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Abstract – A Bayesian blackboard is just a conventional,
knowledge-based blackboard system in which knowledge sources
modify Bayesian networks on the blackboard. As an architec-
ture for intelligence analysis and data fusion this has manyad-
vantages: The blackboard is a shared workspace or “corporate
memory” for collaborating analysts; analyses can be developed
over long periods of time with information that arrives in dribs
and drabs; the computers contribution to analysis can range
from data-driven statistical algorithms up to domain-specific,
knowledge-based inference; and perhaps most important, the con-
trol of intelligence-gathering in the world and inference on the
blackboard can be rational, that is, grounded in probability and
utility theory. Our Bayesian blackboard architecture, called AIID ,
serves both as a prototype system for intelligence analysisand as
a laboratory for testing mathematical models of the economics of
intelligence analysis.

1 Introduction

Intelligence analysts deal with vast amounts of informa-
tion that arrives asynchronously, from a variety of heteroge-
neous sources, with varying accuracy and credibility. An-
alysts must construct interpretations of what is happening,
inferring participants’ intentions and which actions should
be taken in response. Interpretation goes far beyond simply
finding patterns in raw data: Patterns are not interpretations,
syntax is not semantics, and data-mining is of limited util-
ity. Lets go further: Pure data-driven algorithms will never
produce interpretations — hypotheses about the meaning
of data — because the hypothesis space is unmanageably
large. The business of interpreting evidence is both data-
and model-driven, knowledge about the world is indispens-
able, as are reasoning strategies sufficient to maintain nu-
merous, simultaneous, hypothetical interpretations.

We have developed a prototype of aBayesian blackboard
calledAIID an Architecture for the Interpretation of Intel-
ligence Data. As the name suggests, a Bayesian black-
board combines the technologies of blackboard systems and
Bayesian belief networks. It extends traditional blackboard
techniques with a principled method for representing uncer-
tainty, and it extends traditional belief network techniques
by incrementally building models. One consequence of this
marriage is that the control of intelligence gathering in the
world and inference on the blackboard can be rational, that
is, grounded in probability and utility theory.

2 Blackboards and Bayesian Networks

Blackboard systems are knowledge-based problem solvers
that work through the collaboration of independent rea-
soning modules. They were developed in the 1970s and
originally applied to signal-processing tasks. The first,
HEARSAY-II [1], was used for speech recognition, em-
ploying acoustic, lexical, syntactic, and semantic knowl-
edge. Other systems were applied to problems as diverse
as interpretation of sonar data, protein folding, and robot
control [2].

Blackboard systems have three main components: the
blackboard itself, knowledge sources (KSs), and control.
Theblackboardis a global data structure that contains hy-
potheses or partial solutions to a problem. The blackboard
is typically organized into sections by levels of abstrac-
tion. For example, HEARSAY-II had different levels for
phrases, words, syllables, and so forth.Knowledge sources
are small programs which post results of local computations
to the blackboard. (Ideally, knowledge sources interact only
by posting to the blackboard.) Different KSs use different
types of knowledge: for example, one might use a gram-
mar to generate words which are likely to occur next, while
another might detect phonemes directly from the acoustic
signal. While no single knowledge source can solve the
problem, working together they can. Getting knowledge
sources to “work together” is the task of blackboardcon-
trol. Generally it works like this: KSs watch for particular
kinds of results on the blackboard; for instance, a phrasal
KS might look for hypotheses about adjacent words. When
a KS is “triggered” it creates aknowledge source activa-
tion record(KSAR) in which it requests the opportunity to
run, make inferences, and modify the blackboard. These
KSARs are ranked, and the top-rankedKSAR is invited to do
its work.

The operation of a blackboard system can be seen as
search for hypotheses that explain the data at each level of
abstraction, using the KSs as operators. Rather than search
bottom-up (i.e., from the data level to the most abstract
level) or top-down, blackboard systems can search oppor-
tunistically, dynamically ratingKSARs based on the current
data and on the partial solutions that exist so far.

