IDA: AN INTELLIGENT DATA ACCESS PROGRAM

Technical Note 145

June 1977

By: Daniel Sagalowicz

Computer Scientist
Artificial Intelligence Center

SR Internefioneal

TR

‘GiiiH!iIH!’

Internation
AR VAV

NN

nt: al

SN v,
N P ®

333 Ravenswood Ave. ¢ Menlo Park, CA 94025
(415) 326-6200 « TWX: 910-373-2046 o Telex: 334-486

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JUN 1977 2. REPORT TYPE 00-06-1977 to 00-06-1977
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

IDA: An Intelligent Data Access Program £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 39
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSTRACT

IDA was developed at SRI to allow a casual user to
retrieve information from a data base, knowing the fields
-present in the data base, but not the structure of the data

- base itself. 1IDA is part of a system that allows the user to

express gqueries in a restricted subset of English, about a
data base of fourteen files stored on CCA’'s Datacomputer.
IDA’s input is a very simple, formal query language which is
essentially a list of restrictions on fields and queries
about fields, with no mention of the structure of the data
base. It produces a series of DBMS queries, which are
transmitted over the ARPA network. The results of these
queries are combined by IDA to provide the answer to the
user’'s query. In this paper, we will define the input
language, and give examples of IDA’'s behavior. We will also
present our representation of the "structural schema™, which
. is the information needed by IDA to know how the data base
is actually organised. We will give an idea of some of the
heuristics which are used to produce a program in the
language of the DBMS. Finally, we will discuss the
limitations of this approach, as well as future research
areas.

ii

ACKNOWLEDGMENTS

The work described in this paper benefited from
discussions with various members of the Artificial
Intelligence Center at SRI International. Special mention
“should be given to Koichi Furukawa (now at ETL), Earl
Sacerdoti, Jonathan Slocum, amd Michael Wilber. The research
reported herein was supported by the Advanced Research
Projects Agency of the Department of Defense under contract
DAAG29-T6-C-0012 with the U. S. Army Research Office.

iii

IDA: AN INTELLIGENT DATA ACCESS PROGRAM

Daniel Sagalowicz
SRI International

Menlo Park, California

A. INTRODUCTION

This paper is concerned with one of the components of
LADDER (for Language Access to Distributed Data with Error
Recovery), a data base access system currently being
developed at SRI [1]. The ultimate goal of this system is to
provide decision makers with easy access to information
stored in multiple computers, under various data base
management systems (DBMSs). The need for such a system has
been amply discussed in the literature--see, for example, the
‘discussions in [2, 3, and 4]--and will not be elaborated here.
The particular application for LADDER is as an aid to Navy
decision makers, but the techniques being developed are
likely to be applicable to a wide range of decision making
activities.

The components of LADDER are shown in Figure 1. The
first one INLAND (for Informal Natural Language Access to
Navy Data) [5] allows the user to ask questions in English
about information contained in data bases similar to those

currently used by the Navy, Although the particular MNavy

FILE
ACCESS
MANAGER

NATURAL DATABASE
LANGUAGE ACCESS
FRONT-END PLANNING
High
English Level
Query Query "Generic’
. — EE— DBMS
Query
remre—
USER INLAND DA
Results
el .
Results Results
FIGURE 1

SA-4763-8

terminology is encoded within INLAND, it is not provided with
knowledge about how the information is organized in the data
base, It knows nothing about the data base structure except
"the names of the fields. In particular, it does not know how
the data base is subdivided into files and records, or where,
within a computer network, those files are currently located.
It therefore translates the query into a formal high level
query that contains no mention of the data base - structure,
and this query is then passed to the next component of the

system, IDA.

IDA (for Intelligent Data Access) contains a model of
the data base structure in what we call a "structural schema,"
The structural schema describes the organization of the data
base into records and files. IDA is used to generate a series
of file-oriented queries from the single data base-oriented
query provided by INLAND, However, 1IDA 1is unaware of the
precise computer(s) on which the selected files are actually
located. It therefore issues queries to the next component,
called FAM (for File Access Manager), without specifying the
computers or the directories where the files may be found. An
additional problem arises when a file duplicated on several
computers appears under differeat names on each machine.
Therefore, in queries to FAM, the files selected by IDA are
represented by a generic file name which stands for any of

those duplicate files.

This final component, FAM [6], is responsible

establishing the connections over the ARPA network to the
various DBMSs on the various computers, for finding the most
up-to-date versions of the various files, for 1issuing the
actual DBMS queries in which the actual file names replace
the generic names used by IDA, and for recovering in case of

certain types of errors.

In our current implementation, we use only one data
base management system, the Datacomputer developed by the
Computer Corporation of America [7,8], on several computers.
During the coming months, we plan to extend IDA and FAM to be

able to access a second DBMS.

Although IDA was developed as part of the LADDER system,
it has also been used independently of the natural language
front-end. In this paper, we will present IDA as if it were
. to be used without any language front-end. The main goal of
- IDA is to provide the user with a "structure free'" interface
to the data base, The user of IDA needs know only field names
and, of course, the IDA's query language, and is not required
to know the data base structure or to employ any other
couplex structure. The goals of IDA are similar to those of
the APPLE system [4], and we refer the reader to that paper
for a very clear and complete discussion of the need for such
a system. Two other systems that are also intended to free
the user from the need to know the real data base structure
are INGRES [9] and SYSTEM-R [10]. However, neither of these
systems provides an interface to the data base that 1is

structure—-free. Both allow theiz users to introduce a new

for

"logical view" of the data base which is different from the
actual data base. Since the user can use only the predefined
relations that belong to his logical view, he must have
available a large set of predefined logical views if he is to
access the data in a truly flexible manner. This means that,
to use SYSTEM-R or INGRES, he must still acquire knowledge of
a complex structure--in this case, the set of various logical
views. When using IDA, on the other hand, the user's point of
view is that, for each query, the whole data base is
configured into only one relation, namely, the relation
needed to satisfy his query--no matter what the query is-—-as
long as the information is contained in the data base. To
obtain the same result using the logical view technique of
INGRES, the data base administrator would have to define all
logical relations which can be obtained by taking the joins
~of two relations, the joins of three relations, and so on.
Then, the DBMS would have to match the query with all those
virtual relations to decide which one applies, and finally
execute the query accordingly. In the particular data base
that we have been using, which 1is composed of fourteen
relations, some queries required the join of five relatioms.
Even with such a small data base, the task of the data base
administrator in setting up the 1logical views that would
include all the joins of up to five relations would be
tremendous. By contrast, IDA requires the data base
administrator to define only the joins between any two
relations in the data base--whenever such joins exist. Then,

IDA decides dynamically which jo%ns need to be performed to

satisfy the query. 1In effect, IDA decides dynamically what
"ogical view'" corresponds to the query, and decides
dynamically how to satisfy the query in that particular
logical view.

