
���������
	��
�������
��� �
	��
�
�������
�����
� ��� ��� ��� �!��"$#

% &('()*� �����

+-,/.�0214365*798;:<3=0?>@:(021BAC3ED=1�FG1H3@D=1H3?IJ86KL3=1�M!KON$:�IPKOQ?3SR�3@0?KO3@1
TVUXW�Y Z�[VY \<Y]_^

�=Y '(` &<Y `�)aY '(b���)Cb(UcYd�GZfe4gh)C]f]fUX'(`i�@Y�\(ZjY�kfe�Z_l
�
'(]�kjUmkjUXkf&()�noe�Z��Vb�p�Y '(gh)Cb � e�qdr(&�kf)hZ � kf&(b(UX)h]

� e�sXst)h`)���Y Z_u2vw��xy� ��z����

7J{�|}IPM~:<� I

	�^(UX]*r<Y�r�)CZ*b()C]fgCZfUt\?)h]-Y�stY '(`�&<Y��4`)iUX'(b()hr?)h'�b()h'$k-sXUt'()hY ZfUXW�Y�kfUte�'�)C'(`�UX'() vEeP�4l���)h'/��	�^(UX]*]�lH]��
kj)CqygCe�qir�Utst)C]�k�Y�Zf`�)}kGscY '�`�&<Y `�)�`�ZjY qdqiY Zf]EUt'$kje�r(Z_e�`�ZfY qi]Ekj^<Y�kGkjY u)�no)hY�kj&(Z_)�`�ZjY�r(^(];Y]GUX'(r(&�kf]
Y '(b�`�)h'�)hZjY!kj)i��e�Z_b�scY!kfkjUXgh)C]�kf^<Y�k*g�Y '�\�)ir<Y]_]f)hb�Y ste�'�`�kfe�kf^()�]�k�Y�kfUt]_kfUtghY sG)}�4kjZfY gCkfUte�'�qie4bH�
&(sX)he n�kf^()J`�)C'()hZfY�kjUXe�'�]_l4]_kf)hq�T�UXkfZfe�`�)C'/��	�^()�` ZjY qdq�Y�Zf]*Y Zf)���Z_UXk_kj)h'�&�]fUt'�`BY��<)}�HUX\(st)�Y�'(b
r?e~��)hZ�no&(s=scY '�`�&<Y `�)�v�e��4lH�;v<kf^<Y�k�^<Y]�kf^()�r�eP��)hZ�e n�Ydr(Z_e�`�ZfY qiqdUt'�`�scY�'(`�&<Y `)�\(&�k�noe4gh&(]_)h]�e�'
'<Y�kf&(ZjY�swscY�'(`�&<Y `)�Zf)hY stUXW�Y�kfUte�'w��	�^(UX]
)h'(` Ut'()�^(YPp)�\�)C)h'�&(]f)Cb�]f&(gCgh)h]_]_no&(sXsXl�UX'JghZ_)�Y�kfUt'(`�Y�'��;'4�
`�sXUt]f^�sXUt'()hY ZfUXW�Y�kfUte�'-r�Zfe�`�ZfY q�kj^(Y�k6Ut];gh&(Z_Zf)C'�kfsXl�&(]_)hb�Y�]�r<Y�Z_k6e nwkf^() � ^(Ut'()C]f)����G'(`�sXUt]f^dqiY g�^(Ut'�)
kjZfY '(]_scY�kfUte�'�]�lH]�kj)Cq��

����� 	�^�)�]f&�r(r�e Z_k�e nwkf^()���������	E)Cg�^('(UtghY s���)Cr�e�Z�k �)hZfUX)h]�Y '(bdkj^()Vr<Y Z_kfUcY s�]f&(r(r?e�Z�k
e n�kj^(UX]
Zf)C]f)hY Zfg�^�\$l�kj^()�TVY�kjUXe�'<Y s � gCUt)h'�gh)��<e�&('(b(Y�kjUXe�'�&('(b()CZ�`�ZjY�'�k��;�
�����P"��������JY '(b�kf^()�x�)hr<Y�Z_k_�
qd)h'$k�e n x�)}no)h'(]_)�&('(b()CZVgCe�'$kjZjY�gCk���x���¡�� ��¡!� �
¢ �j�~��# �*Ut]�`�ZfY�kj)}no&(stsmlJY g�u�'(eP��sX)hb(`�)Cb/�

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2000 2. REPORT TYPE

3. DATES COVERED
 00-06-2000 to 00-06-2000

4. TITLE AND SUBTITLE
Oxygen: A Language Independent Linerization Engine

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Language and Media Processing Laboratory,Institute for Advanced
Computer Studies,University of Maryland,College Park,MD,20742-3275

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 1

oxyGen: A Language Independent Linearization Engine

Nizar Habash

Institute for Advanced Computer Studies
University of Maryland

College Park, MD 20740
phone: +1 (301) 405-6768

fax: +1 (301) 314-9658
habash@umiacs.umd.edu

http://umiacs.umd.edu/labs/CLIP

Abstract

This paper describes a language independent linearization engine, oxyGen. This system
compiles target language grammars into programs that take feature graphs as inputs and
generate word lattices that can be passed along to the statistical extraction module of the
generation system Nitrogen. The grammars are written using a flexible and powerful
language, oxyL, that has the power of a programming language but focuses on natural
language realization. This engine have been used successfully in creating an English
linearization program that is currently used as part of a Chinese-English machine
translation system.

1 Introduction

This paper describes a language independent realization engine, oxyGen. This system compiles linearization
grammars into programs that run independently of the grammar and the compilation engine. The grammars are
written in oxyL, a powerful and flexible natural language grammar description language. The syntax of oxyL is
described in the paper. Currently, the input to the compiled grammar is a feature graph and the output is a word
lattice to be fed into the statistical extraction module of the generation engine Nitrogen (Langkilde and Knight
1998a, 1998b 1998c).

2 Research context

The work described in this paper has been developed as part of an interlingual Chinese-English Machine
Translation system at the University of Maryland College Park. (Dorr et al. 1998), (Traum and Habash 2000).
The focus of this paper is only on the Linearization sub-module of the realization module in the generation
component of the MT system. The realization module discussed is Nitrogen, a hybrid rule-based/statistical
realization engine (Langkilde and Knight 1998a, 1998b 1998c). The system consists of two components,
Linearization and Statistical Extraction (Graph1). First, a Feature Graph (FG) representation of the sentence to
realize is converted into a word lattice of possible word sequence renderings, i.e. linearized. Then, the uni and
bigram statistics are used to determine the most probable set of paths along the word lattice.

(Graph 1)

The particular form of FGs exemplified in this paper is a modified version of Nitrogen’ s Abstract Meaning
Representation for our MT system’ s purposes(Dorr et. al 1998). AMRs are labeled directed feature graphs
written using the syntax for the Penman Sentence Plan Language (Penman 1989):

 <AMR> ::= (<label> {<role> <value>}+)
 <value> ::= <AMR> || <terminal>

(BNF 1)

Every node in an AMR has a label and one or more role-value pairs. Roles, i.e. features, are marked by a
colon prefix except for the default role :instance which can be represented as a forward slash /. Values can be
meaning carrying terminal tokens or AMR nodes. Meaning carrying tokens can be semantic concepts such as
|china| or |love|, syntactic categories such as N or V, or plain surface text strings such as “Once upon a
time”. The roles and concepts of AMRs are a mix of syntactic and semantic significance: there are :LCS-AG
(lexical conceptual structure agent) and syntactic categories such as ADV. The following is an example AMR for
The United States unilaterally reduced the China textile export quota:

(a1 / |reduce|
 :CAT V
 :LCS-AG (a2 / |united states| :CAT N)
 :LCS-TH (a3 / |quota|
 :CAT N
 :LCS-MOD-THING (a4 / |china| :CAT N)
 :LCS-MOD-THING (a5 / |textile| :CAT N)
 :LCS-MOD-THING (a6 / |export| :CAT N))
 :LCS-MOD-MANNER (a8 / |unilaterally| :CAT ADV))

(AMR 1)

In this example, (a4 / |united states| :CAT N), is the agent of the concept |reduce|. And similarly,
N is the category of the concept |united states| . The basic role :instance or / is always present in a
non ambiguous AMR. An ambiguous AMR, i.e., a conglomeration of different AMRs has one or more role-
value pairs using the special role :OR. For example, an variant of the above AMR in which the root concept is
three way ambiguous would look as follows at the top node

(# :OR (# / |reduce| . . .)
 :OR (# / |cut| . . .)
 :OR (# / |decrease| . . .))