Heuristic methods generally have been used [3] to rep-
resent uncertainty: for example, HEARSAY-II used a nu-
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merical confidence score that ranged from 1 to 100. One
of our contributions is to provide hypotheses on the black-
board with a real probabilistic semantics. To understand our
approach, one must know a little about belief networks.

Belief networks are graphical structures in which the
nodes represent propositions with associated probability
distributions. For instance, in Figure 2 one sees the propo-
sition that two units, denoted by variables?U1 and?U2
are fixing and flanking a third, denoted by?R1. The prob-
ability of this proposition isconditional, it depends on the
probabilities of the other nodes in the graph, in this case the
nodes that represent individual fixing and flanking maneu-
vers. Belief networks, then, are directed graphs in which
nodes represent propositions with conditional distributions
(if the nodes point to other nodes) or unconditional distribu-
tions (if the nodes are “evidence” propositions). The con-
ditional distributions are stored in conditional probability
tables, or CPTs. For an introduction to belief networks, see
[4].

Belief networks that describe several similar objects of-
ten have many copies of common subnetworks. For exam-
ple, in the military domain, every unit has attributes like
UNIT-TYPE (e.g., tanks, infantry, artillery) and DIRECT-
FIRE-RADIUS. These attributes have relationships that
do not depend on the particular unit: for example, tanks
can shoot farther than infantry. If we simply have nodes
called UNIT-TYPE-FOR-UNIT1, DIRECT-FIRE-RADIUS-
FOR-UNIT1, etc., then the humans constructing the net-
work need to specify separate, identical CPTs for each unit,
which is impractical because there could be many units, and
we do not know in advance how many.

Several authors [5, 6, 7] have addressed this problem
by breaking up large belief networks into smaller subnet-
works. Subnetworks have designated input nodes—which
have no conditional distribution, requiring that their distri-
bution be specified in a different subnetwork—and resident
nodes, which do have CPTs. A standard belief network can
be created from subnetworks by unifying the input nodes of
one subnetwork with the resident nodes of another. Repet-
itive structure can be specified just once in a subnetwork
and instantiated multiple times to exploit redundancies in
the domain.

Object-oriented Bayesian networks (OOBNs) [6, 8] em-
ploy strong encapsulation between subnetworks. Each sub-
network defines a set of output variables, and combinations
between subnetworks are made only by connecting the out-
put variables of one subnetwork to the input variables of
another. Each subnetwork can be seen as a single cluster
node in a higher-level belief network, so that an OOBN
defines a single probability distribution over its variables.
Since the subnetworks are connected by a knowledge engi-
neer, rather than automatically, OOBNs are not a technique
for incrementally building models based on incoming evi-
dence.

Network fragments [7] are another approach to con-
structing modular subnetworks. Unlike OOBNs, nodes can
be resident in more than one fragment, so they designate
influence combination methods for combining distributions
from multiple fragments. So network fragments can com-

bine in more unexpected ways than in OOBNs, which pre-
cludes specialized inference algorithms, but can be more
flexible for specifying complicated belief networks.

3 Bayesian Blackboard Architecture

The blackboard ofAIID represents the system’s current be-
liefs about the domain. The blackboard contains a possibly
disconnected belief network that includes previous obser-
vations, background knowledge, and hypotheses about the
data. In the military domain, the blackboard contains nodes
that include sightings and hypothesized locations of enemy
units, locations of key terrain, and hypotheses about the en-
emy’s tactics and strategy. A sample blackboard is shown
in figure 1.

As in the subnetwork literature, we use a first-order ex-
tension to belief networks to represent multiple similar
entities more conveniently, analogous to the extension of
propositional logic to predicate logic. Instead of naming
the random variables by a single atom, e.g. UNIT-MASS,
each node has anode-type, for example, UNIT-MASS, and
a set ofarguments, for example, “Tank Regiment 1.” Logic
variables can be used as arguments in KSs to describe a
relationship that does not depend on the particular argu-
ment values. The combination of a node-type and argu-
ments uniquely specifies a node on the blackboard.

