
Tools for Requirements Management: a Comparison of
Telelogic DOORS and theHV

Tony Cant, Jim McCarthy and Robyn Stanley

Information Networks Division
Defence Science and Technology Organisation

DSTO–GD–0466

ABSTRACT

It is now well-known that a robust and complete requirements management process
is of great benefit in the procurement of complex, critical, software-intensive systems.
DOORS is a well-established suite of software made by Telelogic, designed to main-
tain large sets of requirements. The HV is a project under development by the TCS
Group at DSTO that aims to provide a new approach to the creation of technical doc-
uments required in system development. It can be used to formulate, manage, and
analyse requirements, and then to develop the system design which satisfies them.
While the main focus of each piece of software is different, there is enough over-
lap that users of DOORS would strongly benefit from use of the HV. This report
highlights the strengths of both tools, compares their major features, and suggests a
number of ways the HV and DOORS can interact with one another to benefit the
user.

APPROVED FOR PUBLIC RELEASE

DSTO–GD–0466

Published by

Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia

Telephone: (08) 8259 5555
Facsimile: (08) 8259 6567

c© Commonwealth of Australia 2006
AR No. AR 013-689
July 2006

APPROVED FOR PUBLIC RELEASE

ii

DSTO–GD–0466

Tools for Requirements Management: a Comparison of Telelogic
DOORS and theHV

EXECUTIVE SUMMARY

The effective acquisition and integration of computer-based systems – often critical, com-
plex and software-intensive in nature – is a high-risk endeavour. An intensive analysis in the
requirements-capture phase is crucial for preventing large cost and schedule overruns.

This report provides advice to the DMO, under Task 04/061 sponsored by the Defence Materiel
Organisation (DMO), on the comparison between the HV tool – currently being developed by the
TCS Group at DSTO – and Telelogic DOORS. The DOORS tool is a mature commercial product
to which the DMO has been exposed through its application for managing requirements in various
acquisitions. It is highly targeted to this application. The HV tool, on the other hand, is under
development. Moreover, it takes a rather innovative path in providing highly-structured support for
product development: already at the data-entry level it is a sophisticated editor supporting literate
documentation production at all levels with the convenience of a central database for project-wide
consistency; further, it has a tight and literate coupling to an interactive reasoning environment to
facilitate the communication of precise formal design analyses. As such, it is a relatively unknown
quantity for the DMO.

In Chapter1 we discuss systems acquisitions in the Defence environment. We define the
concept ofrequirements managementand introduce the tools under comparison. The following
two chapters elaborate the description of both DOORS and the HV software packages, respect-
ively, highlighting the main features that a user of each package will commonly be using. These
two chapters can be read independently. The DOORS chapter, being a quick review of an estab-
lished product, is a summary of the tool features and corresponding user interaction. The HV
chapter attempts to lay out the ideas which underpin its development and expose the mechanisms
and features arising from them which will benefit the user.

The main features of each tool – particularly the cases where one tool has a deficiency that
the other addresses – are then compared in Chapter4. Once the reader is familiar with the feature
set of both tools, possible ways the tools can be used to interact with one another are discussed in
Chapter5. Chapter6 provides a very brief conclusion.

iii

DSTO–GD–0466

iv

DSTO–GD–0466

Contents

Glossary. xi

Chapter 1 Introduction 1

1.1 The Defence procurement challenge. 1

1.1.1 Critical Systems. 1

1.1.2 Complex Systems. 2

1.1.3 Software-Intensive Systems. 2

1.2 Requirements Management. 2

1.2.1 The DOORS Tool . 3

1.2.2 The HV Tool . 3

Chapter 2 DOORS overview 5

2.1 File and user management. 5

2.2 Links . 8

2.3 Baselining and backing up. 9

2.4 Views, filtering, searching and sorting. 10

2.5 Importing and exporting . 11

2.5.1 Predefined file formats. 11

2.5.2 Custom routines to import and export. 12

2.6 Change proposal system. 12

2.7 Testing. 13

2.8 Other ways of accessing DOORS. 13

2.8.1 DOORSnet. 13

2.8.2 RequireIT. 14

2.9 Doors Extension Language. 14

2.10 In summary. 15

Chapter 3 HV overview 17

3.1 The W . 19

3.1.1 Document structure. 20

3.1.2 The Datastore. 21

v

DSTO–GD–0466

3.1.3 The Normative Design Document. 22

3.1.4 The Tool Interface. 23

3.2 The P . 23

3.2.1 Theorem provers. 24

3.2.2 The P plug-in . 25

3.3 The M . 25

3.3.1 Requirements capture and analysis. 26

3.3.2 Horizontal Design Hierarchies. 27

3.3.3 Vertical Design Hierarchies. 29

3.4 Summary . 30

3.4.1 So what?. 30

Chapter 4 Comparison of DOORS and theHV 33

4.1 Data management. 33

4.1.1 Validity and integrity. 33

4.1.2 Linking and embedding. 34

4.1.3 Filtering and sorting. 35

4.2 Report generation. 36

4.3 Programming API. 37

4.4 Summary . 37

4.4.1 A thought-example. 39

Chapter 5 Tool interactions 41

5.1 Static interactions. 41

5.1.1 HV reading DOORS format. 41

5.1.2 HV exporting to DOORS format. 41

5.1.3 DOORS reading HV format . 42

5.1.4 DOORS exporting to HV format . 42

5.2 Discussion. 42

Chapter 6 Conclusion 45

References. 46

vi

DSTO–GD–0466

Figures

2.1 The DOORS split-pane file explorer. 6

2.2 The DOORS split-pane module explorer. 7

2.3 Links in DOORS . 8

2.4 The DOORS filter dialogue. 11

3.1 The main components of the HV. 18

3.2 The HV architecture. 19

3.3 The tree-like operator structure of a mathematical expression.. 20

3.4 TheSafe Flight condition. 27

3.5 An example horizontal design.. 28

3.6 An example vertical design.. 29

vii

DSTO–GD–0466

viii

DSTO–GD–0466

Tables

4.1 At a glance: comparison of features in DOORS and the HV. 38

ix

DSTO–GD–0466

x

DSTO–GD–0466

Glossary

Term Definition
API Application Programming Interface
Changebars Visual indication that the contents of a document have changed. Usually a

vertical coloured line in the margin alongside the altered text.
CSS Cascading style sheets
DMO Defence Materiel Organisation
DOORS Requirements management software
DXL Doors eXtension Language. The DOORS inbuilt API that allows DOORS to

be extended.
DSTO Defence Science and Technology Organisation
HV Hierarchical Verification Environment
HTML Hypertext Markup Language — used for web pages
ID Identifier
IND Information Networks Division
Isabelle Software that provides a generic theorem proving environment
LATEX A document typesetting system
MS Microsoft
NDD Normative Design Document
OLE Object Linking and Embedding. A Microsoft approach to linking document

types from different applications by embedding a link to the document of an-
other application within a document.

OS Operating System
PDF Adobe Portable Document Format
PDFTEX Software that processes LATEXsource and produces PDF output
SMTP Simple Mail Transfer Protocol. Used for sending email.
SoS Systems of Systems
SRS Software Requirements Specification
TCS Trusted Computer Systems Group, DSTO Edinburgh
UML Unified Modeling Language
Unicode A universal character encoding standard
Xalan An XSLT stylesheet processor (that can convert XML documents to other

formats)
XML Extensible Markup Language
XSL Extensible Stylesheet Language
XSLT Extensible Stylesheet Language Transformations

xi

DSTO–GD–0466

xii

DSTO–GD–0466

Chapter 1

Introduction

1.1 The Defence procurement challenge

A central challenge for the Australian Government Department of Defence – and in partic-
ular for the Defence Materiel Organisation (DMO) – is the effective acquisition and integration
of computer-based systems. Such systems are often critical, complex and software-intensive in
nature. Their acquisition is a high-risk endeavour involving a number of development and pro-
curement processes that must take account of the entire lifecycle: from the concept phase; through
requirements definition and analysis; through system design, modelling and implementation; to
sustainment and finally, disposal. There are many examples of Defence acquisitions where flaws
in these processes have led to large cost and schedule overruns.

Clearly, there are huge potential benefits if this acquisition and integration process can be
managed in a more rigorous and scientific manner. In particular, improved processes for require-
ments elucidation, formulation and management are vital for establishing a sound basis for further
system engineering development.

In this paper, we discuss the DOORS tool[1] for requirements management, and how this tool
is currently used within the DMO. The paper then outlines a new formal-methods-based approach,
currently under development by DSTO, that provides tool support (called the HV (Hierarchical
Verification Environment[2]) for the development of design documentation, with specific advant-
ages for requirements engineering.

1.1.1 Critical Systems

We call a systemcritical if it is the case that certain requirementsmustbe met. For example,
in a safety-criticalsystem we need to ensure that hazardous system states (i.e. those that could
lead to an accident) are not reached. Inmission-criticalsystems, all the goals and performance
requirements critical to the mission must be met. In asecurity-criticalsystem, the system must
satisfy a security policy appropriate to its operating environment.

Critical systems need assurance that they will meet their critical requirements; such assurance
must be communicated to other parties (such as certifiers).

1

DSTO–GD–0466

1.1.2 Complex Systems

Defence systems are also becoming increasingly complex. They may be built up from semi-
independent agents responsible for weapons, communications, sensors, control and mobility. These
agents will interact with each other (possibly in quite subtle ways), and may be themselves be
hierarchical in structure. Their implementation will involve subtle interactions between hardware,
software and human components. Complexity may also be manifested by real-time or synchron-
ization issues, as well as stochastic or uncertain behaviour. Large Systems of Systems – such
as joint, multi-platform and coalition systems – are also problematic because of the presence of
possible unanticipated interfaces and the potential for unexpected emergent properties.

1.1.3 Software-Intensive Systems

Software-intensive systems (those systems that are heavily dependent on software or software-
like components such as Field Programmable Gate Arrays) present special challenges: here we
need high confidence that the software architecture and design process will achieve the intended
result. Assessing and managing the impact of software design changes is very difficult.

1.2 Requirements Management

Requirements managementis the process of capturing, analysing and tracking system require-
ments as they evolve through the system lifecycle. In Defence acquisitions such as SEA 4000
(Air Warfare Destroyer), high-level requirements are usually expressed in the Operational Concept
Document (OCD); they are further elaborated in the Function and Performance Specification (FPS)
and the System and Sub-System Specification (SSS).

The system requirements must be:

• valid, i.e. they must truly reflect user needs;

• traceable, so that lower-level requirements are clearly derived from high-level ones;

• complete, as omissions will mean that user needs may be ignored;

• consistent, as conflicting requirements cannot be satisfied simultaneously;

• relevant, as irrelevant requirements could result in inefficient use of resources; and

• unambiguousand therefore less likely to lead to misunderstandings.

In a large project, keeping track of all the different requirements, the relationships between
them and if they have been met or not can be a daunting task. Tool support is crucial to avert trivial
errors introduced through human frailty. The two tools compared in this report are introduced now.

2

DSTO–GD–0466

1.2.1 The DOORS Tool

DOORS is part of a commercial suite of requirements management software produced by
Telelogic. It is designed to manage large sets of requirements; large projects can have requirements
that number in the thousands, with hundreds of users. DOORS also supports concurrent and
remote access by many users at once. There are many commercial software packages that offer
requirements management functionality; Telelogic DOORS is one of the market leaders. The
aim of DOORS is to capture, link, trace, analyze and manage changes to information to ensure a
project’s compliance with specified requirements and standards.

The DMO is a regular user of DOORS for managing requirements and assessing contracts.

