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Abstract

We propose a method for choosing the number of colors, or true gray levels, in an image.
This is motivated by medical and satellite image segmentation, and may also be useful for
color and gray scale image quantization, the display and storage of computer-generated holo-
grams, and the use of cooccurrence matrices for assessing texture in images. Our underlying
probability model is a hidden Markov random field. Each number of colors considered is
viewed as corresponding to a statistical model for the image, and the resulting models are
compared via approximate Bayes factors. The Bayes factors are approximated using BIC,
where the required maximized likelihood is approximated by the Qian-Titterington pseudo-
likelihood. We call the resulting criterion PLIC (Pseudolikelihood Information Criterion).
We also discuss a simpler approximation, MMIC (Marginal Mixture Information Criterion),
which is based only on the marginal distribution of pixel values. This turns out to be use-
ful for initialization, and also to have moderately good, albeit suboptimal, performance in
its own right. We apply PLIC to three examples: a simulated two-band image, a medical
segmentation problem, and a satellite image, and in each case it gives good results in practice.

Keywords: BIC; Color image quantization; Cooccurrence matrix; Hologram; ICM algorithm;
Image segmentation; Markov Random Field; Medical image; Mixture model; Posterior model
probability; Pseudolikelihood; Satellite image.
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1 Introduction

In this paper, we consider the problem of determining the number of colors or gray levels
to be used in presenting or interpreting an image. We are motivated primarily by problems
in medical image segmentation. There, a segmentation is often desired to delineate organs,
tumors or other features in pixelized X-ray, MRI, PET, CAT or other images. If the image is
segmented into too many colors, it may make the border finding problem harder, while too
few colors may result in border information being lost. The idea is thus to find the number
of colors needed to represent the information in the image (e.g. Umbaugh et al. (1993);
Hance et al. (1996)). Using no more than the number of gray levels needed facilitates the
presentation and analysis of mammograms, for example Byng et al. (1997).

A second area of application of this problem is color image quantization, the process
by which an original color image is mapped into an output image with a limited number of
colors, while attempting to preserve the image quality. This arises because real-world images
typically come in many colors, whereas output devices can often display far fewer. In some
cases, the number of colors used in an image can be reduced by a factor of 1000 or more
without much decrease in quality Dixit (1991). Cluster analysis has been extensively used to
find the best color mapping (Dixit (1991); Xiang and Joy (1994); Xiang (1997); Scheunders
(1997b); Scheunders (1997a); Papamarkos (1999)). Clearly, the fewer colors that can be used
without degrading the image, the better for many purposes. However, the number of colors
used has in general been subjectively defined by the user.

A third area of application is the display and storage of computer-generated holograms.
Bokor and Papp (1996) investigated the effect of the number of gray levels used on image
fidelity. They found, rather surprisingly, that image fidelity was maximized in their experi-
ments when binary holograms (with 2 gray levels) were used. Burr et al. (1998) showed that
5 gray levels is optimal for hologram storage in the absence of signal-dependent noise, but
that because of the presence of signal-dependent noise, 3 gray levels will most likely be the
optimal choice for a practical system. These results suggest that the use of small numbers of
gray levels is advantageous, and that the appropriate number may depend on the situation,
pointing to the need for a data-based way of choosing the number.

A fourth area of application arises in the use of cooccurrence matrices for assessing texture
in images (Haralick et al. (1973); Haralick (1979)). The cooccurrence matrix of an image at
distance d = (dy, dy) is the empirical discrete joint distribution of the pixel value at location

(z1,22) and the value at location (z1 + dy,x2 + do), after the observed pixel values have



been grouped into G bins or “colors”. Valckx and Thijssen (1997) considered the effect of
the number of bins on the effectiveness of cooccurrence matrices in characterizing textures
in echograms. They concluded that in gray-scale echograms with 256 gray levels, far fewer
were needed to differentiate textures; they found 64 bins to be enough.