Information on the blackboard can occur on different
temporal scales. For example, we can represent a short
meeting between two people as a punctual event, while an
activity like “Planning-Attack” takes an extended amount
of time. We handle these scales using two temporal repre-
sentations: a tick-based representation, and an interval rep-
resentation. At lower levels of the blackboard, where we
are considering things like meetings and current locations,
each network node is indexed by the time it occurs, and
the entire network is a Dynamic Bayesian Network (DBN)
[9]. At higher levels of the blackboard, which correspond
to long-term actions and intentions, we represent events by
the interval in which they occur. Each event has a start-
time and an end-time that are explicit nodes in the network.
These two representations are integrated inAIID .

Fig. 1: A sample blackboard in the military analysis domain

3.1 Knowledge Sources

Knowledge sources are procedures that modify the black-
board. Knowledge sources can post new nodes to the black-
board, add edges, alter CPTs, and remove nodes. Every KS



Fig. 2: A sample knowledge fragment for the military anal-
ysis domain

has three components, which can be arbitrary procedures:
a confidence, a precondition, and an action. The confi-
dence returns a number that indicates how intrinsically use-
ful the KS is. The precondition is run when the blackboard
changes and returns true if the KS is applicable. The action
is the procedure that actually modifies the blackboard.

As in conventional blackboard systems, KS actions can
be full-fledged programs. For example, a KS might use ar-
bitrary heuristics to post simplifying assumptions to make
reasoning more tractable. In the military domain, for exam-
ple, our implementation uses a grouping KS that treats sev-
eral enemy units as a group if they seem sufficiently close.

Another type of KS cleans up nodes that accumulate
from old time steps. Old nodes can slow down inference
without greatly affecting current beliefs. Cleanup KSs can
remove nodes that are either older than some cutoff or that
do not cause a large drop in information about certain nodes
of interest. We define the information value of a node in
section 3.2.

The most common type of KS is anetwork fragment,
which is a belief network that represents a small fragment
of knowledge. An example of a fragment is shown in Fig-
ure 2. A node in the fragmentmatchesa node on the black-
board when the two nodes have the same type, and their
argument lists unify. (Recall that nodes in a KS can have
logic variables in their argument lists, and the arguments of
a node are distinct from its set of possible outcomes.) By
default, the precondition for a fragment KS is that at least
one of the fragment nodes has a match on the blackboard;
however, the KS designer can designate certain nodes that
must be matched, or write an arbitrary precondition.

3.1.1 Posting Network Fragments

Fragments are posted to the blackboard by a process that re-
sembles unification. A fragment can be posted to the black-
board if three conditions hold. First, each of the fragment
nodes must match a node on the blackboard; a new node
can be created on the blackboard if necessary. Second, a
single unifying assignment must unify the argument lists of
all the fragment nodes with their corresponding blackboard
nodes—this merely ensures that a logic variable like ?U
refers to the same thing throughout the fragment. Third, no
two fragment nodes can match the same blackboard node.

We can think of fragment matching as a bipartite match-
ing problem, as shown in figure 3. On the left side of the
bipartite graph are all the blackboard nodes; on the right are
all the fragment nodes. A blackboard node and a fragment

node are linked if they have the same node type. Now, any
bipartite matching in this graph describes a way the frag-
ment could be posted to a blackboard. A fragment node
unifies with its neighbor in the matching. If it has no neigh-
bor, a new node is posted to the blackboard.

Once a fragment has been matched to the blackboard,
it can be posted. An example of a fragment posting is
given in figure 4. A fragment is posted to the blackboard
in three steps. First, new nodes are posted if they are re-
quired by the match. Second, for every pair of fragment
nodes that are linked, a corresponding edge is added to the
blackboard. Now the nodes on the blackboard have both
their original parentsVBB and the new parents that were
specified by the fragment,VF . Third, since every node
V in the fragment has both a conditional distribution in
the fragment,P(V | VF ), and a one on the blackboard,
P(V | VBB), these two distributions are combined to get
P(V | VF ,VBB). Ways this can be done are given in the
next section.

