
162

Single-unit recordings from behaving monkeys and human
functional magnetic resonance imaging studies have continued
to provide a host of experimental data on the properties and
mechanisms of object recognition in cortex. Recent advances 
in object recognition, spanning issues regarding invariance,
selectivity, representation and levels of recognition have allowed
us to propose a putative model of object recognition in cortex.
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Abbreviations
FFA fusiform face area
fMRI functional magnetic resonance imaging
IT inferotemporal cortex
Max maximum
PFC prefrontal cortex
RBF radial basis function
V1 primary visual cortex
V2 secondary visual cortex

Introduction
Object recognition is fundamental to the behavior of higher
primates. It is also the most remarkable achievement of the
visual cortex and one that probably greatly influences its
functional architecture. The visual system rapidly and
effortlessly recognizes a large number of diverse objects in
cluttered, natural scenes — a very difficult computational
task. Here, we review progress in this field over the past
two years. We do so in the context of a recent quantitative
model, which helps us summarize and organize existing
data as well as interpret contradictory, and occasionally ill-
defined, claims. We organize the discussion of the new data
around the four key issues of object recognition: invariance,
selectivity, object representation and levels of recognition.

Invariance
Simple cells in primary visual cortex (V1) have small 
receptive fields and respond preferentially to oriented
bars. Progressing along the ventral stream — thought to
play a central role in object recognition in cortex [1,2] —
neurons show an increase in receptive field size and in the
complexity of their preferred stimuli [3]. At the top of the
ventral stream, in the inferotemporal  cortex (IT), cells are
tuned to complex stimuli such as faces [4–7]. A hallmark of
these IT cells is, in addition to selectivity, the robustness
of their firing to stimulus transformations, such as scale 

and position changes [1,2,8,9]. In contrast, later studies
[8,10–12] have shown that most neurons show specificity
for a certain object view or lighting condition. In particular,
Logothetis et al. [8] trained monkeys to perform an object
recognition task with isolated views of novel objects
(paperclips). When recording from the animals’ IT, they
found that the great majority of neurons selectively tuned
to the training objects showed tight tuning to a specific
view of one of the training objects (a few units showed
greater tolerance, in agreement with earlier predictions
[13]). The view-tuned neurons also showed an average
scale invariance of two octaves. That is, the neurons still
responded at a higher level to the scaled image of their
preferred paperclip than to other paperclips, even when
stimulus size was varied over two octaves. Furthermore,
the view-tuned neurons had an average translation invari-
ance of 4° (for typical stimulus sizes of 2°) [14], which is
much smaller than previous reports, but large for any 
computational mechanism. A very recent study (JJ DiCarlo,
JHR Maunsell, personal communication), using different
stimuli and training paradigms, reports translation invari-
ance from one view of less than 3°, pointing to a possible
influence of training history and object shape on invariance
ranges. Human functional magnetic resonance imaging
(fMRI) data have shown a similar pattern of invariance
properties for the lateral occipital cortex, a brain region in
human visual cortex central to object recognition and
believed to be the homolog of monkey area IT [15–17].

From a computational point of view one might ask the
question: which object transformations can be estimated
from one versus several object views? It is well known that
only a very small number of views are required to generalize
object recognition across different uniform transformations
[18• and references therein]. Scaling and translation in the
image plane, for instance, solely require a single object
view, as they preserve the original information of an image.
In this case, it is possible to dispense with the need for
additional examples of different sizes or positions in the
field of view. In sharp contrast, multiple views are generally
required to recognize objects subjected to three-dimen-
sional shape transformations, whether actual — such as the
rotation of objects in depth — or induced — such as those
resulting from illumination changes. The frontal view of
a novel face, for instance, does not contain sufficient 
information to predict the profile of that face. 

Computational considerations such as these lead to a 
hierarchical architecture of a system for object recognition
that instantiates the basic facts about the ventral pathways
of the brain [18•]. The model shown schematically in
Figure 1 reflects the general organization of visual cortex
in a series of layers from V1 → IT → prefrontal cortex
(PFC). Invariance properties emerge from the functional
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organization of two stages of processing. The first, extending
from V1 to IT, is comprised of units showing the same
scale and position invariance properties as the view-tuned
IT neurons described by Logothetis et al. [8] using the
same stimuli. Computationally, this is accomplished by a

scheme best explained by taking striate complex cells as
an example: invariance to changes in the position of an
optimal stimulus (within a range) is obtained by means of
a maximum (Max) operation performed on the simple cell
inputs to the complex cells. Both simple and complex cells