There thus seems to be a widespread feeling in the literature that image analysis can
often gain by using a relatively small number of colors or “true gray levels”. Also, it often
seems that the underlying subject matter theory or knowledge is not enough to completely
determine the number of colors to be used, even though it may often suggest a reasonable
range. This points to the need to use the image data themselves to help make this deter-
mination. However, there is a striking lack of systematic data-based approaches to deciding
how many colors should be used. Umbaugh et al. (1992) used “automatic induction” to
determine the number of colors, but they did not describe the method in detail. Godtlieb-
sen and Chu (1995) used a method based on kernel density estimation from the marginal
gray-scale histogram.

Here we introduce a new, model-based, approach to this problem that uses approximate
Bayes factors. We model the image in terms of a Markov random field, and then each number
of colors considered corresponds to a different statistical model for the image data. By doing
this, we recast the problem of determining the number of colors in the image as a problem of
statistical model comparison, and for this we use the standard Bayesian approach of Bayes
factors. We propose an approximation to the Bayes factor based on the pseudolikelihood,
called PLIC (for Pseudolikehood Information Criterion).

We also discuss a simpler approach based on the marginal distribution of pixel values.
We use the fact that this is a finite mixture distribution, and we use approximate Bayes
factors to choose the number of colors. This is based on the idea of marginal mixture
EM segmentation Stanford (1999), and we call it MMIC (for Marginal Mixture Information
Criterion). This simpler approach is useful for initializing our preferred PLIC method, and
also works moderately well in its own right. The big difference between the two methods is
that MMIC takes no account of spatial structure, whereas PLIC takes account of it explicitly.

In Section 2, we review the Bayesian image models on which our work is based. In
Section 3, we review the basic ideas behind Bayes factors and give the marginal mixture EM
segmentation method. We then introduce the PLIC approximation. In Section 4, we give
three examples. The first is a simulated two-color example, and there PLIC gives a good
answer, whereas MMIC is less satisfactory; this illustrates the value of taking account of the

spatial structure. We then consider a medical image segmentation problem, and finally a



satellite image. In both of these latter examples, PLIC gives good answers.

2 Bayesian Image Modeling

2.1 Markov Random Fields With Noise

The model that underlies our work is a standard one in Bayesian image analysis: a Markov
random field with observation noise. We denote the value observed at pixel 7 by Y;, which
will be a scalar for gray-scale images, and a vector for color or multispectral ones. For
each observed Y;, there is a corresponding discrete-valued unobservable state, X;, which
determines the distribution of Y;; the set of all the X; values is called the “true scene”. Each
possible state for X; corresponds to a particular distribution of Y;. The Y; are assumed to be
conditionally independent given the X;, and so dependence among the Y; variables occurs
only through dependence among the X; values.

We impose a dependence structure on the X;, using a Markov random field to model the
true state of each pixel. This is a hidden Markov random field model because it is observable
only through the Y; values. Suppose that there are K possible states, so that X; is an integer
between 1 and K. We define I(X;, X;) as an indicator function equal to 1 when X; = X
and to zero otherwise. We let N(X;) be the set of neighbors of X;; here we will take these
to be the 8 pixels adjacent to pixel X;. We let U(N(X;), k) denote the number of points in
N(X;) which have state k, so that U(N(X;), X;) is the number of neighbors of pixel ¢ which

have the same state as pixel 2. For our work here we use the Potts model, defined as follows:

p(X) ocexp(¢ 3 1(Xi, X;)), (1)

in~j
where the sum is over all neighbor pairs, i ~ 7. This leads to the following conditional

distribution:

exp(¢U (N (X;), m))

P = mIN(X)0) = & b GUIN YD), B ?
The parameter ¢ expresses the amount of spatial homogeneity in the model. A positive
value of ¢ means that neighboring pixels tend to be similar, while a negative value would
mean that neighboring pixels tend to be dissimilar. If ¢ = 0, then the pixels are independent.
Note that pixels on the boundary of an image will not have a full set of observed neighbors.
For simplicity and because the boundary is only a small fraction of the data, we exclude

boundary pixels from the analysis except in their use as neighbors of interior pixels.



