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UNDERSTANDING EVIDENTIAL REASONING
Enrique H. Ruspini
John D, Lowrance
Thomas M. Strat

Artificial Intelligence Center
SRI International
Menlo Park, California, U.S.A.

Abstract

We address recent criticisms of evidential reasoning, an approach to the analysis of imprecise
and uncertain information that is based on the Dempster-Shafer calculus of evidence.

We show that evidential reasoning can be interpreted in terms of classical probability
theory and that the Dempster-Shafer calculus of evidence may be considered to be a form
of generalized probabilistic reasoning based on the representation of probabilistic ignorance
by intervals of possible values. In particular, we emphasize that it is not necessary to resort
to nonprobabilistic or subjectivist explanations to justify the validity of the approach.

We answer conceptual criticisms of evidential reasoning primarily on the basis of the
criticism’s confusion between the current state of development of the theory — mainly theo-
retical limitations in the treatment of conditional information— and its potential usefulness
in treating a wide variety of uncertainty-analysis problems. Similarly, we indicate that the
supposed lack of decision-support schemes of generalized probability approaches is not a
theoretical handicap but, rather, an indication of basic informational shortcomings that is
a desirable asset of any formal approximate reasoning approach. We also point to potential
shortcomings of the underlying representation scheme to treat general probabilistic reasoning
problems.

We also consider methodological criticisms of the approach, focusing primarily on the
alleged counterintuitive nature of Dempster’s combination formula, showing that such results
are the result of its misapplication. We also address issues of complexity and validity of scope
of the calculus of evidence.



1 Introduction

If artificially intelligent systems are to produce adequate assessments of the state and behav-
ior of the real world, they must cope with information and knowledge that is characterized
by varying degrees of uncertainty, ignorance, and correctness. To address this need, we have
developed a technology called evidential reasoning. It is formally based upon the Dempster-
Shafer [18] theory of belief functions; it has been implemented as 2 domain-independent
automated reasoning system; and it has been successfully applied to a range of real-world
problems [11]. Yet, its reliance on belief functions has drawn criticism.

Our choice of an approach based on the Dempster-Shafer theory was not arbitrary. We
believe that that theory confers important methodological advantages, such as its ability
to represent ignorance in a direct and straightforward fashion, its consistency with classical
probability theory, its compatibility with Boolean logic, and its manageable computational
complexity. At the same time, we recognize that other approaches may also complement
and augment the assessments provided by evidential reasoning.

We examine several criticisms of belief functions that have appeared in the literature,
discussing first the fundamental theoretical bases supporting the belief-function approach and
justifying its use in terms of the requirements imposed by ignorance of certain probability
distributions. We consider the nature of Dempster’s rule of combination and argue that
negative assessments either misinterpret the nature of the distributions being combined or
ignore the basic independence assumptions that assure its validity. We stress also that it is
not necessary to rely on explanations that are either nonprobabilistic or subjective to justify
the validity of the Dempster-Shafer calculus of evidence.

Furthermore, we show that certain apparently counterintuitive properties of the approach
(e.g., the “spoiled sandwich” paradox) are the natural consequence of considering families
of possible probability distributions that solve an approximate reasoning problem. In the
context of this discussion, we indicate also the inherent pitfalls of “axiomatic” approaches
that accept or reject methodologies on the basis of their compliance with allegedly intuitive
principles.

We also answer critiques based on the computational complexity of the belief-function
approach. Such criticisms claim that the complexity of probabilistic knowledge representa-
tions grows exponentially with the size of the frame, thus making the theory unsuited for
automated reasoning. Other comments addressed in our presentation center on limitations
on the representational ability of belief functions and the lack of certain methodological
capabilities (e.g., decision-making mechanisms).

Despite the criticism that belief functions have drawn, we believe that evidential reasoning
is well-founded and that it may be effectively applied to the solution of a broad range of
important practical problems.

Most of our comments will be made in direct reply to a recent criticism of the belief-
function approach by Pearl [15], because we feel that his paper encompasses most of the



major worries and concerns expressed about the calculus of evidence. While most of the
discussion of this paper consists of direct responses to issues raised by Pearl and others,
our overall objective is considerably broader. Our answers are motivated by the remarks
of DeGroot, quoted by Pearl at the conclusion of his work, about the need to use our

“... with the utmost care and in accordance with the highest

methodological approaches
ethical standards.” Our aim, like Pearl’s, is to enlighten and clarify, through careful discussion
of rather subtle and delicate issues, rather than to engage in dogmatic defense of one approach
to the detriment of another. It is our earnest hope that this work, in conjunction with
other evaluations of the belief-function approach, will lead to a better understanding of its

foundations, capabilities, and limitations.

2 On Theoretical Soundness

The theory of belief functions was originated by Dempster [4] in the context of statistical
research. The use of the term “belief,” together with its subjectivist connotations, is due to
Shafer [18], who first applied the theory to the analysis of imprecise and uncertain evidence.

Although much skepticism has been voiced about the naturality of belief functions and
their agreement with conventional probabilistic approaches, its theoretical bases are provided
by a simple consideration of the role of evidence as a basic information carrier.

In classical probabilistic treatments, it is assumed that, under certain evidential con-
ditions &,' the value P(p|&) of the likelihood of a particular statement p is known. This
view of evidence, while adequate to represent the informational conditions of most controlled
experimental setups, fails, however, to adequately model the effects that acquiring similar
information has on our state of knowledge when the state of the world can not be so readily
manipulated.