1.2.2 TheHV Tool

DSTO is undertaking research into methods and tools that support the construction, animation
and verification of critical system designs. This work is being sponsored and funded by the DMO.
Earlier work culminated in a tool (called DOVE[3]), in which simple systems are analysed using
state-machine design models.

A new tool, called the HV (Hierarchical Verification Environment) is currently being de-
veloped. This tool aims to provide a unified framework in which entire design projects can be
captured. The tool will initially support the development of structured technical documentation,
providing central management of all for the formal elements required for the design. It will even-
tually support system modelling using hierarchical dataflow diagrams and state machines, and will
also support design verification.

A feature of particular importance is that the HV will utilise a formal methods tool. Thus
the tool will allow requirements to be formally expressed and – if necessary – provide proof that
the design meets these requirements. The termformal methodsrefers to the use of mathematical
notation to give precise expression to technical concepts in system engineering.

More specifically, formal methods can be used to:

• model system requirements i.e. convert English language requirements to mathematical
statements;

• reason about the properties of system requirements e.g. determine the internal consistency
of a set of complex requirements;

• prove that designs and/or code meet their requirements (verification);

• model system design; and

• analyse the meaning (semantics) of software constructs.

The use of formal methods offers a number of key benefits.

Firstly, such methods can lead to a cost reduction in system procurement, by providing support
for requirements validation and management, as well as improved understanding of system design
and interfaces.

3

DSTO–GD–0466

Secondly, formal methods play an important role in providing assurance that critical require-
ments are met. Indeed they are mandated by a number of safety and security standards). Testing is
not sufficient for computer-based systems; it can’t be complete because the state space is too big,
and it can’t be comprehensive because of the discrete state space. A proof tells you how and why
a system works, and a formal proof can be machine supported and checked.

Thirdly, formal methods can enhance tool support for the preparation of structured technical
documents, making the documentation process more reliable and error-free.

4

DSTO–GD–0466

Chapter 2

DOORS overview

DOORS is part of a suite of requirements management software produced by Telelogic. It is
designed to manage large sets of requirements; large projects can have requirements that number
in the thousands, with hundreds of users. It runs on a variety of platforms, including most versions
of MS Windows, HP-UX and Solaris 8 and 9; but not the Macintosh.

Requirements management is the process of capturing and tracking user needs as they change
through the development lifecycle. DOORS exists to capture, link, trace, analyze and manage
changes to information to ensure a project’s compliance with specified requirements and stand-
ards. In a large project, keeping track of all the different requirements, the relationships between
them and if they have been met or not can be a daunting task. There are many commercial soft-
ware packages that offer requirements management functionality; Telelogic DOORS is one of the
market leaders.

2.1 File and user management

Data in DOORS can be stored in a hierarchical fashion similar to conventional file systems.
All data input to DOORS is stored oneobjectper line in a spreadsheet like format. Each of these
spreadsheets is called amodule– equivalent to a file in a filesystem view of DOORS – and can
contain arbitrary numbers of rows and columns. The basic objects of interest are requirements.
Users can arrange objects in a hierarchy and DOORS numbers them accordingly; levels of the
hierarchy can be collapsed or expanded to make viewing easier. Each object can have a heading
that is displayed on a separate line to the rest of the object data. The hierarchy within the module
can be shown in a separate pane to the data in a module for quick navigation, and the objects are
identified only by their heading in the navigation pane. The navigation pane can be turned off,
leaving only the objects displayed. Figure2.2shows the DOORS module view window.

An object can contain more than just a heading and simple text. DOORS allows the adding of
extra columns orattributes, to objects. The standard DOORS attribute types are integer, real, date,
enum and DOORS username. User-defined attribute types are allowed in DOORS, and ranges
can be imposed on the type. Some examples are Kg, limited to a positive int; or Deviation, a
real ranging from 0.5 to 1.5. The default value of an attribute can also be defined. Attributes can
contain formatting such as colours, fonts, bulleting and tables, or even contain charts and graphs.
Images can be inserted from files of a limited range of types (.bmp, .wmf, .eps) andOLE objects

5

DSTO–GD–0466

Figure 2.1: The DOORS split-pane file explorer

can be inserted in the same way they are inserted into other Windows applications. Values of
attributes can be dynamically calculated from the values of other attributes, as can be done in a
spreadsheet package.

The DOORS interface is much like common file browsers such as Windows Explorer. DOORS
allows users to create folders to store modules in to make navigating a large data set easier. When
viewing the DOORS filesystem, the higher-level navigational view of the folder structure is shown
in one pane, and the contents of the folders are shown in another pane. This split-viewing system
is common to file browsers such as Windows Explorer and document browsers like Adobe Reader.
As the DOORS filesystem can get quite large and complex, folders can be bookmarked as favour-
ites by a user to make finding them easier later, in a similar fashion to bookmarking in a web
browser. Figure2.1 shows the main DOORS file browser. Users log into DOORS and can see
as much of the DOORS filesystem as their permission level allows. Typical file types that can be
seen in the DOORS explorer include modules, descriptive modules (discussed later in Section2.5)
and reports (discussed later in Section2.4).

DOORS supports multiple users and groups, following a system of access levels and permis-
sions similar to Unix users and groups. DOORS permissions areread, create, modify, deleteand
administrate(RCMDA). To group related information, users can makeprojects in the DOORS
filesystem. Projects are a special case of a folder, and can be created anywhere in a DOORS

6

DSTO–GD–0466

Figure 2.2: The DOORS split-pane module explorer

filesystem. Each project has its own set of users, and can contain any number of modules and
folders within it. Folders can contain projects, and projects can contain folders. Sets of DOORS
users are assigned from the complete population of DOORS users on a project-by-project basis,
and can be restricted even further on folders and modules within projects.

With its extensive multi-user support, DOORS can allow several users on different computers
to edit parts of the same module at the same time. Any changes made to a module can be flagged
visually through the use ofchange barsalong the edge of each object, and information about who
made the changes is stored in the module history.

Permissions can also be set at the attribute level within a module by a user with the appropriate
administrative permissions. This will allow for example certain columns to be hidden or read-only
to certain users or groups of users. This is a finer granularity of access levels than the module
(or file, or table) level found in other software or at the operating system level. Information about
changes to a particular attribute in a module are logged by default to the module history; this
logging can be turned off on a per-attribute basis.

DOORS manages editing of requirements by having multiple edit modes and editable sections.

7

DSTO–GD–0466

The two standard edit modes areread-onlyandfull edit. Normally, no two users can open the same
module at the same time in full edit mode. However, sometimes it is necessary for this to occur,
particularly if one module is very long and multiple users are contributing to it. DOORS allows
for this by letting a user (with appropriate permissions) break a module into editable sections. The
sections are defined by a depth in the module hierarchy, and should be chosen with as coarse a
level of granularity as possible, for performance reasons. If DOORS crashes and a module or
editable section has a stale lock, users can unlock their own locks, but only an admin can unlock
other users.

2.2 Links

One of the major features of DOORS is its ability to handle links. The idea is that change
becomes more traceable if it is known what requirements depend on each other. Links are shown
by small arrows at the edge of the main column of rows in a module. The number of links is
shown when the mouse is rolled over the links as shown in Figure2.3. Clicking on the link arrows
brings up a menu of links to/from this object, which can be followed to the linked modules. If the
link is to a module that is already open, the name of the object that is linked is shown, otherwise
“unloaded object” is displayed, as shown in Figure2.3.

Figure 2.3: Links in DOORS

The basic mechanism for creating links is to select requirements, and drag them to the target
requirement. Links can also be created in bulk, from the current module to another module, in two
different ways. Links can be made between requirements with particular qualities (eg by selecting
them based on a regular expression, as discussed later in Section2.4), and the links can be created
between selected requirements. Bulk links can also be created by linking between requirements
based on the value of a particular attribute, which effectively links groups of requirements by a
key.

DOORS stores links in link modules. There is one link module for every pair of linked mod-
ules. Each link module contains linksets, which contain information about all the links between
the modules in a particular direction. For modules A and B, their linkset could contain four link-
sets, representing the links fromA → B , B → A, A → A andB → B . DOORS normally stores
all links that are created in a default linkset for each module. DOORS users can create additional
link modules to express different kinds of link relationships, for example to define additional de-
pendencies based on pay centre. Link modules are like normal DOORS modules in that they can

8

DSTO–GD–0466

be assigned access permissions, allowing only a particular set of users to see different link sets.
Links can also be assigned attributes, adding extra meaning to a link beyond simple direction.
These attributes might include who made the link, or a comment about why the link exists.

DOORS provides a number of analysis tools to track requirements that have been affected by
changes in the chain of dependencies, or just to track the chain itself. If you are searching on
in-links, DOORS calls it animpact analysis, and by out-links atraceability analysis. A search can
be carried out on the default link set, or on a user-defined link set. The number of links to follow
can also be restricted.

Links are automatically marked suspect when the source or target is changed, but only if the
changed attribute generates module history events – history logging can be turned off on a per-
attribute basis. Suspect links can easily be found by filtering or searching for them, and can then
be cleared one at a time on inspection. There is also an option to clear all suspect links at once.
In the latter case, some links may remain suspect if the module they are in is open for editing at
the time of clearing. In a large project, with many different interconnected modules, links could
become suspect very quickly. The concept of being able to clear all links to requirements that have
been changed at once, without checking them, shows a possible shortfall in DOORS and will be
discussed later.

2.3 Baselining and backing up

For every module, DOORS keeps a log file history of actions that users perform, including user
logins and sessions as well as changes to data. The module history can be sorted and searched
by username or type of change, and is very comprehensive. While this makes it easy to assign
accountability and track changes, the sheer volume of information stored can cause performance
issues. DOORS opens the log file associated with each module when the module is opened, and
this can take some time. Also, the changebars reflect changes since module creation, and carry
little meaning if a module is quite old.

Modules and user-defined sets of modules can be “baselined”; i.e., a full snapshot of the
module/s at the current moment is stored. Regular baselining will improve performance, as the
history logfile and changebars now refer back to the last baselining rather than the full life of the
module. Baselines can be electronically signed off, and the signature can include fields such as
who signed, and a comment like “All changes approved”. A baseline cannot be edited, but objects
within baselined modules can be copied out for use elsewhere. Full modules can also be copied
out or used to create templates – which don’t include object text or attributes, only headings – and
the links and history of the module will not be copied to the new module.

DOORS includes a module comparison wizard that allows two modules to be compared, either
in full or on an attribute-by-attribute basis. It can also be used to compare a module to its baseline,
or compare two baselined modules, to quickly see what has changed recently. DOORS simply
displays this in the wizard as a list of objects, showing both the original and the new object with
the changes highlighted.

Baselines are not backups; DOORS has no explicit backup mechanism. DOORS data can be
backed up using conventional filesystem backup tools. DOORS can be used to archive data, but
if any modules are open for editing there is a risk that the archive will be incomplete or contain
broken links, so it is not recommended to use this technique.

9

DSTO–GD–0466

Modules or parts of modules can be exported via a process called partitioning. The exported
modules can be imported at another location, edited and then restored back to the original database.
Modules can become very large. To avoid the need to take an entire module home each night,
DOORS can generate a synch file that can be used to update the original or remote copy. This
synch file is effectively just a “diff” that captures the changes made to the module, and DOORS
uses it to update the stale module.

DOORS has several built in tools to verify the integrity of a database and to run repairs on it.
Database integrity can easily be compromised by crashes which may leave links pointing to objects
that don’t exist, so this tool is an essential one. In the worst-case scenario Telelogic advises that
technical support be contacted to walk through a database restore.

