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ABSTRACT The problem of deciding whether the mean of an unknown distribution is in a set
A or in its complement based on a sequence of independent random variables drawn according to
this distribution is considered. Using large deviations techniques, an algorithm is proposed which
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A refined decision procedure is also presented which, given a countable decomposition of A, can
determine a.s. to which set of the decomposition the mean belongs. This extends and simplifies a
construction by Cover.
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1 Introduction

Consider the following hypothesis testing problem: Let zl, X2,... denote a sequence of i.i.d.
random variables with marginal law PT, with support [0,1]. The mean of PT, denoted fIT, is
known to belong either to a (known) set A which has measure 0 or to its complement B = Ac. We
want to decide, based on the observation sequence Z1, 2... , Xn whether PfT E A or not.

This problem was considered by Cover in [1], where he treated the case of A = Q[0,1], the set of
rationals in [0, 1], and more generally the case of countable A. He proposed there a test which, for
any measure with fit E A, will make (a.s.) only a finite number of mistakes whereas, for measures
with fT E B\N, the test makes (a.s.) only a finite number of mistakes, where N is a set of Lebesgue
measure 0. Various extensions of this result were considered by Koplowitz [3], who showed various
properties of sets A which allow for such a decision and gave some characterizations of the set N.

In this note, we extend the result of [1] by allowing the set A to be uncountable, not necessarily
of measure 0, such that it satisfies the following structural assumption:

Assumption There exists a monotone sequence of sets Am increasing to A and an appropriate

positive sequence E(m) -- m-*oo 0 such that, for each m, the open blow up Bm = A (2) {z:
d(x, Am) < v2IE(m)} is such that the Lebesgue measure of Bm\Am is smaller than 1/m 2 . (We will
use the fact that the open blow ups Bm satisfy (d(Am, Bc ))2 > 2e(m) > 0.)

We note that this Assumption implies that if A has Lebesgue measure zero, it is of the first
category (i.e., a countable union of nowhere dense sets). The Assumption is satisfied by a class of
interesting uncountable sets A, e.g. the Cantor set. Obviously, for countable sets, the Assumption
is satisfied. For more along these lines, c.f. Lemma 2 and the remarks which follow Theorem 1.

In Section 2, we describe a decision algorithm which changes its decisions after increasingly
longer and longer intervals. Those intervals are chosen using entropy bounds. We prove that this
algorithm shares the properties of Cover's decision rule, i.e. it makes a finite number of mistakes
a.s. on the set A and on AC\N for an appropriate set N of Lebesgue measure 0. (A characterization
of N follows from our proof and is related to the one given in [3]). In Section 3, the results are
extended to allow a (countable) sub-decision inside the set A.

2 The decision rule and proof of the main theorem

We begin by first describing the proposed decision rule. Let ,5(m) be a given sequence, to be
defined below. For any input sequence xl, * *, n,, form the subsequences

Xm _(X,(m-_1), '*X,6z(m)_-).

Let p denote the empirical mean of the sequence Xm. At the end of each parsing, make a
decision whether fT E A according to whether II'-" E Bm or not. Between parsings, don't change
the decision. For the sequence 3(m) defined below in equation (2.7), we claim:

Theorem 1

a) For any measure PT with piT C A, the decision rule will make (a.s.) only a finite number of
mistakes, i.e. for a.e. w there exists an n(w) such that the decision is A for all n > n(w).
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b) For any measure PT with pT E AC\N, where N is a set of Lebesgue measure 0, the decision
rule will make (a.s.) only a finite numnber of mistakes, i.e. for a.e. w there exists an n(w) such
that the decision is Ac for all n > n(w).