As already mentioned, APPLE has goals which are very
similar to those of IDA. APPLE attempts to use "paths" to
describe all the possible joins and projections allowed in
the data base. In APPLE, all the paths have been prestored
statically and, at run time, only a choice between those
?restored paths is allowed. In IDA, however, the path to be
followed is decided entirely at run time, and therefore,
there is no need for the data base administrator to define

all possible paths through the data base.

In Section B, we present a simple data base which will
be used for the examples. Section C gives 1IDA's input
language and Section D gives IDA's main characteristics.
-Finally, in Section E, we present IDA's main limitations and

possible areas for future research,

B. EXAMPLE DATA BASE

For the purposes of this paper, we will take our
examples from the so-called '"presidential data base" which
was used in the special issue of Computing Surveys [11]
devoted to data base management systems., Although we have not

actually dome it, writing the schema to handle this

presidential data base would be very easy——the generation of
the data base would of course, take much longer, which is why

we have not done 1it!

In our examples, we will assume that this data base is
relational, with the following relations:
PRESIDENTS: (PRESIDENT, HOME-STATE, PARTY)

ELECTIONS : (ELECTION-YEAR, PRESIDENT, WINNER-VOTES, OPPONENT
LOSER-VOTES)

ELECTION-STATE: (ELECTION-YEAR, STATE, CANDIDATE, VOTENUM)
where PRESIDENT is the name of a president, HOME~STATE is his
home state, PARTY is the party to which he belongs,
ELECTION-YEAR is the year in which a presidential election
occurred, WINNER-VOTES is the total number of votes obtained
by the president~to-be, OPPONENT is the name of his opponent
, LOSER-VOTES is the number of votes this opponent obtained,
STATE is the name of a state, CANDIDATE is the name of a
presidential candidate in that state, and VOTENUM 1is the

number of votes this candidate obtained in that state.

This simple subset of the presidential data base will be

sufficient to demonstrate IDA's characteristics.

C. 1IDA'S INPUT LANGUAGE

As we have mentioned, IDA 1is used in our system with a
natural language front-end, and therefore a great emphasis
was put into develdping a very simple input language for IDA.

‘Moreover, this simple format makes it very easy to interface
7

any front-end to IDA, whether it 1is a mnatural language
front-end, a graphic front-end, or any formal query language

front~-end.

As already mentioned, the main goal of IDA was to
relieve the user from knowing the structure of the data base
when issuing an IDA query. A few simple examples will
illustrate the format of the input to IDA.

Let us first consider the request:

Give the names of all the presidents.
For this request, the query to IDA would be: (? PRESIDENT).
In general, to request the value of some field, the user

simply precedes the field name by the symbol '?',

Let us now consider the query:
Which president was elected in 19687
In this case, the query to IDA would be:
(? PRESIDENT)(ELECTION-YEAR EQ 1968).
And for the request:
_ List all presidents elected between 1900 and 1948
the query to IDA is:
(? PRESIDENT)((ELECTION-YEAR GE 1900) AND
{ELECTION-YEAR LE 1948))
In general, we may specify some restrictions on field values,
using any boolean expression. The comparison operators

accepted by the system are: EQ, NE, GT, GE, LT, or LE,

In the two questions above, two examples of such boolean
restrictions appear: (ELECTION-YEAR EQ 1968) and
((ELECTION-YEAR GE 1900)AND(ELECTION-YEAR LE 1948)).

Finally, the query:

Which president obtained the most votes?
would correspond to the IDA query:

(? PRESIDENT)(¥* MAX WINNER-VOTES).
In general, to specify that he is interested in some set of
fields in the data base which corresponds to the maximum (or
minimum) value of some field, the user simply precedes the
corresponding field name by * MAX (or ¥ MIN)., In the same way,
to find the answer to a '"how-many?" question such as:
How many presidents were elected since 19487 the user would
query IDA with: (ELECTION-YEAR GE 1948)(%* COUNT PRESIDENT).
This "* feature" was introduced to handle all computations
which require a iterative program to be executed by the DBMS.
Such is the case with the computations of the maximum,
minimum, and count, which are currently implemented. It could
easily be extended to other cases such as computations of

sums Or averages,

Having seen these examples, we can now formally specify
the input to IDA: it is a series of lists, each of which may
take any one of three different formats:

. (7 fieldname)

. A complex boolean expression

. (% <*¥0P> fieldname) where <*0P> is one of MAX, MIN, or

COUNT.

From the above description, it is clear that 1IDA does
not require the user to know the structure of the data base

in issuing his query.

D. FUNCTION AND STRUCTURE OF IDA

In this section, we explain the features of IDA, using
examples whenever appropriate. To help keep these examples
simple and self-explanatory, we will assume that 1IDA
generates calls to a relational data base whose query
language is exactly the same as IDA's, except for the
explicit presence of relation names. In the system actually
developed, the results of IDA are handed to the Datacomputer
(via FAM) and therefore, the queries generated by IDA are in
Datalanguage, the name of the query language of the
Datacomputer. For the interested reader, an actual transcript

of a session with our system is included in the Appendix.

D.1 IDA's Structural Schema

As indicated above, each query to IDA may be considered
to be issued against a single relation, the fields of which
are all those which appear in the query. IDA must then solve
the problem of building this relation dynamically from the
actual relations in the data base, using the classical
relational operators: projectionms, restrictions, and joins.
To do so, 1IDA uses a structural model of the data base,
called the ‘"structural schema," It is composed of two types
of information: "relation frames" and '"field frames." These

"frames" are similar to those discussed by Minsky [12], and

Winograd [13], for example. Each frame 1is a 1list of

property-value pairs, also called "slots," which provide some

specific information about the entity the frame models.