(AMR 2)

Since such ambiguity can occur anywhere in an AMR, it presents a challenge to writing simple linearization
rules whose application is conditional upon specific AMR role combinations at different depths. This issue is
addressed later in this paper.

The output of the Linearization module is a word lattice of possible word sequence renderings. It includes
ambiguous paths resulting from under-specified features, such as definiteness, and undetermined relative word
orders, such as that of modifiers. The following is a possible word lattice corresponding to (AMR 1).

(SEQ (WRD " * st ar t - sent ence* " BOS)
 (WRD " uni t ed st at es" NOUN)
 (WRD " uni l at er al l y" ADJ)
 (WRD " r educed" VERB)
 (OR (WRD " t he" ART) (WRD " a" ART) (WRD " an" ART))
 (WRD " chi na" ADJ)
 (OR (SEQ (WRD " expor t " ADJ) (WRD " t ext i l e" ADJ))
 (SEQ (WRD " t ext i l e" ADJ) (WRD " expor t " ADJ)))
 (WRD " quot a" NOUN) (WRD " * end- sent ence* " EOS))

(WL 1)

Then the statistical extraction module evaluates the different paths represented in the word lattice using uni and
bigram statistics and returns the following:

united states unilaterally reduced the china textile export quota . [LENGTH 10, SCORE -41.657174]
united states unilaterally reduced a china textile export quota . [LENGTH 10, SCORE -42.817673]
united states unilaterally reduced the china export textile quota . [LENGTH 10, SCORE -42.867434]
united states unilaterally reduced a china export textile quota . [LENGTH 10, SCORE -44.027932]
united states unilaterally reduced an china textile export quota . [LENGTH 10, SCORE -44.746711]
united states unilaterally reduced an china export textile quota . [LENGTH 10, SCORE -45.956971]

The focus of this paper is on the implementation techniques of the Linearization module of the realization
system.

3 Motivation

The Linearization module is basically an implementation of a set of rules, a grammar, that governs the relative
word ordering (syntax) and word form (morphology) of a target language. A linearization grammar can be
implemented declaratively or procedurally. In the declarative approach, the system contains a grammar
description formalism and a linearization engine that interprets the grammar on-line and applies its rules to the
input sentence representation. The advantages of this approach are reusability, easy extendibility and language
independence. Its main drawback is slow speed. Nitrogen’ s Linearization module is an example of this
approach. It provides rules to decompose an AMR and order the results linearly. The Nitrogen grammar
description formalism uses a recasting mechanism to transform AMRs into other AMRs. Besides the slowness
inherited from the paradigm of its implementation, Nitrogen’ s grammar formalism is limited and inflexible:

• Rule application is conditional upon equality of concepts or existence of roles at the top level of an
AMR only. This makes it impossible to write a single rule that is conditioned upon a combination of
features at different levels. Cascading features is a solution to this problem that only increases the size
of the grammar and aggravates the speed problem.

• Recasting operations are limited to adding feature-value pairs and introducing new nodes. Implementing
a thematic hierarchy ordering in which thematic roles such as agent and theme are recast as syntactic
roles such as subject and object cannot be implemented in a single recast operation. Again, cascading
of features is the only way to do this. An implementation of thematic hierarchies using cascading
features is discussed in (Dorr et al. 1998).

• There is no mechanism to perform range-unbounded or computationally complex transformations. For
example, number formatting is a transformation problem that requires access to functions such as

multiplication and addition which are not available to the grammar. One instance of this problem
appeared in our system when translating Chinese numbers represented as multiples units of 10,000. For
example, 80,000 is the concept |8| modified by the concept |10,000|. Multiplying Chinese number
concepts and formatting them into English number sequences was necessary and is impossible to do
using recasting without enumerating all combinations!