2.4 Views, filtering, searching and sorting

To help users find what they need more quickly, different views of the requirements can be
set up. Attributes can be hidden, different levels of the module hierarchy can be collapsed or
expanded by default, and various other features of the screen display can be tweaked to the user’s
taste. Users can set up their own custom views, or managers can set up views, for example to hide
the cost attribute of a set of requirements from users who are not in the accounting group. All
views are set up on a per-module basis.

While views trim modules down largely on a per-column basis, filtering restricts what you see
even further, based on far more complicated rules. DOORS offers extensive filtering capability,
allowing requirements to be filtered on a particular attribute, or by the status of the links between
requirements. The most trivial filter is a text-based search. DOORS allows searches over projects
and folders in the same way as file browsers can be asked to search for files, using wildcards such
as ? and * and even has the familiar “containing text” option. It is possible to narrow a search
by searching for strings occurring in specified attributes, rather than searching over every single
attribute in a module.

A number of more advanced filtering options are available. Any attribute of any type can be the
subject of a filter, including numeric ranges and date ranges. Full Unix-style regular expressions
can be used for text filters. Even the link status and direction of an object can be filtered upon.
All these different kinds of filters can be combined by AND, OR and NOT, to produce a fairly
advanced filtering capacity. The filter creation dialogue is very similar to that of other applications,
where the expression can be typed in manually, or generated using buttons. The results of a filter, or
even unfiltered data can be sorted on any attribute in ascending or descending order. The DOORS
filter dialogue is shown in Figure2.4.

The result of a filter can be saved as a report, which can then be printed. DOORS allows some
control over the formatting of a report, such as page layout and headers and footers. Reports are
stored as files and can be opened from the standard DOORS explorer, and are simply a record of
the view or filter that was used to generate the report as well as the formatting information. The
data in the report will be re-generated each time. A report generated six months ago will, when
re-opened today, not contain six month old data but an up-to-date report.

10

DSTO–GD–0466

Figure 2.4: The DOORS filter dialogue

2.5 Importing and exporting

DOORS provides for a number of ways to import and export data, including the option to write
your own import or export routine from scratch. The main file types DOORS deals with are text
files, spreadsheets, FrameMaker, rich text, Microsoft Word and Microsoft Project.

2.5.1 Predefined file formats

DOORS by default can import plain text files, and import and export structured documents
and spreadsheets. When importing plain text files, DOORS provides a number of different options
to help read them correctly, and these can be saved for reuse on other text files in a .map file.
Its text file reading module has difficulties with structured text, such as being unable to identify a
numbered hierarchy within a text file but will read the same information in a .rtf or Word document.

11

DSTO–GD–0466

Spreadsheets are a format that can be both imported and exported in DOORS. In this case
“spreadsheet” means a comma or tab separated file, which can be created by applications like
Excel. Attributes are made from the columns in the file, and their types derived from the data in the
column. The source spreadsheet can be edited outside of DOORS and the DOORS copy updated
without having to re-import the entire file from scratch, with just the changes being incorporated.
Additionally, small subsets of a module resulting from applying a filter can be exported and edited
outside of DOORS, and then that subset can be used to update the DOORS copy. This option is
probably provided to avoid working with extremely large files.

For the document-based formats, DOORS maps headings to DOORS object headings, and
most other things to object text allowing for formatting like bullets and tables. The export process
simply reverses this, but any additional DOORS-specific formatting like links will be lost during
the export. DOORS exports FrameMaker files in an incomplete format, meaning DOORS exported
files will have to be opened in FrameMaker and saved before they can be re-imported into DOORS.
When DOORS imports from a Microsoft Project file, it will also import resources and links; and
of course the reverse applies when exporting.

A legacy from earlier versions of DOORS is the support to read text files in all at once and
manually mark them up into requirements. The resulting module has only one object, containing
the text of the file. This type of module is called a descriptive module. Parts of the text can then be
selected and marked up and exported to another DOORS module, leaving the original descriptive
module unchanged – descriptive modules cannot be edited. Links are then created between the
newly made requirements and the descriptive module. This kind of marking up will only create
object headings and object text. Other attributes will need to be added manually if desired.

2.5.2 Custom routines to import and export

As discussed later in Section2.9, DOORS contains an inbuilt programming language called
Doors eXtension Language (DXL) that supports file IO. If the need arises to regularly exchange
data with DOORS in a format it doesn’t normally support, DXL can be used to add another option
to the DOORS menu and a DXL program added to read and/or write this new format.

2.6 Change proposal system

The change proposal system built into DOORS feels at first like an afterthought, but it is clear
how it should be used. Anyone who does not have edit access to a DOORS module, but who has
read access, may look at a particular requirement – or even a whole project – and want to make
a change or suggestion but their permissions do not allow it. In a large project it’s hard to walk
down the hallway to the person that could make the change, particularly if they are physically
somewhere else. As an answer to this situation Telelogic offers the change proposal system.

In essense the change proposal system offers a form-based interface to suggest a change to
some part of a project. The module or project, the type of change, the priority and the reason the
change is requested are sent to the change proposal team. Once received, the change proposal team
can group change proposals together if many similar proposals are received. The team can review
proposals, change their status and actually implement the change if they accept the proposal. If

12

DSTO–GD–0466

the person who submitted the change has a listed email address and DOORS has an SMTP (mail)
server configured, they will be informed via email when the status of their proposal changes.

2.7 Testing

DOORS can be used to track the results of testing. As with many non-core DOORS features,
this is not designed for large-scale test tracking, but can be used if your testing requirements are
not overly complex. For large scale test tracking, Telelogic recommend using their other products.
While they do not specify which product to use, TAU/Tester seems the package of choice listed on
their website.

Test definitions can be created on a per-module basis. These define the attributes that need
to be recorded for each iteration of a test. Attributes can be chosen from the module attributes,
or created from scratch to include, say, who ran the test, the result and other comments. These
attributes can be modified later if needed. Each time a test is run and it is time to add the results to
DOORS, all the test attributes are duplicated for the new run. This creates a new column for the
results, and the user can fill in all the new values. DOORS supplies a tool for later comparison of
test runs.

2.8 Other ways of accessing DOORS

Users are not limited to accessing a DOORS database through the DOORS program itself. For
lighter work that doesn’t need the full functionality of DOORS, or for remote access of a database,
Telelogic provides two products that provide additional ways of using DOORS.

2.8.1 DOORSnet

DOORSnet provides a web-based front end to a DOORS database. This removes the need for
a client installation of DOORS, and DOORS data can be accessed from anywhere in the world
that has a browser and the Internet. Merely installing DOORSnet and setting it up doesn’t mean
your entire database is accessible from the Internet. DOORS users need to be assigned publishing
rights unless only the DOORSnet administrator is going to publish DOORS modules to the web.
Then, modules and projects can be published to the web as needed – one project at a time.

Existing DOORS users need to register with DOORSnet before they can use it. A guest user/s
can be specified, but if people use the guest account to submit a change proposal they will not
get email notification about the status of their change proposal. Guest access to the database can
be completely disabled. A license is required to run edit sessions via DOORSnet, as it defaults
to read-only access; however the change proposal system is fully functional over the DOORSnet
interface to registered users.

Two DOORSnet servers can be run on the same or different computers to increase performance
while they serve the same database. One installation of DOORSnet will be the primary one for
that database, and all configuring must be done using that server. Multiple DOORS databases
cannot be published from the one computer. If multiple DOORS databases need to be published

13

DSTO–GD–0466

to the web, multiple DOORSnet servers on separate computers must be used. Every time the
published directory of the database is changed, or if the operating system of the server is changed,
all registered users must re-register.

There is no inbuilt security for DOORSnet, so if security is a concern the database should be
accessed by SSL, using https:// urls rather than http://. And finally, on an aesthetic note, DOOR-
Snet allows a custom header, footer and title to be added to the web pages it generates.

2.8.2 RequireIT

Strictly a Windows program, RequireIT hooks into Microsoft Word and can be used for creat-
ing and managing small sets of requirements. It is not recommended for a project containing more
than 10 documents; larger projects should use the full-featured DOORS program. RequireIT adds
its own menu options and toolbar buttons to Word and uses these to interface with the user. A new
or existing document is “marked up” into requirements, and relationships between requirements
can be stored as links. Text is marked up by selecting it with the mouse or cursor, and clicking the
markup button on the toolbar.

RequireIT stores the attributes of requirements using the hidden text feature of Word, which
can be toggled on and off via a button on the toolbar. The attributes can be collapsed or expanded
by a small link near the requirement text. The security settings in Word may interfere, as RequireIT
is written in Word macros. The hidden text can also cause problems. When using RequireIT, it is
safest to show the hidden text before cutting and pasting, as breaking up a block of hidden attribute
information will break the underlying DOORS requirement and any links. RequireIT adds some
buttons to Word that correctly selects/cuts/copies a requirement based on the cursor position.

Filtering and report creation is supported in RequireIT, again via added menu items and toolbar
buttons. Once the appropriate filtering has been applied to a document, a report can be generated
as a new document and can be saved or printed in the usual Word fashion. Without creating a
report, the results of filtering are simply displayed as numbers of matches, and Word highlighting
within the document. Two pre-defined reports are available: Requirements and Traceability. The
former generates a two-column Word table suitable for printing, and the latter generates a report
on the links in the document.

RequireIT can be used to work with DOORS modules at home, and then the document can be
imported into DOORS as a DOORS module. The appropriate licenses need to be held to exchange
data between RequireIT and DOORS. Without the licenses the RequireIT documents can only be
imported to DOORS as standard Word documents, and will lose attribute and link information.

2.9 Doors Extension Language

One of the less publicised features of DOORS is that it contains an extensive programming
language, called the DOORS Extension Language, or DXL. It is DXL that is responsible for many
of the more elaborate graphical features that can be placed in attributes, such as graphs. DXL is
an interpreted language, with an interpreter and debugger built into the DOORS application.

DXL is very (C/C++)-like in syntax. DOORS ships with a fairly extensive DXL electronic
help file, and a library of example programs and routines. The inbuilt DXL editor and interpreter

14

DSTO–GD–0466

work in the same way as most interpreters, allowing the user to load a file that’s already written or
start one from scratch and then edit it in place. The manual doesn’t recommend editing large files
within DOORS, and suggests editing them elsewhere and loading them into DOORS for testing
and debugging. It supports syntax checking, step-by-step execution and other standard features
expected of an interpreter.

The familiar C++ features of file access, data types and streams are supported by DXL. In
addition, there are functions to create and manipulate GUI objects. DXL can be used to create
simple warning dialogue boxes and a number of other pre-defined windows including a text editor.
For the more adventurous DXL programmer there is support for building a GUI from scratch,
defining all the needed widgets and their placement within the window. There is also support for
graphics canvases, allowing a DXL application to draw graphs or charts in a dialog box.

As DXL is fundamentally a DOORS language and any DXL application can only run within
the DOORS application, there is extensive support in DXL for DOORS routines. These include
defining or changing views, adding items to the DOORS menus, changing the DOORS colour
scheme and manipulation of objects and modules within DOORS, including adding and removing
attributes. A full API is included for manipulating the DOORS database and linksets. Triggers
can be installed into DOORS that cause the launch of a DXL application when a defined event
occurs, such as when a particular attribute is modified by the user. Effectively, anything that can
be manually done within DOORS can be automated with DXL.

2.10 In summary

Telelogic DOORS is a mature suite of software tools with a strong customer and support base.
It is reasonably robust, scales well to hundreds of users and thousands of requirements and can be
accessed locally, concurrently, via the internet and through various other means making it highly
accessible. It contains an inbuilt API so it can be extended to provide for customised features that
the core DOORS tool does not suppply. For simply and efficiently managing large numbers of
requirements, DOORS is an ideal choice of application.