Each relation frame corresponds to an actual relation
in the data base, and gives the possible links with all the
other relations, 1In other words, the relation frames define
all the permissible joins of two relations, In the case where
a direct join is not possible between two specific relations,
the two relation frames would instead include the name of a
third relation which must be included in the join: in the
presidential data base example, the direct join between the
PRESIDENTS and ELECTION-STATE relations may not be allowed,
in which case the join would have to be done among all three
relations. As an example, the relation frame for PRESIDENTS
would be: [ELECTIONS (PRESIDENT)

ELECTION-STATE $ELECTIONST]
where each slot has the name of a relation and the link with
that relation, or the name of a third relation in case of
indirect link, In this example, the first slot in the
PRESIDENTS relation frame indicates that to join any
projections and/or restrictions of the PRESIDENTS and
ELECTIONS relations the join must be taken over the PRESIDENT
field, The second slot indicates that one is not allowed to
take a direct join between the PRESIDENTS and ELECTION-STATE
relations; omne must take the join of the three relations——
this is necessary, of course, to get the correct election
year,
11

Each field frame corresponds to a field name which could
appear in a user query. The main information contained in a
field frame is the list of all the relations to which this
field belongs. In many cases, a field belongs to a single
relation: such is the case of VOTENUM which only belongs to
the ELECTION-STATE relation in the presidential data base. In
many other cases, a field may belong to several relations:
such is the case of PRESIDENT which belongs to all the three
relations of the presidential data base. Note that in the
ELECTION-STATE relation, PRESIDENT appears under the field
name CANDIDATE.

These two types of information, the 1links in the
relation frames and the relation names in the field frames,
are used by IDA's 'covering algorithm" to determine at run
time the logical view corresponding to any given user query.
More precisely, the role of the covering algorithm is to find
the smallest set of relations that cover all the fields in
the query-—a set that provides for any two relations, either
a legal direct join or an indirect join using only other
relations in the set. In other words, the relation frames are
analogous to a graph in which each node is a relation, and
the edge between two nodes is the link between the two
relations. Then, the role of the covering algorithm is to
find the smallest (by the number of nodes) comnected subgraph
which covers every field in the query. We are currently using
a heuristic algorithm which works reasonably well, and
eliminates the need to do an exhaustive search in order to

12

f

find the minimum cover. Although such a search would always
be successful, it would be time-consuming, particularly when
the number of relations in the data base and the number of
fields in the query are large. At each iteration of the
algorithm, we have a list of already chosen relations (empty
for the first iteration), and a list of fields in the query
not yet covered by the chosen relations. Then, we pick at
random one not-yet-covered field, and try to find a relation
that

. Covers it;

. Has a direct link with one already chosen relation, if

such a relation exists; and
. Covers as many not~yet-covered fields as possible, if

there is a choice.

The strategy of IDA's covering algorithm is to minimize
some cost function. In our current implementation, this cost
function is just the number of relations that need to be
accessed-—-a strategy which is optimal in many, but not all,
cases, The strategy 1is particularly relevant when the
relations are on various computers, and may need to all be
copied on a single computer (this would occur if the DBMS
allows, and IDA generates, multi-file queries.) However,
the strategy would be suboptimal if, for example, the
relations were all on the same computer, and if the indexing
characteristics of these relations were very different., 1In

this case, a '"query cost estimator,” of the type developed by

13

Hammer [14] would be needed, and it would indicate the cost
that IDA would try to minimize. This may be a worthwhile

later addition to the system.

To see how the covering algorithm performs, let wus

consider the following thre examples:

D.1l.1 Example A: Which president was elected in 19687

The corresponding query to IDA is:
(? PRESIDENT)(ELECTION~YEAR EQ 1968)

The generated program is:

IN ELECTIONS RELATION: (? PRESIDENT)

(ELECTION~YEAR EQ 1968)

Clearly, in this case, not much work needs to be done: IDA
finds in the structural schema that both PRESIDENT and
ELECTION-YEAR are in the ELECTIONS relation, with those very

same field names, and issues the corresponding query.

D.1.2 Example B: How many votes did McGovern obtain in Ohio?
TE;_;;;;;;ponding IDA query is:
(CANDIDATE EQ 'MCGOVERN')(STATE EQ 'OHIO') (7 VOTENUM)
The generated program is:
IN ELECTION-STATE RELATION:
(CANDIDATE EQ 'MCGOVERN')(STATE EQ 'OHIO')(? VOTENUM)
In this case, we have to go only to the ELECTION-S5TATE
relation, and not at all to the ELECTIONS relation. The
‘reason is of course, that all the fields in the query are
covered by the ELECTION-STATE relation—--even though some are
also covered by the ELECTIONS re}ztion;

D.1.3 Example C: When was the last president from California
————————— . elected?
The query to IDA is:

(7 ELECTION-YEAR)
(* MAX ELECTION-YEAR)(HOME~STATE EQ 'CALIFORNIA')

The query program generated is:

IN PRESIDENTS RELATION:
(HOME-STATE EQ 'CALIFORNIA'){(? PRESIDENT)

IN ELECTIONS RELATION:
(* MAX ELECTION-YEAR)(? ELECTION-YEAR)

((PRESIDENT EQ ...) OR ,..)
Here, ((PRESIDENT EQ ...) OR...) would be filled by the
response to the first query. This is a case in which an
~actual link between relations 1is required since IDA must
perform the join between the PRESIDENTS and ELECTIONS
relations. Clearly, several kinds of information are needed
to build the correct DBMS queries. First, 1IDA must determine
in which relations the fields are located: this information
is found in the field frames, as already indicated. Second,
after IDA has decided that two relations need to be accessed,
namely, PRESIDENTS and ELECTIONS, it has to determine the
"1link" between them=-in other words, what kind of information
is needed from the first relation to limit the search inside
the second relation., In this case, this link is the value of
the field PRESIDENT. This linkage information is found in the
relation frame for either relation, For example, in the
relation frame corresponding to ELECTIONS, one would find a
slot corresponding to the PRESIDENTS relation, where the
linkage would be indicated: in this case, the field name

PRESIDENT would be in this slot,

15

Besidés the frame slots used by the covering algorithm,
other slots are defined for the field frames. For example,
the frame for PRESIDENT is:
[RELATIONS (PRESIDENTS ELECTIONS ELECTION-STATE)
ALIAS-IN-ELECTION-STATE CANDIDATE]
where the first slot corresponds to the list of relations
that cover the field, and where the second slot gives the
actual name of the field in the ELECTION-STATE relation. The
use of this second slot is illustrated in the following

example:

D.1.4 Example D: How many votes did Kennedy obtain in Illinois?