In such circumstances, whenever the evidence & is observed, three possible informational
outcomes may result from examination of further information that later turns out to improve
our state of knowledge: either p is found to be true, —p is found to be true (i.e., p is false),
or such information is insuflicient to determine the truth value of p. Use of modal logic
concepts, which are the bases of the formal model of Ruspini{17], suggests the use of the
notation Kp, K—p, and Ip to identify these outcomes. Since these alternatives are exclusive,

it is clear that
P(Kp) + P(K-p)+P(Ip)=1.

Furthermore, since the probability of Ip may be positive, it will be true, in general, that

P(Kp)+P(K-p) <1.

!Throughout this paper, the symbol & is used to denote available evidence, i.e., a collection of propo-
sitions about the real world that are known to be true either as the result of direct observation or as the
consequences of applicable background knowledge.



This model, based on a combination of classical probability methods and the modal
logic S5 [8,12], essentially provides—through the logical notion of possible world—a meaning
for the unary operator K as the representation of the state of knowledge of a statistician
who is estimating the probability of truth of diverse propositions {p, g, ...} under evidential
conditions &.

This statistician estimates those distributions by considering multiple samples of the
state or behavior of a real-world system. Using, for each sample, additional information
collected through further experimentation, the statistician may then establish or not the
validity of a proposition p. If he is rather lucky, our statistician will find himself in the ideal

"2 or “prove” that the real world is in a state s that

situation where he can actually “know
is described to the best level of detail that is necessary to understand its behavior (i.e., a
“possible world”). This is the state of knowledge usually attained, under perfect laboratory
conditions, when experimental samples are fully analyzed and when the outcome of such
analyses is classified in terms of a set of exhaustive and mutually exclusive alternatives.

Under less desirable epistemological circumstances, however, the statistician will only be
able to prove that a less specific proposition ¢ is true. In the extreme case where no further
information exists, he will be forced to say that his knowledge is limited to that provided by
the evidence &, or that it is “vacuous.”

All samples so analyzed, however, can be classified as to the “most specific knowledge”
that could be determined in each case. The corresponding probability measure of the set
e(p) of samples where the proposition p was the most specific knowledge (called an epistemic
set by Ruspini) corresponds, in Shafer’s framework, to the value m(p) of a mass function m,
ie.,

m(p) = P(e(p)).
Correspondingly, the probability that p was “known” to be true during statistical experi-
mentation, corresponds to the value Bel(p) of Shafer’s belief function, i.e.,

Bel (p) = P(K p).

The connection between the ability of our statistician to know that p was true and the
belief and mass functions that he estimates through experimentation justifies both the expres-
sion epistemic probability introduced by Ruspini [17] to describe the underlying probabilities
defined over a particular set of situations or scenarios Kp (called the epistemic universe),
and the description of the functions as being “probabilities of provability” or “probabilities
of necessity” by Pearl [14], following a suggestion by Fagin and Halpern [6].

In short, all such interpretations are equivalent to the original model of Ruspini, where
a rational agent was able to prove the truth of different propositions under different infor-

2Note that, in the context of epistemic logics such as §5, the operator K behaves as a logical necessity
operator. “Knowing” a proposition simply means that observations logically imply such proposition, or that
it is necessartly true.



mational circumstances that were found to prevail, during his statistical experiment, with
different frequencies of occurrence.’
Since the ability to prove a proposition g entails the ability to prove any proposition p

that is implied by ¢, it should be clear that

Bel(p) = 3 m(q),
g=>p
which is the fundamental equation relating the basic structures of the calculus of evidence.

It is also true that
Bel(p) < P(p) <1 — Bel(-p),

providing bounds for the probability of p that may not be improved. This ability to manip-
ulate probability intervals by means of the compact representation scheme of mass functions
is the major reason for the appeal of the Dempster-Shafer methodology.

While the above discussion clarifies the nature of the statistician’s knowledge modeled
by belief and mass functions, doubts might still remain as to their utility to those who were
not involved in their statistical estimation process. Such usage is, however, that made of
any other probabilistic information. The analyst who observes & does not have the luxury
that was available to the statistician estimating epistemic probabilities, i.e., the ability to
collect additional information that permits a more detailed characterization of the state of
the world, for the same reasons that the user of statistical tables is unable to utilize the
raw data of the estimating statistician. Under such circumstances, the analyst is forced to
rely on the probabilistic estimates provided by the statistician, which are believed on the
basis of the assumed regularity of the repetitive behavior of the system: the epistemological
cornerstone of probabilistic reasoning.

In other words, the “probability of provability” is the best information that is available to
the analyst; an observation that not only disposes of questions about its role in probabilistic
reasoning, but also of Pearl’s worries about its use in lieu of the obviously more desirable
“probability of truth” [15]:

“why we should concern ourselves with the probability that the evidence implies A,
rather than the probability that A is true, given the evidence?”.

Clearly, we would prefer having the latter, but, unfortunately, we can only measure the
former.

” “provability,” and “necessity” does much to

3Note, however, that while use of the terms “knowability,
provide adequate semantics to the calculus of evidence, its loose usage leads to unnecessary confusion. For
example, in his recent criticism [15], Pearl takes some questionable semantic license with the term “necessity,”
mentioning, for example, the probability that a decision “will have to made out of compelling necessity.” Such
“pragmatic” necessity does not have anything to do, of course, with the “logical necessity” that underlies

the Dempster-Shafer theory, i.e., the necessary truth of a proposition given available evidence.