2.2 Parameter Estimation

The Iterated Conditional Modes (ICM) algorthm was introduced by Besag (1986). It can
be used as a method of image reconstruction when local characteristics of the true image
can be modeled as a Markov random field. In particular, this can be used with the model
described in (1). The algorithm begins with an initial estimate of the true scene X, and
proceeds iteratively to provide an estimate of the parameters of the conditional distribution
of Y; given X;, as well as ¢ and X.

An initial estimate of X, which is required for ICM, can be found through the simple
marginal mixture EM segmentation method Stanford (1999). This is based on the fact that
if, for example, the conditional distribution of Y; given X; is Gaussian, then the marginal
distribution of the observed pixel values, Y;, is a finite mixture of Gaussians with K com-
ponents. The EM algorithm Dempster et al. (1977) can be used to fit a Gaussian mixture
model to this distribution, and a maximum likelihood classification of each of the pixels into

one of the K components yields an initial estimate of X.

3 Approximate Bayes Factors for Choosing the Num-
ber of Colors or True Gray Levels: PLIC and MMIC

Our general approach to the problem of choosing the number of colors or true gray levels
in an image, K, is to recast it as a statistical model selection problem, and then to use the
standard Bayes factor approach to choose the appropriate model. The Markov random field
model in Section 2 is viewed as defining not one model, but several, one for each value of
K considered. In Section 3.1 we review the basic ideas of Bayes factors, in Section 3.2 we
introduce our pseudolikelihood-based approximation, PLIC, and in Section 3.3 we discuss

the simpler marginal mixture approximation, MMIC.

3.1 Bayes Factors

The Bayesian approach to model comparison and model selection is based on posterior model
probabilities. Given a set of models considered, {My : K = 1,..., Kna} and data D, the
posterior probability of model M is

p(D| Mk )p(Mk)
Y i p(D|Mp)p(My)’

p(Mk|D) = (3)



where p(D|Mf) is the integrated likelihood of model My and p(Mk) is the prior probability
of model My . Here we will take the models to be equally likely a priori, so that p(My) =
1/Kmax (K=1,..., Kmax)-

The integrated likelihood, p(D|M[), is defined by

p(DIMic) = [ p(D10xc, Mi)p(01c) e (4)
where 6k is the parameter (vector) for model My, p(D|0k, My) is the (usual) likelihood,
and p(fy) is the prior distribution. The quantity

 (DIM)
= p(DMy) ©)

is known as the Bayes factor for model My against model Mj. See Kass and Raftery (1995),

BKL

Raftery (1995), and Hoeting et al. (2000) for reviews of Bayesian model selection and Bayes
factors.
Evaluating the integral in (4) is often hard, and much of the research in this area has

focused on ways of doing it. A simple, but often reasonably good approximation is
2logp(D|Mk) ~ BIC (6)

where

BIC = 2logp(D|fx, M) — N log(dim(6x)), (7)

with éK being the maximum likelihood estimator of fx. Under regularity conditions that are
roughly those that guarantee consistency and asymptotic normality of éK, the error in this
approximation is O(1) regardless of the prior p(fx|Mk) (Cox and Hinkley (1978); Schwarz
(1978)). If, in addition, the prior p(fx|Mk) is a unit information prior (i.e. a multivariate
normal prior distribution centered at the MLE with variance matrix equal to the inverse
of the Fisher information matrix for one observation), then the error is O(N~'/?) Kass and
Wasserman (1995). Raftery (1999) argues that this prior, while proper, is conservative,
and so may be appropriate as the basis for a baseline reference analysis. Differences of 10
or more in BIC values between competing models are conventionally viewed as consituting

strong evidence for the favored model over its competitor Kass and Raftery (1995).