15

DSTO–GD–0466

16

DSTO–GD–0466

Chapter 3

HV overview

The HV, or Hierarchical Verification Environment, is a new approach to the development, evalu-
ation and certification of complex critical systems. It provides a unified, plug-in based framework
in which entire sets of design, explanatory and technical documents can be constructed through
appropriate tool interactions.

There are two disparate but equally important aims in producing such documentation.

1. To manage the complexity: along with the nontrivial technical specification there are numer-
ous conventions and implementation choices which must be carried consistently through the
design. Once the level of complexity is sufficiently daunting, this is best handled by machine
– that is, by formal tools and techniques. Such tools are typically pitched at a low level, with
specific user input formats to construct appropriate tool scripts. They enforce consistency
in typical system development tasks: from mundane or repetitive input and case analysis
through to complex reasoning steps.

2. To convince evaluators, system managers and other stakeholders of the correctness of the
design. This aim – to present the actual description of the system which provides human
understanding –cannotbe automated and is not naturally attacked at a low level.

A strong focus of the HV will be to help the user to achieve these aims.

There are many proof and modelling tools that can be used for low level formal verification. At
the same time, there are many document editing systems available to produce system documenta-
tion with. However, the two are not easily married, and this lack of a suitable design environment
has led to the development of the HV. It combines both: it is an(almost) What You See Is
What You Get(WYSIWYG) document editor that can be extended to interact with external tools,
and can incorporate the output from the external tools into its documents in a structured, readable
fashion.

The HV is being developed by the Trusted Computer Systems Group at DSTO. It is inten-
ded to be highly modular, allowing interaction with an arbitrary number of external tools. The
modularity of the HV is also reflected in the fact that that different application domains will be
supported through differentmoduleswhich can utilise a number of tool plug-ins.

Initially the HVwill interact with a minimal subset of tools that will allow HV users to carry
out theorem proving in higher-order logic. The first HV release will have three components as
shown in Figure3.1.

17

DSTO–GD–0466

Modeller

Prover

Writer

ModelKit

IsarHOL

SchemaKit

MathKit⎬

Figure 3.1: The main components of theHV.

1. The W supports the editing of structured technical documents and provides an interface
to external tools. It manages all related documents and design constructs within a single
project artifact, providing:

• powerful indexing and structured views, with easy access to all modelling data; and

• structured (syntax-directed) input of mathematical data and text.

2. The P is a plug-in to the W which provides theorem-proving support for high
assurance (semantic) checking of mathematical models, through:

• intelligent theory management and proof support; and

• literate reasoning and theorem proving in Higher-Order Logic.

3. The M is a HV module supporting system modelling and verification using the
W/P system. It provides intelligent graphical visualization of design, animation
and proof, for tasks such as:

• formal specification of requirements;

• sophisticated hierarchical design (for both dataflow and state-machine hierarchies);
and

• reasoning about concurrency, real-time properties and analogue components.

The arrows between these components indicate the dependence described above. The other boxes
in the diagram represent the theorem prover tool artifacts which provide the reasoning system re-
quired in the indicated components (these will be discussed in more detail in Sections3.2and3.3).

In the following three sections we will consider each of these components in turn. We elaborate
on the mechanisms and benefits outlined above. We mainly concentrate on the W component,
which is the most mature in terms of design and implementation of the tool.

18

DSTO–GD–0466

3.1 TheW

As discussed, the W supports the preparation of structured technical documents. It as-
sumes an underlyingprojectstructure, where a project is just equivalent to a folder or directory in
a standard file structure, collecting related design constructs and documentation as desired by the
user. A given project is built as an extension of existing projects which are said to beincluded. At
the bottom of this hierarchy is the core “W” project.

The three principal sub-components of the W are theDatastore, theNormative Design
Document(NDD), and theTool Interface(TI).

1. The Datastore provides a repository for the design artifacts (orelements) that the user de-
velops in the project – the corresponding data of all included projects also reposes there. It
stores and manages the data, and also provides a palette for insertion into documents as we
will describe later.

2. The NDD is a particular document in which the user records the epistemic narrative along
with the tool interaction required to produce the design constructs in a literate script.

3. The TI provides an interface between these sub-components and the tools used to process
the design constructs.

NDD

External
Tools

Modelling
Database

System
model

Figure 3.2: TheHV architecture.

The interaction between the W sub-components is broadly sketched in Figure3.2.

• The user writes a linear script in the NDD using thecommandsavailable in the Datastore.
The script may be interspersed with explanatory text which can reference other data from
the Datastore.

19

DSTO–GD–0466

• the W sends a command to a tool, user-initiated through the NDD script structure; and

• the W accepts response from the tool, distributing data and feedback to the NDD and
Datastore as appropriate.

Within a given project there is exactly one Datastore and one NDD. All data in the Datastore is
entered through an appropriate command in the NDD. There may be any number of other doc-
uments which contain any view of the project – say, pedagogical or summary form, pictorial or
slideshow – that the user desires to construct. All occurrences of data in the NDD other than
the declaration command, and all occurrences in all other documents generated within the same
project, are simply references to the data in the Datastore. Thus, the Datastore is clearly provid-
ing a central design model. All documents created within a project will be consistent with this
design model and therefore with each other. In the remainder of this section we elaborate on this
observation whilst describing the sub-components and tool interface more fully.

3.1.1 Document structure

The W creates documents through the constructors of a formaldocument language. Doc-
uments are built up usingblocksthat can be nested within each other, creating a hierarchy. In
particular, an element is built as a block in this hierarchy. Consider the example indicated in
Figure3.3, showing a mathematical expression,

x + y = 3∧ 2x − y = 3 .

Op: plus
+

Op: var Op: var

Op: equals
=

Op: conj
∧

Op: times

Op: var

Op: var

Op: equals
=

Op: minus
-

x + y = 3 ∧ x y- = 32

Figure 3.3: The tree-like operator structure of a mathematical expression.

The structure of the term is determined by its mathematical operator content: the top level is
a conjunction of two subexpressions; each subexpression is an equality; and so on. The block
structure branches according to the operator content.

The branching in the above is an example of the mechanism which builds the block hier-
archy. More generally, the operators need not just be standard mathematical terms but could act
on formatted text – or indeed on whatever the required basic objects are. We have no need to

20

DSTO–GD–0466

distinguish at this level. So, in the HV, operators are used at all levels in document production:
they provide the constructors of analgebrawith which the document is written. The algebra is
specially built for each HVmodule by its developers, and the grammar of the document language
is derived from this algebra.

In fact, the algebra ismany-sorted: blocks are collected intosortssimilar to the structure of a
typed programming language. This provides meta-information about operator arguments through
which the W can “understand” the content of a HV document. There are a variety of ways
in which this context-sensitivity is utilised, but here we just consider the example of data entry
into documents, as discussed next.

Observe that Figure3.3 can be read “downwards” as a temporal record of the construction
of the term. At each stage the user selects adummy block– i.e., an empty box – and inserts an
operator (with further dummy blocks for any arguments) from the Datastore. The dummy block
is part of the document language, so each stage in the construction is a legal expression in the
document language: the dummy blocks are place-holders for subexpressions. The dummy blocks
are filled by other operators, or string/number insertion from the keyboard, or Unicode[4] insertion
for pretty-syntax through a font palette. Crucially, any given dummy block will allow only certain
sorts for further data entry, restricted by the “many-sorting” of the document language constructor
algebra. This mechanism supports the syntax-directed editing function through which the HV
assists the user with complex documentation and modelling tasks.

Finally, consider the important question of formatting and syntax to display documents in
their most natural and informative style appropriate to a given audience. The document language
includes mechanisms for modifying the document’s appearance. Each block in a document has
attributes, such as the standard WYSIWYG formatting options. Blocks created inside other blocks
inherit the attributes of the parent. The user can customisepresentationsof modelling artifacts –
the representation of the way it is displayed – on a per-block basis, and store them in the Datastore.
There can be more than one presentation for each artifact, and they are distinguished by assigning
a presentationstyle. The style collects presentations together, allowing document modification at
a more global level in the same manner thatcascading style sheets(CSS) can be used in HTML
documents for global modification.

The ability to change presentation at a global level can be very useful: e.g., the documents
can be “toggled” between presenting mathematical expressions as structured English statements
or algebraic terms by the choice of appropriate presentation style. For a requirements document
this would allow different audiences to engage with the same consistent content.

It is clear that the Datastore, the document language, and the construction of documents, are
tightly coupled in the HV solution to the production of technical documentation. Given the above
description of the document language we now briefly discuss the W sub-components.

3.1.2 The Datastore

A given project has one Datastore, or repository, and data can be both imported from and
exported to the Datastore of other projects. It is a standard database in that it is a collection of
tables. In particular, all elements are collected in one table which records their result sort and
the sorts of their operator arguments (if any). The other table core to the W is that of the
elements’ presentations for screen or hardcopy. Beyond these, the required tables are determined

21

DSTO–GD–0466

by the information generated in a given HV module or tool plug-in. Each row of a table records
information about exactly one element, and is referred to as afact about that element. All data in
the tables is structured text, and a given column has a fixed sort.

The Datastore has two functions which are crucial to the user interaction with the W.

1. Data view: the default view of the database will be “indexed” through a browser-type listing
which will be organised hierarchically by an internal namespace. Data can be grouped via
searches and user-defined or built-in filters formed from database queries. In this way the
user can introduce “folders” containing customised collections of elements for convenience.

2. Data input: data can be entered into HV documents directly from the Datastore, through
drag-and-drop into dummy blocks as discussed in the previous subsection. In particular,
each table has a constructor which declares new entries for it and a constructor for displaying
a given row. The user can convert folders of elements to single-click palettes for faster
insertion.

All such data insertions are references to the corresponding database entry. It is this notion of
central storage that makes the HV particularly effective at handling multiple documents that
are likely to share data, such as different technical documents about the one project. Thus, for
example, a change to a highly-used element like “Company name” necessitates only one change
in the Datastore, rather than a global search-and-replace in every single document in a project.

The standard interaction utilising this syntax-directed mechanism is thatanyelement (format-
ting, mathematical, tool command, etc) is inserted into a document using the appropriate table’s
constructor. The interaction is further optimised by utilising the context-sensitivity of the struc-
tured document language: when the user selects a dummy block while constructing structured text
a simple database query limits the data view to the appropriate sort. Given the often arcane syntax
for the objects and commands of external tools it is expected that this syntax-direction will be of
use to all users – and of particular use for inexperienced users. It is planned that expert users will
be able to bypass the syntax direction where desired by inputting expressions directly from the
keyboard into the appropriate dummy block. The input is then parsed into its appropriate form for
display in the document and database.

3.1.3 The Normative Design Document

A given project contains exactly one NDD. The NDD is a structured document in the block
hierarchy. The NDD is special, however: it is a (literately programmed) script through which the
user controls all interactions with tools. In particular, therefore, all Datastore table entries (beyond
that of included projects) are entered into the current project through the NDD. This uniformity of
tool interaction is supported by the concept ofcommands.

Commands are all of sortcommand– a special sort of structured text. So, for example, a
fact in a Datastore table is constructed by an element which produces a command result sort from
arguments whose sorts are just those of the table columns. This command is inserted in the NDD
to initiate the appropriate tool action. Thus, there is a precise correspondence between each entry
of the current projects data in the Datastore tables and a subscript of the commands in the NDD.
Moreover,any tool command – say, a proof step in a theorem prover tool – will be constructed

22

DSTO–GD–0466

similarly. Each command will be sent to the appropriate tool corresponding to the given table – as
discussed in the next subsection.

To allow the user to keep contextual focus whilst controlling several tools, the NDD is alinear
script. Note that indeed it must be constructed in an ordered fashion as determined by the tools it
is controlling; e.g., a theorem prover tool will not accept constants which have not been declared
at an earlier stage.