Tﬁ;_;;;;;;;onding query to IDA is:

(PRESIDENT EQ 'KENNEDY')(STATE EQ 'ILLINOIS')(? VOTENUM)
The generated program is:

IN ELECTION-STATE RELATION:

(CANDIDATE EQ 'KENNEDY')
(STATE EQ 'ILLINOIS')(? VOTENUM)

Although PRESIDENT was mentioned in the query to 1IDA,
IDA generated a call using CANDIDATE instead, which 1is
correct since PRESIDENT does not appear in the STATE-ELECTION
relation, and may be replaced by CANDIDATE. IDA wmade the
replacement because CANDIDATE was the value in the
ALIAS-IN-ELECTION-STATE slot of the PRESIDENT field frame.
Note that a different field frame for CANDIDATE may or may
‘not exist, depending on the intended use of the particular
data base., It may therefore, be possible to make use of
several field frames corresponding to various aliases of the
same field. This would allow IDA to handle a gquery in

different ways, depending on which alias of the field name 1is

actually used in the query. In p?gticular, this may be a way

to avoid the multi-path problem mentioned by Carlson [4].
Take, for example, a multi-path case that arises even in the
simple presidential data base. Previously, we assumed that no
direet join could be taken between the PRESIDENTS and
ELECTION-STATE relations, However, the question "List the
number of votes obtained by every president in his home

' requires that we take this direct join, using the

state,’
link between the pair PRESIDENT HOME-STATE, and the pair
CANDIDATE STATE. The query to IDA would be:
(? CANDIDATE)(? HOME-STATE)(? VOTENUM)

Since this query would not mention PRESIDENT, IDA should not
assume that the question was restricted to the year in which
the candidate was elected president, and therefore, should
not access the ELECTIONS relation. Note that, in this case,
we have two field frames which correspond to elected
candidates, namely CANDIDATE and PRESIDENT, and two which
correspond to their home states: STATE and HOME-STATE. Then,
there are four ways of combining those together in an 1IDA
query. Two of those--namely the CANDIDATE STATE and PRESIDENT
HOME-STATE pairs-—do not require any join at all, The other
two pairs correspond to the two possible ways of handling the
join between the PRESIDENTS and ELECTION-STATE relations.
Therefore, depending on which pair 1s actually used in the

IDA query, the multi-path ambiguity can be eliminated.

17

Although many other slots exist in both the field and
the relation frames, and are used for specific purposes by

IDA, we will mention here only one final one: the 'procedural

slot." We will explain its use in the following example.

D.1.5 Example E: How many votes did Nixon obtain in 19607

The query to IDA could be: (? VOTES) (NAME EQ 'NIXON'g
(ELECTION-YEAR EQ 1960

The main problem that is raised by this query is that there
is no VOTES field in the data base. IDA must determine if it
should ask:

IN ELECTIONS RELATION:
(ELECTION-YEAR EQ 1960)(? WINNER-VOTES)

IN EL%CTIONS RELATION:
ELECTION-YEAR EQ 1960)(? LOSER-VOTES)

or

There are several ways to decide, of course: IDA could check
whether Nixon was the president or not in 1960, and issue the
appropriate query to the ELECTIONS relation. In fact, in this
case, the best way may be as follows:
IN ELECTIONS RELATION:
(ELECTION-YEAR EQ 1960)(? PRESIDENT)(? WINNER~VOTES;
{? LOSER-VOTES

Then, depending on the response, we would return the value of
either LOSER-VOTES or WINRER-VOTES as the value of VOTES.
This is an example of what we call the ‘'conditional case."
Somewhere a condition on the value of a field has to be
tested, and, depending on the result of the tests different
queries to the data base may be issued, or, as in this
example, different responses may be given to the user,
or both,

18

IDA handles this situation by having in the field frame
that corresponds to the VOTES field a special program,
a procedural attachment, in Winograd's terms [13]; this
program is executed by IDA and does exactly what is needed to
handle this case., First, it replaces in the query (? VOTES)
by (? WINNER-VOTES){? LOSER-VOTES)(? PRESIDENT). Then, when
the answer is returned, it builds it back to the user, using
the term VOTES as he would expect it. Procedural attachments
of this type may be used not only in the conditional case,
but alsc in cases of complex redundancies. For example, if
the total number of votes obtained in an election was not
stored explicitly in the data base, a special procedural
attachment to a TOTAL-VOTES field frame could be used to call
IDA recursively to find the number of votes obtained in each

state, and add them up.

These five examples have given the reader a reasonably
complete picture of the use of the frame slots by IDA. In the
next sectiom, we briefly explain how IDA orders the accessing

of relations,

D.2 Relation Ordering by IDA.

IDA currently decides on the ordering of the relations
to access by using two very simple rules:

IDA tries to defer retrieving the values of the fields
requested by the user as long as possible, The intuitive
reason for this rule is that acquiring values for fields
queried by the user does not provide any additional

19

constraints on any subsequent data base query. All other
things being equal, it is best to try to constrain the data
base queries as soon as possible by obtaining early those
field values to be used in subsequent queries. Since other
things are not always equal, this rtule is only a "soft"

congtraint on IDA compared to the next one.

. IDA should not issue a query of the type (% <0P>
fieldname) until all other boolean restrictions have been
used, This is a strict constraint, since, if not used, 1IDA's
results would be incorrect as Example G below will make clear.

We now present two examples of the use of these rules:

D.2.1 Example F: What is the home state of the last President?

The query to IDA is: (? HOME-STATE)(* MAX ELECTION-YEAR)
The generated program is:

IN ELECTIONS RELATION: (* MAX ELECTION-YEAR)(? PRESIDENT)

IN PRESIDENTS RELATION: (? HOME-STATE)(PRESIDENT EQ ...)
This example differes from Example C only in the order of
access to the two relations. In Example C, the PRESIDENTS
relation was accessed first since it was the most constrained

relation, while in this case the reverse is true,

D.2.5 Example G. Which president from Ohio obtained the most
————————— presidenial votes?

The guery to IDA is:
(? PRESIDENT){HOME-STATE EQ 'OHIO')(* MAX PRES-VOTES)

20

The generated program is:

IN PRESIDENTS RELATION:
(? PRESIDENT)(HOME~-STATE EQ 'OHIO')

IN ELECTIONS RELATION:
(* MAX WINNER-VOTES)(? PRESIDENT)
(PRESIDENT EQ ... OR PRESIDENT EQ ...)
Clearly, in this case, we must not ask to find the president
who had the most votes until we have found which presidents

were from Ohio,

Therefore, the second rule above 1s used systematically,
while the first is used only when there is a choice.
Although, in our actual trials, these simple rules have
been surprisingly efficient, we recognize the need for
additional research in this area, In particular, the 'query
cost estimator" of the type being developed by Hammer [14]
would provide some additional information which could
profitably be used to complement the first rule. Moreover, a
better understanding of the "semantics™ of both the data base
and the query would probably be useful, as clearly
demonstrated by Carlson [&],

Having described the purpose and function of IDA, we will

now briefly present its architecture.