Figure 1
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Model of the architecture of recognition in the cortex [18•]. The model
combines and extends several recent models [9,13,14,55,56] and
effectively summarizes many experimental findings. A view-based module
[14], consisting of a hierarchical extension of the classical paradigm of
building complex cells from simple cells [57]. The hierarchy of layers
have two different types of pooling mechanisms. The first layer in V1
represents linear oriented filters similar to simple cells; each unit in the
next layer pools the outputs of simple cells of the same orientation but at
slightly different positions (scales). Each of these units is still orientation-
selective but more invariant to position (scale), similarly to some complex
cells. In the next stage, signals from complex cells with different
orientations but similar positions are combined to create neurons (S2)
tuned to a small dictionary of more complex features. The next layer is
equivalent to complex cells in V1: by pooling together signals from S2,
cells of the same type but at slightly different positions, the C2 units
become more invariant to position (and scale) but preserve feature
selectivity. They may correspond roughly to V4 cells. In the model, the
C2 cells feed into view-tuned cells (Vn), with connection weights that are
learned from exposure to a view of an object. There may be more levels
in this hierarchy, after the C2 layer. The key idea in the view-tuned
module alternates two types of pooling: the first to provide increasing
pattern selectivity (blue lines in the inset) and the second (founded on
the Max operation; dashed green lines in the inset) to provide invariance.
Invariance to translation is achieved by pooling over afferents tuned to

different positions, and invariance to scale (not shown) is accomplished
by pooling over afferents tuned to different scales. The output of the
view-based module is represented by view-tuned model units  that
exhibit tight tuning to rotation in depth (and other object-dependent
transformations, such as illumination and facial expression) but are
tolerant to scaling and translation of their preferred object view. Notice
that the cells labeled here as view-tuned units, encompass, between the
anterior IT (AIT) and posterior IT (PIT), a spectrum of tuning from views to
complex features: depending on the synaptic weights determined during
learning, each view-tuned cell becomes effectively connected to all or
only a few of the units activated by the object view [20]. The second part
of the model starts with the view-tuned cells. Invariance to rotation in
depth is obtained by combining, in a learning module, several view-tuned
units tuned to different views of the same object [13], creating view-
invariant units (On). These, as well as the view-tuned units, can then
serve as inputs to task modules that learn to perform different visual
tasks such as identification/discrimination or object categorization. They
consist of same generic learning circuitry (similar to an RBF network
[13]) but are trained with appropriate sets of examples to perform
specific tasks. In addition to the feed-forward processing, there are likely
feedback pathways for top-down modulation of neuronal responses
throughout the processing hierarchy and to support the learning phase.
All the units in the model represent single cells modeled as simplified
neurons with modifiable synapses.
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are assumed to have the same optimal orientation but at
different positions. The key idea is that the two steps —
filtering followed by a Max operation — are equivalent to
a simple but powerful signal processing technique: select
the peak of the correlation between the signal and a given
matched filter (here the correlation is over either position
or scale). The model alternates layers of units combining
simple filters into more complex ones with layers using the
Max operation, in order to build invariance to position and
scale while increasing pattern selectivity. In the second
part of the architecture, learning from multiple examples,
represented by view-tuned units, leads to view-invariant
units, as well as neural circuits performing specific tasks.
The key idea here is that interpolation and generalization
can be obtained by simple networks that learn to combine
the output of cells, each broadly tuned to the features of an
example image [8,13]. Simple learning networks of this
type can learn to identify an object across different view-
points [13] and illuminations, as well as categorizing objects
across exemplars of a class [19].

The model described above predicts several experimental
results and provides interesting perspectives on still other
data and claims. For instance, the model accounts (see
[14,18•,19,20]) for the response of tuned IT cells to multiple
objects in the receptive field [21], scrambled objects [22],
cluttered [23] and mirror views [2]. It also shows a degree
of performance roughly in agreement with physiological
and psychophysical data obtained from specific tasks.
These include the cat versus dog categorization task
described by Freedman et al. [24•], object identification,
gender classification and possibly the face habituation
effect of Leopold et al. [25], as well as the effects of contrast,
mirror and figure-ground reversal described by Baylis and
Driver [26]. Preliminary data [27] support a specific 
prediction of the model — the existence of a Max-like
pooling operation to increase invariance (see Figure 1). 

A key function of models is to clarify basic issues and the
interpretation of relevant data. In the following, we will
use the model shown in Figure 1 to discuss three focal 
topics of recent research in object recognition: the feature
tuning of neurons in higher visual areas, the nature and
organization of object representation, and the relationship
between identification and categorization tasks.

Selectivity
Invariance is one requirement for object recognition, the
other one being selectivity. Several studies have estab-
lished that IT neurons can become tuned to task-relevant
objects and their views [8,28,29•,30•] or to objects in the
monkey’s environment [10], suggesting that the activity of
these neurons may be part of the representation of objects
occurring in an animal’s environment. The preferred stimuli
of neurons in intermediate stages of the ventral stream are
less clear, possibly because of the difficulty of knowing
which stimuli to use to probe their neural selectivity.
Reports of preferred features of neurons in V4, the visual

area preceding IT in the ventral pathway, vary depending
on the set of stimuli used to probe responses, including
cartesian gratings [31], polar and hyperbolic sinusoidal
gratings [32], and contour features [33]. In the secondary
visual cortex (V2), a recent study [34] has reported neuronal
preferences to complex stimuli such as arcs, intersecting
lines and non-cartesian gratings. 