The procedural approach to Linearization grammars uses a programming language to implement the rules of the
grammar. The main advantages of this approach are flexibility, power and speed. Having access to the full
computing power of a programming language opens a lot of possibilities for efficient implementation. It also
frees the linearizer’ s designer from the restrictions of a limited declarative grammar by providing access to the
operating system, databases, the web, etc. However, a major disadvantage of this approach is that the linguistic
knowledge is coupled with the programming code. This hard-coding of grammar rules makes the system rather
redundant, difficult to understand and debug, non-reusable and language specific.

4 oxyGen

The oxyGen approach to implementing the Linearization module is a hybrid implementation between the
declarative and procedural paradigms. oxyGen uses a linearization grammar description language to write
declarative grammar rules which are then compiled into a programming language for efficient performance.
oxyGen contains three elements: a linearization grammar description language (oxyL), an oxyL to Lisp
compiler (oxyCompile) and a run-time support library (oxyRun). Target language linearization grammars
written in oxyL are compiled off-line into oxyGen Linearizers using oxyCompile (Graph 2).

(Graph 2)

oxyGen Linearizers are Lisp programs that require the oxyRun library of basic functions in order to execute
(Graph 3). They take AMRs as input and create word lattices that are passed on to some Statistical Extraction
unit.

(Graph 3)

This implementation maximizes the advantages and minimizes the disadvantages inherent in the declarative and
procedural paradigms: The separation between the linearization engine (oxyCompile and oxyRun) and the
linearization grammar (oxyL) combines in one system the best of two worlds: the simplicity and focus of a
declarative grammar with the power and efficiency of a procedural implementation. It also provides language
independence and reusability since needs of the target language are only addressed in its specific oxyL

grammar. Secondly, The run-time separation between language-specific code (compiled oxyL file – oxyGen
Linearizer) and language-independent code (oxyRun) allows for efficient resource-sharing implementation
especially when running multiple linearizers for different languages at the same time as in multilingual
generation. Finally, oxyGen’ s linearization grammar description language, oxyL, is as powerful as a regular
programming language but with the focus on linearization needs. This is accomplished through providing
powerful linearization mechanisms for the most common needs of a linearization grammar and also by allowing
embedding of code in a standard programming language (Lisp) to allow for efficient implementation of the
more language specific realization problems (e.g., Chinese number formatting). oxyL linearization grammars
are also simple, clear, concise and easily extendible. An example of the simplicity of oxyL grammars is that
redundant issues such as the handling of : OR ambiguities are hidden from the linearization grammar designer
and are treated only in the compiler and support library. The following section describes oxyL’ s syntax and the
mechanism of application of oxyL rules.

5 oxyL

In many ways, it is similar to the language Nitrogen grammars are written in; however, it has several special
features that makes it more powerful. First, oxyL linearization rules can be conditionally applied using general
Boolean expressions and embedded if-then-else control flow structures which allows for powerful and compact
linearization grammars. Second, oxyL provides accessibility functions that can return the value of any
descendant of the AMR. Contrast these two features with Nitrogen’ s grammar’ s conditions of application which
are flat if-then structures and use only equality of roles or role-value combinations at the top level of the AMR.
Third, oxyL provides recasting mechanisms that are more powerful than Nitrogen’ s. For example, a thematic
hierarchy recast in oxyL is implemented in a single rule whereas it requires as many rules as the number of
hierarchy slots in Nitrogen. Finally, oxyL can embed calls to lisp functions that can be included in the oxyL
file. This feature provides oxyL linearization grammars with access to all the tools available to a programming
language. The rest of this section will describe oxyL’ s syntax.

5.1 OxyL Basic Tokens

The function of different tokens in oxyL is marked through their form using a prefix symbol: variables are
prefixed with a dollar sign (e.g. $f or m, $t ense), role-names are prefixed with a colon (e.g. : agent , : cat)
and functions are prefixed with an ampersand (e.g. &eq, &Pr oper NameHash). Some of oxyL’ s functions
resemble Lisp functions (e.g. &eq and eq). However, their implementation is different in oxyGen since
ambiguity has to be handled. So, &eq for example is aware of the existence of : ORed AMRs in which
matching one of the possible @ORs is enough to return true, whereas lisp eq is not.