Before proving the theorem, we introduce some notation and define the sequence P(m). For
a set E C [0,1], EC denotes the complement of E and E denotes the closure of E, whereas E °

denotes the interior of E. Let p be a probability measure with support in [0, 1]. The mean of
it is denoted Tl. Let M,(A))-E,(exp(Ax)) denote the moment generating function of it and let
A(A)_ log(M(A)). Let I,(z) = supA(AX - A(A)) be the Legendre transform of A(A), and let H(vI/s)
denote the relative entropy of v with respect to p, i.e. H(vlIu) = fo dv(x) lg(d) if dv exists and
oo otherwise. It is known that both I(z) and H(vlsp) are convex, lower senmicontinuous functions
(e.g, see [2]). Further, it is well known that for any open (closed) set C in [0, 1],

inf I, (x) = inf H(vlt). (2.1)
~EC f~{:f0 xdvZ(xn)EC}

Next, let -iln , ai denote the empirical mean of the sequence x1, X2 - ,- ... ,n, and let
Ln-- ~i=l 5 6 denote the empirical measure of the sequence z1, X2,, x,. By the classical Cramer
theorem, one has that, for any closed set C, and any probability measure i with support in [0, 1],
(c.f. [2, proof of Lemma 1.2.5]),

P,(in E C) < 2exp(-n inf IM(z)). (2.2)
-EC

We next define the sequence 3(m): for any m, let Bm be the open cover of the set Am described
in the Assumption above. For any m, compute

Im -- inf inf I,,(Z). (2.3)
{iALj!EAm} oEBcn

Note that by (2.1), one also has that

Im = inf inf H(vlt). (2.4)
{p:IEAm} {sV:mvEBc}

Since d(Am, B,) 2 > 2e(m), one has that Im > e(m). Indeed, by [2, Exercise 3.2.24], 2H(vlps) >
II1- ll2a, >_ (d(Am, B)) 2, where the last inequality holds for {v: m, E Bm} and {I : L E Am}.
Next, let

a(M)log 2 + 2 logm (25)
1m

Note that, by (2.2), for any t/ such that pi E Am,

P/i(Fe,(,m) E B) < m 2 (2.6)

Finally, let
m

(m) = a(i), 3(0) = 0. (2.7)
i=l

Proof of Theorem 1
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a) Assume PT E A. Then there exists an m such that PT E Am. Note however that the event of
making an error infinitely often is equivalent to the event of making an error at the parsing
intervals infinitely often. However,

Prob error in m-th parsing < E 2 < °°
m=l m=l

where we have used (2.6) above. Therefore, part a) of the theorem follows by the Borel-
Cantelli lemma.

b) Let C, denote the 2 / 2E(m blow up of Bi. Let

00 00

N = n U Cm\A
n=l m=n

Clearly, the Lebesgue measure of N is zero. Now we may repeat the arguments of part a)
in the following way: let TiT E B\N. For an mo large enough, 1 T E Cm for all m > mo.
On the other hand, d(iT, Binm) 2 > 2E(m) by our construction. Noting that the rate function
inf-EB. IPT(x) > E(m), the proof follows identically as in part a).

Remarks

1) The theorem could have been proved by obtaining (2.6) using more traditional bounds but
with a slower decision procedure (i.e., larger a(m)).

2) It is interesting to note that the Cantor set satisfies the Assumption. Indeed, the covering
sets Bm are just the intervals associated with the Cantor partition.

3) By modifying the structure of the decision rule, one may also make a hypothesis test inside
A. This is pursued in Section 3.

We conclude this section by a (partial) characterization of the sets A of measure 0 which satisfy
the Assumption:

Lemma

A set A which is of measure 0 and which satisfies the Assumption is of the first category (i.e.,
A is a countable union of nowhere dense sets). Conversely, a closed set A of Lebesgue measure
zero satisfies the Assumption if A is of the first category.

Proof

(--) From the Assumption, A = UmAm. We need only show that each Am is nowhere dense.
But this follows immediately from the existence of a sequence of open blow ups of Am with arbi-
trarily small Lebesgue measure (namely, Bk for k > m).

(<=) If A is of the first category then A = UiSi where each Si is nowhere dense. Let Am =
Ui 1S i . Clearly, the Am monotonically increase to A. Also, since Am is nowhere dense, and A is
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closed, IA(6) -} 0 as 6 -* 0 where I [ denotes Lebesgue measure and A(6) = {x:: d(x, Am) < 6} is
the (open) 6-neighborhood of Am. For each m, choose any 6m > 0 such that IAm~)I < 1/n 2 . Then
the Assumption is satisfied with B = A 6m" ) and e(m) = 62_/2.