D.3 IDA's Architecture

Figure 2 presents the flow diagram of IDA. IDA 1is
basically a loop which is executed once per relation accessed.
In the next few paragraphs, we explain the main functions of
each of the "black boxes" of Figure 2,

21

RELATION Semantic FIELD
FRAMES Schema FRAMES
.
e ~ — ’/ /
e S -~ /
7’ - d /
—
’ - ~ -~
. - -~
L~ - ~./
CHOOSE CHOQSE
Query RELATION CHOOSE BUILD Data Language
RELATIONS - > DBMS
— i e
TO T0 > FIELDS
ACCESS QUERY
ACCESS NEXT
N
Response BUILD v ANALYZE Results
) USER INTERMEDIATE |-
RESPONSE RESULTS
SA-4763-9
FIGURE 2

22

D.3.1 The first operation that occurs is parsing the query.
This parser is extremely simple, since, as we have explained,
the input language of IDA was chosen in order to guarantee
the simplicity of the parser, and to allow for an easy-to—use
interface to IDA from a natural language front-end, a menu
selection, a graphics package or any other user communication
front—-end,

Immediately after parsing, IDA decides which relations
will be accessed. To do so, IDA's covering algorithm not only
uses the field frames of the fields appearing in the query,
but also the relation frames, The relation frames must be
used since relations may need to be accessed because of
indirect linkages, even though no field in the query is
covered by those relations. As already explained, in choosing
the relations to be accessed, the covering algorithm tries to
minimize a cost function, which currently is just the number

of relations to be accessed.

D.3.2 Once IDA has chosen which relations it will access, it
enters its basic loop. First, it decides which relation it
will access next; if there are none left, the complete answer
has been built and is given to the user, Otherwise, the
decision as to which relation to access next 1is taken
according to the rules mentioned in Section D.2. IDA examines
what fields have their values specified in the user query,

and tries to access first a relation where some of these

23

-

fields appear. In all cases, it tries to delay as long as
possible taking the maximum, or minimum, of some field values

(the "% <0OP> cases"),

Another important heuristic involves indirect links, Let
us suppose that, having applied the above rules, IDA is still
left with a choice between two relations, say A and B; and
that € is a relation still to be accessed. Then, IDA checks
whether both A and B have a direct link with C. If one of
them does not, it will be accessed first., Intuitively, 1if B
and C have a direct link, we want to restrict the records
retrieved from B as much as possible before joining them with
C, and therefore we should access A first. More generally, if
we have a choice between several relations, we choose to
“access first the one which has the most indirect links with

relations not yet accessed.

D.3.3 Once a relation 1is selected, 1DA decides which
restrictions to send, First, it will send any boolean
restriction that applies to any field in the relation. Then,
it decides which values it is going to retrieve from that
relation; it will ask for values of links needed for
accessing later relations, of fields needed to 1link with
already known results (from previously accessed relations),
and, if they do not appear in later relations, of the fields
whose values are requested by the user. IDA will send the
"t QP> field-name" query only after all other restrictions

imposed by the user query have been used.

24

D.3.4 Finally, the query to the DBMS is programmed and issued.
Essentially, the query portions concerning fields whose
values are needed, and the boolean expressions which apply,
are prepared dynamically by IDA and are incorporated into one

of several prestored query templates.

D.3.5 When the DBMS response comes back, IDA "joins" it with
the previous results, and loops back to the second step,
In essence, at the end of each loop, a relation has been
built in IDA's local memory, which is the combination of all
the information already obtained. In that sense, one may
consider that IDA performs during each loop the three
classical relational operations of restriction, projection,

and joining. IDA performs this automatically without explicit

hélp from the user.

Moreover, as explained in Example E, IDA will also
execute the "procedural attachments" during any of the steps

above, as required by the structural schema,.

To summarize this analysis of IDA's flow, IDA operates
on a ''query at a time' basis. It does not build a complete
data base access program in advance, and this is one reason
why IDA is reasonably time efficient, Roughly, IDA takes 100
milliseconds per relation accessed, wusing INTERLISP as the
programming language, on a DEC KL-10 computer, under the

TOPS-20 operating system.

25

In addition to being efficient in terms of run time, IDA
is, as we have seen, quite easy to use. This is mainly due to
its simplicity. However, it is obvious that such efficiency
has to lead to some limitations, and we explain those in

Section E.

E. IDA'S LIMITATIONS AND FUTURE RESEARCH AREAS

IDA has several limitations which we will briefly
mention and analyze. The first limitation is the multi-path
problem mentioned by Carlson [4] and Roussopoulos & al. [3].
A simple example of that problem arises when two relations
have more than one link between them. In the simplest cases,
they might have two direct links; in more complex cases, they
ﬁay have several links, some or all of them being indirect.
The complete solution to this problem probably requires some
understanding of the semantics of the data, as explained in
Carlson [4], for example., However, we feel this may not be
absolutely true in all cases: sometimes, it may be possible
to "guess" from the query which link the user 1is interested
in. This would occur if the structural schema indicated that
some of the fields can only be associated with some of the
links and not others, Then, 1in some cases, it could be
possible to aperate in essentially the same way as IDA does
currently., In other cases, the query to IDA would still
be ambiguous on which 1links to follow and the user's
intervention would still be required. For reasons of
simplicity and efficiency this may be an attractive route to

26

explore., So far, we have not pursued 1it, however, since
we are more interested in examining how to disambiguate
multi-path queries by using semantic knowledge of the data

base, as suggested in Carlson [4].

Another area for future research 1is to extend IDA's
input language to include queries mot currently covered, to
see whether the same basic techniques and heuristics would
still apply. An example of an English question which cannot
be translated into IDA query language is the following: Was
there a Democratic president for whom all congresses were
Republican? The problem, here, is that the current format for
the 1IDA query does not admit any explicit scoping of
quantifiers. It would be interesting to study such query
situations, and to see whether the simple techniques used in

IDA would still apply with limited madifications,

Another important research area is for IDA to access
different data base management systems, which have different
query languages, and even different data models. It is our
contention that it would not be hard to rewrite IDA so that
it would access, say, a CODASYL data base management system
[15]. More challenging, and more interesting, would be to
rewrite IDA so that it would access both a relational and a
CODASYL data base. In other words, we would like to be able
to model the data base management systems and their query
languages, and use these models to build query programs in
the appropriate access language. Some research has begun in

this area and has been reported gg Nahouraii et al. [16].