Finally, since commands are a particular sort – and so easily recognised in structured text – the
linear command script can be embedded in arbitrary pedagogical development of structured text.
Thus indeed it will be a literate exposition of the entire project construction.

3.1.4 The Tool Interface

The HV can potentially interface to a broad range of external tools. Just a brief list would
include: theorem provers and model checkers; algebraic analysis tools and numerical analysis
tools; system simulation tools; programming support tools; drawing tools; project management
tools; requirements analysis tools; and version control tools. The population of the core tables (of
elements and their presentations) are considered an interaction with the core W tool.

The HV assumes that tools apply some function to input data and commands, to produce
output data and diagnostics. The inputs to tools, coming from the NDD command script and the
Datastore, and are sent in the appropriate syntactic form to the tool. Tool output is received by the
HV and inserted as appropriate into the NDD and Datastore. Error messages are handled and
displayed appropriately to the user.

The user controls the tool computation through the NDD. The NDD provides the (linear)
program script which sequences the computations to be sent to the tool. The command is initiated
by the user through a step-wise application of the NDD script, which must be well-ordered with
respect to the tool execution logic. Some tools have a finer command grain than others (batch vs
interactive, for example) and both are handled by the HV.

As mentioned previously, the HV architecture is flexible enough to handle a variety of differ-
ent external tools by means of plug-ins, where the plug-in encapsulates the operator syntax of the
tool it interfaces with, and disambiguates identical syntax that has different meaning in different
tools. Each plug-in has an initial set of Datastore tables and constructors for its tool, and may add
additional GUI elements such as buttons and menu items to allow tool-specific commands to be
run from within the HV.

3.2 TheP

The P will be a HV plug-in for theIsabelle[5] theorem provertool. In this section we
briefly discuss the use and choice of Isabelle, what is involved in defining the plug-in, and the
benefits of the HV in this setting.

23

DSTO–GD–0466

3.2.1 Theorem provers

A theorem prover tool provides a safe mechanism for applying inference rules of a given logic
to given axioms. Agenerictheorem prover has a core meta-theory in which object logics can
be constructed and then extended by the user. Such a tool provides very powerful environment
for reasoning in complex or complicated settings without the possibility of making the careless
mistakes which are so prevalent (and costly) in human endeavours. The principal application in
the HV will be for system modelling with high assurance using the M module, but here
we just consider the Isabelle tool plug-in for its own sake.

• Isabelle is agenerictheorem prover.

– At the core of Isabelle is an abstract datatype for representing the terms and logical
propositions to be reasoned about. Associated with this datatype are a small number
of trusted functions for constructing logical propositions which are guaranteed to be
true. These functions are called theinference rulesof Isabelle and the true propositions
they construct are calledtheorems. The construction of theorems proceeds abstractly
– effectively as pattern-matching to the rules – without regard to the meaning (or se-
mantics) of the terms which they manipulate.

– A recent development for Isabelle is the construction ofIsar[6] as a “front-end” lan-
guage. The Isar language provides sophisticated support for the formal definition of
mathematical objects and for developing proofs about their properties that are both
machine-assisted and human-readable. Its working environment is close to the ‘nat-
ural’ mode of proof for the practising mathematician.

– Isabelle allows the user to definetheorieswhich collect named objects and theorems
about them. There are a number ofobject logicsalready constructed this way in the
standard distribution. Of principal interest for usual mathematics (especially for sys-
tem modelling), and the most advanced, isHigher Order Logic(HOL)[7]. The user can
extend HOL in named theory files as required to model a system of interest. This will
be the core inclusion in the P module – hence the Isar/HOL box in Figure3.1.

• Isabelle is aninteractiveproof tool. It implementsproof tacticswhich the user must select at
each stage of the evolving proof. There are a number of important reasons why an interactive
tool is well suited to the task of generic modelling.

– It is not possible to give a general algorithm which will construct a formal proof for any
property. Thus an automatic tool needs to be tightly targeted to a subclass of subgoals.
A specific and fixed logical structure is introduced to carry this out. In an interactive
proof tool such as Isabelle the logical structure can be extended almost indefinitely,
which clearly provides the user with a lot of power.

– It is not necessarily a good idea to have tactics which make a large change from one
proof state to the next, since the user often needs to be able to keep track of the logical
changes involved. Automatic proof tools clearly provide an extreme example where
the final proof state is very far from the original goal. The machine-generated proof
is unlikely to be very intuitive or useful for the user. Moreover, when the automatic
proof attempt does not succeed there will be essentially no information to be gained by
looking at the current proof state. The user must then devise clever lemmas which the

24

DSTO–GD–0466

tool can address successfully on its way towards proving the overall goal. The need
to develop this skill is a huge burden on the user. An interactive proof still requires
that the small steps be structured towards proving the goal. However, this structuring in
itself provides the user with deeper insight into the state machine properties. Failure of
the proof attempt can then possibly be correlated with a defect in the machine design.

– At the same time, some convenient level of automation can be implemented in Isabelle
by bundling together individual inference rules to make specific tactics.

Of course, automatic theorem provers and model checkers are highly desirable targets for HV
modules in later releases. The argument here is just that at the first step the interactive prover is
much more practical.

3.2.2 TheP plug-in

As a plug-in for the Isabelle tool, the P has four effects on the W:

1. it can extend the user interface with menus appropriate to the tool;

2. it extends the DataStore with tables appropriate to the Isar language;

3. it incorporates and manages the files required by the tool, producing them from the natural
input to the NDD; and

4. it provides the appropriate code for the Tool Interface which understands how to return from
a given Isar command initiated via the user’s NDD.

The P’s graphical interface improves significantly on the basic Isar experience. The P

will allow significant automation of frequent activities. For example, much of Isar’s readability
stems from its convention of frequently forcing the user to present the current proof state to the
reader. While the benefits to the human reader are obvious, this is clearly a labour intensive process
that can be easily automated by extracting the current proof state from Isabelle and importing it into
the document at the correct place. Perhaps more usefully, it should be straightforward to provide
automated support for common proof strategies, such as induction or equational reasoning.

By storing a simple model of an Isabelle development in the Datastore, the P will make
it possible for users to inspect and analyse their Isabelle code in new and powerful ways. It will
even be possible to include the results of such analyses directly in their documents and to have
them automatically update with changes to the code.

3.3 TheM

The M is a HVmodule which, using the P plug-in, will provide a comprehens-
ive, high-assurance environment for the specification and design of critical engineering projects.
This module targets requirements capture and analysis, and design modelling stages of system
development which – as we have argued in Chapter1 – are of critical importance to successful
acquisitions projects. An extensive reasoning environment has been developed in Isabelle/Isar to
support the HV approach to high-assurance developments [8]. A sophisticated GUI front end to
this reasoning environment will be developed using the W and P infrastructure.

25

DSTO–GD–0466

3.3.1 Requirements capture and analysis

The M requirements language features a Z-like [9] schema calculus. The Z schema
calculus has proved to be a powerful tool for naming, structuring and reusing complex system
requirements. Moreover, for a formal notation, it has a relatively wide user base. As such it is
a natural basis from which to build the HV requirements language. In the HV, the schema
calculus is extended (in the Object Z style [10]) with schema types. This brings the the schema
calculus benefits of structuring and reuse to the description of complex component hierarchies and
is a critical enabler for the treatment of very large systems.

Another notable feature of the HV requirements language is an implementation of the Timed
Interval Calculus (TIC) which allows the HV to treat complex real-time and dynamical systems
in a natural manner. TIC was used with great success in the revision of the Prime Item Develop-
ment Specification (PIDS) for the Nulka decoy [11]. The former Software Verification Research
Centre (SVRC) of the University of Queensland, under contract to DSTO, developed a detailed
formal specification of the Nulka PIDS, using the TIC [12]. These formal specifications were
then translated back into structured English statements. This approach was efficient and led to
greatly increased understanding of the requirements. It also highlighted a number of issues with
the original (informally expressed) PIDS.

To show some of the strengths of the HV requirements language, we consider an example
from the Nulka PIDS document: namely, the requirement that the decoy quickly ascend to a safe
height above the ship.

We begin by defining a schema to represent the notion of an object’s positional track, expressed
as map coordinate and height (note the use of an extended typing system:R�T means a real-valued
variable with dimensions of Time, the dimensions made explicit for added fidelity).

Track
Height :: R � T→ R � L
Latitude :: R � T→ R
Longitude :: R � T→ R

In the safe flight requirement we need access to the tracks for both the decoy and its ship platform.
This can be achieved by declaring variables that have the schema typeTrack . In addition, we find
it useful to introduce a derived quantity: namely the (ship) relative position track of the decoy.

ShipDecoy
Ship :: Track
Decoyabs :: Track
Decoyrel :: Track

Decoyrel = Decoyabs − Ship

The safe flight requirement is formalised first as an abstract schemaSafe Flight on the notion
of track. The body of the requirement is expressed as a timed interval condition1: namely, that

1The interested reader is directed to [12] for a detailed description of the notation. Briefly, a TIC expressionP
identifies a collection of intervals, calledP intervals. The notational conventions used here are:BφC identifies intervals
of time for whichφ is always true;δ is a reserved symbol returning the length of the current interval;P aQ identifies
intervals consisting of aP interval immediately followed by aQ interval; andP V Q says that allP intervals are also
Q intervals.

26

DSTO–GD–0466

H
ei

gh
t (

m
)

Time (s)

Hmin

Flight

Height > Hmin mδ < X s

Figure 3.4: TheSafe Flight condition.

for any interval of time during which the decoy is in flight mode, the height of the track rises
aboveHminm within X sand remains so for the duration. The situation described bySafe Flight ,
depicted graphically in Figure3.4.

Safe Flight
Track

BFlightCV Bδ < X sC a BHeight > HminmC

Finally, the abstract requirementSafe Flight is instantiated to apply to the decoy’s relative posi-
tion track.

Decoy Safe Flight
ShipDecoy

Decoyrel .Safe Flight

3.3.2 Horizontal Design Hierarchies

Facilities for imposing hierarchical structure and allowing reuse of common components are
critical to the efficient specification and design of complex systems. In addition, evocative visual-
isations of designs can provide a powerful pedagogic aid. In the HV, we adopt the familiar block
diagram as the basic tool for system design.

HV block diagrams describe simple input/output components. They have well defined in-
put and output interfaces; and allow the unrestricted use of internal interfaces, including feed-
back loops. A powerful typing discipline is imposed on all interfaces, including the use of struc-
tured schema types and polymorphism. Data transformations are effected by computation blocks,
considered to evolve with true concurrency unless constrained by some explicit synchronisation

27

DSTO–GD–0466

Foo

Bar

Merge

f

x?

y?
z!a

Bar

x?

y?
a!

Merge

x

y

ge
t x

ge
t y

exit

exit

Figure 3.5: An example horizontal design.

mechanism. The behaviour of computation blocks may be described by a simple mathematical
function, a DOVE-style finite state-machine, or else by a hierarchy of subordinate block diagrams.
The resulting sub-component hierarchy is called ahorizontaldesign hierarchy since it presents the
complete structure of a single design.2

Figure3.5 shows a small example of a block diagram hierarchy. In the top diagram, theFoo
component consists of two sub-components: the namedBar component (represented as a rectan-
gular node), which is described as a component hierarchy; and a function component (represented
as an oval node) that appliesf to a to generatez!. TheBar sub-component diagram is of interest as
it demonstrates the reuse of pre-defined components, in this case stream buffer components (rep-
resented by vertical tray-like icons). Additionally, theMerge sub-component is described through
the use of a state-machine diagram. In the HV, the DOVE state machine model is extended with
terminal states, to allow a rudimentary form of state-machine hierarchy in which nodes of a parent
diagram may represent extendedmodesof computation described by a sub-diagram.