3.2 Penalized Pseudolikelihood Criterion: PLIC

We wish to conduct inference for K, the number of segments in the image, using the Bayesian

approach in Section 3.1. Here My refers to the Potts model (1) with K components. Thus
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O consists of ¢ and the parameters of the conditional distribution of Y; given X;. An initial
thought would be to use BIC, as defined by (7). A proposal along these lines was made by
Ji and Seymour (1996) for choosing between different Markov random field models in the
case where the true scene is directly observed and the number of colors or true gray levels is
known in advance. Neither of these is the case in the applications we have in mind, and Ji
and Seymour (1996) did not consider the choice of the number of segments. When, as here,
the true scene is not observed, this would require evaluation of the likelihood of the observed
data, L(Y|K), namely

LYIK) = p(V|X = 2, K)p(X = z|K). (8)

The sum in (8) involves all possible configurations of the hidden states. With N pixels and K
states, there are KV possible configurations, which is huge, making this approach intractable.
Instead, we approximate the likelihood term by a pseudolikelihood proposed by Qian and
Titterington (1991a) and Qian and Titterington (1991b), which maintains computational
feasibility.

The basic idea of this pseudolikelihood is that instead of summing over all possible
configurations of X, we consider only configurations that are close to the ICM estimate of
X, denoted by X. Specifically, we consider each pixel Y; in turn and condition on X_;, which
is X excluding the value at X;. We then obtain the following conditional likelihood, in which
N(X;) denotes the neighbors of X;:

LYi|X_i, K) =Y p(Y;|X; = j)p(X; = jIN(X5)). 9)

=1
The first term in the sum, p(Y;|X; = j), simply requires evaluation of the conditional
density of Y; given X;; the second term, p(X; = jIN(X;)) is evaluated using (2). The
conditional likelihoods from (9) are combined to form the Qian-Titterington pseudolikelihood

of the image, as follows:

L (V1K) = [ F(1%-0, ) (10
:HZf(Y;'|Xi:j)p(Xi:.7'|N(Xi)a<£)- (11)

We replace the intractable L(Y'|K) by the easily computable Ly (Y|K) from (11), to

obtain our new approximation

PLIC(K) = 2log(L¢(Y|K)) — Dg log(N). (12)

6



Ideally, one could compute PLIC(K) for a large range of K values and then choose K to
maximize PLIC(K). However, we do not expect the model assumptions to hold for values
of K very far from the true value. Because of this, we adopt a sequential approach. We
begin by computing PLIC(K) for K = 1, and then incrementally increase the value of K.
At each step, we compare PLIC(K) with PLIC(K — 1), and stop the process when the
smaller model is preferred. In other words, as we increase K incrementally from K =1, we

take the first local maximum of PLIC(K) to be our choice for the number of segments K.

3.3 MMIC: A Simpler Bayes Factor Approximation for Initializa-
tion and Fast Computation

A faster approximate Bayes factor approach to choosing the number of colors or true gray
levels is available by just considering the empirical marginal distribution of pixel values
and ignoring their spatial locations. This is much faster computationally than the PLIC
method. It turns out to give results that are often reasonable at least for initializing the
more demanding PLIC method, although it has the clear disadvantage relative to PLIC that
it does not take account of salient spatial information.

If the data are generated by the Markov random field model (1), then the marginal
distribution of pixels is a finite mixture of K distributions, each equal to the conditional
distribution of Y; given that X; takes on one of its K possible values. The basic idea of
MMIC is to compute the BIC value for each number of components in this finite mixture
distribution.

Suppose we have observations Y = (Y7, ..., Yy) from a mixture model with K components.
Let P; denote the mixture proportion of the jth component. Let ® be the mixing density (so
that, for example, for a Gaussian mixture, ® is a single Gaussian density) with 8 = (61, ..., k)
giving the parameters for the K components. The marginal density for a single observation,
Y;, is

FYilK,0) = il’@(Yil%)- (13)

j=1
Then the loglikelihood for Y, assuming that all of the Y; are independent, is

log (Y[, 8) = 3 log(Y_ F;.2(Y:16))). (14)

After choosing € to maximize the loglikelihood from (14), the maximized loglikelihood can

be used in the BIC formula (7). We refer to the resulting approximation as the Marginal
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Mixture Information Criterion (MMIC):
MMIC(K) = 2log pure(Y|K) — di log(N), (15)

where dg is the number of parameters in the mixture model with K components.

