cost (time and memory) taken to calculate 
the shortest program that can reproduce a given object 
(Bennett, 1990). By this definition, complexity is the 
difficulty of computation from a random starting point 
to the resulting state. This measure is aimed at the com-
plexity of the process and not the results. That is, it is a 
combination of both storage and computational power. 
Thus, the definition is concerned with all three factors: 
numeric size, variety and structural rules. An increase 
in any of these three dimensions may result in greater 
difficulty of computation. In air traffic control, this 
measure would reflect how difficult it is for a controller 

to make projections of air traffic situations in his or her 
mind based on the current situation. 

Kauffman’s complexity. Kauffman (1993) defined 
complexity as the “number of conflicting constraints.” 
The definition represents the difficulty of specifying a 
successful task within the constraints or “rules” imposed. 
For example, an airspace can be made less complex by 
removing air traffic constraints such as military zones, 
bad weather, etc. Note, however, that the definition is 
only concerned with the complexity factor of structural 
rules.

Hieratical complexity. This definition is also con-
cerned with structural rules. A complex system is often 
constructed hierarchically. That is, it is composed of 
structures on several scales or levels. These may be scales 
of space or time, or levels within a domain-specific 
functional space. For example, an ATC display may be 
composed of several windows, consisting of different 
types of text and graphical regions, and each text region 
(such as a datablock) containing several types of infor-
mation. With this in mind, Bates and Shepard (1993) 
assumed that a system is composed of elementary units 
with local structures and the interconnections between 
the local structures are governed by rules. They sug-
gested that complexity is manifested as variability in the 
convergence and divergence of interconnections. Then 
the dimensionality of local structures, number of local 
structures, and the range of connections all contribute to 
the global complexity. Moreover, if local regions possess 
certain computational abilities, then multiple regions can 
interact to achieve greater complexity. 

Methods of computing IC
Entropy as a measure of complexity

Within information theory, entropy, denoted as H, is 
a measure of the redundancy contained in sets of infor-
mation in binary data strings (Scott, 1969). In a more 
general sense, H represents the number of independent 
dimensions that a person uses to describe something. 
(i.e., it describes the numeric size factor of complexity). 
Therefore, complexity is greater when a person views 
an object as having many aspects and must make fine 
distinctions among those aspects. H can be computed 
according to the following formula:
 H = log

2
 n - (1/n) (Σ

i
 n

i
 log

2 
n

i
) 

where n is the total number of attributes and n
i
 is the 

number of attributes that appear in a particular combina-
tion of the descriptions of self aspects. To use this formula, 
one has to model the system with three parameters: the 
number of basic elements (attributes), the number of 
groups (classes), and the attributes of each class. In addi-
tion, when a system is partitioned into several subsystems 
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or classes, the information shared among the subsystems 
also contributes to the system complexity. Cha, Chung, 
and Kwon (1993) developed an excess entropy metric to 
measure such shared information. 

Psychophysicists have used H to assess cognitive com-
plexity. For example, Linville used H to quantify the 
complexity of persons (Linville, 1985, 1987). Individuals 
with greater complexity used different words to describe 
themselves in their social roles while individuals with less 
complexity used the same words repetitiously to describe 
their social roles. 

Complexity computed with Random Matrix Theory
 An approach to complex systems is typically based 

on analyzing large multivariate ensembles of parameters. 
For this reason, one efficient way to quantify the variety 
associated with complexity is the use of matrices. Toward 
this end, Random Matrix Theory provides an appropri-
ate reference for quantifying various characteristics of 
complexity. Drozdz et al. (2002) identified some principal 
variants within the matrix that are common and typical 
to natural complex dynamic systems. Among the matrix 
variants, the correlation and eigenvalue of a matrix are 
dominant components of complexity. These variants 
reflect the degree of agreement and the deviation of a 
system, which correspond to the variety and numeric 
size factors of complexity described earlier. In particular, 
deviation can be quantified in the term of reduced di-
mensionality, which can be computed as the eigenvalue 
of the matrix. 

Cognitive complexity
Definitions of cognitive complexity

Another line of complexity studies involves cogni-
tive complexity. While complexity studies generated by 
information theory focus on the complexity of a system 
itself, studies of cognitive complexity focus on observers: 
complexity from the perspective of the observer, i.e., the 
users. Since air traffic control involves cognitive tasks such 
as monitoring the situation, resolving conflicts, issuing 
instructions, etc., it is important to understand how cog-
nitive complexity is measured to assess the complexity 
of ATC displays. 

Cognition may best be thought of a construct system 
composed of constructs and elements (Kelly 1955). The 
constructs are transparent templates that a person uses 
to comprehend the world. In a sense then, humans cre-
ate the templates and fit the perception of the world to 
them. Elements are more concrete and can be placed on 
construct dimensions. Presumably, elements that belong 
to the same construct are more closely related to each 
other than elements in different constructs. Like most 
dynamic systems, a person’s construct system is dominated 

by two processes: integration of constructs within and 
between subsystems (i.e., numeric size) and differentia-
tion (variety) among subsystems (Adams-Webber, 1996). 
Differentiation serves the specialization of subsystems, 
whereas integration serves the unity of each subsystem to 
keep the entire system as an operational whole. These two 
processes constitute the basis of cognitive complexity. It is 
obvious that a more differentiated set of constructs would 
constitute a more complex system. On the other hand, 
consistency or integration has to supplement differentia-
tion in the definition of complexity. Without consistency, 
the measures of complexity become a simple assessment 
of the randomness of the system. 

Bieri (1955) developed the first index of cognitive 
complexity. This index was aimed at measuring the nu-
meric size factor of complexity. Two measures were used: 
number of constructs and matches between the constructs. 
Matches indicate that seemingly different constructs do 
not constitute different dimensions in cognition. The in-
dex increases with the number of constructs and decreases 
with the number of matches. Bieri et al. further pointed 
out that the relationship between construct dimensions 
could be described with Eucilidian geometry (Bieri, At-
kins, Briar, Leoman, Miller, & Tripodi, 1966). 