In addition to general functions, oxyL has a special class of functions called referential functions. These
functions, which are prefixed with an at sign (e.g. @agent , @t hi s), are used to access values corresponding
to specific roles of the current AMR. For example, @LCS- AG returns the value corresponding to the role
: LCS- AG. If the current AMR is (AMR 1) in section 2, @LCS- AG returns (a2 / | uni t ed_st at es|
: cat n) . The instance role, / , is returned using the special referential function @i nst . A referential
function can specify the path from the current AMR’ s root to any value under it by concatenating the references
along such path. For instance, if the current AMR is (AMR 1), @LCS- AG. CAT returns N. If the current AMR
contains multiple instances of the same role as in : LCS- MOD- THI NG in (AMR 1), the values are combined in
a : OR structure. For example, if the current AMR is (AMR 1), @LCS- TH. LCS- MOD- THI NG. I NST returns
(# : OR | chi na| : OR | t ext i l e| : OR | expor t |) . Access to the full current AMR is provided
through the self-referential function @t hi s . For example, @t hi s. agent is equal to @agent .

The last oxyL basic token type is Macros, which are prefixed with a circumflex (e.g. ^NP- NOM). Macros are
treated like variables except that while variables appear as is in the compiled grammar, macros are substituted in
the compiler. The use of macros makes the grammar description more concise. For example, if a set of role-

value pairs is very commonly used such as (: For m NP : Case NOM) , they can be referred to using a single
macro, ^NP- NOM..

5.2 oxyL File

An oxyL file contains the a set of declarations. Some are obligatory (marked below with an asterisk) for proper
compilation into Lisp code. Others introduce symbols that could be used eventually in the grammar rules such
as global variable or special lisp functions. The following is a list of these declarations:

Declaration Function Example

: Language* Name of generated grammar :Language “English”

:SupportCode User-defined Lisp functions :SupportCode (<lisp code>)

:SupportInclude Lisp file to load at runtime :SupportInclude “support.lisp”

:CLASS Defines a class of roles :CLASS :THETA (:AG :TH :GOAL :SRC)

:GLOBAL Declares a global variable :GLOBAL $

:MACRO Declares a macro :MACRO ^NP-ACC (:CAT N :CASE ACC)

:MORPH* Defines the morphological
generation function

:SupportInclude “EnglMorph.lisp”
:MORPH (&Morph @word @morphemes)

:RULES* Defines the grammar :RULES <Linearization-Grammar>

* Obligatory declarations

All Lisp supporting code introduced through : Suppor t I ncl ude or : Suppor t Code need all interfacing
functions to be prefixed with an & like oxyL general functions.

A :Class is a "super" role. It is a cover symbol that can be used to reference different classes of roles. For
example, :THETA can be defined to refer to all thematic roles and :MOD can refer to all types of modifiers.
Once defined, referential functions can be used for it. Internally, class roles and regular roles are processed
differently but that is hidden from the user.

The syntax of the oxyL grammar rules declared using : RULES is described in the next section.

5.3 oxyL Target Language Grammar

<GRAMMAR> : : = <RULE>+
<RULE> : : = ([== <ASSI GN>]
 { ?? <COND>
 - > <RESULT>} *
 [- > <RESULT>])
<ASSI GN> : : = ((<var i abl e> <val ue>) +)
<COND> : : = <Bool ean Expr essi on>
<RESULT> : : = <RULE> | | <SEQUENCE>
<SEQUENCE>: : = ({ <AMR>| | <RECAST>} +}) | | (OR <SEQUENCE> <SEQUENCE>+)
<RECAST> : : = (<AMR> { <RECAST- OP> <RECAST- OP- ARGS>} +)

(BNF 2)

(BNF 2) describes the syntax of an oxyL grammar. A grammar consists of a set of ordered rules each of which
is considered for application over the current AMR. Each rule has an optional assignment section, introduced
with ==, in which local variables are defined. The second part of a rule is an optional condition and result pair
that can be repeated multiple times. Conditions are introduced with ?? and results with - >. And finally an
optional result that is treated as the default if all conditions fail. A result can be a rule in itself with all of the
described portions or it can be a sequence of AMRs or AMR-returning tokens such as variables or functions.
The ability to embed rules within rules and declare local variable with deep scope allows users to limit the size
of the grammar and increase the speed of its application logarithmically. The linear order of AMRs in the result
specifies the linear order of the surface forms corresponding to these AMRs. The grammar is run recursively
over each one of the different AMRs. This process continues until terminal values, i.e. surface forms, are
reached. Consider the following oversimplified rule:

(== (($f or m @f or m))
 ?? (&eq $f or m S)
 - > (?? (&eq @voi ce Passi ve)

- > (@object (&passivize @inst) “by” @subject)
-> (@subject @inst @object)))

(Rule 1)

Initially, this rule takes the value of the role : f or m in the current AMR and assigns it to the variable $f or m.
In the case the value of $f or m equals S, a second check on the voice of the current AMR is done. If the voice
is passive, the passive word order is realized. Otherwise, the active voice word order is realized. The grammar
is then called recursively over the AMRs of @subject, @obj ect and @i nst . The function &passi vi ze
takes the AMR of @i nst as input and can return a passive verb AMR that gets processed by the grammar or a
terminal word sequence.

In addition to AMRs, a linearization sequence can contain AMR recast operations. A recast operation is made
out of an AMR followed by one or more pairs of recast operator and recast operator arguments. Recast
operations modify AMRs before they are recursively run through the grammar. The recast mechanism is very
useful in restructuring the current AMR or any of its components. For example, the ++ recast operator adds
role-value pairs to an AMR. This is useful in cases such as adding case marking roles on the subject and object
AMRs where such case markers are not specified in the original, more semantic, representation. (Rule 1)
described in the previous section could be modified to specify case as follows:

(== (($form @form))
 ?? (&eq $form S)
 -> (?? (&eq @voice Passive)

-> ((@object ++ (:case nom)) (&passivize @inst)
 “by” (@subject ++ (:case gen)))
-> ((@subject ++ (:case nom)) @inst (@object ++ (:case acc)))))

(Rule 2)

The following is a list of oxyL recast operators and their usage formalism and functionality:

Name OP Usage Function

Add ++ (AMR ++ :role0 value0 :role1 :value1 …) Add role-value pairs to AMR

Delete - - (AMR -- (:role0 :role1 …) Remove all rolen-value pairs

Replace && (AMR && (:role0 value0 :role1 value1 …) Replace values of : r ol en

Simple << (AMR << (: new / : ol d0 : ol d1 …))
* Rename all existing : ol dn as

Recast : new

Hierarchy
Recast

<! (AMR <! (: new0 : new1 … / :old0 :old1 …))
* Hierarchically rename available

: ol dn as : newn

Morph +- (AMR +- morpheme) Invoke the morphological
generation function on the
AMR if it is a value, or on its
instance

* The use of / here is different from its role as a shorthand for : i nst .

6 Evaluation

In this section, oxyGen is evaluated based on Speed of performance, Size of grammar, Expressiveness of the
grammar description language, Reusability and Readability/Writability. The evaluation context is provided by
comparing an oxyGen Linearization grammar for English to two other implementations, one procedural (using
Lisp) and one declarative (using Nitrogen Linearization module). Three comparable linearization grammars are
used to calculate speed and size. All three were actually implemented at different stages of development in the
Chinese-English MT system mentioned in section 2.

Speed: Two tests were performed. The first test uses a small corpus of 100 simple AMRs of an average of 17
particles (label, role or terminal value) per AMR. The second test uses a corpus of 213 AMRs representing
translated Chinese news article sentences. These averaged 463 nodes and 7 : ORs per AMR. The following
table contains the times spent on average per system in milliseconds. The Lisp implementation is the fastest
followed by oxyGen. Nitrogen lags behind considerably.

 Procedural
(L isp)

oxyGen

Declarative
(Nitrogen)

Test 1 3.84 ms 37.67 ms 630.56 ms
Test 2 11.50 ms 278.45 ms 17028.00 ms

Size: The following table contains the size of code in lines of code of the three implementations. The oxyGen
code size is the sum of the oxyL grammar (192 loc)and the Lisp English support functions (62 loc). The
Nitrogen code size is the sum of Nitrogen’ s English grammar (1655 loc) and an extension grammar to make it
compatible with our system (375 loc). Clearly, oxyGen performs the best.