QOur interpretation of the major evidential functions and structures also quickly disposes
of erroneous arguments based on unintended interpretations of the intervals defined by be-
lief functions. Each such interval represents ignorance of a single probability value for a
proposition p under fixed evidential conditions &. If critics choose, for example, to interpret
such intervals as the possible values that conditional probabilities might attain when further
evidence is collected, as suggested by Pearl[13], belief functions will not, indeed, behave
according to such unintended semantics.

In closing this section, it is important to mention other alternative views of the structures
of the calculus of evidence such as that recently proposed by Smets [19], which are based on a
nonprobabilistic concept of belief. Although those models are interesting on the strength of
their own virtues, we still emphasize that such interpretations are not required to reconcile
the calculus of evidence with conventional probability theory.

In consideration of our ability to reconcile all structures and formulas of the calculus of
evidence, including the Dempster’s formula, with conventional probability structures, such
as inner and outer probabilities, we do not feel strongly compelled to accept alternative epis-
temic interpretations. Our skepticism in this regard is further supported by the observation
that, often, such epistemological alternatives are the result of misunderstandings about the
role of certain evidential formulas and processes (e.g., normalization). For the same reasons,
we remain unconvinced about the need to assign alternative interpretations to the structures
of calculus of evidence or to its functions, as is the recent suggestion of Halpern and Fagin [7],
which is echoed by Pearl [15].

3 On Decision Support

A criticism of a more fundamental nature of the calculus of evidence is often raised regarding
the output of generalized interval-probability approaches. Since these methods often fail,
because of basic knowledge deficiencies, to rank decision choices by the value of some measure
that quantifies the desirability of each choice (e.g., expected utility), then it is said that they
lack a decision-theoretic apparatus.

Although these arguments correctly point to the basic knowledge requirement that most
decision problems entail—if a rational choice is to be made, then we must have a proper
informational basis to do it— this obvious consideration is twisted to argue for the necessity
to estimate unknown probability and utility values when they are not available. We do not
think that this pragmatic necessity argument is either sound or compelling.

In our view, the calculus of evidence may be used in a straightforward fashion to produce
intervals of possible utility-values. When such intervals overlap and cannot be ordered, this
fact simply reflects a basic defficiency in our knowledge. We look down upon “pragmatic
justifications” with the same concern that any experimental scientist must show about pro-
posals to guess what he has not measured: the ability to make decisions in the absence of

knowledge is, in our view, a handicap rather than an advantage of any method.



Far from lacking a decision-theoretic methodology, our approach provides an understand-
able quantification of the undesirable effects that poor information has on our decision-
making ability, ordering decisions whenever it is rationally possible but advising us that
such ranking is not possible if our knowledge is insufficient. In brief, our approach not only
supports decision-making but, through its built-in sensitivity-analysis features, helps us to
determine what must be done to reach a happier epistemological state.

4 On Dempster’s Rule of Combination

The semantic model of the Dempster-Shafer theory also validates the so-called Dempster’s
rule of combination, which permits the combination of belief and mass functions corre-
sponding to different evidential observations, made under certain conditions of independence.
When such conditions are not valid, use of this formula leads, of course, to erroneous results,
often, although incorrectly, considered to be an essential handicap of the evidential reasoning
approach, rather than a consequence of its misapplication.

The Dempster formula is, currently, the principal evidence integration mechanism of the
belief-function approach. It was derived in the context of a basic model of the effect of
probabilistic evidence that correctly interprets such evidence as constraints on probability
values rather than as the source of the actual values, which are typically undetermined.
It may be described as an expression that, under certain conditions of independence, yields
bounds for the conditional probability distribution P(:|&;, &) on the basis of similar bounds
for the probability distributions P(:|&,) and P(-|&).

To understand the conceptual bases for the Dempster’s formula of combination and its
consistence with conventional probability, we resort to a generalization of the logical model
used before to derive the basic relations of the calculus of evidence. Instead of considering a
single epistemic operator, corresponding to a single statistician or observer, we will consider
two such rational agents, with their knowledge modeled by means of two operators K,
and K,. FEach of these rational agents will be assumed to be ignorant of the knowledge
possesed by the other, i.e., as if they were statisticians performing independent experiments
under different evidential conditions &; and &,. Their common knowledge, however, will be
modeled by means of a nonindexed operator K corresponding to a third reliable agent that
aggregates the statistical knowledge gathered by the other two.

Clearly, in a given applicable situation (i.e., the first agent observes #,; and the second
agent observes &,), the integrating agent, who does not add any knowledge of his own, will
be able to prove (or to “know” the truth of) a proposition p, if the other agents provide
individual items of information that, when combined (i.e., conjoined) imply p, as expressed

by the basic combination axiom:

1For an example of an approach that incorporates decision-maker preferences into the framework of the
belief-function calculus, the reader is referred to a recent paper by Strat [21].



Kp is true if and only if there exist sentences p; and pz such that K;p; and Kaops are
true, and such that p1 Ap2 = p.

Using our three operators to generate all possible (i.e., logically consistent) states of
knowledge that may be attained by each of the three agents while assessing the state of a
real system, we may say that each of them has, as was the case before, knowledge about the

"% propositions p;, ps, and p that

real world that may be represented by the “most specific
each has been able to prove (with p being obviously more specific than either p; or p;). In the
terminology of Ruspini’s semantic model, each of the agents is in an epistemic state, denoted
by e(p), e1(p1) and ey(p,), respectively, each corresponding to the set of all conceivable states
of the real world (i.e., possible worlds) having such knowledge characteristics.