In a similar fashion, Crokett (1965) used the con-
cept of “level of hierarchic integration of constructs” to 
define the complexity of a construct system. With this 
definition, cognitive complexity is associated with in-
creasing differentiation (containing a greater number of 
constructs), articulation (consisting of more refined and 
abstract elements), and hierarchic integration (organized 
and interconnected). Notably, this definition includes all 
three basic components of complexity described earlier: 
numeric size, variety, and rules.

Methods of measuring cognitive complexity
Kelly’s Repertory Grid technique

A popular method to reveal constructs and elements is 
Kelly’s Repertory Grid method (Kelly, 1955). The method 
can be performed in several steps. First, subjects make a 
list of elements pertinent to the topic of the interview, 
then they determine the distance between the elements 
by comparing which pair of the elements is closer than 
other pairs. The constructs pertinent to the interview topic 
are thus elicited. The data collected with these two steps 
are then mapped to a matrix from which Bieri’s index of 
complexity can be derived. A key issue in applying the data 
to Bieri’s index is to determine the independent constructs. 
A number of numeric computational methods, such as 
principal components analysis and factor-analysis, can be 
used to reveal the independence of the elicited constructs 
(Bezzi, 1999; Woehr, Miller, & Lane, 1998). Moreover, 
principal components analysis can elucidate the degrees of 
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both differentiation and integration among the elements. 
Recently, Morçöl (2002) applied this method to measure 
the creativity of persons in several social groups. The results 
indicated a high correlation between one’s creativity and 
the computed value of cognitive complexity. 

Sketch maps
Cognitive maps are mental models of the relative 

locations and attributes of phenomena in a spatial envi-
ronment. Downs and Stea (1973; Downs, 1976) defined 
cognitive mapping as “a process of a series psychophysical 
transformations by which an individual acquires, codes, 
stores, recalls and decodes information about the rela-
tive locations and attributes of phenomena…” Cogni-
tive maps are also made up of memories of objects and 
kinesthetic, visual, and auditory cues. The information 
stored in a cognitive map is especially interesting since it 
may correspond to the constructs in a cognitive system. 
For instance, Kuipers (1983) suggested that a cognitive 
map consists of five different types of information, each 
with its own representation: topological, metric, route 
description, fixed features, and sensory images.

One common method to reveal mental models is to 
have subjects sketch maps to represent their understand-
ing of the objects. For example, Lynch (1960) used this 
method to measure subjects’ representation of their 
local cities and found that sketch maps were more ac-
curate when used for topographical rather then metric 
analysis. While sketching maps is easy to conduct, one 
challenge is analyzing the results. Billinghurst and We-
ghorst (1995) recommended three ways to score sketch 
maps: map goodness (accuracy), object class number, 
and the relative position ratio. They found that the three 
measures significantly correlate to subjects’ sense of the 
virtual world. In addition, the results also indicated that 
sketching maps is more useful for relatively dense worlds 
than for sparse worlds. Overall, sketch maps reveal spatial 
relationships better than abstract, conceptual components 
of mental models. 

Cognitive task analysis
Cognitive task analysis (CTA) refers to a set of meth-

ods for gaining access to cognition, mental events, and 
knowledge structures. The aim of CTA is to investigate 
the cognitive aspects of task performance and the knowl-
edge needed for situation awareness, decision-making, 
planning, etc. This approach has been widely used in 
human-computer interface design (Jonassen, Tessmer, 
& Hannum, 1999). The CTA method typically includes 
three steps: knowledge elicitation, analysis, and knowledge 
representation. Knowledge elicitation is the process of ex-
tracting information through interviews and observations 

about cognitive events, structures, or models. Analysis 
is the process of structuring data—abstracting informa-
tion, developing explanations, and extracting meaning. 
Knowledge representation is the process of displaying 
data and depicting relationships. Typically, the output 
of CTA is an ordered list of tasks with supplementary 
information about the cognitive requirements of the task 
structures. 

One popular CTA method is GOMS: Goal, Operator, 
Methods and Selection (John, 1995; Card, Moran, & 
Newell, 1983). The method seeks to analyze and model 
the knowledge and skills a user must develop to perform 
tasks on a device or system (i.e., describes knowledge of 
procedures that users perform in a hierarchical arrange-
ment). The result is a description of the Goals, Opera-
tors, Methods and Selection rules for any task. The tasks 
are broken down into a meaningful series of goals and 
sub-goals until one ends up with primitive psychomotor 
or mental acts. If there is more than one operation or 
method available to accomplish a goal, the GOMS model 
includes selection rules to choose the appropriate method 
depending on the context. Since this method aims at 
capturing knowledge representation that people have to 
complete a task, it has been proven to be very useful in 
identifying training needs and information requirements 
(Jonasson et al., 1999). 

Memory-based metrics of cognitive complexity
Cognitive processes are associated with working 

memory (WM), also referred as to short-term memory. 
WM can be thought of as a container where a small 
number of concepts can be stored and associated to 
make inferences. While the capacity of WM has been 
a long debated issue, most recent studies have gener-
ally agreed that the capacity limit of WM is about four 
items on average (Cowan, 2001; Fisher, 1984). Broad-
bent (1975) also found that WM for understanding 
text is four concepts. With this capacity limit, if data 
are presented in such a way that too many concepts 
must be associated to make a correct decision or that 
the concepts are unfamiliar, the risk of error increases 
(Klemola, 2000a). Thus, the density of concept usage 
should be considered as a cognitive complexity metric. 
The principal challenge in using this measure is to de-
termine which information is familiar or unfamiliar. If 
the object of comprehension is text, then the density of 
terms used to describe new information is a good indica-
tor of comprehension error (Kintsch, 1998). Consider, 
for example, computer programming where identifiers 
represent concepts. If the program is unfamiliar to the 
programmer, then identifier density is a good predictor 
of error (Klemola, 2000a,b). 
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Halford, Wilson, and Phillips (1998) studied work-
ing memory limitations and proposed that they were 
best defined in term of the complexity of relations that 
can be processed in parallel. Consequently, they defined 
cognitive complexity as relational complexity, i.e., the 
number of interacting variables that must be presented 
in parallel to perform a process entailed in a task. Fur-
thermore, Halford et al. argued that relational complex-
ity reflects the cognitive resources required to perform 
a task. The greater the number of interacting variables 
that have to be processed in parallel, the higher both the 
cognitive demand and computational cost. Therefore, 
one way to measure complexity is to determine the level 
of relational complexity of cognitive tasks. For example, 
an equation a = 3 * b is a binary relation, while a second 
equation a/b = c/d is a quaternary relation, and thus, is 
more complex. Theoretically, any complex relation can be 
decomposed into low-ranked relations. Thus, complexity 
can be computed from the dimensions of low-ranked 
relations (Wilson & Halford, 1994; Humphreys, Bain, 
& Pike, 1989).