However, these authors assume the existence of the DIAM-II
architecture in all the data base management systems to be
used., We would like to free ourselves from such a requirement,
and to assume that the user is interested in accessing data

bases which are not prepared to cooperate with each other.

As we have mentioned, IDA operates on a heuristic
step-by-step basis, 1In some cases, this may lead tec some
suboptimal gquery programs being generated, and may possibly
even fail to produce an answer when one exists, It should be
possible to use automatic program generation techniques to
build a complete, optimal program of file accesses before
issuing any query. Research in this area has been pursued at

5RI by Furukawa [17] and has shown some promise.

Finally, we would like to point out that in all the
examples, we have assumed that IDA was making the joins,
instead of requesting the DBMS to do them. In fact, we have
developed the routines to generate the DBMS queries asking
for the joins to be performed. However, this creates some
interesting difficulties which have to be studied Ffurther.
For example, IDA should be made aware of the locations of the
‘files, so that it will not ask for two relatioms to be joined
that are located on different machines—-which would be very
expensive in time, Also, it already appears that, in some
cases, the DBMS is less efficient than IDA at performing some
joins; in other cases, some limit exists on the number of

relations the DBMS may join as pggt of one single request.

Consequently, a model of the DBMS behavior will be needed to
decide whether to ask for the join to be performed by the
DBMS, or for IDA to do it itself.

F. CONCLUSION

We have presented the capabilities and characteristics
of a data base access system that employs simple Artificial
Intelligence techniques to free wusers from knowing the
structure of the data base, 1IDA frees its users from having
to know many of the peculiarities of the data base that they
are using-—conditional cases, redundancies, subdivisions into
relations. In order to obtain this result, IDA decides
automatically and dynamically which restrictions, projections
and joins to perform, and in what order. This may make IDA
very useful in case of large, complex data bases, where it
would not be possible to build all the possible query
programs in advance. In essence, IDA performs a tedious
automatic programming job with reasonable simplicity and
efficiency. This, in some cases, results in a suboptimal
access strategy; however, from our experience with various
users, it appears that it is well within acceptable limits.
Additional research is needed to extend the scope of the
system in the areas we mentioned; our goal is to extend it
in some of the suggested areas, while still keeping its

overall simplicity and efficiency.

29

REFERENCES

1.

E. D. Sacerdoti, "Language Access to Distributed Data
with Error Recovery," Proceedings of the TFifth
International Joint Conference on Artificial

Intelligence, Cambridge, Mass,, August 1977,

E. ¥, Codd, "Seven Steps to Rendezvous with the Casual
Uger,” in Data Base Management, J. W. Klimbie and

K. I. Koffeman ed., pp. 179-200 (North-Holland, 1974)

N. Roussopoulos and J. Mylopoulos, 'Using Semantic
Networks for Data Base Management," Proceedings of the
First International Conference on Very lLarge Data Bases,

Framingham, Mass., September 1975, pp. 144-172,

C. R, Carlson and R. S. Kaplan, "A Generalized Access
Path Model and its Application to a Relational Data Base
System," ©Proceedings of the International Conference on

Management of Data, Washington, D.C., 1976, pp.l143-154

G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz and
J. Slocum, "Developing a Natural Language Interface to
Complex Data," paper submitted to the Third International

Conference on Very Large Data Bases.

P. Morris and D. Sagalowicz, "Managing Network Access to
a Distributed Data base," Proceedings of the Second
Berkeley Workshop on Distributed Data Management and

Computer Networks, Berkeley, California, May 1977,

30

10.

11.

1z,

13,

T. Marill and D. Stern, "The Datacomputer-—-A Network
Data Utility," AFIPS Conference Proceedings, Vol., 44,
May 1975, pp.389-395,

J. Farrell, "The Datacomputer——a Network Data Utility,"
Proceedings of the Berkeley Workshop on Distributed Data
Management and Computer Networks, Berkeley, California,

May 1976, pp.352-364.

M. Stonebraker, "Implementation of Integrity Constraints
and Views by Query Modification,' Proceedings of the
International Conference on Management of Data, San Jose,

California, May 1975, pp.65-78.

D. D. Chamberlin, J. N, Gray and I, L. Traiger, '"Views,
Authorization, and Locking in a Relational Data Base
System," Proceedings AFIPS National Computer Conference,

AFIPS Press, Vol, 44, 1975,

ACM Computing Surveys, '"Special issue: Data-Base

Management Systems," March 1976

M. Minsky, "A Framework for Representing Knowledge,"
MIT Artificial Intelligence Laboratory, Memo No. 306,

Cambridge, Mass., June 1974.

T. Winograd, "Five Lectures on Artificial Intelligence,"

Stanford Artificial Intelligence Laboratory, Memo No.

AIM-246, Stanford, CA, Sept. 1974

31

14,

15.

16.

17.

M. Hammer and A. Chan, "Index Selectiomn in a
Self-Adaptive Data Base Management System,” Proceedings
of the International Conference on Management of Data,

Washington, D.C., June 1976, pp.l-8

CODASYL, "Data Base Task Group Report,” ACM, New York
City, N.Y., Oct. 1969,

E. Nahouraii, L. 0. Brooks and A, F, Cardenas, '"An
Approach to Data Communications between Generalized Data
Base Management Systems," Proceedings of the Second

International Conference on Very Large Data Bases,

Brusselg, Belgium, September 1976, pp. 117-142,

K. Furukawa, "A Deductive Question Answering System on
Relational Data Bases," paper to be presented to the the
Fifth International Joint Conference on Artificial

Intelligence, Cambridge, Mass., August 1977,

32

APPENDIX

What follows is a trace, demonstrating the capabilities of
the LADDER system developed at SRI. The system allows a
casual user to access data about ships that is located in two
remote computers, located at CCA (Computer Corporation of
fmerica) and at NOSC (Naval Ocean Systems Center), via
ARPANET links that are established as needed by the program
itself.

The trace included below shows the user’s input, the
calls to IDA {including recursive calls generated by IDA
itself), the Datalanguage generated by FAM, and the response

by the system. Some explanatory comments have been added.

8LADDER.EXE

PLEASE TYPE IN YOUR NAME: demonstration

DO YOU WANT INSTRUCTIONS? (TYPE Y OR N) NO

33 Where is the Kennedy?

PARSED!

PARSE TIME: .104 SECONDS

IDA:

QUERYLST = ((NAM EQ °JOHN F.KENNEDY) (? PTP) (? PTD))
; ¥For this query, we ask for the present track position
;¥(PTP) and date when it was reported (PTD).