Fig. 3: The bipartite matching problem from matching KS
2 to the blackboard in Figure 1

Fig. 4: The blackboard in figure 1 after KS 2 posts

3.1.2 Influence Combination

Since network fragments are themselves belief networks,
they specify a complete probabilistic model over their vari-
ables. But nodes on the blackboard already have probabil-
ity distributions. Suppose that some nodeV has parents



VF in the fragment and parentsVBB on the blackboard,
so that we have probability distributionsP(V | VF ) and
P(V | VBB). When the KS posts, the parents ofV will be
{VF ∪ VBB}, so we must merge these two models to get
a CPT forP(V | VF ,VBB).

There are several ways to do this. Laskey and Mahoney
[7] define severalinfluence combination methodsto com-
bine conditional probability distributions, one of the prin-
cipal types being parametric causal models likenoisy-or.
The noisy-or model [10, 11] allows one to compactly spec-
ify a conditional distribution when the parents are indepen-
dent, stochastic causes of the child. The knowledge engi-
neer can specify which combination method should be used
for a given node type.

3.2 Control

Many knowledge sources are applicable at any given time,
but only a few can be selected to run. This is both be-
cause our implementation ofAIID runs on a single pro-
cessor, so only one KS can be run at a time, and be-
cause if too many KSs fire, the number of nodes on the
blackboard could become too large for probabilistic infer-
ence to be tractable. We describe three types of control
regimes: a simple one based on KSs’ confidence methods,
an information-theoretic one based on nodes of interest to
the user, and a Bayesian one based on the probability of the
blackboard structure given the observed data.

First, KSs can be ordered by confidence. This provides
a gross ordering among KSs, but it can be difficult to know
in advance, or write a procedure that computes, how useful
a KS will be.

Second, certain nodes of the blackboard have more in-
terest to the user. For example, an intelligence analyst may
want to know whether two people have communicated, or
a military commander may want to know whether a certain
attack is a feint. LetV be a set of these nodes of interest.
We can choose to post the knowledge sources that provide
the mostinformationaboutV, in the sense of reducing its
Shannon entropy. The information gained from firing a KS
K is given byI(K) = H(V) − HK(V), whereH(V) is
the entropy ofV beforeK is posted, andHK(V) is the en-
tropy afterward. We can compute this directly by temporar-
ily postingK, computing the marginal distributionP(V),
and calculating its entropy.

Since this is probably too expensive to use if many KSs
are applicable, we can try to approximate this effect.

We can get a cheap approximation by simply looking at
the distance between where the KS will post andV, that is,
the length of the shortest undirected path between a node
used by the KS and a member ofV. Then we prefer the KSs
with the shortest distance, on the assumption that nodes that
are closer toV have more influence on its distribution.

Third, we can calculate the value of information and fo-
cus attention on information sources and inferences that
have high value. Value of informationVOI is defined with
respect to a utility function, as follows:

EU(α|E) = maxα

∑

i

U(Si)Pr(Si|E, α) (1)

The expected utility (EU) of an actionα given evidenceE is
argmaxα of the utility of outcomeSi times the probability
of the outcome given the evidence andα.

The value of a new piece of evidenceEj which may take
valuese1, e2, ...en is:

V I(Ej) = (
n

X

k

Pr(Ej = ek|E)EU(αek
|E, Ej = ek))−EU(α|E)

(2)

This equation defines the value of informationEj as the
expected utility of the best actionα given Ej minus the
expected utility of the best actionwithoutknowingEj .

4 Implementation

We have built a prototype ofAIID in the domain of military
analysis. We simulate military engagements at the battal-
ion level (roughly a thousand troops), using the Capture the
Flag simulator [12, 13]. The simulator includes such effects
as terrain, fog of war, artillery, combat aviation, and morale.

