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ABSTRACT 

Underwater acoustic networks provide an interface between UUVs and surface or 

land-based control systems.  By exploiting range data measured incidental to 

communications on these networks it is possible to perform underwater positioning 

similar to that of the satellite-based GPS program.  In this thesis, several algorithms for 

generating position fixes from these range data are implemented, tested, and evaluated 

with synthetic data.  The algorithms are then applied to data obtained during operations at 

sea. 
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EXECUTIVE SUMMARY 

The US Navy is increasingly using unmanned vehicles for operations in hostile 

environments.  Examples of such missions include forward reconnaissance and mine 

clearing operations.  Robust command and control (C2) infrastructure and precision 

guidance are vital to mission success when using these remote platforms. 

Acoustic networks have been developed to facilitate C2 of unmanned underwater 

vehicles (UUVs).  These networks can also be used to improve submarine 

communications at speed and depth for submarines (SSNs) operating nearby.  

Additionally, SSNs and UUVs operating with such a network can be used as intermittent 

gateways for fixed sensor assets in the network.  In this role, the mobile node collects 

data from the network and then breaks the surface to transmit large data dumps to an 

over-the-horizon control center, eliminating the need for a continuous surface presence.  

Accurate knowledge of the position of a mobile node improves operation between assets 

in the network and increases network efficiency by minimizing the routing distance 

required for communications.  Ranges calculated incidental to network communications 

provide a reliable fix source using already available modem hardware. 

If ranges to the mobile node from multiple fixed nodes are collected, a position 

fix can be generated in a manner similar to a terrestrial receiver using GPS.  Several 

algorithms for solving the position fix are compared using synthetic range data to 

determine their relative effectiveness.  These tests also show that the mean and standard 

deviation of the resulting position error are linear functions of the standard deviation of 

the error in the measured ranges. 

Operational testing with the Seaweb acoustic network, currently being developed 

by SPAWAR Systems Center, San Diego, was performed to collect range data to mobile 

nodes operating with the network.  Data from these tests are analyzed and the resulting 

position fixes show a high degree of accuracy.  An example of these test results is shown 

in Figure 1.  The mobile node used for this experiment is a Slocum glider with a dead-

reckoning system as its only navigation method available during submerged operations.  



 xvi

GPS fixes are received at the beginning and end of the track, and dead-reckoning 

positions are estimated when submerged.  The fixes obtained from the network ranges 

show a significant improvement over the dead-reckoning system. 
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Figure 1. Slocum UUV track from July 21, 2005 showing initial and final GPS and 

dead-reckoning positions, over-plotted with Seaweb fixes 
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I. INTRODUCTION  

A. MOTIVATION 
Future U.S. Navy operations are expected to rely heavily on unmanned systems.  

For operations such as littoral surveillance or mine clearing, accurate navigation of these 

platforms is essential.  This thesis examines the use of an acoustic network designed for 

communicating with such platforms as the basis for an underwater positioning system 

similar to the satellite based Global Positioning System.  An algorithm robust enough to 

derive accurate positions from range measurements is needed for the successful operation 

of this system. 

B. SEAWEB OVERVIEW  
Seaweb is a system for underwater networked acoustic communications.  A 

Seaweb network consists of an arbitrary number of sensor nodes, repeater nodes, and 

gateway nodes as described in [1].  Present implementations of Seaweb use Benthos 

Telesonar modems that are readily configurable to work with many mobile platforms 

including submarines and UUVs.   

The Seaweb link-layer protocol includes a handshake operation from which the 

distance between the two communicating modems is calculated from the round-trip travel 

time.  By obtaining simultaneous ranges between a mobile node and a number of fixed 

nodes, a Seaweb network can double as a portable acoustic tracking grid [2]. 
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C. SEAWEB RANGING 
The Seaweb handshake operation is illustrated in Figure 1. 

 

tj

to

ping

echo

tim
e

node i node j

dij

dji

τj

tim
e

tj

to

ping

echo

ping

echo

tim
e

node i node j

dij

dji

τj

tim
e

 
Figure 1.   Seaweb ranging from node i to node j (from [2]) 

 

The round trip travel time is given by 

 t j − t0 = dij + τ j + d ji  (1.1) 

where dij and dji are the transmission times from node i to node j and from node j to node 

i, respectively, and τj is a random time delay inserted by the responding modem to 

decrease interference with other communications.  Reciprocity dictates that 
 
dij = d ji  and 

the one-way travel time is then 

 dij =
t j − t0 − τ j

2
 (1.2) 

The range from node i to node j is the product of the one-way travel time and the speed of 

sound in seawater.  The speed of sound is assumed to be a nominal value of 1500m/s 

yielding a node-to-node range in meters of 

 01500
2

j j
ij

t t
r

τ− −⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (1.3) 
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The ranging calculations are performed by the initiating modem and ranges are logged in 

a database by the Seaweb server.  There are several assumptions in this ranging 

technique.  The most significant assumptions are the sound speed of 1500m/s and 

straight-line, direct path acoustic propagation.  Despite these assumptions, range tests 

involving stationary nodes have shown that 97% of the ranges are accurate to within 10 

meters. 