;¥First FAM will connect to the Datacomputer (DC).
; ¥What is preceded by >> corresponds to

_ ; ¥synchronization messages from the DC.

CONNECTING TO DATACOMPUTER AT CCA1l:

>> ;0031 770519003427 IONETI: CONNECTED TO SRI-KL-16700010

>> ;J150 770519003429 FCRUN: V="DC-3/50.00.3" J=3 DTz "WEDNESDAY, MAY 18,

*¥%1977 20:34:29-EDT” S="CCA”

>> ;J200 770519003429 RHRUN: READY FOR REQUEST

*> SET PARAMETERS
;¥We now ask the local program which interfaces with the DC
;¥not to show those messages from the DC--except for errors.

¥V VERBOSITY (-1 TO 5): 1 '

%P PROCEED WITH DATALANGUAGE [CONFIRM WITH <CR>]

. ;¥Now, FAM logs on the DC, then opens files and ports. A

;*PORT on the DC is beth a logical view of the files and
;¥an access path over the ARPA network. The next query
; ¥requests that data be sent from the SHIP file intc the
; ¥NSTDPORT1 port, i.e. that they be sent over the ARPA net.
;¥Whatever is preceded by CCA1: is a Datalanguage guery
;¥being sent to the DC located on the CCA1 computer.

CCA1:LOGIN $TOP.ACCAT.GUEST ; _

CCA1:0PEN ZTOP.ACCAT.SAGALOWICZ .NSTDPORT1 WRITE;

CCA1:0PEN %TOP.ACCAT.SHIP READ;

CCA1:FOR NSTDPORT1 , SHIP WITH (NAM EQ "JOHN F.XENNEDY") BEGIN STRINGI =
CCA1:UIC STRINGZ2 = VCN END;

33

¥> TOTAL BYTES TRANSFERRED: 13

CCA1:0PEN %TOP.ACCAT.SAGALOWICZ .NSTDPORTZ WRITE;

CCA1:0PEN %TOP.ACCAT.TRACKHIST READ;

CCA1:FOR NSTDPORT2 , TRACKHIST WITH (UIC EQ 'N0O0002°) AND (VCN EQ “07)

CCA1:BEGIN STRING1 = PTP STRING2 = PTD END;

¥> TOTAL BYTES TRANSFERRED: 30

IDA = ((PTP "6000NO3000W" PTD 7601171200))
;#¥This is the result: note that we needed to access two
;¥files to obtain it. Now, the natural language front-end
;¥presents the results to the user in a better format:

COMPUTATION TIME FOR QUERY: 2.701 SECONDS

REAL TIME FOR QUERY: U46.57 SECONDS

(POSITION 6000N03000W DATE 7601171200)

34_What is the assigned home port of the Biddle?

. PARSED!

PARSE TIME: .231 SECONDS
IDA:
QUERYLST = ((? PDEP) (NAM EQ “BIDDLE"))
CCA1:0PEN 4TOP.ACCAT.UNIT READ;
;*¥Note here the use of the alias: NAM is replaced by ANAME
CCA1:FOR NSTDPORT1 , UNIT WITH (ANAME EQ ‘BIDDLE") BEGIN STRINGT = HOGEOQ
CCA1:END;
*> TOTAL BYTES TRANSFERRED: 10
CCA1:0PEN $TOP.ACCAT.PORT READ;
CCA1:FOR NSTDPORT1 , PORT WITH (HOGEO EQ ‘CHAR") BEGIN STRING1 = DEP END ;
¥> TOTAL BYTES TRANSFERRED: U6
IDA = ((PDEP "CHARLESTON"))
COMPUTATION TIME FOR QUERY: .813 SECONDS
REAL TIME FOR QUERY: 16.732 SECONDS

PORT = CHARLESTON

;¥Note in the next query that INLAND remembers the context
;*and will understand correctly the incomplete guestion.

35_What is the commanding officer’s name?

PARSED!

PARSE TIME: .114 SECONDS

IDA:

QUERYLST = ((? RANK) (? CONAM) (? NAM) (ANAME EQ "BIDDLE"))

CCA1:FOR NSTDPCRT] , UNIT WITH {(ANAME EQ "BIDDLE)} BEGIN STRING1 = RANK

CCA1:STRINGZ2 = CONAM STRING3 = ANAME END;

*> TOTAL BYTES TRANSFERRED: 62

IDA = ((RANK °CAPT" CONAM “J.TOWNES ™ NAM "BIDDLE"))

COMPUTATION TIME FOR QUERY: .262 SECONDS

REAL TIME FOR QUERY: 4.889 SECONDS

(RANK CAPT NAME J. TOWNES SHIP BIDDLE)

; ¥The next query shows one example of the * feature.
36_Where is the fastest american nuclear submarine?

PARSED! PARSED!
PARSE TIME: .344 SECONDS
IDA:

QUERYLST = ((? NAM) (* MAX MCSF) (NAT EQ ‘US”) (FTP2 EQ 'N")
(TYPE1 EQ "S°) (TYPE2 EQ "S”) (? PTP) (? PTD))
;¥We have reached the maximum number of files/ports we can
i *¥reep opened, FAM starts closing them as needed.