In recent years, neuroimaging techniques have been 
widely used to reveal brain activities related to ongoing 
cognitive processes while the human subject performs 
tasks. In this way, researchers have successfully identi-
fied several brain areas such as the prefrontal cortex that 
are involved in the execution of WM. There have been 
many attempts to determine task complexity features 
that trigger the executive functions of working memory. 
Christoff (1999) proposed that tasks that activate ex-
ecutive WM brain areas have the following features: 1) 
stimulus material needs to be analyzed along different 
dimensions and 2) multiple processing operations have 
to be carried out simultaneously during performance. 
Although those neuroimaging studies did not explore the 
issue of cognitive complexity explicitly, the results imply 
that the number of items to be maintained simultane-
ously, i.e., the number of connections between items, 
is an important metric for cognitive complexity. From 
the viewpoint of information processing, connections 
between components create dependencies that reduce 
the effectiveness of the system.

Methods of complexity measures related to displays
Complexity of human-computer-interface

A human-computer-interface (HCI) is a typical dialog 
system in which tasks are performed through interactions 
between the user and the system. The user must build 
up a mental representation of the system’s structure and 
learn the appropriate “language” to evoke action sequences 
related to the task. Such a language includes the symbolic 
contexts about the system. 

Automaton theories model a dynamic system as a de-
terministic finite automaton composed of system states 
and transitions between states, where state is defined as 
a possible status of the system, while transition is an ac-
tion that moves the system from one state to another. For 
example, a computer window under the Microsoft system 
may have three states: open, closed, and minimized; a 
mouse click is a transition to move the window between 
states. The challenge here is to transform a complicated 
human-computer interface into the structure of an au-
tomaton. Many methods have been developed to perform 
the transformation automatically. One example is the au-
tomatic mental model evaluator developed by Rauterberg 
(1993), the detail of which is beyond the scope of this 
review since our concern is focused on how to measure the 
complexity of such a system. Described below are several 
complexity measures based on automaton models.

Structural complexity. In simplest terms, absolute 
structural complexity equals the number of states (Ste-
vens, Myers, & Constantine, 1974). Relative structural 
complexity is the ratio of the number of transitions to the 
number of states, i.e., the number of transitions per state. 
For example, the computer window mentioned earlier 
has three states thus the absolute structural complexity 
is 3. On the other hand, such a window allows four 
transitions: open -> close, open -> minimize, minimize 
-> open, minimize -> close. Thus, the relative structural 
complexity is 4/3. 

Cyclomatic complexity. McCabe (1976) defined cy-
clomatic complexity as the difference between the total 
number of transitions and the total number of states. 
By this definition, the complexity of the above example 
would be 4-3=1.

Structure density. Kornwachs (1987) proposed 
“structure density” as a measure of system complexity. 
This measure estimates the actual density of transitions 
compared with the maximal possible density. Let S be 
the number of all possible states of a system and T be the 
number of actual transitions. The maximal possible num-
ber of transitions is S * (S-1). Then the structure density 
is defined as T/(S*(S-1)). By this definition, the structure 
density of the above example is 4/(3*(3-1))=0.66.

Rauterberg (1992) compared the above metrics by 
estimating the complexity of a database system. In the 
experiment, the user group was composed of beginners 
and experts. The users performed 12 database operation 
tasks. The users’ behavior was then recorded in a “log-
file” and converted to state / transition matrices. Those 
matrices were used to compute complexity values using 
the above four measures. Except for the structure density 
measure, the other three measures of complexity differ-
entiated beginners and experts well. In particular, the 
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value of cyclomatic complexity was independent of the 
task. Thus, it reflects the generic structure of the system. 
Although structure density did not reflect the difference 
between beginners and experts, it was highly correlated 
with the tasks. Thus, it is a good index for task complex-
ity. Overall, the results showed that the four measures 
are of different value in measuring task and cognitive 
complexity, yet McCabe’s cyclomatic complexity seems 
to be the best measure. 

In a related study, Vikal (2000) analyzed complexity of 
autoflight systems. He used a term “apparent complexity” 
to refer to the complexity perceived by the operator of 
a system. Vikal developed a “hybrid automation repre-
sentation” to model general autoflight systems with the 
elements of “mode” and “transition.” The modes can be 
modeled using control block diagrams at various levels 
of loop closure. The transitions can be modeled with 
either transition diagrams or transition matrices. Based 
on the model, Vakil proposed three factors that affect 
the apparent complexity: the number of modes in the 
autoflight systems, the number of transitions among 
modes, and the nature of transitions among modes. To 
compute the factors one has to quantitatively specify 
the terms of “control,” “transition,” and “mode.” Vikal 
conducted a survey of pilots to identify the autoflight 
mode transitions. The transitions were analyzed using 
MaCabe complexity to gain insight into the apparent 
complexity of the autoflight system from the perspec-
tive of pilots. Notably, mode transitions that had been 
identified by pilots as being complex were also found to 
have high McCabe complexity. 