 In the broadcast ping process, one node transmits a utility packet addressed to all 

listening nodes in the network.  The receiving nodes each respond with an “echo” utility 

packet which contain the data necessary to calculate the node-to-node range in equation 

(1.3).  During the experiments analyzed in this thesis, broadcast pings from the UUVs 

were initiated by a command from the tending surface vessel sent through the gateway 

node.  Range data were calculated from the echoes by the modem on the UUV and these 

data were transmitted through the network and logged on the Seaweb server on the 

tending vessel.  This process is illustrated in Figure 2. 

 

 (a) Networked command (b) Broadcast ping (c) Echoes (d) Networked telemetry(a) Networked command (b) Broadcast ping (c) Echoes (d) Networked telemetry

 
Figure 2.   Broadcast Ping. The operator commands the UUV (a) to broadcast a ping (b). 

This elicits echoes from neighboring nodes (c). The UUV telemeters the 
calculated set of ranges back to the operator (d) (from [4]). 

 
 
D. POSITION FIXING BY RANGING 

In an n-dimensional coordinate system, the position of an object can be 

determined by measuring the distance between the object and n+1 known points as 

discussed in [3].  In the two-dimensional case, an arc is drawn centered at each of the 
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known locations with a radius equal to the respective measured range as graphed in 

Figure 3.  The position fix is shown by the intersection of the three arcs.  Examples of 

this type of position fixing are radar navigation and the Global Positioning System (GPS). 
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Figure 3.   Two-dimensional position fix by ranging method. 

 

Analytically, if the position of the ith known point is given by (xi,yi) and the measured 

range from the ith point to the object being fixed is given by ri, the distance between the 

known point and the position of the object (x,y) is given by the Pythagorean relationship. 

 ri
2 = (x − xi )

2 + ( y − yi )
2  (1.4) 

Since equation (1.4) is quadratic in two-dimensions, the position fix (x,y) is the solution 

to a system of n+1 simultaneous Pythagorean equations 
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r1
2
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r3
2
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⎣
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2
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2 + y2 − 2yy2 + y2

2
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2

⎡

⎣

⎢
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⎢

⎤

⎦

⎥
⎥
⎥

 (1.5) 

Equation (1.5) is referred to as the fix equation and the unknown vector [x y]T as the 

position fix. 

In Figure 3 the ranges to the known points are assumed to be error free and there 

is a precise solution for the position fix.  If the ranges do contain errors then a precise 

solution is not obtainable, however an area with high probability of containing the true 

position is indicated by the region surrounded by the intersections of the range circles as 

shown in Figure 4. 
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Figure 4.   Two-dimensional position fix with imperfect range data. 
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II. BACKGROUND ON UNDERWATER POSITIONING  

Previous use of Seaweb as a positioning system was based on solving for the 

intersections of pairs of range circles.  This is equivalent to solving only the top two rows 

in equation (1.5). Because of the quadratic nature of the range circle equations, these 

pair-wise algorithms result in two solutions, one of which corresponds to the true position 

fix while the other corresponds to a reflection across the line connecting the two known 

points as shown in Figure 5. 
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Figure 5.   Ambiguous fix resulting from two range measurements 

 

For N fixed nodes, this yields a total of 2
2
N

S ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 solutions since each pair of fixed 

nodes will in general yield two intersections. 
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Two algorithms are implemented which compare these solutions to each other to 

eliminate the ambiguous estimates.  Both of the methods are based on the premise that 

the intersections that correspond to the correct position will be concentrated around the 

true position while the ambiguous solutions will be significantly separated from this 

cluster. 

A. WEIGHTING METHOD 
In 2005 [2] created an algorithm in which a weighting value is assigned to each 

possible solution.  The weighting value Wi for a particular solution xi is based on the 

proximity of the solution to all other calculated solutions.  Those solutions corresponding 

to the true position are assigned a higher weighting value.  The ambiguous solutions are 

separated both from the true solution cluster and from the other ambiguous solutions and 

receive a low weighting factor.  The final position X is then a weighted average given by  

 
1

S

i i
i

X W x S
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  (2.1) 

 
B. CENTER OF MASS METHOD 

Also in 2005, [4] tested an algorithm that attempts to eliminate the ambiguous 

solution by comparing both solutions from a given node pair to the overall mean position 

from all possible node pairs.  For each fixed node pair, only the solution closest to the 

mean position is used to compute the final position. 