We view MMIC as a heuristic guideline rather than a rigorously justified approximation,
because the likelihood on which it is based is correct if the Y; are independent, which is
not the case, and also because the usual regularity conditions for BIC to approximate the
Bayes factor do not hold for mixture models. However, it is known that choosing a model
based on BIC produces consistent density estimates when the data are independent and one-
dimensional Roeder and Wasserman (1997), and a proof of the consistency of BIC as a model
selection criterion for mixture models has been produced Keribin (1998). In addition, BIC
has given good results for choosing the number of components in a wide range of applications
of mixture models (Roeder and Wasserman (1997); Dasgupta and Raftery (1998); Fraley and
Raftery (1998); Stanford (1999); Stanford and Raftery (2000)).

4 Examples

4.1 Simulated Two-Segment Image

The simulated two-segment image shown in Figure 1 is made up of two solid bands, with
mean greyscale values of 120 and 140. Independent Gaussian noise with mean 0 and standard
deviation 10 was added to each pixel, and then the values were rounded to integers.

The two bands are close enough together on average that the marginal information alone
makes it hard to see that there are actually two segments here. The marginal histogram of
the pixels in the simulated image is shown in Figure 2, and this is quite unimodal. Visually
it is quite clear from the image, Figure 1, that there are two bands, but this is due to the
spatial arrangement of the pixels; this is a case where there should be advantage to taking
account of the spatial structure.

Table 1 shows the PLIC and MMIC values for this image. PLIC, which takes account of
the spatial information, correctly and quite decisively determines that there are two segments,
while MMIC identifies only one segment (although the difference of about 3 between the
MMIC values for one and two segments would be viewed as indecisive).

Compare this to the scrambled image in Figure 3, which is a random reordering of the
pixels from Figure 1. Since these two images contain exactly the same pixels (just in a

different order), their marginal information will be the same. Thus the histogram of the
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Figure 1: Simulated Two-Segment Image.
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Table 1: PLIC and MMIC Results for the Simulated Two-Segment Image and the Scrambled
Image. The number of segments preferred by a method for the given image is shown in
boldface.

Two-Segment Image Scrambled Image
Segments [0) PLIC MMIC [0) PLIC MMIC
1 - -11731.28 —12998.79 - —11756.49 —12998.79
2 2.06 —10784.69 -13002.17 | 0.05 -11833.84 -13002.17
3 0.45 -10948.62 -13021.64 | 0.19 -11868.36 -13021.64

values in the scrambled image, Figure 3, is the same as for the original image in Figure 1,
and so is also shown in Figure 2. Table 1 shows that both PLIC and MMIC choose one
segment for the scrambled image — PLIC quite decisively and MMIC just barely. From most
points of view, this is the correct answer in this case. Again, PLIC seems to perform better,
because it chooses the right answer decisively, whereas MMIC is uncertain between the two
answers.

The estimated ¢ values used in computing PLIC are also shown in the table. The large
¢ for the two segment fit of the two-segment image indicates that a large degree of spatial
association is found; this results in a much higher value of PLIC than is obtained for either

one or three segments.

4.2 Medical Image Segmentation: Dog Lung

Figure 4 shows a PET image of a dog lung. This image was obtained from Dr. H. T.
Robertson at the University of Washington Division of Pulmonary and Critical Care. The
goal of the analysis here is to delineate the lung in the image automatically.

It is clear from Figure 4 that the actual image area is circular, with the corners of the
image filled in with a constant grey value; this reflects the way the PET image is taken. This
sort, of artifact can be removed quite easily with a mixture model; one of the components
converges to a spike for that grey level, effectively separating it from the rest of the data.
This can be clearly seen in the marginal histogram of the image shown in Figure 5.

Table 2 shows that PLIC quite decisively chooses four segments for this image. In the
context of PET imagery, the choice of four segments is quite reasonable for this image. Two
segments are needed for the background: one to model the spike (due to the corner artifact)

and one for the general background. Since the image is constructed based on radioactive
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Figure 3: Scrambled Version of Figure 1.
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Figure 4: PET Image of a Dog Lung, Before Processing.
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Figure 5: Marginal Histogram of the Dog Lung Image.

emissions from gas in the lung, it is not at all surprising to see two segments for the lung
itself to account for the high gas density in the interior of the lung and the somewhat lower
gas density around the periphery. For this case, MMIC also chooses 4 segments using only
the marginal greyscale values from the image.