Image complexity 
A digital image is numerically specified; thus, the infor-

mation content can be easily computed using information 
theory. Many algorithms have been developed to compute 
image complexity. The standard Boltzmann-Gibbs en-
tropy measure defines complexity with respect to a given 
size of a window of view. According to the definition, 
image complexity, measured as configurational entropy, is 
a function of the total number of distinguishable spatial 
arrangements within view windows of a given size. The 
statistical paradigms based on this measure have shown 
great success in quantifying image complexity. However, 
experiments have shown that information complexity 
computed in term of entropy does not correspond to 
perceived complexity. While entropy is a measure of im-
age disorder and reflects the lack of spatial homogeneity, 
complexity is a combination of order and disorder. Indeed, 
Grassberger (1986, 1991) has shown that complexity is 
sometimes posited as a mid-point between order and 
disorder. 

Similarly, Landsberg and Shiner (1998) proposed that 
image complexity could be expressed in terms of order/
disorder. A simple form of complexity is expressed as: 
T = delta × (1-delta), delta = S/Samx

where T is denoted to complexity, S is Boltzmann 
configurational entropy and Smax is the highest possible 
value of entropy at the given size of view window. Piasecki, 
Martin, and Plastino (2002) compared the measures of 
spatial inhomogeneity and the complexity index. The 
results showed that inhomogenity and complexity are 
correlated but vary differently with the size of the view 
window.

Pattern complexity
Unlike Boltzmann-based complexity, pattern complex-

ity of an image is based on measures of visual features. 
Orland et al. developed an algorithm to measure pat-
tern complexity (Orland, Weidemann, Larsen, & Radja, 
1994). Pattern complexity includes measures of color, 
edges, fractal dimensions, deviation and entropy. While 
the measure is somewhat correlated to human judgment of 
image appearance, it is not a solid predictor of perceived 
complexity. Klinger and Salingaros (2000) proposed a 
pattern complexity index based on the following visual 
features: size, density, line curvature, color, symmetry, 
similarity of shapes, and correctness of form. In their 
algorithm, complexity is composed of two components: 
Harmony and Temperature. Harmony H measures the 
correlation of subunits via symmetries; Temperature T 
measures symbol variation. The temperature compo-
nents for complex structures were: 1) intensity and size 
of details; 2) differentiation density; 3) line curvature; 
4) color-intensity; and 5) color-contrast. Harmony is a 
similar five-part sum composed of the following symmetry 
values: 1) vertical and horizontal reflections; 2) translations 
and rotations; 3) shape-similarity; 4) form-connectedness; 
and 5) color-matching. Pattern complexity can then be 
computed as C = T (H

max
 - H). 

Patel and Holt (2000) tested Klinger and Salingaros’ 
algorithm against human assessment of visual complex-
ity on binary and natural images. They asked subjects to 
rate the complexity of images. The tested images were 
manipulated differently in size, grayscale, and format 
from the same original image. The results showed a high 
correlation (r=0.899, p<0.01) between human assessment 
and the complexity value calculated with Klinger and 
Salingaros’s algorithm. Interestingly, the results indicated 
that perceived complexity is related to the image factors 
described above. For example, the complexity value of 
an image perceived by the observers increased with the 
size of the image. Moreover, the complexity of an image 
in JPEG format varied less with the image size than the 
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same image in GIF format did. Therefore, comparisons 
of image complexity should be made only when images 
are equal in size and are treated in the same way. 

Tulis' Display complexity
Perhaps the most useful tool to quantify the information 

and layout of screen elements is Tullis’ metric of display 
complexity (Tullis, 1984, 1985, 1986). Tullis studied over 
a thousand computer-generated displays. He measured 
search time to locate items on the displays and collected 
subjective ratings of ease of use. The results revealed that 
four basic characteristics of display formats affect how 
well users can extract information from the displays: 
1. Overall density — the number of characters dis-

played, expressed as a percentage of the total spaces 
available.

2. Local density — the number of other characters near 
each character.

3. Grouping — the number of groups and average group 
size, both describing the extent to which characters on 
the display form perceptual groups. The groups can 
be determined by considering the white space around 
them.

4. Layout complexity — the extent to which the ar-
rangement of items on the display follows a predictable 
visual scheme, typically computed as the differences 
in view angles between the items.

Using these four display characteristics, Tullis was able 
to obtain correlation coefficients of .71 for predicting 
search time and .90 for predicting subjective ratings. 
The most important predictors for search time are two 
measures associated with the grouping of characters: the 
number of groups on a display and the average visual angle 
subtended by those groups. The shortest search times were 
associated with a range of about 19 to 40 groups, which 
corresponds to an average visual angle of about 4.9 to 
2.4 degrees. Likewise, the most important predictors of 
subjective ratings were a measure of local density, which 
is essentially how “tightly packed” the display is, and a 
measure of layout complexity, which is essentially how 
well the items on the display are aligned with each other. 
Layout complexity can be computed from the number of 
distinct items (labels, data items, etc.) and item uncertainty 
(use of vertical/horizontal alignment). 

Tullis’ metric is very useful in the sense that it is sensi-
tive to observable differences of a system and the rela-
tive values of the metric correspond to intuitive notions 
about the characteristics of a display system. However, 
there are several limitations to Tullis’ model, as pointed 
out by Perlman (1987). First, Tullis used plain character 
displays with no quasi-graphic characters such as lines for 
drawing boxes. Second, Tullis’ model does not make use 

of the information structure underlying a display. Third, 
the model was based on predictions about search time 
and subjective ratings of how easily information can be 
extracted. These two measures may not correspond to 
task performance. 

In a separate study, Schwartz (1988) examined how 
well the display format effects described by Tullis (1984, 
1985) could be generalized to other display situations. The 
results indicated that Tullis’ metrics could not predict the 
situation where the tasks required the use of several pieces 
of information from predictable display locations. Thus, 
it is necessary for us to study Tullis’ format dimensions 
more fully before using his equations to evaluate display 
designs for use outside the task situation in which the 
equations were developed.