2Hierarchies that span a number of levels of the development hierarchy are called vertical designs and are discussed
in Section3.3.3.

28

DSTO–GD–0466

3.3.3 Vertical Design Hierarchies

An important mechanism for developing and communicating system assurance is an ability to
describe a system at a number of levels of abstraction and to demonstrate correspondence argu-
ments between the different abstractions. For example, Def (Aust) 5679 requires a component-
level system design, individual component design models, and component implementation mod-
els. Appropriate correspondences must be demonstrated between these abstraction levels, both by
testing and reasoning. Such a hierarchy of abstract system descriptions is called averticaldesign,
because it spans a number of abstractionlevels.

Foo

Foo

Foo

Bar

x?

y?
a

f

B F

A E

x?

y?
z!

x?

y?
z!

a

x?

y?
z!a

A E

Bar

⊑1

⊑0

⊑0

⊑2

Figure 3.6: An example vertical design.

In order to support abstraction hierarchies, the HV introduces thespecificationcomponent,
inspired by the specification statements of Morgan’s Refinement Calculus [13]. Specification com-
ponents consist of acommitmentrequirement describing the allowed behaviour of the outputs and
anassumptionrequirement describing the allowed behaviour of the inputs.

Figure 3.6 shows a vertical system design. The specification components are depicted as
rectangular nodes split by an internal arc. The requirements on the concave side of the arc are
the assumptions and those on the convex side the commitments. In thev0 diagram, theFoo is
described as a simple specification block. Inv1, this is refined through the introduction of an
internal interfacea. In v2, it is further refined by splitting the specification block into a function
block and a sub-specification that may be further refined as required.

29

DSTO–GD–0466

3.4 Summary

The HV is a literate-document WYSIWYG style editor. Documents are built up in the HV
by a combination of raw typing and syntax-directed insertion-by-reference from the project’s Data-
store (the database of elements and their attributes). The HV supports most standard WYSIWYG
editor features, such as fonts, colours, image insertion and most basic formatting.

Tool interaction is controlled by the user through the Normative Design Document. The Data-
store/NDD coupling provides a centrally-managed design model; any user documents created
within the tool will be consistent with this design model and therefore with each other. Elements
that are duplicated between HV documents are only duplicated by reference to a central instance
in the Datastore, so a change at one central point will be reflected across all documents in a project.

The HV can be used to create supporting system development and design documents that
can interact with appropriate external tools through a plug-in interface. Initially, the HV will
include formal design and verification capabilities through a pre-written module utilising a plug-in
interface to the Isabelle/Isar environment; additional plug-ins will need to be written by interested
parties. Each HV plugin will provide the facts and operators to allow the user to create as many
new facts, operators and elements as they need from within the HV itself. The syntax for any new
elements can be chosen convenient or appropriate to the development – rather than being dictated
by what is needed to interface with the external tool. The syntax checking will be handled by the
plugin for the particular tool.

3.4.1 So what?

The summary hopefully brings out the strengths of the HV project, but probably fails to
communicate the excitement engendered in such a development environment. There are three
major reasons to be excited.

1. Simply, documentation will now be straightforward to construct. It will be standard work-
flow to build literate documents3 with fully-captured reasoning at the appropriate stage of
the project – when the work is being done.

2. Requirements management, design modelling and verification – crucial to critical system
development – will already be fully supported by the initial release described in this report.
Notice that this is a complete treatment of the problem; not only can one write down the
requirements, but one can then immediately: reason about their consistency; study their
completeness; develop their consequences; break them down into component properties;
construct implementations at various levels of abstraction; verify that the properties indeed
satisfy the requirements; and verify the refinement relation between levels.

3. Summaries of desired information can be presented at all stages in complex reasoning and
development activities – even partially automated by the plug-in tuned to a tool’s natural
mode and to the user’s workflow requirements.

Putting these together provides a mechanism for: establishing assurance in a complex system
development – or procurement in general – in a timely manner; and, often more importantly,

3For an early identification of the importance of literate modelling for requirements analysis, see [14].

30

DSTO–GD–0466

transferring the trust to all stakeholders. The immediate pay-off of such an explicit understanding
of the system must translate into real benefits from preventing cost and schedule overruns.

The HV has a potentially wide range of applications. While initially it is thought to be a tool
that helps in the creation of deliverables that satisfy high assurance standards in the development
of critical systems, some applications for which the HV will be of value include the writing of
a mathematical paper, collation of requirements, the description of engineering designs, and the
recording of operational mission requirements and implementations for military command and
control. With such a wide variety of applications, the HV will be of benefit to researchers and
developers of a system right through to those who audit and certify the system.

31

DSTO–GD–0466

32

DSTO–GD–0466

Chapter 4

Comparison of DOORS and theHV

DOORS and the HV have different objectives, and should not typically be thought of as direct
competitors. In this chapter we compare their strengths and weaknesses in system development
tasks. There are a number of areas where one is a significant improvement due to the other’s
limited or lack of functionality there. The results are summarized in Table4.1.

4.1 Data management

4.1.1 Validity and integrity

Both DOORS and the HV store a large amount of data about a given project. There is a large
difference in the understanding of the data at entry.

DOORS:

• The user is left to ensure that the entered data is correct. Extra information can be added
to user-entered data in the form of attributes. Links can be added between items to show
dependencies.

• Features are provided to aid users in maintaining data validity. These tools range from
trivial, such as flagging links of changed link items as stale, through to more powerful
analysis and sorting tools.

• Both attributes and whole blocks of data can have their access restricted to particular users.
Sensitive attributes can be manually set to read-only to all but administrative users. If a
change impacts badly on a project, the user responsible can be determined easily.

These validation mechanisms allow data and changes to data to be restricted, tracked, analysed
and reported on. These mechanisms aremanual: there is no sense in which DOORS itself can
determine if the change may introduce a problem and, e.g., the user must examine stale links to
see if linked items need updating.

All of the DOORS validation features run on meta-data – links – and these features are run
(they need not be run at all) by the user well after the data has been entered.

33

DSTO–GD–0466

For the user to make use of the mechanisms DOORS provides is a rather large overhead.
Indeed, in some sense one would expect linking to be pervasive between development artifacts –
so that even the slightest change would produce a large stale link list which the user would find
daunting to examine.

DOORS is designed to manage large sets of data with no concern for what the data is, as long
as it fits into its table structure – none of its verification tools go to a finer level of detail than a
whole cell in a DOORS table.

HV:

• The HV is designed to ensure that the entered data is valid. A HV document is context-
sensitive based on the cursor position: only data of the correct sort can be entered there.

• The syntax-direction further helps in explicitly cutting down the available choices. HV
documents are structured, and are built up in the internal HV document language which
the syntax-direction presents in a user-friendly palette . This structure is imposedas the
document is created.

• Feedback from tools is utilised to ensure that the content of HV documents remain con-
sistent.

• Data is stored centrally. The typical mode of operation is that: data is modified centrally
by the user (in the NDD); the change is then automatically propagated throughout all docu-
ments in the project.

The HV ensures that anything in its documents is correct according to the external tools it in-
terfaces with, providing a much finer level of control – it allows the user to run verification tools
even on a single operator in a mathematical expression embedded in a document.

4.1.2 Linking and embedding

It is worth emphasising the management of changes across a project in the two tools.

DOORS:

• Almost all the representations of relationships between items in DOORS are captured by the
hierarchy of stored items and by explicit linking by the user. This can result in a situation
where one item is actually identical among many different sets of requirements, and the
links simply capture this duplication.

• Items that contain something such as a product name that could be in thousands of places
in a DOORS project, and should all be linked to one another for consistency. Changing the
product name in one item will not change it in another, they will all need to be changed
manually.

34

DSTO–GD–0466

HV:

• The HV has a repository of data elements as well as the WYSIWYG writer from which
external tools can be activated. This component bears the largest similarity to DOORS,
being effectively a set of tables in rows and columns, attributes and values – like all DOORS
modules are.

• Items in the repository are inserted into HV documents byreference; for example if there
are multiple instances of the string ”Bob’s Hobby Shop” in a HV document/s, they all
refer back to the one string in the repository. The big advantage of this is that one change to
the referenced item in the repository will be immediately reflected in all the instances in the
HV document/s.

• At one end of the spectrum, the writer of a novel could use this feature to store the names of
all the key characters in their book – a simple change in the repository and the lead character
becomes Elanora Green instead of Nora Blue. At the other end is, say, the specifications of
a software project, where names of files or variable names would be stored in the repository:
if they need to be changed then only one instance of the change needs to be made.

• More complicated item formatting or mathematical equations can also be stored in the re-
pository, with one central change being reflected in all HV document/s. The repository can
store several different formats of display information for one document, allowing for global
and consistent application of formatting styles. As the repository can store meta-data about
items, such as type and formatting information, this ability of the HV is far more than a
simple global search-and-replace.

4.1.3 Filtering and sorting

DOORS:

• DOORS is designed to handle extremely large datasets, so it comes equipped with powerful
filtering and searching tools.

• The intent of much of the filtering is to find smaller sets of DOORS data to create links
between or to create reports from. A secondary purpose would be to find specific data, or to
find out who was responsible for a particular item or change to an item.

Without the ability to filter data down to a manageable size, DOORS would be no more useful
than a database package without a query language.

HV:

• Data sets in the HV could also become very large, so the HV has a similar filtering
capacity to DOORS.

• Filtering in the HV is both context-driven and user-defined. That is, the HV has the
additional capacity to filter by context when inserting into a particular point in a document.
The visible items in the repository are filtered out if it would be syntactically incorrect to
insert them at the cursor’s current location.

35

DSTO–GD–0466

• As the HV leans heavily on inserting items from a repository of items, the ability to search
those items is quite sophisticated.

The level of searchability and filterability in both the HV and DOORS is quite similar. Both
applications have the ability to store shortcuts to heavily referenced items.

4.2 Report generation

DOORS:

• DOORS can create several different forms of output: simple output to Microsoft Word or
other document formats, or in a report format that is designed to be sent straight to the
printer.

• DOORS offers minimal control over the look and content of the documents it exports.

• When DOORS creates a report, it simply keeps track of where the data in the report is
sourced from, and basic formatting such as headers, footers and page size. A copy of the
text of the report isnot saved by DOORS; the hardcopy sent to the printer will be the only
record unless the user makes the effort to baseline the module at that point or export the same
data to a Microsoft Word document. The next time the report is opened for any reason, the
content of the report will be re-generated from the most recent copy of the source data.

Being predominantly a storage application, DOORS’ ability to output information in a format
suitable for printing or otherwise distributing in document format is not one of its best features.
The relative automation of the report generation may appear superficially attractive, but the lack of
any narrative in what is effectively a data dump makes its limitations obvious. A huge amount of
post hocwork – which would, in a usual workflow, often be very much after the reasoning behind
data sets was established – would be required to cut down the table output and insert a narrative.

HV:

• The HV’s emphasis is on producing attractive, well-formatted and readable documents.
Moreover, the usual workflow would be to capture these arguments whilst the data is being
entered and constructed.

• It allows a high level of customisability, allowing the user to exactly specify the format/presentation
of any HV element that appears in a document.

• Any document generated within the HV can be exported in a format such as Postscript
or PDF, which can be printed as well as providing a full-text copy of the HV document
being exported. These documents can be saved to disk wherever the user wishes, and can
be opened later without finding that the data within them has changed, but still reflects the
state of the data at the time the document was generated. This behaviour is standard in most
document editors.

The HV is developed as an elegant system design tool, producing and recording a strong argu-
ment for the correctness of the system in ahuman readable format.