The following important set-equation relating all of these types of epistemic sets as sub-
sets of our enhanced epistemic universe is the basis for the derivation of various evidential

combination formulas,

e(p) = U (e1(m) Nea(p2)),

piAp2=p

of which the Dempster combination formula,

m(p)=+r Y, m(p1) map2),

P1Ap2=p

m(p) =Ple(p)|&1,&2), mu(p)=Plei(p)|&1), ma(p2) = Plex(p2)|¥2),

and where & is a multiplicative factor, is the best known and used.

Before reviewing the actual process leading to the derivation of the Dempster’s formula,
it is important to pause and reflect upon the nature of the above set-theoretic equation and
its usefulness to derive evidence combination formulas.

We may first note that this equation has been derived as a relation between subsets of
possible “epistemological states” that is valid regardless of any assumptions about proba-
bilistic structures and their properties (e.g., independence). As such, it provides not only the
bases for the derivation of the Dempster formula but actually for a variety of formulas that
bound possible probability values within and outside the structures of the Dempster-Shafer
theory.

Basically, this formula provides the basis to extend a probability function P that is known
over subsets of the form e;(p) and ez(p2) (i.e., over two o-algebras), to the set of unions
of sets of the form e;(p;) Ney(p2) (i.e., another o-algebra). If such extension can be made
uniquely—as is the case for Dempster’s formula—the resulting extension may be used to
generate both the conditional probability P(:|&,, &,) and its associated bounds Bel and P1,

%Note that such most-specific knowledge always exists and is unique but for logical equivalences, since
the conjunction of all proved theorems is itself a theorem.



which are fully compliant with Shafer’s axioms. In other less fortunate cases (e.g., dependent
evidence), such extension is not unique, and the lower envelope of the possible extensions,
which is not a probability, will lead to bounds that do not satisfy the axioms of the calculus
of evidence.

This equation is now being used to extend the evidential calculus approach by general-
ization of the notion of conditional probability by study of the probabilistic relations that
define dependencies between the different types of epistemic sets (i.e., e(p), ei(p1) and
ea(p2)). Pearl[15], however, believes, apparently as the result of his examination of the role
of compatibility relations in the calculus of evidence, that this approach is essentially limited
in its expressive ability to set-theoretic relations between epistemic sets, which correspond
to classical logical conditional statements (i.e., material implications).

In fact, it may be easily seen from our epistemic identity that whenever the conditional
probabihties P(e;(p2)|ei(p:)) and P(e;(p;)|e:(p2)) are restricted to take the values 0 or 1,°
this identity may be used to map one body of evidence into another, i.e., by means of the
compatibility relations that such probabilities define.

Since under these assumptions, however, there can be only one proposition p; for every
proposition p; such that P(e;(p,)|e;(p1)) = 1, and vice versa, then the compatibility relation
that is so defined may be characterized by several implications of the form

ei(p1) = exp2)

and of the form
ez(q2) = e1(q),

between knowledge states of one observer and knowledge states of the other which are useful
to “transfer mass” between propositions. This correspondence must be contrasted with that
following from the limited interpretation given by Pearl, who, from knowledge of

ei1(p1) = exp2)

concludes (by contraposition), correctly but narrowly, that

—ez(pz) = —ei(p1) ,

and proceeds then to attach all material implication paradoxes (e.g., the “ravens paradox”)
to the calculus of evidence as if they were an essential methodological bane. If that were
to be the case—clearly it is not— the same concerns should be raised about the use of
conditionals in conventional probability calculus.

The second observation that may be made about the nature of evidence combination, in
general, and the role of our basic set identity to generate combination formulas, in particular,

5Tt may be shown from the definition of epistemic sets that, under such conditions, knowledge of
P(82(p2)|el(p1)) suffices to derive P(el(p1)|e2(p2)).



is that while the functions to be combined are conditional probabilities over two different
evidential sets &, and &, (i.e., the evidence observed by two agents), the desired integrated
probability is a distribution over &, N ¥, (since we know that both observations are correct).
Except for unusual cases, however, computation of P(:|&,,#,) entails a “normalization”
operation that is fully consistent with the calculus of probability. Most of the normalization
“paradoxes” are the result of misunderstanding about what is being combined: two different
conditional probabilities rather than two different lower and upper bounds of the same
probability function.”

Focusing now on the rationale for Dempster’s formula, we should notice first that the
epistemic sets e;(p) and ez(p2) are such that

ei(p1) €&y, ex(p2) C &,

i.e., the possible knowledge states of each statistician include awareness of the truth of the
evidence that is observed by each. Furthermore,

EJ"1=Uel(191), 5’2=U92(P2),

1 P2

where p;= &, and p;=&»; i.e., each statistician knows something that implies that his
evidential observation is true (otherwise he would not be “counting” that sample).®

Assume now that there exists a probability distribution P defined over the space of all
possible epistemic states for our observing statisticians and our “integrating” agent. Each
such epistemic state is a possible world that corresponds to a possible state of the world and
to a possible state of knowledge for each agent that, in addition, is consistent with the laws
of logic. We will assume now that, whenever ;=& and p,=> &>,

P(ei(p1)) Plex(p2)), if ppAp2 #0,
0, otherwise.