Layout Appropriateness
Tullis’ metrics are task independent. They are focused 

on the general appearance of an interface. Therefore, it 
is more useful for predicting user preference than user 
performance other than search time. In contrast, task-
sensitive metrics are more useful in understanding what 
users do with an interface and how to make the interface 
more efficient. For instance, Sears (1994) proposed a 
measure, called Layout Appropriateness, to evaluate the 
efficiency of the organization of objects in an interface. 
This metric first computes the cost of a layout using the 
following formula:
Cost = sum (frequency of transition × cost of the transition)

A transition here is considered an action a user makes on 
a display such as moving the mouse or closing a window. 
The cost of that transition is measured as the distance 
that users must move a mouse and the size of the object 
they are selecting. However, if an interface is used only 
to display information, then the cost is better measured 
with eye fixation information. The frequency of each 
transition can be estimated through task analysis. Once 
the cost is computed, the next step is to identify an op-
timal layout. The optimal layout can be identified with 
any standard searching algorithm by searching for the 
minimal cost based on the current method of assigning 
costs. Given that, Layout Appropriateness (LA) is then 
specified as follows:
LA= 100 × (cost of the optimal layout / cost of the proposed 
layout). 

Sears further validated the metric with experiments. 
He showed that the LA value highly correlated to task 
completion time and user preference ratings. He further 
suggested that combining both task-independent and 
task-sensitive metrics could be more powerful than using 
each set of metrics alone. 
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Air traffic complexity 
Studies on air traffic complexity have focused on iden-

tifying factors that make an air traffic situation more 
complex and increase the workload. The studies of air 
traffic complexity provide us some useful methodologies 
on how to develop complexity measures with respect 
to controllers’ workload. For instance, Mogford et al. 
(1995) presented a literature review of air traffic control 
complexity. He classified the methods of determining 
the complexity factors into two categories: 1) asking 
controllers to rate complexity factors in terms of how 
they made the traffic control tasks more or less difficult, 
and 2) having controllers make paired comparisons with 
respect to the complexity of different situations. From 
the data he formulated complexity factors with analytical 
techniques such as multidimensional scaling. 

In a similar study, Laudeman et al. proposed a metric 
of dynamic density as the measure of air traffic complex-
ity (Laudeman, Shelden, Branstrom, & Brasil, 1998). 
The factors identified by Laudeman et al. were grouped 
into three categories: density factors, transition factors, 
and conflict factors. The density factors captured local 
and overall numbers of aircraft; the transition factors 
represented changes in aircraft states; while the conflict 
factors reflected the complexity imposed by the presence 
of potential conflicts. Interestingly, these three categories 
correspond to three basic aspects of complexity described 
earlier: size, variety, and rules. 

Yet another study explored how dynamic density 
factors influenced controller workload (Sirdhar, Seth, 
& Grabbe, 1998). Through regression analysis they de-
termined the weight of each factor in its contribution to 
overall complexity. However, like the work of Mogford 
et al. and Laudeman et al., this effort did not take into 
account the intrinsic disorder of air traffic. Indeed, Dela-
haye and Puechmorel (2000) applied the Kolmogorov-
entropy metric to measure the global disorder of aircraft 
systems. The results indicated that topographic entropy 
was an intrinsic measure of the complexity of the traffic 
geometry because traffic with crossing trajectories had 
higher entropy. 

Summary of complexity definitions and measure-
ment methods

We have briefly reviewed definitions and measures of 
complexity from several types of studies: general con-
cepts, information complexity, cognitive complexity, and 
display complexity. While each of these is focused on 
different aspects of human or machine systems, there is 
tremendous overlap among these definitions. Essentially, 
each definition is either fully or partially concerned with 
three basic aspects of complexity: size, variety, and rules. 

These relationships can be better understood from Table 
1, which lists the definitions with the source of the re-
search and the factors contributing to complexity. With 
such an understanding, we can view complexity as a 3-
dimensional entity comprised of numeric size, variety, and 
rules. The contribution of each dimension to the entity 
depends on how the observer processes information and 
which aspects the observer is concerned with. Recall that 
“complexity only makes sense when considered relative 
to a given observer” (Edmonds, 1999). This is the critical 
point in the development of a complexity measure for 
a given application. Nevertheless, the integration of the 
system and the observer is either obscure or missed in 
many complexity measures. 

Table 2 summarizes complexity measurement meth-
odologies with the research sources and parameters to 
be specified. Once again, we can see from Table 2 that 
all the methods are aimed at different forms of the same 
basic factors: numeric size, variety, and rules. 

ANALYSIS OF THE METHODS 
WITH RESPECT TO THE ATC 

ENVIRONMENT

While each of the methods reviewed in this report is 
more or less related to complexity of visual displays, it 
seems that none of them can be directly applied to ATC 
displays and allow an evaluation with respect to ATC 
task performance. ATC displays have unique features 
that differentiate them from other applications. Listed 
below are some typical characteristics of ATC automa-
tion displays:
1) They contain mainly text and binary graphical patterns 

(symbol, charts, etc.), whereas spatially continuous 
digital images are very rare.

2) Text and graphical patterns are usually compressed. 
For example, a datablock contains many pieces of 
iconic information. 

3) ATC displays are dynamic; the information is regularly 
updated with the evolution of the traffic situation.

4) Unlike most human-computer-interaction systems, 
ATC automation tools are presented as aids, not objects 
that controllers have to operate on. Controllers use the 
aids only when they are helpful – i.e., the benefit is 
greater than the cost. Controllers may choose to ignore 
the aids and still perform their tasks. Indeed, one of 
the issues about the new tools is whether the benefit 
is greater than the cost to controllers and whether 
controllers will use or ignore them.

 Next we will analyze the feasibility of applying the 
reviewed methods of measuring complexity with ATC 
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displays. The analysis is based on our understanding of 
cognitive information processing in ATC. Table 2 lists 
the methods and summarizes the results of the analysis.

Entropy
Entropy computes redundancy in a system. Informa-

tion theories state that redundancy reduces information 
content. An ideal engineering system is presumably 
designed toward reducing redundancy. However, this 
concept does not apply to air traffic control. First, signal 
processing in the human brain requires some amount of 
redundancy; second, the whole air traffic control system 
is built on redundancy to minimize operational errors. 
In fact, there is a great deal of redundancy in the way 
that ATC workstations are set up. In addition, entropy 
computation is based on the probabilities of all inputs that 
might be encountered. Unfortunately, the ATC environ-
ment tends to be much more dynamic and fuzzy.