The results of the marginal mixture EM segmentation are shown in Figure 6. This does
a reasonable job of separating the lung from the background, especially given that it makes
no use of spatial context. It provides a good initialization for the segmentation methods that

do take account of spatial context.

Table 2: PLIC and MMIC Results for the Dog Lung Image. The preferred number of
segments is shown in boldface for each method.

Segments ¢ Logpseudolikelihood PLIC MMIC
1 - -80641.02 -161311.13 -166007.1
2 1.14 -61081.56 -122221.33 -137193.0
3 1.20 -59542.47 -119172.25 -137019.8
4 1.67 -50961.33 —102039.06 —128746.2
) 1.07 -52444.73 -105034.97 -135323.5
6 1.11 -52090.24 -104355.08 -135333.6

12



40 60 80 100 120

20

0 20 40 60 80 100 120

Figure 6: Marginal Mixture EM Segmentation of the Dog Lung Image into Four Segments.

The ICM refinement, shown in Figure 7, does a good job of reducing clutter in the image,
and gives a qualitatively satisfactory answer. We also applied morphological smoothing
Matheron (1975); Serra (1982) to Figure 7; the final result is shown in Figure 8. This gives
additional smoothing to the outer edge of the lung, and it also removes most of the other
clutter in the image. The small spot separate from the lung and below could be easily
removed by simply considering the lung to be the largest connected component. The small
void in the center of the lung is not artifactual; it is real.

We shared our results with the researchers who provided us with this image and asked for
their subjective evaluation of the segmented image. They found that our final segmentation
provided a good delineation of the lung as a region of interest for further analysis and felt
that the segmentation based on four segments was more useful than those based on three or
five segments, thus providing some clinical validation of our method in this case.

The final result shows that this segmentation method has promise for the purpose of
automatically processing a database of lung images to separate out the region of interest
(the lung) from the background. Currently, the most widely used method for this sort of
segmentation is for a human expert to manually outline the lung with an interactive computer
program, a process which is quite tedious and can take a long time for a large database of

images. The automatic segmentation algorithm can obviate the need for the manual process,
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Figure 7: Segmentation of the Dog Lung Image into 4 Segments by the ICM Algorithm. The
algorithm was initialized by the marginal mixture EM segmentation result.
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Figure 8: Final Segmentation of the Dog Lung Image into 4 Segments After Morphological
Smoothing (opening and closing, conditional on the edge pixels).
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Figure 9: Satellite Image of Washington Coast

requiring only human inspection of the results.

4.3 Satellite Image Segmentation: Washington Coast

Figure 9 is a satellite image of a section of the Pacific coast of Washington state’s Olympic
peninsula; this image, provided by the US Geological Service as part of the National Aerial
Photography Program (NAPP), was obtained from the Terraserver web page, terraserver.microsoft.com.
The resolution is 8 meters per pixel, and it is a 256-level greyscale image.

Table 3 shows that the maximum value of PLIC occurs at K = 6 segments, so we regard
this as the optimal choice of K for this model. For comparison, MMIC values are also shown;
the maximum occurs at 4 segments. The marginal histogram of this image is shown in Figure
10; the large spike is due to the small variance in the greyscale value of the water.

For the 7 segment case, the EM algorithm led to a solution with only 6 segments. This
causes convergence problems and numerical instability; if one of the mixture proportions
approaches zero, the meaning of the corresponding estimates of mean and variance becomes
unclear. These problems make the results for the 7 segment case somewhat unreliable; we
regard this simply as evidence that the 7-segment model does not fit well.