P(ei(p1) Nex(p2)) = {

This assumption simply states that when &; and &, are both true the probability that a
rational observer will be in a particular knowledge, or epistemic, state does not provide any
information about the probability of the epistemic state of the other agent (i.e., beyond ruling
out logical impossibilities). In purely formal terms, we may say that knowledge of values of
P over sets of the form e;(p;) does not provide any indication, beyond exclusion of logical
impossibilities, of the values of P over sets of the form e;(p,) and vice versa. The epistemic
states of our two agents may be said, therefore, to be unrelated in that knowledge of the
state of one of our observers (by our integrating agent) does not provide any information
about the state of the other, save for elimination of logical impossibilities.

It is fair to say that much of the skepticism raised by the normalization used in Dempster’s formula
can be traced to the exposition given by Shafer [18], which suggests a nonprobabilistic method of evidence
combination.

SRecall that our observers, or rational agents, are statisticians estimating properties of certain statistical
distributions by classifying each sample using their evidence and additional sample-dependent knowledge.

10



Noting now that

Plep)l#) = %’ P(ez(p2)|€ 2) = P(;(Z—g(pﬁ)),
Pei(p1) Nexp:)|&1,&2) = P(eli((;;z 2?2()1’2)) ’

then, whenever p1 A p2 # 0,

Plei(p1) Nex(p2) |81, & 2) = £ Pler(p)|&1) Plez(p2) ¥ 2) = x mu(p1) ma(p2),

from which the Dempster’s formula readily follows.

The normalization factor
_ P(&,) P(&,)

T OP(&EiN&) ]

has been the object of considerable concern on the part of both skeptics and proponents of
the calculus of evidence. The above expression, however, provides the rationale for its usage
while disposing of arguments about its alleged inconsistence with the probability calculus.
In that expression, the denominator P(&; N &2) appears as the consequence of the need to
derive probability distribution estimates with respect to the intersection of the two observed
evidences &, and &,. The numerator of that expression simply reflects the need to combine
conditional distributions over the same reference set (i.e., the epistemic universe) while our
probabilistic knowledge is expressed over two of its subsets (i.e., &, and &.).

The essence of the conditions that lend validity to the Dempster formula may be summa-
rized by saying that the formula’s usefulness is confined to the limited, but rather important,
cases where estimates of probabilistic likelihood have been formulated by two rational agents
on the bases of independent observations, while ignoring the evidence available to each other.

If our integrating agent is thought of as being concerned with estimating the probabilities
of certain events when both &, and &, are true, then we may say that, whenever the
conditions validating the Dempster’s formula hold, knowledge of the fact that a particular
sample satisfies p; tells the agent nothing about the likelihood of p; (unless, of course, py
happens to be logically inconsistent with p;). Furthermore, whenever our integrating agent is
done with his job, he should find out that estimating this joint distribution (i.e., over &, N&3)
could have been accomplished in an easier fashion by estimating the marginal distributions
over &; and &, and deriving the joint distribution by multiplication and normalization.

Other accounts supporting the validity of Dempster’s formula and its consistence with
the probability calculus have been advanced by several authors. A particularly compelling
justification has been recently given by Wilson [22].

11



5 On “Paradoxes”

Criticisms of the Dempster formula may be broadly characterized as being the consequence
of basic misunderstandings about either its meaning or its validity.

In this section, we examine three alleged paradoxes of the theory, showing that the pur-
ported inconsistencies are actually the results of conceptual misunderstandings or misrepre-
sentations of the position of those who, while generally supporting the calculus of evidence,

are concerned with its possible misapplication.

5.1 The “Three-Prisoner” Problem

Turning our attention first to concerns about the validity of the Dempster’s formula, we may
note that, in general, such examples ignore its scope of applicability, producing counterin-
tuitive results that are then used to dismiss the methodology as inadequate. Among those,
the “three-prisoner” problem discussed by Diaconis and Zabell [5] has been perhaps the most
quoted and discussed.

This problem is one of a variety of examples, in which the combination formula is used
as a conditioning formula by assuming that one of the mass distributions being combined
simply assigns all of its mass to a proposition p in the frame of discernment. Combination of
such a simple support function with another mass function associated with a belief function
Bel(-) leads to the conditioning formula

Bel(g V -p) — Bel(—p)
1 — Bel(—p)

Bel(q|p) =

In the particular case of the three-prisoner problem, concerned with the guilt or innocence
of a prisoner that has been chosen (by the Warden) as the guilty party by random draw among
three candidates A;, Az, and As, our “logical space” or frame of discernment is simply the
Boolean algebra induced by the three noncompatible propositions

“Prisoner A; has been found guilty,”

where 2 = 1,2,3. Since only one of the three prisoners is chosen by the Warden, we clearly

have

P(p;) = %, = 1,2,3.

(Note that P is actually a classical, additive, probability distribution).

Prisoner A; now asks the Jailer to name one of the innocent prisoners (other than him)
arguing that such information would clearly be of little help to him as an indicator of his
potential fate. As Pearl notes, if ¢ stands for the proposition “The Jailer names A, as one
of the innocent,” then application of the conditioning rule leads to the result

Bel (p1]g) = Pl (p1lg) = %,
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indicating that the conditional probability P(p; |q) must be exactly 3, instead of the “correct
solution”

while also saying, against the correct intuition of A; that his chances of guilt have been
increased as the result of the irrelevant information provided by the Jailer. From such
an observation, Pearl concludes that the formula is seriously flawed, both because of the
counterintuitive result that it produces and for its “collapsing” of a family of solutions into
a single value.