Random Matrix Theory
By mapping the elements of a display and their 

relationships to a matrix, we can use Random Matrix 
Theory to compute independent dimensions of the ele-
ments and quantify the interconnections. On the surface, 
this technique seems plausible with ATC displays. For 
instance, we can have subjects identify the elements on 
an ATC display and specify their relationships. Note that 
the method may only apply to displays with a limited 
number of elements because the number of the relation-
ships to be specified in a matrix increases as the square of 
the number of elements. In reality, this may make the use 
of Random Matrix Theory difficult, if not impossible, to 
employ in the complex ATC environment.

Kelly’s grid technique
Kelly’s grid technique, in principle, is similar to the 

Random Matrix Theory method. Subjects specify the 
elements and compare the similarity of elements in order 
to determine the “distance” between them; then the “in-
dependent constructs” will be derived through techniques 
such as principal component analysis or multidimensional 
scaling. The constructs can be elicited based on the no-
tion that the distance between elements associated with 
the same constructs is shorter than the distance between 
elements associated with different constructs. A modified 
version of this method is to have the subjects identify the 
elements and describe their features (Nielsen, 1996). The 
“distance” can be inferred from the feature description 
although the inference process could be difficult to do. 
By doing so, the subjects are not required to specify a 
large number of “distances.” The disadvantage is that 

the result could be biased with the choice of the feature 
description. Regardless, this technique may have some 
promise with ATC.

Sketch map
While the sketch map is probably the easiest method 

to implement, the reliability of the results is questionable. 
Various experiments have demonstrated that controllers 
have a low success rate of recalling the details of air traf-
fic situations. Gronlund et al. reported that controllers’ 
memory for detailed flight data was poor (remember-
ing only important items associated with the flight) 
even though they exercised many actions on the flights 
(Gronlund, Ohrt, Dougherty, Perry, & Manning, 1998). 
One possible modification of the method would be to 
have subjects sketch their mental maps of a display in an 
“online” manner in which controllers are free to watch the 
display while they sketch what is relevant to their ATC 
tasks. Nevertheless, this method has a number of short-
comings. For example, controllers express their “mental 
thoughts” differently even though they are presumed to 
perform the same task at a similar performance level. 
Moreover, Bressolle et al. (2000) reported that control-
lers adapt different strategies when using an automation 
tool. Thus, the sketched maps could vary dramatically 
from controller to controller. In addition, it is difficult to 
quantify sketch maps. As a result, this method may only 
be useful for some initial pilot studies, such as a study to 
obtain some clues about how controllers describe a display 
and what display features they find important. 

Cognitive task analysis
While the methods of cognitive task analysis were not 

originally targeted to assess information complexity, they 
can be very powerful in the evaluation of the completeness 
and efficiency of a design. Among the methods, GOMS 
(Goal, Operator, Methods, and Selection rules) is the 
one most pertinent to design evaluation. The results of 
GOMS include a series of steps of actions that the users 
have to perform to complete the tasks and the selection 
rules associated with the actions. The actions can be 
defined at various levels of abstraction. For example, 
one can decompose large tasks into units in terms of 
time to complete, or one can analyze the tasks to the 
level of keystrokes or eye movements to complete the 
task. Once the tasks are decomposed into units, we can 
apply other complexity measures to the sets of units and 
selection rules. The disadvantage of the method is that 
the results rely on levels of user experience and subjective 
interpretation. 
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Working memory metrics
Klemola (2000a) used the number of “unfamiliar” 

words to assess the complexity of text. In text reading, 
“unfamiliar” words are those that can’t be comprehended 
automatically and require additional information to be 
understood. Although such a description of complexity 
is not sufficient, it nevertheless gives a straightforward 
assessment of the “size” factor of complexity. It seems that 
this method (counting the number of unfamiliar items on 
a display as the index of complexity) can be easily applied 
to ATC displays. However, the term “unfamiliar item” 
is not explicitly defined for ATC displays. For instance, 
an unfamiliar symbol could become familiar after some 
practice. To apply this method to ATC displays, we may 
replace the concept of “unfamiliar items” with “symbolic 
items.” A symbolic item is similar to an “unfamiliar item” 
in the sense that it needs to be associated with other 
information to be comprehended. Another working 
memory based metric of complexity can be derived 
from neuroimaging studies. Christoff (1999) described 
the task features that activate executive WM brain areas. 
For example, one of the features is the number of items 
to be analyzed along different dimensions. Those features 
can be used as complexity measures. 

The relational complexity metric proposed by Half-
ord et al. (1998) is also based on working memory. This 
metric is extremely useful because it is directly associ-
ated with the capacity of human cognitive processing. 
The problem with using this metric is the difficulty in 
determining the interacting variables and dimensions of 
interaction. Consequently, the successful applications of 
the method so far have been mostly limited to the areas 
of text comprehension and logical reasoning. In contrast, 
ATC displays contain a lot of graphical information, mak-
ing the use of his metric problematic.

Human-computer-interface
Methods that assess the complexity of a human-

computer-interface (HCI) require modeling the system 
in terms of states and transitions. Then the complexity 
measures such as McCabe’s cyclomatic complexity can be 
computed by counting the numbers of states and transi-
tions. Unfortunately, those indices of complexity simply 
would not work with ATC displays. While such displays 
can also demand inputs from controllers, they only use 
the automation tools to acquire information and do not 
manipulate them. Therefore, there are no clearly defined 
states and transitions in using ATC tools. If the use of an 
automation tool can be described explicitly with states 
and transitions, it implies that controllers are forced to 
manipulate the tool and be manipulated by it. In that way 
the tool takes control over the controllers. That would be 
against the philosophy of automation aid design. 