34

CCA1:CLOSE NSTDPORT1;
CCA1:0PEN 4TOP.ACCAT.SAGALOWICZ NSTDPORT WRITE;
CCA1:BEGIN DECLARE Z STRING (,100) ,D="}" DECLARE X STRING (,100) ,D="}"
CCA1:DECLARE Y STRING (,100) ,D="}" Y = “*° DECLARE Y1 STRING (,100) ,D="}"
CCA1:Y1 = “#° DECLARE ¥2 STRING (,7100) ,D="}" Y2 = “#° DECLARE Y3 STRING
CCA1:(,100) , D="}" Y3 = "#° X = “00.0" FOR SHIP WITH (NAT EQ ‘US") AND
CCA1:(FTP2 EQ 'N”) AND (TYPE1 EQ “S’) AND (TYPE2 EQ "S”) BEGIN Z = MCSF IF
CCA1:Z LT °99.9" AND X LT Z THEN BEGIN Y = NAM X = Z Y1 = UIC Y2 = VCN END
CCA1:END NSTDPORT.STRING1 = Y NSTDPORT.STRINGZ2 = X NSTDPORT.STRING3 = Y1
" CCA1:NSTDPORT.STRINGH = Y2 END;
*> TOTAL BYTES TRANSFERRED: 52
CCA1:FOR NSTDPORTZ2 , TRACKHIST WITH (UIC EQ "NOOOOT’) AND (VCN EQ "07)
CCA1:BEGIN STRING1 = PTP STRING2 = PTD END;
*¥> TOTAL BYTES TRANSFERRED: 30
IDA = ((NAM °LOS ANGELES’ PTP “OOCONO4S00E” PTD 7601171200 MCSF “30.07))
COMPUTATION TIME FOR QUERY: 1.969 SECONDS
REAL TIME FOR QUERY: 160.169 SECONDS
(SHIP LOS ANGELES POSITION QQOOONOQUSOQE DATE 7601171200 MXSPD 30.0)
;¥The next query is an example of IDA's ability to navigate
;¥in the data base. It will take the joins of 4 files.
37_Where are the Sturgeon class submarines?
PARSED!
PARSE TIME: .266 SECONDS
IDA:
QUERYLST = ({(? NAM) (SHIPCLAS EQ 'STURGEON’) (TYPE1 EQ "S7)
(TYPE2 EQ "S7) (? PTP) (? PTD))
CCA1:CLOSE NSTDPORT;
CCA1:0PEN %TOP.ACCAT.SAGALOWICZ .NSTDPORT1 WRITE;
CCA1:CLOSE PORT:
CCA1:0PEN $TOP.ACCAT.SHIPCLASCHAR READ;
CCA1:FOR NSTDPORT1 , SHIPCLASCHAR WITH (SHIPCLAS EQ "STURGEON’) AND
CCA1:(TYPE1 EQ “S”) AND (TYPE2 EQ “S”) BEGIN STRING1 = SHIPCLAS END;
*> TOTAL BYTES TRANSFERRED: 30
CCA1:CLOSE UNIT;
CCA1:0PEN %4TOP,ACCAT,.SHIPCLASDIR READ;
CCA1:FOR NSTDPORT] , SHIPCLASDIR WITH (SHIPCLAS EQ “STURGEON®) BEGIN
CCA1:STRING1 = UIC STRING2 = VCN END;
*> TOTAL BYTES TRANSFERRED: 91
CCA1:FOR NSTDPORT2 , TRACKHIST WITH(UIC EQ "NOO016° OR UIC EQ 'NOO015
CCA1:0R UIC EQ 'NOOO14” OR UIC EQ "NOOD13" OR UIC EQ °"N0O0D12° OR UIC
CCA1:EQ "NO0O11” OR UIC EQ “NOO010”) AND (VCN EQ “0°) BEGIN STRINGI =
CCA1:PTP STRINGZ2 = PTD STRING3 = UIC END; ‘
%> TOTAL BYTES TRANSFERRED: 252
CCA1:FOR NSTDPORT! , SHIP WITH(UIC EQ 'NOQ0O13 OR UIC EQ °‘NO0012° OR
CCA1:UIC EQ "N0O011° OR UIC EQ ‘NOOO10” OR UIC EQ "NOOO16” OR UIC EQ
CCA71: NO0O15” OR UIC EQ “NOOO14") AND (VCN EQ “0°) BEGIN STRING! = NAM
CCA1:STRING2 = UIC END;
' %> TOTAL BYTES TRANSFERRED: 266
IDA = ((NAM 'STURGEON’ PTP “3700N07600W” PTD 7601171200) (NAM "WHALE ™ PTP
“3700N07600W” PTD 7601171200) (NAM “TAUTOG” PTP “3700NQ7600W”° PTD
7601171200) (NAM “GRAYLING ™ PTP “3700NO7600W" PTD 7601171200) (NAM
POGY" PTP “3500N01000E° PTD 7601171200) (NAM “ASPRC” PTP “3000N0O3000W’
PTD 7601171200) (NAM “SUNFISH PTP “3000NO6000W’ PTD 7601171200})
COMPUTATION TIME FOR QUERY: 2.578 SECONDS
REAL TIME FOR QUERY: 126.39 SECONDS

’

35

SHIP POSITION DATE

STURGEON 3700NQT7600W 7601171200
WHALE 3700NO7600W 7601171200
TAUTOG 3700NO7600W 7601171200
GRAYLING 3700N07600W 7601171200
POGY 3500N01000E 7601171200
ASPRO 3000N03000W 7601171200
SUNFISH 3000NOA0COW 7601171200

38 1SET(MAXNUMOFFILES 4)
;¥We redo the same question: IDA now builds programs
+*¥to join up to Y4 files--which is what request 38 means.
39 Where are the Sturgeon class submarines?
PARSED!
PARSE TIME: ,246 SECONDS
IDA:
QUERYLST = ((? NAM) (SHIPCLAS EQ “STURGEON") (TYPE1 EQ "S7)
(TYPE2 EQ “8") (? PTP) (? PTD)}
CCA1:FOR R1 IN SHIPCLASCHAR WITH (SHIPCLAS EQ “STURGEON®) AND (TYPE1 EQ
CCA1:°S”) AND (TYPE2 EQ °“S’) FOR R2 IN SHIPCLASDIR WITH R2.SHIPCLAS EQ
CCA1:R1.SHIPCLAS FOR R3 IN SHIPF WITH R3.UIC EQ R2.UIC AND R3.VCN EQ
CCA1:R2.VCN FOR NSTDPORT1, RU4 IN TRACKHIST WITH RU.UIC EQ R3.UIC AND
CCA1:R4.VCN EQ R3.VCN BEGIN STRING1 = R3.NAM STRINGZ = RY4.PTP STRING3 =
CCA1:RL.PTD END;
#>TOTAL BYTES TRANSFERRED: 371
IDA = ({NAM °"STURGEON" PTP °“3TOONO7600W" PTD 7601171200) (NAM "WHALE~
PTP “3700NO7600W” PTD 7601171200) (NAM “TAUTOG” PTP “3700NO7600W" PTD
7601171200) (NAM "GRAYLING® PTP “3700NQ7600W" PTD T7601171200) (NAM “POGY’
PTP “3500N01000E”" PTD 7601171200) (NAM “ASPRO” PTP “3000N03000W" PTD
601171200) (NAM °SUNFISH” PTP “3000N06000W~ PTD 7601171200))
COMPUTATION TIME FOR QUERY: 2.903 SECONDS
REAL TIME FOR QUERY: 224,155 SECONDS
SHIP POSITION DATE
STURGEON 3700NOTG&E00W 7601171200
WHALE 3700NOTH00W 7601171200
TAUTOQG I700NOT7600W 7601171200
GRAYLING 3700NOT600W 7601171200
POGY 3500N01000E 7601171200
ASPRO 3000N03000W 7601171200
SUNFISH 3000N0O6000W 7601171200
40 _done
PARSED!
Thank you

36