Before proceeding to the discussion of Pearl’s concerns, we may note, in passing, that
this problem has been well known as a source of paradoxes and incorrect solutions within the
scope of the conventional probability calculus [2] quite independently of any issues of validity
of its treatment using the Dempster-Shafer calculus. The explanations given to describe the
conceptual errors leading to incorrect classical treatments resemble to some extent those that
shed light on the inapplicability of the Dempster’s formula.

Returning now to the role of the Dempster’s formula in this problem, we may first observe
that, although, at first glance, the distributions representing the Jailer’s and Warden’s choices
seemn independent, it is actually impossible for the Jailer to tell to A, that A; is one of those
to be spared if all he knew was that the Warden was choosing the guilty party by random
draw (i.e., he needs to know exactly who is the one chosen for punishment). To use the
terminology of Ruspini’s model, the probability of A; being named as one of the innocent
depends on the epistemic state of the Warden, thus violating the independence assumptions
of the Dempster’s formula. If all possible combinations of truth values for the propositions
?i, t = 1,2,3, and ¢ are tabulated, together with their probabilities, as is done in Table 1,
then it is clear that

P(glps) =1, P(g9)=3(1+0a),

where 0 < a <1 represents the unknown probability that the Jailer will choose to name A,
rather than Aj as innocent if A; 1s actually the one chosen by the Warden as guilty.

Possible World | Warden’s Choice | Jailer Identifies || Probability

W, 4 A, la
W, A As 1(1-a)
W Az As 3

W, As Az 1

Table 1: Possible Worlds in the Three-Prisoner Problem
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But then,
P(qlps) # P(q),

violating the assumptions, discussed above, that validate the utilization of Dempster’s for-
mula (i.e. P(ex(p2)lei(p1)) # P(ex(pz)). There is not, therefore, “total mystery,” as Pearl
says, as to the incorrect results obtained using the Dempster’s formula. Because it fails to
be applicable, there should be little wonder that it leads to apparent paradox.

Although, as clearly shown by this discussion, the incorrect treatment of the three-
prisoner problem fails to invalidate the Dempster’s rule of combination, we share the concern
of Pearl and others about its wide misapplication, particularly when it is used indiscrimi-
nately to generate conditional distributions. In our research, we are endeavoring to extend
the original theory to produce expressions to produce and utilize conditional belief informa-
tion [16] that incorporates known dependencies between evidential bodies. These formulas
are intended to provide better interval estimates than the typically uninformative bounds
that are supplied by strict derivation of bounds in the absence of additional information by

the expression )
Bel(p A ¢
1 =
Belldl) = Beitpag + Pip A=)

which is mentioned in Dempster’s original paper [4] and that has been the object of recent

concern by several authors[3,7].

In closing, we believe it is important to address other concerns of Pearl, apparently going
beyond the three-prisoner problem, about the counterintuitive nature of the “collapse” that
usage of the Dempster formula often produces, which is manifested by production of a single
conditional probability distribution when conditioning multiple members of a family P of
probabilities over some specific subset g. Just as it is true that all members of the family of

distributions
P={P,:tin [0,1]}

defined in the set X = {a,b, c} by the expression

2, ifz=a,
P(z)=¢1(1-1%), ifz=b,
I fz=c

are such that P, ({a,b}) = 7, despite their variability over other subsets, it is also true that
an extensive family of distributions may collapse into a single conditional probability without
violating any rational or probabilistic principles. Such “invariants” are, in fact, desirable as
elements that simplify the analysis of an otherwise complex probabilistic problem. For these
reasons, we believe that, if the Dempster’s conditioning formula is applicable, its reduction
of the variability of probability values should not be a particular cause for concern as to its
validity.
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5.2 The Spoiled Sandwich

While discussing the suitability of the calculus of evidence either as a form of generalized
probabilistic calculus or as a new theory that intends to capture a novel notion of belief,
Pearl [15] again faults the approach for failing to satisfy the following rationality principle
originally stated by Aleilunas[1]:

“If two diametrically opposed assumptions yield two different degrees of belief in a
proposition ¢}, then the unconditional degree of belief merited by @ should be some-
where between the two.”

As natural as such a principle might look at first, the following simple and clever example
from Wilson [23] clearly shows that it is neither intuitive nor appealing but points, instead,
to the pitfalls of creating or supporting one’s favorite scheme on the strength of supposedly
rational axioms.

Let X = {a,b,c,d} with A = {a,b} and B = {a,c}, so that B = {b,d}. Consider the
family of probability distributions in X

P={Pg:tin[0,1]},

indexed by a parameter ¢ in [0, 1] and defined by

P.({a}) = 3t,
P.({8}) = ;(1-1),
Pi({c}) = 1.
P.({d}) = §,

and let
P,. = II}f{Pt} .

Then, clearly,
Po(4) =t +30-0 =},

and, therefore, P. (A) = 1. The conditional probabilities P, (A|B) and P, (A|B) are given
by the expressions

_ P({e}) _ 3t
P, (AlB) = P ({a,c)  f+it’
P, (A|B) = P ({8}) (-1

P.((bd)  IT+1(1-7)

from which the lower bounds
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are easily derived. It is clear, however, that

3 =P.(4)>P.(4|B)=P, (4|B) =0,

2

showing that the the sandwich principle is violated even within the confines of conventional
probability theory.

5.3 Other Ways to Spoil the Sandwich

Although such simple examples should suffice to dispose of concerns about spoiled sand-
wiches, we feel that Pearl’s discussion of the problem deserves a more detailed analysis,
mainly because of its philosophical implications to rational thinking. This is particularly

" “support,” or “belief” in

important because loose use of such terms as “assured winnings,
the absence of a sound, formal interpretive framework may quickly mislead those engaged in
the comparison of alternative methodologies.