One important concept embedded in the methods 
of HCI complexity measures is that all the methods 
emphasize “rules” or “connections” as the main factor 
contributing to complexity. By this concept, it is possible 
that a system composed of ten elements may have the 
same complexity as a system composed of 100 elements 
as long as the elements are independent of each other. 
Thus, while the “size” factor of complexity describes how 
complex a system appears, the “rules” factor determines 
how complicated the computation would be to use or 
interpret a system. HCI and ATC automation displays 
are similar in the sense that users do not have to use all 
pieces of information on a display at once. Controllers 
may use some parts of displayed information at one time 
and others at a different time. Therefore, the complex-
ity measures of ATC displays, like those of HCI, have 
to consider the “rules” factor as well as the “size factor “ 
when measuring complexity. 

Image complexity and pattern complexity
Measures of digital image complexity compute size 

and variability factors. Notice that variability is computed 
on the basis of a given scale of a view window. Although 
ATC tools rarely display images, the idea of developing a 
scale-dependent measure of complexity might be helpful 
in defining elements of ATC displays. On the other hand, 
Klinger and Salingaros’ algorithm of pattern complexity 
(2000) is probably more suitable for ATC displays since 
they are mainly composed of text and graphical patterns. 
The algorithm identifies some basic visual features and 
their relationships (variability and symmetry). It has 
been shown that when going from a low to high value 
of Klinger and Salingaros’ complexity, a visual image tends 
to alter one’s response from relaxing to distressing. Yet it is 
unclear how this measure may correspond to controllers’ 
workload in using automation tools. 

Display complexity and layout appropriateness
Tullis’ (1984) display complexity is an easy-to-use 

metric that quantifies the layout of screen elements. 
However, this method is most suitable for text displays, 
while ATC displays contain graphical patterns and are 
color-coded. In addition, the method is not concerned 
with the cognitive load raised from operating an interface. 
Nevertheless, the method would possibly be a good start 
toward the complexity measures of ATC displays. 

In contrast, Sears’ (1993) Layout Appropriateness 
formula computes a user’s action cost in using an inter-
face. Sears’ method counts on mouse movement as the 
cost of action. The method does not directly compute 
the complexity of information on displays; rather it is 
more suitable for validating the complexity measures. 
A shortcoming of the method is the approach used 
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to compute the cost of an action. While excessive ac-
tion demands from an ATC display are not desirable, 
parameters of mouse movement and keystroke do not 
sufficiently reveal controllers’ workload. For ATC tasks 
such as monitoring a situation and making decisions, 
eye movement parameters may be better candidates in 
validating complexity measures.

DISCUSSION

Why objective measurement of complexity?
The ultimate goal of this report was to identify objective 

measures of information complexity for ATC displays. 
Since controllers use the displays, the purpose of the 
complexity assessment is to make sure that the displays 
do not overload controllers. Traditionally, the usability 
and acceptability of a new tool are evaluated by having 
controllers use the tool and collect information from 
them. The information is collected through observing 
controllers’ behavior, having them fill out questionnaires, 
and interviewing them. Given that such subjective tech-
niques have been well developed, why would we want to 
develop additional objective measures? 

While controllers’ opinions about a new technology are 
always important sources for evaluation, several factors 
may bias the results obtained from subjective measures. 
First, subjective measures mostly reveal the degree to which 
people like complex interfaces. For instance, Sears (1994) 
reported that people usually tend to judge a tool by its 
perceived functionality. However, what is really needed 
in the evaluation is information about whether the tool 
helps task performance. If a tool is helpful, not only 
should it have great functionality, but also the benefits 
of using the tool should be significantly greater than the 
costs. Unfortunately, such benefits and costs are difficult 
to compute from subjective measures. One example is an 
ATC tool called pFAST (passive Final Approach Spac-
ing Tool). While its functionality was highly praised by 
controllers, pFAST is currently not being used due to 
several human factors reasons (Cardosi, 2003). 

Second, subjective measures are usually obtained 
in a simulation environment where a new tool is used 
stand-alone. The actual ATC environment is much more 
complex. The tool has to share a controller’s time and 
attention with many other stimulus sources and tools. 
Thus, controllers’ opinions about a new stand-alone tool 
can be quite different from their opinions when the tool 
is integrated into the operational setting. An analogy is 
buying a new car. One can have quite different opinions 
about a car when looking at it at a car dealership and by 
driving it under varying traffic conditions. 

Third, controllers use mental models of the air traffic 
situation to perform their tasks and integrate information 
from ATC tools into their mental models. Their answers 
to questionnaires are based on this integration. However, 
the mental models are not the same for all controllers. 
In fact, Bressolle et al. (2000) reported that controllers 
adapt various strategies in using ATC tools. Therefore the 
answers to the same question can be drastically different 
among controllers. 

Finally, learning to use a new tool optimally requires 
an extensive process of adaptation. It takes practice for 
controllers to achieve optimal strategies for using a new 
tool. Cardosi (2003) reported that the success of a tool 
is largely dependent on how well the system is adapted 
to the specific sites and its operations. Moreover, the 
results of the adaptation could be quite different from 
what was originally anticipated. Therefore, the assessment 
of a new tool should not simply rely on the results col-
lected when the subjects were only briefly exposed to it. 
In summary, all these factors suggest that an objective, 
intrinsic evaluation of a new tool is an important and 
necessary complement to subjective measures. 

What kind of complexity do we want to measure?
The complexity of a system implies some degree of 

computational cost. Therefore, employing an automation 
tool requires cognitive costs associated with integrating 
the tools with controllers’ mental models of the situation 
and in programming physical actions required to use the 
tools. Computations such as these involve cooperative 
activities of many brain areas that cannot be accurately 
estimated using subjective means. Neuroimaging tech-
nologies may be of some benefit since they can reveal 
the amount of brain activity; however, we cannot put 
controllers under a neuroimaging machine while they 
perform ATC tasks. Alternatively, it may be possible to 
access complexity of ATC displays in terms of the visual 
and cognitive features and relate those features to brain 
activities and processing capacities. 