 Procedural
(L isp)

oxyGen

Declarative
(Nitrogen)

Size 763 loc 252 loc 2030 loc

Expressiveness: Lisp and oxyGen are equally expressive in the sense of their accessibility to computational
tools as described earlier. Whereas Nitrogen falls behind.

Reusability: Both Nitrogen and oxyGen are language independent, an advantage over any procedural
implementation.

Readability/Wr itability: All three approaches need a certain amount of training. However, oxyGen’ s simple
syntax is an advantage over lisp (for linearization purposes, that is). Its compact powerful rules are an
advantage over Nitrogen’ s simple rule mechanisms.

Overall: oxyGen has the best overall performance of the three systems.

 Procedural
(L isp)

oxyGen

Declarative
(Nitrogen)

Speed + 0 -
Size 0 + -
Expressiveness + + -
Reusability - + +
Readability/
Writability

- + -

7 Future Work

This project is still in its initial phases and more work is still needed. As far as the oxyL language definition
and the runtime library support oxyRun, more tools and function libraries are needed such as meta-level
functions that return information about the current AMR, e.g., its role under its parent AMR, the number of
theta roles or modifiers in it, its total depth, etc. Such information can be very helpful for sentence planning
purposes. Other function libraries can be created to handle generation of specific domains such as time/date
formatting, newspaper titles, etc. As for oxyCompile, more debugging tools and error handling routines are
needed to make the system more robust and user-friendly. Independently of the engine itself, more oxyL
grammars for other languages are needed to test the systems extendibility. Arabic and Spanish generation are
especially under consideration since we currently have all the needed resources given our LCS-Based Machine
Translation paradigm.

A possible extension to the oxyGen suite could be to allow different input formats yet still using the same
common engine. Other possible input formats besides Penman sentence planning include NMSU F-Structures,
XML and CycL. Such an endeavor would require a higher level of separation between the compiler and the
input format which has to be specified to the compiler through some input language definition grammar.

Another area for possible future work is to use of oxyGen as part of NLP applications besides machine
translation such as text summarization.

8 Conclusion

I have presented a language independent linearization engine that compiles target language grammars into
programs that take abstract meaning representations as input and generate word lattice that can be passed along
to a statistical extraction module. The grammars are written using a flexible and powerful language, oxyL, that
has the power of a programming language but focuses on natural language realization. This approach was
evaluated to be more efficient than other purely declarative or procedural approaches.

9 Acknowledgements

This work has been supported by NSA Contract MDA904-96-C-1250 and NSF PFF/PECASE Award IRI-
9629108. I would like to thank members of the CLIP lab for helpful conversations and advice and especially
Bonnie Dorr, Philip Resnik, David Traum and Amy Weinberg. I would also like to thank Kevin Knight and
Irene Langkilde for making the Nitrogen system available and help with understanding the Nitrogen grammar
formalism.

10 References

Dorr, Bonnie and Nizar Habash and David Traum. A Thematic Hierarchy for Efficient Generation from Lexical
Conceptual Structure. In Proceedings of the third Conference of the Association for Machine Translation in the
Americas (AMTA), pages 333--343, Langhorne, PA. 1998.

Knight, Kevin and Vasileios Hatzivassiloglou. Two-Level, Many-Paths Generation. In Proceedings of ACL-91,
pages 143--151, 1991.

Langkilde, Irene and Kevin Knight. Generating Word Lattices from Abstract Meaning Representation.
Technical Report, Information Science Institute, University of Southern California, 1998a.

Langkilde, Irene and Kevin Knight. Generation that Exploits Corpus-Based Statistical Knowledge. In
Proceedings of COLING-ACL ’98, pages 704--710, 1998b.

Langkilde, Irene and Kevin Knight. The Practical Value of N-Grams in Generation. In International Natural
Language Generation Workshop, 1998c.

Penman. The Penman Documentation. Technical report, USC/Information Sciences Institute. 1989.

Traum, David and Nizar Habash. Generation from Lexical Conceptual Structures. In Proceedings of Workshop
on Applied Interlinguas, NAACL/ANLP2000, Seattle Washington, 2000.