In an example, called “the Peter, Paul, and Mary Sandwich problem,” Pearl presents a
betting situation in which Mary prepares either a ham or a turkey sandwich, promising to
pay Paul $1000 should he guess correctly the type of sandwich that she has prepared. Not
having a clue as to Mary’s choice, Paul then flips a coin, guessing “ham” if the coin turns
up heads and guessing “turkey” if it comes up tails. Paul, as Pearl notes, behaves like an

b

“incurable Bayesian,” reckoning that

P(win) = P(win | turkey) P(turkey) + P(win | ham) P(ham)
= P(tails | turkey) o + P(heads | ham) (1 —a) = 1,
regardless of the value o of the probability that Mary has actually prepared a turkey sand-
wich. Thus, in spite of not being “assured” a win or having “supporting evidence,” Paul can
invoke the rationality (doubtful, as we already saw) of the sandwich principle and argue that
he does not need to engage in unnecessary knowledge acquisition or experimentation [15]:

“If every possible ouicome of an experiment would lead you to choose the same action,
then you ought to choose that action without running the experiment.”

From such an observation, Pearl proceeds to fault the philosophical underpinnings of the
evidential reasoning approach, eventually going as far as to suggest that, should Bayesian
orthodoxy be unapplicable, the Dempster’s formula—which, he freely admits, does not play
any role in this example—be replaced by other formulas such as the well-known bounds
recently rediscovered by Halpern and Fagin [7].

In the light of our previous example about the rather inconvenient ability of conven-
tional probability families to spoil sandwiches, all of these pronouncements look increasingly
suspicious: What, however, may we say is wrong? This question may be answered in two

equivalent ways.
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We may say first, keeping ourselves at the informal discussion level, that, often, the
experiments may interact with probabilities in complex ways that, obviously, Pearl has not
considered. Nothing in Pearl’s formalism suggests, for example, that the sandwich has
already been prepared and that it may not be artfully substituted by Mary to assure that
Paul always loses, thus invalidating his hopes of having at least a 50 percent chance of
winning.

The second, more formal, rendering of this observation is again based on the semantic
model of Ruspini. In this, and in other similar problems, we have several agents that de-
liberate about the state of the world on the basis of their knowledge and knowledge of the
knowledge of others. If the unary operator K represents the state of knowledge of one of
these agents, then, as observed before, our agent is always in one of three possible epistemo-
logical states with respect to the validity of a proposition p: either he knows that p is true
(denoted Kp), or he knows that p is false (denoted K—p), or he may be ignorant of such
truth (i.e., "Kp A ~K-p, denoted 1g).

In standard accounts, assuming that knowledge of the truth of one proposition does not
affect the likelihood of ¢ruth of other propositions,® we are simply concerned with a single
form of conditional probability: that measuring the likelihood of p being true when ¢ is
true. In more complex epistemological situations, we may need to be concerned with such
quantities as P(Kp | Kq), P(Kp|q), P(Kp|Ig), and the like. In other words, Bel(p | ¢)
measures the support that knowledge of the truth of ¢ provides to the truth of p, rather than
the support provided by the truth of ¢ to the truth of p.

In the Peter, Paul, and Mary sandwich problem, Pearl implicitly assumes that

P(ng\[he&ds) = 0 )
P (Kmyt&ils)
P(turkey | Iyppyheads) = «,
)

P(ham | Iyspyheads) = 1 —«,

concluding correctly, by application of the total probability law, over the exhaustive and

exclusive set of possibilities
{Kmmyheads, KHARyta.ﬂS, IHARyheads},

that Paul has at least a 50 percent chance of winning.
This correct use of the total probability law does not mean that, by contrast, one should
assume that the full extent of the conditional information provided by belief functions is

limited to the conditional support functions

Bel (p|q) =P(p|Kq), Bel(p|—q)=P(p|K~q),

®The relations between knowledge and truth are more evident if “knowing” is thought of as sensing or
observing, and if independence is understood as a lack of relationship between the errors of the sensors.
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as Pearl evidently does. In short, not knowing p is not the same as knowing —p. The example
of the Peter, Paul, and Mary sandwich shows that one needs to consider states of ignorance
that, when properly accounted for, spoil even the best-conceived principles of rationality.
To fully appreciate the complexity of the problem, suppose that we change Pear!’s implicit
assumptions, bringing the previously absent Peter into the scene as a spy acting on behalf
of Mary. In this new scenario, still consistent with Pearl’s explicit statement of the problem,
Peter, spying on Paul’s coin flipping experiment, alerts Mary, who, being rather artful and
deft of hand, substitutes the sandwich so as to make sure that Paul always loses. In this

case,

P(ham | Kuanytails) = 1, P(turkey | Kuaryheads) = 1;

and, most importantly,
P ((KHARyheads) U (Kmayta.ils)) =1 N

i.e., Mary is never ignorant as to what Paul will bet.

The Peter, Paul, and Mary sandwich example does not, in our view, invalidate the
applicability of the evidential approach, but rather highlights the need to make necessary
discriminations between propositional truth, knowledge of that truth, and the interplay
between such conditions that are likely to be glossed over by cursory analyses based on

conventional approaches.

54 The Disagreeing Experts

Another common misunderstanding regarding the role of Dempster’s combination formula
is that provoked by an example of Zadeh [24], which is often described as an indication of
theoretical inadequacy.