We note that, by a counter example based on [4, Exercise 4, pg. 66], one cannot in general
dispense of the requirement that A be closed in the converse direction of Lemma 2. Indeed, in [4] a
set F of nonzero Lebesgue measure is constructed which is nowhere dense. To get a contradiction,
it now suffices to take a countable dense subset of this set F to be any of the sets Am.

3 Countable hypothesis testing

In this section, we refine the decision rule to allow for deciding among a countable set of
hypotheses. In addition to deciding whether or not 7 'T E A, we also make a hypothesis test inside
A. Suppose that A is written as A = U=l Si where the Si are disjoint. We are interested not only
in whether !FT E A, but if so to which of the Si does iZT belong. Specifically, we wish to decide
among the following countable set of hypotheses:

Hi: :T E Si, i = 1, 2,...

Ho: IT A

For the theorem below, restrictions must be placed on the decomposition of A. Namely, we assume
that the Si are pairwise positively separated meaning that d(Si, Sj) > 0 for every i 5 j. (Note
that, as before, A is required to satisfy the structural Assumption of the introduction.)

We modify our previous decision rule as follows. At the end of each parsing (defined by the
sequence /3(m)), find the least index k (if one exists) such that Pi(m) is contained in the V/2E(
open blow up of Sk n Am. If such a k exists, then decide that pT E Sk. Otherwise (if m,(m) V

(SinAm)(V2r-) for all i) decide that siT V A. Alternatively, we can think of this decision procedure
as first deciding whether or not PT E A as before. Then, if the decision is that UT E A, make a

refinement by deciding that jiT E Sk where k is the least index such that ma(m) E (SinfAm)(V- ).

Theorem 2 If A = Ul01Si satisfies the Assumption and the Si are pairwise positively separated
then

a) For any measure PT with T1T E Si for some i, the decision rule will make (a.s.) only a finite
number of mistakes, i.e. for a.e. w there exists an n(w) such that the decision is Si for all
n > n(w).

b) For any measure PT with TlT E AC\N, where N is a set of Lebesgue measure 0, the decision
rule will make (a.s.) only a finite number of mistakes, i.e. for a.e. w there exists an n(w) such
that the decision is Ac for all n > n(w).

Proof
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a) Suppose that 7T E Si. By the same considerations that led to (2.6), for any p such that
g E Si n A, we have

PA(7.P(m) ¢ (Si n Am) (-)) < m 2 (3.8)

Since -gT E Si C A, for sufficiently large m, f1 T E Am. Also, since the Sj are pairwise positively

separated and i is finite, for large enough m the sets (Sj n Am)("2v--) and (Si n Am)(V21(-)
are disjoint for all j < i. That is, for sufficiently large m, denoted mo(i), as long as pa(m) E

(Si n Am)(V2t-4- ) we have pa(m) ~ (Sj n Am)(V'2/ -)) for all j < i. Hence, for all m > mo(i), i is
the least index satisfying the requirements of the decision procedure (so that a correct decision is

made) iff Aa(,m) E (Si n Am)(NV -' ~ ). Therefore,

Prob error in m-th parsing < mo(i) + E P(i(,m) ¢ (Si n Am) ( 2 ) )

m=l m=mo(i)+l

001< 1
< mo(i) + E m- < co

so that part a) follows by the Borel-Cantelli Lemma.

b) This part is identical to part b) of Theorem 1.

Remarks

1) Cover's result on countable hypothesis testing is a special case of this result since every
countable set A clearly satisfies the Assumption and can be written as the union of pairwise
positively separated sets.

2) If one is willing to allow the test to fail for some points in A, then the requirement that the
Si be pairwise positively separated can be dropped. The set N 2 C A on which the test fails
in the general case can be characterized, and presumably conditions on the Si for which N 2
is a null set could be obtained.
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