36

DSTO–GD–0466

4.3 Programming API

DOORS:

DOORS provides a full API called the DOORS eXtension language, or DXL. It allows DOORS
to be extended to handle new file types, to provide calculations on the fly, or to draw custom graph-
ics; and many other things. Effectively DXL allows third party plugins to be written for DOORS.
This full extensibility offered by DOORS allows an enormous amount of flexibility over and above
the basic DOORS functionality. The concept of allowing a large program to be extended is a com-
mon one adopted by many software packages.

HV:

The HV is specifically built to be able to be extended to interface with arbitrary external
tools, allowing it to be used seamlessly to edit documents describing a system in any language for
which a HV plug-in exists.

4.4 Summary

In Table4.1the reader will find the results of the the previous sections tabulated for easy com-
parison. In the remainder of this summary section we highlight the directly contrasting features,
concluding with a brief “thought-example” which compares approaches on a requirements-capture
problem of interest.

DOORS is primarily designed to capture requirements of a system: long lists of items with
additional information recorded about them. DOORS allows users to capture the relationships
between them requirements, but this is a manual process that the user must explicitly choose to
do. The HV is primarily designed to manage elements, produce technical documents about and
formally prove properties about the system it is being used to document. The HV makes use of
third party tools to make these formal decisions.

DOORS is designed for very large datasets, multiple concurrent users and distributed access
to data in a variety of different ways. The HV currently has no such multi-user capability, and
does not support distributed access. It is not expected that the HV will support multiple users
in the first instance, although this feature may be added in a later release. DOORS has its own
internal user base and logon protocol, which can be set-up so it corresponds to the Windows user
of a particular computer.

DOORS keeps an extensive changelog on every module, recording user sessions, and track-
ing ownership of change. It has extremely limited version control, allowing “baselining” (see
Section2.3) that captures a snapshot of a module or set of modules at a given time. The HV
is single-user only and lacks any built-in change tracking and version control, but HV files are
stored in a format suitable for use with CVS systems. In conjunction with CVS and a multi-user
operating system the HVmirrors many of the user specific logging features of DOORS by adding
full version control, assigns ownership of change and adds rollback capability to the HV. Even
such a loose coupling of the HV and CVS would exceed the version control in DOORS.

DOORS is a database tool which comes with additional features that can be used to capture
relationships between and attributes of its basic data elements. The smallest unit in DOORS is a

37

DSTO–GD–0466

Feature DOORS HV

Document production

Document structuring No - Hierarchical numbered
lists

Yes

Rich text Yes - per cell Yes - Full
Mathematical expressions Yes - as text Yes - Syntax directed editing
Portable documents No - MS Word as default,

other formats can be added
via DXL

Yes - PDF, and other formats can be added
via plugins

Printing documents Auto-generated, straight to
printer

Yes - PDF files to print

Faithful to screen No Yes

Data management

Project-wide editing No Yes
Datatypes supported text, date, integer etc Yes - HOL and any user-defined type
Consistency management No Yes
Change propogation Manual tracing through links Highly automated
Very large databases Yes Yes with standard database tools
Version control Logging and baselining but

not rollback capability
Yes (with CVS)

Multiple users Yes Yes (with CVS and multi-user OS)

Data views

Context sensitive No Yes
Data filtering and sorting Yes Yes - both programs are equally powerful
Restrict view/access per
user/group

Yes No

Requirements and model-
ling

Requirements capture Yes - textual Yes
Requirements tracing Yes - links Yes
Requirements modelling No Yes
Requirements verification No Yes
Requirements structuring Yes - with headings and mod-

ules
Yes

Extendability

Programming API Yes - DXL Yes
External program support Yes - with DXL Yes - HV is a framework designed for ex-

tension with plugins. Plugins may already
exist (or can be written) to support addi-
tional tools.

Table 4.1:At a glance: comparison of features in DOORS and theHV.

38

DSTO–GD–0466

single requirement – which may have additional attributes – that can contain basic data such as
dates, numbers, text, links to other requirements, graphs, documents from other applications and
pictures. The smallest unit in the HV is as small as the user chooses to make it: a single character,
a lone mathematical symbol, or a composite expression that is built up from several other smaller
sub-expressions. While the HV is not as strongly geared to maintaining extremely large stores
of requirements and tracking information about them as DOORS is, it is far more flexible in what
it can store, and what information can bederivedfrom the data it stores.

The only information DOORS can derive from the data it stores are simple summaries about
the data; how many links go where, which items have a particular property, how many require-
ments were altered by a particular user. In many cases, information of this nature is very useful
and the market share DOORS enjoys would attest to this. However, DOORS has no ability to
reason about the nature of the data itself; the question of whether or not a requirement is valid with
respect to other requirements or even to itself is not something that can be answered with DOORS,
but can be easily answered in the HV. For critical applications that need a high level of assurance
that their requirements have been correctly specified, DOORS cannot provide this assurance. The
HV can.

4.4.1 A thought-example

The Nulka Decoy, discussed in Section3.3.1, is an example of a project that could be specified
both in plain English or in formal mathematics that expresses the same thing more concisely, and
can be reasoned with. The benefits of expressing requirements using formal notation are very clear
– properties of the requirements can be formally reasoned about, and proofs about such properties
can be obtained so that there is no doubt about these properties.

For requirements formulated in either plain English or structured mathematics, requirements
are added to DOORS one requirement at a time. Entry of mathematical text will be limited by what
font is available to display mathematical characters. Each requirement takes one line in a DOORS
module, and can be numbered hierarchically. If there are very many requirements they can be
logically broken up into multiple DOORS modules. For each module, additional information can
then be added to the requirements by adding extra columns to the module table. If a requirement
has some sort of relationship with another requirement that goes beyond a simple hierarchical
relationship, links between requirements can be added and annotated accordingly.

Entering a small set of requirements in the HV opens up a variety of options. At the simplest
level, they can be added to the NDD as free text and formatted as a numbered list. The user can
also add them one at a time to the Datastore (and the NDD by extension), one requirement per
line of the database, and add a narrative to the NDD. When requirements are specified in formal
mathematical syntax, the expressions can be built up in the HV using the appropriate grammar.
The formal mathematics will thus be entered into the document in a syntactically correct fashion,
and can be manipulated from within the HV if needed (by an outside tool or during day-to-day
editing), while retaining correct syntax.

Even when requirements are specified in a formal, mathematical syntax, they can only be
entered into DOORS in their plain-text form. DOORS makes no distinction between datatypes
over and above its standard types of string, real, date etc. Mathematical expressions embedded in
text are no different to any other unicode symbol embedded in text. So while both applications

39

DSTO–GD–0466

can be used to store a requirement expressed in mathematical format, only the HV assigns any
meaning to this representation – and only the HV can be used to send such information to the
appropriate verification tool. Formal specifications stored in DOORS would have to be manually
entered into a verification tool by the user.

40

DSTO–GD–0466

Chapter 5

Tool interactions

Users of both the HV and DOORS may wish to export their files and simply convert them to the
format of the other application. In this chapter we discuss how this might be done.

5.1 Static interactions

5.1.1 HV reading DOORS format

As it is being suggested that the HV will be a plugin-based architecture, this option would
involve writing a HV plugin that recognises files in DOORS file format and adds appropriate
options to the HV menus to read in DOORS modules, or more likely whole projects in DOORS
format.

Module files in DOORS are quite similiar to standard spreadsheet files, and lack the metadata
that links provide. Full projects in DOORS contain a full set of module files and the links between
them (links cannot be made between modules that are in separate projects). Far more is gained
by adding the ability for the HV to read full projects than just single module files. Of course,
a lot of metadata about the DOORS project and modules would be lost in the conversion to the
internal HV format, such as its change history, and all user information and permissions. DOORS
supports multi-user permissions and the HV currently does not.

5.1.2 HV exporting to DOORS format

Again, this option would be implemented by a HV plugin. References in both ordinary
HV documents and the NDD would be captured by DOORS links and stored in an appropriately
fleshed-out DOORS link module. DOORS allows users to store metadata about links in a link
module but doesn’t make use of this feature by default; this feature would be one that a HV
export routine would make good use of.

The exported DOORS modules and link modules would be free of user information and
permissions, in much the same way that DOORS modules exported from other installations of
DOORS would be free of this information. Since DOORS itself creates modules in this format,
they are in a valid format and DOORS could import these modules and their link modules easily.

41

DSTO–GD–0466

5.1.3 DOORS readingHV format

For those users who regularly use DOORS rather than the HV, such as management or other
non-authors, a plugin for DOORS could be written that allows DOORS to input a HV project. As
HV projects need at minimum the data repository and NDD to function correctly, the DOORS
plugin would input entire HV projects. This plugin would be written in the DOORS extension
language (DXL)to allow transparent importing of HiVE projects into DOORS. A menu option
would be presented to the DOORS user in the normal DOORS file menu, and the HV project
on disk would remain unchanged. The base file-reading code from within the HV itself should
port well to DXL, with the conversion to in-memory structures (DOORS objects and links) being
DOORS-specific.

This particular option may provide a more accurate conversion than simply exporting a HV
project to a DOORS module on disk, as the DOORS structures are built up in memory and will
inherit user permissions from the current DOORS project. DOORS itself would capture which
user imported the data in its changelog.

5.1.4 DOORS exporting toHV format

Again, a DXL plugin could be created to write out a currently opened DOORS project in native
HV format. As discussed in the previous section, an option would be added to the DOORS menu
to export to HV. The code behind this technique would be very similar to writing out a standard
HV file, but from DOORS memory structures, not HV ones. In all the conversion techniques
discussed in this section, modular code and input/output library routines would mean a lot of code
could be reused between different format conversion routines.

5.2 Discussion

In the previous section we outlined the four ways that information can be exchanged statically
between DOORS and the HV by basic file format conversion. The exact conversion between the
DOORS and HV formats is a technical issue that would need to be investigated further. DOORS
supports the addition of plugins via DXL, and there is substantial existing documentation on how
to implement the type of plugin that would be needed. The full specification of HV file formats
is still being finalised, and information about the internal format of DOORS files would need to be
obtained.

Full import/export functionality between DOORS and the HV would require implementing
all four static interchanges. This would be quite some work. One minimal approach which adds
value is the suggestion in Section5.1.4, where DOORS users can export a DOORS project to
HV project format, allowing DOORS projects to be opened in the HV. Of course, this simply
introduces a class of “plain text expressions” of requirements which can be formalised as the user
desires. At the least, this sets the user up for developing the requirements analysis, and there could
be support for ensuring a complete correspondence between formal and plain text expressions.
The export routine would need to be run by an administrator.

42

DSTO–GD–0466

Equally, a HV plugin that reads DOORS projects would achieve a similar result, but may run
into access permissions depending on how DOORS implements its user-restricted access, particu-
larly in a distributed environment.

The HV is more effective when a document is built up from scratch within the HV environ-
ment –as we saw in Section4.4.1. For this, the minimal approach in the opposite direction would
be useful – particularly in the case that DOORS projects have been included historically in the
workflow of an organisation. This might also be done best on the DOORS side, as described in
Section5.1.3.

Of course, a conversion from another file format, particularly when converting to/from a dis-
similar application such as DOORS, will never give completely the same result as using the HV
from the outset. Document content that could be captured by the HV document language and
stored in the modelling database will be missed, and stored as narrative text instead.

One could also consider an “on-the-fly” dynamical interaction between the two tools; i.e., to
construct a DOORS plugin to the HV. This would be a lot of work to implement, and the payoff
does not seem to justify it.