C. DIFFERENCE LINEARIZATION METHOD 

In [5], Krause formulates an algebraic solution to the GPS equations by a method 

called difference linearization in which the equation corresponding to a given satellite is 

subtracted from another equation in the system.  This results in a set of linear equations 

that can be solved for the receiver position and time offset without the need for an 

iterative method.  This thesis implements a similar method and compares performance to 

the pairwise weighting methods previously implemented. 
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III. DIFFERENCE LINEARIZATION METHOD  

A. FORMULATION 
As stated in Chapter II, previous work by Hahn and Ouimet solved the equations 

for pairs of intersecting range circles.  This thesis evaluates the use of the difference 

linearization algorithm in [5] for solving the fix equation.  This algorithm solves a 

simultaneous set of three range circle equations as given in equation (1.5) by 

reformulating the equality such that the squared unknown terms are eliminated.  This 

leads to a pair of simultaneous linear equations in x and y 

 
  

(r1
2 − r2

2 )
(r2

2 − r3
2 )

⎡

⎣
⎢
⎢
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⎥
⎥

= 2
(x2 − x1) ( y2 − y1)
(x3 − x2 ) ( y3 − y2 )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x
y
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⎣
⎢
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(x1
2 − x2

2 ) + ( y1
2 − y2
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(x2

2 − x3
2 ) + ( y2

2 − y3
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⎡

⎣
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⎢

⎤

⎦
⎥
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 (3.1) 

with a solution of 
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y
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 (3.2) 

For simplicity of notation, let
 
x =

x
y

⎡

⎣
⎢

⎤

⎦
⎥ , P =

(x2 − x1) ( y2 − y1)
(x3 − x2 ) ( y3 − y2 )

⎡

⎣
⎢
⎢
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⎦
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, and 

  
a =

(r1
2 − r2
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(r2
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(x2
2 − x1

2 ) + ( y2
2 − y1
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(x3

2 − x2
2 ) + ( y3

2 − y2
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⎡

⎣
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⎤
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⎥

 so that equation (3.2) can be written as 

 x =
1
2

P−1a  (3.3) 

 This method of difference linearization can be extended to an overdetermined 

system.  In the case of a network with N fixed nodes the matrix P then has size (N-1 x 2) 

and the vector  a  has (N-1) elements.  An overdetermined method of positioning was 

implemented as part of this thesis, but it was found to be less accurate than taking all 

available combinations of three nodes and averaging the solutions.  One significant range 

error would skew the solution even if the other ranges were reliable. 
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In the combination method, individual solutions could be checked for accuracy 

and discarded if they did not pass.  The combination algorithm also maintains P as a 

square matrix allowing exact solution by matrix inversion, in contrast to a least-squares 

estimation. 

B. SOURCES OF RANGE ERRORS 
There are several sources of error that can degrade the accuracy of the measured 

ranges, and hence lead to errors in the calculated positions.  If a measured range îr  is 

corrupted by measurement error ∆ri then the measured range is î i ir r r= + ∆  and vector a  

in equation (3.3) is estimated as  

 
2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 2 1 2 1
2 2 2 2 2 2 2 2

2 2 2 2 3 3 3 3 3 2 3 2

( 2 2 ) ( ) ( )ˆ
( 2 2 ) ( ) ( )
r r r r r r r r x x y y

a
r r r r r r r r x x y y

⎡ ⎤+ ∆ + ∆ − − ∆ − ∆ + − + −
= ⎢ ⎥+ ∆ + ∆ − − ∆ − ∆ + − + −⎣ ⎦

 (3.4) 

Equation (3.3) will still have a mathematical solution when a  is replaced with â , but this 

solution will not correspond to the true position when measurement errors become 

significant. 

Because the range errors for each fixed node are independent and their effects on 

the position fix are nonlinear, it is difficult to perform a sensitivity analysis of a given 

positioning algorithm.  In the simple case of only one range containing errors, say r1, it 

can be shown that the position errors will be given by 

 

( )( )

( )( )

2
3 2 1 1 1

2
2 3 1 1 1

2
2det( )

2
2det( )

y y r r r
x

P

x x r r r
y

P

− ∆ + ∆
∆ =

− ∆ + ∆
∆ =

 (3.5) 

which shows that the position errors are also dependent on the fixed node geometry.  