Instead of probing neuronal tuning with a fixed set of 
stimuli, another set of studies [1,3,35–37] has employed a
‘simplification procedure’ in an effort to define the features
crucial to activate a neuron. In this approach, a complex
natural stimulus (such as a face) to which the neuron 
under study responds, is progressively ‘simplified’ (e.g. by
removing color or texture, or simplifying complex shapes
into simpler geometric primitives) such that the magnitude
of the response remains the same as that elicited by the
original, unsimplified object. The stimulus that cannot be
‘simplified’ further without decreasing the firing rate is
then defined as the effective stimulus for that cell. A study
using this paradigm [3] has reported an increase in feature
complexity from area V2 to anterior IT. However, a  recent
IT optical imaging study [37], supported by single cells
recordings, demonstrates the fundamental difficulty of
determining a neuron’s preferred feature in higher visual
areas. These authors report that, in fact, in the majority of
cases, ‘simplifying’ a stimulus led to the activation of 
additional IT neurons relative to the original ‘complex’
stimulus. Interestingly, the model described in Figure 1
does actually qualitatively predict what is observed —
neurons tuned to a dictionary of features at different levels
of complexity. Moreover, preliminary simulations suggest
that, for IT model units, the effect of the ‘simplification’
procedure may well lead to the observations  reported by
Tsunoda et al. [37].

Representation
Related to the issue of neuronal tuning is the question of
the precise nature of object representation in cortex. It has
recently been put forward, on the basis of a set of human
fMRI studies, that some object classes — faces [38], places
[39] and body parts [40•] — are processed by distinct 
modules in cortex. Another fMRI study [41•] has shown that
objects of a certain class (e.g. faces) evoke a distributed
pattern of activity that is not confined to the aforemen-
tioned specialized modules (e.g. the fusiform face area
[FFA] [38]), and that activation patterns outside a specific
module are sufficient for object categorization. Some data,
therefore, appear to argue for a ‘modular’ framework of
object representation in cortex, where specific brain areas
are posited to perform computations unique to the object
class at hand. Other data, however, support a model in
which objects from different classes are represented in a
distributed fashion, and their recognition is founded on the
same computations.

The model represented in Figure 1 supports the latter
claim. Figure 2 helps to reconcile the two sets of data.
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Model IT units have preferred afferent activation patterns
that can represent a full or partial view of an object [20]. At
the highest levels of the model, the tuning ranges from the
one described by Tanaka [1] to the view-tuning described
for paperclips and faces. Contrary to some claims [17], both
the model and the experimental data [42••,43] suggest 
that faces are not special. In fact, the model predicts the
existence of neurons tuned to moderately complex features
and cells tuned specifically to views of objects, depending
on task training and difficulty [44]. In doing so, it suggests
that the distinction between ‘complex features’ and
‘objects’ is largely semantic: during training, a cell may
well become tuned to a feature that is diagnostic for the
object rather than to a full view, depending on the 
specificity and number of its afferents. What is relevant for
object recognition is that the objects to be discriminated
produce distinct activation patterns. 

From a computational point of view, groups of neurons
responding to representatives from different object classes
do not have to be segregated, but are likely to be inter-
digitated. Moreover, the same neuron can respond to
objects from different classes, depending on their visual
similarity (Figure 2). Because the activity of one fMRI
voxel is typically the average of hundreds of thousands of
neurons, a strong activation of the FFA for faces would
argue for a higher density of face neurons in that part of
cortex, perhaps owing to the great cognitive importance 
of faces. (For cautionary notes about the interpretation of
fMRI images see [45••].) However, subjects with substantial
expertise for other object classes could be expected to
have a greater number of neurons tuned to objects from

their field of expertise [46], and correspondingly might
show significant activation of the same cortical regions for
these objects. Indeed, in bird and car experts, brain areas
overlapping with the FFA have been found [47] to be
specifically activated by birds and cars, and subjects
trained to recognize objects from a novel class of objects
(‘greebles’) showed activation of the FFA by the training
objects [48•].