The data consist of reports about friendly and enemy
units, for example, “Unit Red-1 has sound contact with a
brigade-sized unit in the east.” The prototype does not ad-
dress the problems of identifying the number and compo-
sition of units from individual sightings, which are hard.
Rather, our problem is to infer the enemy commander’s
strategy and, more specifically, the objective of each enemy
unit.

The blackboard contains reports about enemy units and
hypotheses such as individual unit’s objectives, coordinated
actions between unit, and theater-wide objectives. We have
implemented 30 fragment KSs: for example, one computes
the relative combat strength of two opposing units, and oth-
ers model of military actions such as defeat (i.e., to attack
with overwhelming force), outflank, and fix. One procedu-
ral KS clusters enemy units by location, and hypothesizes
that the units are groups acting in close concert. This kind
of geometric reasoning is difficult to implement in a net-
work fragment.

One can see the Bayesian network built byAIID in Fig-
ure 5. The image in the top-right of the figure is a screen
dump from the Capture the Flag wargaming simulator. One
can see three hypothesized groups of units moving from
north to south. The associated Bayesian network has four
nodes near the bottom of the screen, three of which are hy-
potheses about the task type of an hypothesized group. Task
types areseize, attrit, fix, penetrate,andother. At the top of
the network is a utility node [4] which lays out the utilities
of committing the defending forces to axis green, axis blue,
or waiting. Below this utility node is a single node that
represents a conditional probability distribution over the al-
ternatives that the forces in the north are attacking along
axis blue, axis green, or other. The distribution over these
alternatives is conditioned on three nodes which represent
propositions relevant to the main attack axis. The first of
these is that the attack isdeterminedalong axis blue, green,
or other; the second is that the attackers intend topene-
trateon axis blue, green, or other; and the third proposition



looks at whether the attackers arecommitting reservesto
axis blue, green, or other.

Each of the evidence nodes in the bottom row of the fig-
ure has a value of information, calculated as described ear-
lier. At this state in the simulation, with forces more or less
evenly distributed in the north, the most valuable informa-
tion concern the commitment of reserves.

Fig. 5: Network structures at time 1

Some time later the forces in the north have moved fur-
ther south and are grouped more clearly around axes green
and blue (Fig. 6). It is still unclear where the main attack
will come, and althoughAIID is now sure the task type on
the left isattrit, it is uncertain about almost everything else.
The attacker’s commitment of reserves remains the most
valuable information.

Fig. 6: Network structures at time 2

Later on we see that the network structure has changed:
It no longer contains nodes to represent the hypothesis that
there is amiddlegroup of attacking units; the network now
contains nodes only for the left and right groups, corre-

sponding to axes green and blue. It is still unclear which
of these axes bears the main attack, and the commitment of
resources is still the most valuable information the system
could obtain.

Fig. 7: Network structures at time 3

(The three snapshots are from a real run ofAIID and Cap-
ture the Flag. However, we lack graphical tools for repre-
senting the networks, so we plugged the probabilities and
network structures into the Netica tool for visualization pur-
poses.)

5 Conclusion

We have presented an architecture for solving knowledge-
intensive problems under uncertainty by incrementally con-
structing probabilistic models. The architecture synthesizes
ideas from the older literature on blackboard systems and
the newer literature on construction of belief networks from
fragments. Blackboard systems are a method of incremen-
tally building symbolic models, while the network fragment
systems incrementally build probabilistic models. The con-
tribution of the current work is, in making the connection
between the two literatures, to point out that both have
good ideas the other hasn’t used: probabilistic models have
a principled method of reasoning under uncertainty, while
blackboard systems have focused on controlling the search
through the space of possible models.

It would be natural to extend the architecture to handle
influence diagrams, the largest requirement being influence
combination methods for decision and utility nodes. The
most important open questions in this architecture are better
methods of evidence combination and evaluating different
control methods. We would also like to apply this architec-
ture to other domains, both within intelligence analysis and
common-sense reasoning.
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