43

DSTO–GD–0466

44

DSTO–GD–0466

Chapter 6

Conclusion

This report has considered the challenge of procuring systems with assured critical capability from
the viewpoint of available and desired tool support. It has demonstrated that the HV tool adds
real value at the front-end of the process – where a proper analysis can save agonies in later devel-
opment stages. Of particular importance is the requirements management phase of development,
where the analysis explores the completeness and consistency of the requirements and subsequent
refinements of corresponding system properties to detailed design. Included therein is a mechan-
ism for listing and tracking requirements throughout this activity.

We have described how the DOORS tool has been used to effect for this requirements listing
and tracking. The comparison has highlighted certain innovative advantages of the HV which,
together with the powerful analyses discussed above, will make it an essential tool in requirements
management.

Given the wide acceptance of DOORS for requirements tracing, we have also considered ways
in which the two tools could interact – not least as a possible mechanism for increasing the target
market of the HV.

Acknowledgement:

Generous funding support provided by the DMO for the HV implementation is gratefully
acknowledged.

45

DSTO–GD–0466

References

1. Telelogic DOORS.http://www.telelogic.com/products/doorsers/doors/.

2. T. Cant, B. P. Mahony, J. McCarthy, and L. Vu. Hierarchical verification environment. In
T. Cant, editor,Proceedings of the Tenth Australian Workshop Safety Critical Systems and
Software, volume 55 ofConferences in Research and Practice in Information Technology,
ACS, pages 47–57, 2005.

3. T. Cant, B. P. Mahony, and J. McCarthy.Design Oriented Verification and Evaluation: The
DOVE Project, 2002. DSTO Research Report DSTO-TR-1349.

4. Unicode.http://www.unicode.org/.

5. L. C. Paulson and T. Nipkow.Isabelle: A Generic Theorem Prover, volume 828 ofLNCS.
Springer-Verlag, 1994.

6. Markus Wenzel. Isar — a generic interpretative approach to readable formal proof
documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors,
Theorem Proving in Higher Order Logics: TPHOLs ’99, volume 1690 ofLNCS, 1999.

7. T. Nipkow, L. C. Paulson, and M. Wenzel.Isabelle’s Logics: HOL, 2001. Part of the Isabelle
distribution,http://isabelle.in.tum.de/doc/logics-HOL.pdf.

8. B. P. Mahony. The DOVE approach to the design of complex dynamic processes. 2002.in
‘TPHOLs 2002 (Track B)’,
http://techreports.larc.nasa.gov/ltrs/PDF/2002/cp/NASA-2002-cp211736.pdf.

9. J. M. Spivey.The Z Notation: A Reference Manual. second edn, Prentice Hall International.

10. G. Smith.A logic for object-Z, 1994. Technical Report 94-48, Software Verification
Research Center, The University of Queensland.

11. L. Wildman. Requirements reformulation using formal specification: A case study. In
L. M. Kristensen C. Lakos, R. Esser and J. Billington, editors,Proceedings of the Workshop
on the use of Formal Methods in Defence Systems, Conferences in Research and Practice in
Information Technology, ACS, pages 75–83, 2002.
http://crpit.com/confpapers/CRPITV12Wildman.ps.

12. C. J. Fidge, I. J. Hayes, A. P. Martin, and A. K. Wabenhorst. A set-theoretic model for
real-time specification and reasoning. InMPC ’98: Proceedings of the Mathematics of
Program Construction, volume 1422 ofLNCS, pages 188–206, London, UK, 1998.
Springer-Verlag.

13. C. C. Morgan.Programming from Specifications. second edn, Prentice Hall International.

14. A. Finkelstein and W. Emmerich. The future of requirements management tools. In
R. Wagner G. Quirchmayr and M. Wimmer, editors,Information Systems in Public
Administration and Law, Oesterreichische Computer Gesellschaft, 2000.

46

DISTRIBUTION LIST

Tools for Requirements Management: a Comparison of Telelogic DOORS and the HV

Tony Cant, Jim McCarthy and Robyn Stanley

Number of Copies

DEFENCE ORGANISATION

Task Sponsor

Ag/DPPI, DMO 5 (printed)

S&T Program

Chief Defence Scientist 1

Deputy Chief Defence Scientist Policy 1

AS Science Corporate Management 1

Director General Science Policy Development 1

Counsellor, Defence Science, London Doc Data Sheet

Counsellor, Defence Science, Washington Doc Data Sheet

Scientific Adviser to MRDC, Thailand Doc Data Sheet

Scientific Adviser Joint 1

Navy Scientific Adviser Doc Data Sheet
and Dist List

Scientific Adviser, Army Doc Data Sheet
and Dist List

Air Force Scientific Adviser Doc Data Sheet
and Exec Summ

Scientific Adviser to the DMO Doc Data Sheet
and Dist List

Information Sciences Laboratory

Chief, IND 1

Research Leader, IA 1

Head, TCS Group 1

Task Manager, Tony Cant 1

Author 5 (printed)

DSTO Library and Archives

Library, Edinburgh 1 (printed)

Defence Archives 1 (printed)

Capability Development Group

Director General Maritime Development Doc Data Sheet

Director General Capability and Plans Doc Data Sheet

Assistant Secretary Investment Analysis Doc Data Sheet

Director Capability Plans and Programming Doc Data Sheet

Director General Australian Defence Simulation Office Doc Data Sheet

Chief Information Officer Group

Head Information Capability Management Division Doc Data Sheet

AS Information Strategy and Futures Doc Data Sheet

Director General Information Services Doc Data Sheet

Strategy Group

Director General Military Strategy Doc Data Sheet

Assistant Secretary Governance and Counter-Proliferation Doc Data Sheet

Navy

Director General Navy Capability, Performance and Plans, Navy Headquar-
ters

Doc Data Sheet

Director General Navy Strategic Policy and Futures, Navy Headquar-
ters

Doc Data Sheet

Deputy Director (Operations) Maritime Operational Analysis
Centre, Building 89/90, Garden Island, Sydney

Deputy Director (Analysis) Maritime Operational Analysis Centre,
Building 89/90, Garden Island, Sydney

 Doc Data Sheet
and Dist List

Army

ABCA National Standardisation Officer, Land Warfare Development
Sector, Puckapunyal

Doc Data Sheet
(pdf format)

SO (Science), Deployable Joint Force Headquarters (DJFHQ)(L), Enog-
gera QLD

Doc Data Sheet

SO (Science), Land Headquarters (LHQ), Victoria Barracks, NSW Doc Data Sheet
and Exec Summ

Air Force

SO (Science), Headquarters Air Combat Group, RAAF Base, Willi-
amtown

Doc Data Sheet
and Exec Summ

Joint Operations Command

Director General Joint Operations Doc Data Sheet

Chief of Staff Headquarters Joint Operation Command Doc Data Sheet

Commandant, ADF Warfare Centre Doc Data Sheet

Director General Strategic Logistics Doc Data Sheet

COS Australian Defence College Doc Data Sheet

Intelligence and Security Group

Assistant Secretary, Concepts, Capabilities and Resources 1

DGSTA, DIO 1

Manager, Information Centre, DIO 1

Director Advanced Capabilities, DIGO Doc Data Sheet

Defence Materiel Organisation

Deputy CEO, DMO 1

Head Aerospace Systems Division Doc Data Sheet

Head Maritime Systems Division Doc Data Sheet

Program Manager Air Warfare Destroyer Doc Data Sheet

CDR Joint Logistics Command Doc Data Sheet

GWEO-DDP Doc Data Sheet

UNIVERSITIES AND COLLEGES

Australian Defence Force Academy Library 1

Head of Aerospace and Mechanical Engineering, ADFA 1

Hargrave Library, Monash University Doc Data Sheet

OTHER ORGANISATIONS

National Library of Australia 1

NASA (Canberra) 1

INTERNATIONAL DEFENCE INFORMATION CENTRES

US - Defense Technical Information Center 1

UK - Dstl Knowledge Services 1

Canada - Defence Research Directorate R&D Knowledge and Inform-
ation Management (DRDKIM)

1

NZ - Defence Information Centre 1

ABSTRACTING AND INFORMATION ORGANISATIONS

Library, Chemical Abstracts Reference Service 1

Engineering Societies Library, US 1

Materials Information, Cambridge Scientific Abstracts, US 1

Documents Librarian, The Center for Research Libraries, US 1

INFORMATION EXCHANGE AGREEMENT PARTNERS

National Aerospace Laboratory, Japan 1

National Aerospace Laboratory, Netherlands 1

SPARES

DSTO Edinburgh Library 5 (printed)

Total number of copies: printed 17, pdf 27

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA

1. CAVEAT/PRIVACY MARKING

2. TITLE

Tools for Requirements Management: a Comparison
of Telelogic DOORS and the HV

3. SECURITY CLASSIFICATION

Document (U)
Title (U)
Abstract (U)

4. AUTHORS

Tony Cant, Jim McCarthy and Robyn Stanley

5. CORPORATE AUTHOR

Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia

6a. DSTO NUMBER

DSTO–GD–0466
6b. AR NUMBER

AR 013-689
6c. TYPE OF REPORT

General Document
7. DOCUMENT DATE

July 2006
8. FILE NUMBER 9. TASK NUMBER

JTW 04/061
10. SPONSOR

DMO
11. No OF PAGES

46
12. No OF REFS

14
13. URL OF ELECTRONIC VERSION

http://www.dsto.defence.gov.au/corporate/
reports/DSTO–GD–0466.pdf

14. RELEASE AUTHORITY

Chief, Information Networks Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved For Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations
17. CITATION IN OTHER DOCUMENTS

No Limitations
18. DEFTEST DESCRIPTORS

Modelling Critical Systems
System Design Verification
19. ABSTRACT

It is now well-known that a robust and complete requirements management process is of great benefit in the
procurement of complex, critical, software-intensive systems. DOORS is a well-established suite of software
made by Telelogic, designed to maintain large sets of requirements. The HV is a project under development
by the TCS Group at DSTO that aims to provide a new approach to the creation of technical documents required
in system development. It can be used to formulate, manage, and analyse requirements, and then to develop the
system design which satisfies them. While the main focus of each piece of software is different, there is enough
overlap that users of DOORS would strongly benefit from use of the HV. This report highlights the strengths
of both tools, compares their major features, and suggests a number of ways the HV and DOORS can interact
with one another to benefit the user.

Page classification: UNCLASSIFIED

	ABSTRACT
	EXECUTIVE SUMMARY
	Contents
	Glossary
	Chapter 1
	Introduction
	The Defence procurement challenge
	Critical Systems
	Complex Systems
	Software-Intensive Systems

	Requirements Management
	1.2.1 The DOORS Tool
	1.2.2 The HIVE Tool

	Chapter 2
	DOORS overview
	File and user management
	 Links
	Baselining and backing up
	Views, filtering, searching and sorting
	Importing and exporting
	Predefined file formats
	Custom routines to import and export

	Change proposal system
	Testing
	Other ways of accessing DOORS
	DOORSnet
	RequireIT

	Doors Extension Language
	In summary

	Chapter 3
	HIVE overview
	The WRITER
	Document structure
	The Datastore
	The Normative Design Document
	The Tool Interface

	The PROVER
	Theorem provers
	The PROVER plug-in

	The MODELLER
	Requirements capture and analysis
	Horizontal Design Hierarchies
	Vertical Design Hierarchies

	Summary
	So what?

	Chapter 4
	Comparison of DOORS and the HIVE
	Data management
	Validity and integrity
	Linking and embedding
	Filtering and sorting

	Report generation
	Programming API
	Summary
	A thought-example

	Chapter 5
	Tool interactions
	Static interactions
	HIVE reading DOORS format
	HIVE exporting to DOORS format
	DOORS reading HIVE format
	DOORS exporting to HIVE format

	Discussion
	Chapter 6
	Conclusion
	References
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