What is the mechanism that permits the usage of similar
neural circuits for representing objects as diverse as faces,
birds and cars? The architecture and operational principles
of our model offer one putative mechanism (for detailed
computational simulations, see [19,46]). A particular
object, say a specific face, will elicit different activities in
the view-specific Vn and object-specific On cells of Figure 1
(an example of which is shown in Figure 2). Thus, the
memory of the particular face is represented in an implicit
way, by a sparse population code through the activation
pattern over the coarsely tuned Vn and On cells.
Discrimination, or memorization of specific objects, can
then proceed by comparing activation patterns over the
strongly activated object-tuned or view-tuned units [46]
tuned to a small number of ‘prototypical’ faces [49]. For a
certain level of specificity, only the activations of a small
number of units have to be stored, forming a sparse code.
This is in contrast to activation patterns at lower levels,
where units are less specific and hence activation patterns
tend to involve more neurons. In a similar fashion, neural
circuitry for categorization, located putatively in the PFC
[24•], can be trained [19] to receive input from relevant
object-tuned units. For instance, a unit that categorizes

Figure 2

Tuning of a model face unit. The unit is a view-
tuned unit as the Vn shown in Figure 1, tuned
to the leftmost face on the bottom axis. The
blue line shows the unit’s response changes
as the stimulus is gradually morphed away
from the preferred stimulus to another face
(along the axis). The unit’s response changes
gradually with changes in the stimulus,
permitting subordinate level discrimination
(especially when using a population code
consisting of several units tuned to different
representatives of the class [46]). The same
unit also responds to the animal stimuli shown
on the right (green crosses), but at a lower
level than to the faces. This permits a coarse
categorization of a stimulus as an animal
stimulus, on the basis of the face unit’s firing
[41•]. Units such as these can form the basis
of a categorization circuit [19]. Face images
courtesy of T Vetter [58].
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cats versus dogs would receive input from units responding
to some individual cats and dogs. This is in line with a very
recent finding that PFC units show more category tuning
than IT neurons, in a macaque trained to categorize cats
and dogs [50]. 

In conclusion, the model depicted in Figure 1 suggests
that the same basic circuitry, replicated many times in IT,
can learn from visual experience to represent and recognize
different types of objects. Computations do not need to be
fully hardwired by genes and specialized for specific classes
of objects.

Levels of recognition
An object can be recognized at different levels — a face
can be recognized as a face, but also more specifically as 
‘a male face’, ‘Tommy Poggio’s face’ or ‘Tommy Poggio’s
smiling face’. It has been common in cognitive science to
assume that recognition of an object at different levels
relies on different computational mechanisms [51,52]. In
particular, it has been proposed that ‘subordinate level’
recognition (identification) is derived from ‘configura-
tional’ judgements, whereas ‘basic level’ categorization 
(a face? a dog? a car?) relies on a qualitative representation
formulated on the presence or absence of features. 

However, as Figure 1 makes clear and as we have pointed
out earlier [18•], all supervised recognition tasks — in
which the subject is trained with labeled examples — are
identical from a computational point of view: they all
involve a classification established on positive and 
negative exemplars. Indeed, it is not clear why different
computations should be required to recognize a face at the
subordinate level or, for example, to determine its gender.
In fact, it is worth noticing that the basic radial basis 
function (RBF) network [8,13] replicated at different levels
in Figure 1 (e.g. from view-tuned to view-invariant units),
can learn to perform different tasks from the same set of
training images. For instance, units tuned to distinct
expressions of a face can feed into an identification unit
that responds to a specific face; the same units can also be
used with different synaptic weights by an expression unit
that has learned to respond, say, to smiling. In line with the
model in Figure 1, recent findings indicate that the FFA is
involved not just in subordinate level face recognition but
also in face detection [53], arguing against a specialization
of brain areas for recognition tasks, such as subordinate
level recognition independent of object class. The problem
with many experiments investigating the relationship
between categorization and identification that claim an
advantage of basic level recognition over subordinate level
recognition, is that the tasks used for the different recogni-
tion levels are of differing difficulties. Discriminating a
face from a chair (categorization) is a much easier task than
discriminating between two faces (identification), as the
latter are more similar to each other. Assuming that 
physically similar stimuli produce similar neuronal activation
patterns, and that the ability to discriminate between two

stimuli requires a certain level of evidence (in the form of
firing rate differences), a finer discrimination would
require the accumulation of evidence over a longer time
period. A prediction would be that if categorization and
identification tasks were equalized in terms of difficulty,
they would take a similar amount of time. From the point
of view of the model represented in Figure 1, the two tasks
are computationally equivalent and can be learned with
equal ease.

Conclusions and future directions
Most of the old and new data on object recognition in 
cortex can be summarized and interpreted in a quantitative
and consistent way, by a simple hierarchical, mostly feed-
forward architecture as shown in Figure 1. Of course, many
aspects of how object recognition is performed are left
open by simple models of this kind. Furthermore, future
experiments may require modifications and extensions of
this model and still others may falsify significant parts of it.
For instance, data on the neural correlates of border ownership
in V2 [54•] are hard to incorporate in feed-forward models,
especially if they hold true for natural scenes. In any case,
the road ahead will require close interactions between
experimental and computational work. 
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