This example concerns two reliable experts that assess, in a rather conflicting fashion, the
likelihood of three, noncompatible, events A, B, and C as shown in Table 2. Representation
of each of the expert’s assessments as a mass distribution followed by their combination with
the Dempster’s rule yields P(B) = 1, indicating that the “true” event is B, an alternative
considered to be rather unlikely by either of the assessors.

Observer | P(A) | P(B) || P(C)
1 0.99 | 0.01 0
2 0 0.01 || 0.99

Table 2: Experts Disagree on the State of the World
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Although this example is often quoted as an example of the failure of the Dempster’s rule,
it is clear that each of the rows in Table 2 defines a conventional probability distribution, thus
suggesting that the problem is likely to lie elsewhere. While one may be tempted to defend
any method of evidence combination by saying that the evidence, however peculiar, indicates
that Observer 1 is ruling out alternative C' while Observer 2 is excluding alternative A, thus
leaving only B as the sole possible answer, it is clear, upon further examination, that the
rows of Table 2 cannot possibly be evaluations of the same probability distribution. If that
were the case, then at least one of the experts must be wrong, since there can only be one
correct probability distribution, contradicting the assumption that they are both reliable.

Clearly, if the example is to make any sense —under any type of probabilistic interpretation—
each row must correspond to a different conditional probability where the conditions corre-
spond to different observations available to each expert. A simple example, suggested by a
recent example used by Kyburg[9] to address other probabilistic reasoning issues, will help
to clarify matters.

In this example we are being asked to reason, on the basis of available evidence, about
the taste and edibility of certain berries that may be either small or large; and red or blue;
have good or bad taste; or be safe or poisonous to eat. We will assume that the berries in
question are distributed according to the distribution shown in Table 3.

Color || Size | Taste/Edibility | Probability
Red | Small Good/Edible 99/199
Blue | Large Bad/Edible 99/199
Red | Large Poisonous 1/199

Table 3: The Berries Probability Distribution

If now a berry is picked up and found by an expert to be large, he will correctly conclude
from such evidence that

P(Good|Large) =0, P(Poisonous|Large) =0.01, P(Bad Taste|Large) = 0.99.
Another expert, noticing that the berry is red, will conclude, on the other hand, that
P(Good|Red) = 0.99, P(Poisonous|Red) =0.01, P(Bad Taste|Large) =0.

Clearly the evidential implications of these two separate observations are identical to the
situation summarized in Table 2. Examination of Table 3, however, reveals that

P(Poisonous|Red, Large) =1,
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a correct solution that must be rationally expected from any reasoning method that purports
to be valid.

The solution to the puzzle of the disagreeing experts lies on recognizing that there is,
in fact, no disparity of opinion among them. Each is providing quantitative measures of
likelihood with respect to different reference classes. The Dempster formula, should never
be applied to pool partial information about the same probability distribution. Furthermore,
as shown by a sensitivity analysis of the results of its application to the berries example,
its usage in situations where there is considerable disparity between reference classes (as
suggested by the large normalization factor) should be discouraged on the basis of practical
rather than conceptual considerations.

6 On Complexity and Generality

The potential complexity of the belief-function approach to represent and manipulate interval
constraints on a family of probability distributions has been often mentioned as a handicap
of the evidential reasoning methodology. In spite of such misgivings, two major empirical
observations have indicated that the approach is applicable to a wide variety of practical
problems.

First, our experience shows that, notwithstanding criticisms based on unrealistic worst-
case scenarios, the approach is computationally efficient. In particular, we have found that
representation of belief functions in terms of mass functions results in a storage and ma-
nipulation scheme that is both economical and easy to understand. In addition, we have
sucessfully implemented tools, such as summarization and coarsening operators, which may
be effectively utilized to limit representational complexity.

Second, our current functional operators have been chosen to guarantee that the ma-
nipulation of evidential knowledge results also in knowledge that may be represented in the
evidential framework (i.e., the operators are closed).

The lack of generality of the belief-function approach to represent general lower-upper
probability constraints is well known[10]. Our reliance on the methodology is primarily
the result of practical considerations: although we would prefer to manipulate more general
constraints on probability values, compelling computational efficiency arguments force us to
limit the scope of the problems considered to those capable of being at least approximately
solved by a belief-function treatment.

Being, in general, partial toward interpretations of evidential structures that are fully
compatible with probability theory, our current research is being directed toward the devel-
opment of more general, yet efficient, representation and manipulation methods.

QOur current concerns with the manipulation of conditional and dependent evidence (i.e.,
the evidential counterpart of conditional probabilities) show, for example, that, for some
important problems, the results of evidential combination fall outside the scope of its repre-

sentational capabilities. In our experience, these methodological limitations are more worri-
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some than any of the supposedly paradoxical results arising from its misuse or its claimed
lack of a decision-making apparatus.

Preliminary results [16] indicate, on the other hand, that the belief-function approach
may be used to approximate the results of these evidential combination operations and
that extended representation mechanisms[20] may yet be developed to treat more general
evidential problems. This research also shows the basic errors inherent in criticisms that
regard the belief-function approach as a fully developed methodology incapable of sustaining
further enhancement and modification. Because it has been studied in depth for only 15
years, its technological status is that of a young discipline, being both capable of enhancement
on its own and of combination with other approaches to produce more general tools for
probabilistic reasoning. Far from proving that we have reached a technological plateau, our
investigations indicate that much is yet to be gained from such a development and integration

process.
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