The 6-segment results of the marginal mixture EM segmentation are shown in Figure

11. The water is quite well classified as a single segment, while the land is mostly contained
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Table 3: PLIC and MMIC Results for the Washington Coast Image. The 7 segment case,
noted with {, suffered convergence problems because the EM algorithm led to a solution
with only 6 segments; this is discussed in the text. The favored result from each method is
shown in boldface.

Segments ¢ Logpseudolikelihood PLIC MMIC
1 - -64521.78  -129072.20 -133475.0
2 1.23 -56721.70  -113500.70 -125273.0
3 0.99 -45975.06 -92036.07 -117607.8
4 0.99 -45514.45 -01143.49 —117528.6
5 0.99 -42993.06 -86129.36 -117564.9
6 1.00 -42763.60 —85699.10 -117537.5
7 0.94% 71772.18%  -143744.89t  -123280.5%

Percent
0.06 0.08

0.04

0.02

0 50 100 150 200 250
Greyscale

0.0

Figure 10: Marginal Histogram of the Washington Coast Image.
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Figure 11: Marginal Mixture EM Segmentation of the Washington Coast Image Into Six
Segments.

in two segments. The tideline accounts for most of the variability in the image. Figure 12
gives the ICM refinement of the segmentation; we can see that much of the noise in the land
interior has been smoothed out, while the tideline is still quite clear.

In our final ICM segmentation (Figure 12), the water is well-characterized by the darkest
segment. The second-darkest segment corresponds to shallow tidewater near the bright
beach, as well as combining with the third-darkest segment to characterize most of the dry
land. Although the second-darkest segment comprises both dry land and shallow tidewater,
these two land types are spatially separated by the beach. The two brightest segments
correspond to the beach, which is quite reflective. The third-brightest segment is transitional;
it fills in between dry land and water in regions where the beach is not evident, as well as

capturing the small hill in the upper right hand corner of the image.

5 Discussion

We have proposed an approximate Bayesian method for determining the number of colors or
gray levels in a noisy image from the image data themselves. This number has usually been
either predetermined by the user or chosen in an ad hoc manner, but the literature shows

that there are many instances where a more formal, data-based, method could be useful. Our
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Figure 12: Segmentation of the Washington Coast Image into Six Segments Via ICM.

method works well in several examples, and seems to be potentially useful in the automatic
segmentation of medical and satellite images, and perhaps also for color and gray-level image
quantization, and the operational use of cooccurrence matrices for characterizing texture.
Its use in these latter contexts remains to be explored, however.

Our method is fully defined for multispectral and color images, but we have shown ex-
amples of its use only for gray-scale images. For multispectral images, the noise distribution
would often be taken to be multivariate normal. For initialization, the marginal mixture EM
segmentation method is still available, for example using model-based clustering Fraley and
Raftery (1998). If the number of pixels is too large for this to be efficient, a subsample of the
pixels could be used for the clustering, and then discriminant analysis applied to classify the
remaining pixels Banfield and Raftery (1993), or an efficient method based on the minimal
spanning tree could be used Posse (2000).

Our approach has been to compute approximate Bayes factors using the ICM algorithm
and the pseudolikelihood of Qian and Titterington (1991a). Another approach would be to
carry out a fully Bayesian analysis of the image model using Markov chain Monte Carlo, as
suggested by Besag et al. (1991), and then to estimate the integrated likelihood using one
of the available methods for doing this from MCMC (e.g. Newton and Raftery (1994); Chib
(1995); Raftery (1996); DiCiccio et al. (1997); Oh (1999)). This would conform more fully

18



to the Bayesian paradigm, but could be extremely expensive computationally.

Our method could also be used for choosing between competing higher-order interaction
Markov random field models for texture in images, e.g. between special cases of the Chien
model of Descombes et al. (1995) and Descombes et al. (1996) or the models of Tjelmeland
and Besag (1998). In some situations one might expect there to be a relationship between
the number of colors used and the complexity of the texture model needed to describe the
resulting pattern. Our approach could be generalized to choosing both simultaneously. This
could be done by identifying each combination of texture model and number of colors with
the corresponding probability model, and then comparing all the resulting probability models

using approximate Bayes factors, calculated using methods based on those described here.
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