Our goal was to develop objective measures of the 
complexity of ATC displays. The two running threads 
in this literature review were the concepts of informa-
tion complexity and cognitive complexity, with various 
definitions for both. The basic distinction lies in that the 
former is typically used to describe a system while the 
latter is targeted at human cognitive activities. Therefore, 
while information complexity can have concrete, math-
ematically specified measures, cognitive complexity can 
only be estimated since the cognitive structures of human 
subjects are not directly observable. Unfortunately, in the 
end we are still faced with a basic question: What kind of 
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complexity do we want to measure? We want to develop 
complexity measures that can be applied independently of 
controllers and yet we want the measures to be associated 
with controllers’ task performance. The current methods 
of measuring cognitive complexity are user-dependent. 
On the other hand, generic definitions of information 
complexity are user-independent. More importantly, it is 
not evident how the measures are related to controllers’ 
task performance. 

A series of studies by Rauterberg (1992, 1993, 1995, 
1998) may shed some light on the relationship between 
system and cognitive complexity. Rauterberg developed a 
framework to estimate cognitive complexity by observing 
user’s behavior in using computer-human-interfaces. He 
used the term “system complexity” to refer to the infor-
mation complexity of a system. This complexity is given 
by the concrete system structure and is independent of 
users and tasks. The term cognitive complexity denotes 
the complexity of the user’s mental model of a system. 
In order to perform tasks, a user’s cognitive structure has 
to closely match the system structure. In this sense, if the 
cognitive structure were too simple, task performance 
would include errors. In his work, Rauterberg defined 
two other terms describing complexity: behavioral com-
plexity, the complexity of a user’s observable behavior 
that can be estimated by analyzing recorded concrete 
task performance; and task complexity, the necessary 
knowledge to perform a task that is user-independent. 
With the notion that learning to perform a task using 
a given system means decreasing behavior complexity 
and increasing cognitive complexity, Rauterberg assumed 
that the difference between behavioral complexity and 
task complexity is equal to the difference between sys-
tem complexity and cognitive complexity. In the case of 
a “best solution,” cognitive complexity is equal to the 
information complexity of the system. 

CONCLUDING REMARKS

This report reviewed a number of definitions and mea-
sures of complexity, each providing us with some useful 
ideas on how to assess the complexity of ATC displays. 
One of the major accomplishments of the report is the 
identification of three basic complexity factors: numeric 
size, variety, and rules. All complexity definitions and 
measures can be described by these factors. Another 
accomplishment is the demonstration of the power of 
integration: Complexity involves the integration of the 
system and the observer. Through the analysis of avail-
able complexity measures, we have shown that neither 
information complexity that focuses on the system nor 
cognitive complexity that aims at observers can provide 

a complete description for ATC application. The great 
variety in complexity measures reflects the fact that the 
contribution of each of the three factors to overall com-
plexity depends on how information is processed by the 
observer; as we cited in an earlier section of the report: 
“The complexity of things depends on which aspect 
you are concerned with” (Edmonds, 1999). Therefore, 
we generalized that complexity is the integration of the 
observer with the three basic factors, as expressed in the 
following formula: complexity = integration of observer and 
basic factors (size, variety, rules). To achieve our ultimate 
goal of developing objective complexity measures for ATC 
tools, we need to integrate the methods presented in this 
report with the specifications of ATC displays. That is 
our target for the next step.
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FIGURE

Figure 1: Images with increasing variation from left to right. (Grassberger, 1991) 
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Table 1. Definitions of complexity 

Source Definition 

General understanding  Combination of size, variety and rules. 
Complexity by Drozdz 
(2002) 

A trinity of comprising coherence, chaos and a gap between them  

Kolmogorov complexity 
(Casti, 1979) 

Minimum description size 

Effective Measure 
Complexity   
(Grassberger, 1986) 

The amount of information that must be stored in order to make an optimal 
prediction about the next symbol to the level of granularity 

Topological complexity 
(Crutchfield &Young,  1989)   

The minimal size of the automaton that can statistically reproduce the 
observed data within a specified tolerance 

Complexity by Langton  
(1991) 

Level of mutual information, which measures the correlation between 
information at sites separated by time and space. 

Bennett logical depth 
(Bennett, 1990) 

Computational cost (time and memory) taken to calculate the shortest process 
that can reproduce a given object. 

Hieratical complexity
(Bates & Shepard, 1993)  

Number of local states, dimensionality and rule-range.   

Cyclomatic complexity 
(McCabe, 1976) 

Difference of the total number of transitions and the total number of states. 

Edmonds complexity 
(Edmonds, 1999) 

The difficulty to formulate an overall behavior with given atomic components 
and their inter-relations 

Cognitive complexity 
(Crokett, 1965) 

The entities of differentiation, articulation and hierarchic integration 

Bieri�s index of cognitive 
complexity 
Bieri, 1955) 

Number of constructs and matches between the constructs 

Relational complexity 
(Halford et al., 1998) 

The number of interacting variables that must be presented in parallel to 
perform a process entailed in a task. 

Kauffman complexity 
(Kauffman, 1993). 

Number of conflicting constraints 

TABLES
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Table 2. Methods of complexity measures 

                      
               Brief description of the method 

Etropy  Map the system to discrete elements and determine the probability of each 
element relative to others. 

Random matrix theory Determine the elements and specify the relationship between elements. 

Kelly�s grid technique Define the elements; describe the properties of elements or compare the 
similarity between pairs of elements. 

Sketch map Reveal one�s mental representation of a system by having subjects sketch 
the structure and details of the system. 

Working-memory 
metrics

Determine the items that need to be associated with other items for task 
performance, and determine the level of relations by which the items are 
interacted.

Human-computer-
interface complexity 

Model the system into an automaton composed of elements and their 
interconnections, then determine the complexity from the numbers of 
elements and interconnections. 

Pattern complexity Determine visual features of the pattern such as size, density, line curvature, 
color, symmetry, similarity of shapes, etc, and then compute the harmony 
and variations of those features. 

Image complexity Compute the variations and inhomogeneity of image pixels with a given size 
of window of view. 

Display complexity Specify text density, text blocks and relative positions of text blocks then 
compute complexity using Tullis�s metrics (1984). 

Human-to-computer 
complexity 

Determine the actions needed to use the interface and compute the cost of 
the actions. 