Similar equations can be developed for errors in r2 or r3.  The positioning algorithm uses 

range data from all available nodes such that if only a small portion of the available 

ranges are affected by significant range error, an accurate position can still be calculated 

from the uncorrupted ranges.  Several case studies are presented in Chapters V and VI in 

support of a range error sensitivity analysis. 
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 Another method of characterizing the position error is to determine the covariance 

of the position estimate  x  given by  

{ } { }( ) ( ) ( ) ( )( ) ( )
T T

T Tf r f r f r f rCov x E xx E r r Cov r
r r r r

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞
= = ∆ ∆ = ∆⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (3.6) 

where  r  is the vector of ranges and f (r )  is defined in (3.2) so that  

 

  

∂f (r )
∂r

=

∂x
∂r1

∂x
∂r2

∂x
∂r3

∂y
∂r1

∂y
∂r2

∂y
∂r3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
1

det(P)
r1( y3 − y2 ) r2 ( y1 − y3) r3( y2 − y1)
r1(x2 − x3) r2(x3 − x1) r3(x1 − x2 )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (3.7) 

An estimate of this covariance matrix is required if the Seaweb fixes are to be integrated 

into an onboard navigation system with a Kalman filter.  For simplicity we assume that 

the errors in the range measurements are independent of one another but have the same 

standard deviation σr which gives 

 Cov(∆r ) = σ r I  (3.8) 

Even for this simple case, the partial derivative matrix given by equation (3.7) shows that 

the covariance of the position error is dependent on both the network layout and the range 

to the vehicle.  In reality there may be environmental or system features which result in 

different standard deviations for each node or which might introduce coupling in the 

range errors from different nodes that would lead to non-zero terms in the off-diagonal 

elements. 

1. Neglecting Depth 
While the difference linearization algorithm can easily be extended to three 

dimensions, the errors present in the ranges can cause significant errors in the solution of 

the depth coordinate.  This is due mainly to geometric dilution of precision effects 

(discussed in section C of this chapter) as the fixed nodes are very nearly coplanar in the 

z-dimension.  Even with minor variations in bathymetry over the network layout, the 

variation of fixed node depth is much smaller than the spread in x and y.  Because of this, 

we have chosen to neglect depth and solve only for the two-dimensional position.  

Ignoring depth obviously causes some error in the range measurements because the 
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vehicle will not be in the same plane as the fixed nodes.  The closer the vehicle (in x and 

y) to a given fixed node, the more the range to that node will reflect the difference in 

depth between the vehicle and the node.  A simple illustration is provided in Figure 6.  If 

the angle θ is less than 71.8°, then the range error between r and rh caused by neglecting 

depth will exceed 5%.  For a depth separation z between the vehicle and node of 100m, 

this corresponds to a minimum good range of approximately 350m.  In most cases, 

however, if the vehicle is very close to one fixed node such that the range is affected by 

depth, it will be far enough away from the other nodes in the network to minimize this 

effect for the remaining nodes. 

vehicle

fixed node

θ 

z 
r 

rh 

 
Figure 6.   Effect of depth on vehicle range 

 

Future network implementations can eliminate this source of range error by including 

depth sensors at all nodes. 

 

2. Speed of Sound and Refraction 

If the speed of sound estimate of 1500m/s used in equation (1.3) is not accurate, 

the calculated ranges will have corresponding inaccuracies.  Sound speeds in the ocean 

typically range from 1480 to 1520 m/s or 1.3% from the assumed value [6].  Ranges 
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calculated with an incorrect sound speed will have the same percentage error as the 

mismatch in sound speed.  Also, sound speed often varies with depth, which leads to a 

refractive ray-path.  The length of this refractive path will be longer than a straight-line 

path between the communicating nodes. 

3. Multipath 
Multipath error can arise if the channel geometry and sound speed profile allow 

for multiple ray-paths such as a surface or bottom reflection in addition to the direct path.  

The direct path is usually the shortest range and the most accurate.  In most geometries of 

interest it should also have the highest SNR of the several path lengths.  While the 

modems utilize a peak-detector filter which should eliminate most multipath effects, it is 

possible that a multipath response may actually have a higher SNR than the direct path 

and thus be inadvertently used for the range calculation. 

4. Vehicle Motion 
A vehicle in motion will travel some distance between the time it issues the 

broadcast ping request and the time it receives the response.  The worst case for this type 

of error occurs when the vehicle is moving directly towards or away from a node.  For 

example, a 5kt vehicle 1500m away from a fixed node would have a motion induced 

error of 2.57m or 0.17% [3].  Also, the responses are not normally received precisely 

simultaneously.  Because of this, the vehicle will be at a slightly different position at the 

receipt of each ping response.  This effect should be minimal if the responses are received 

within a few seconds of each other. 

C. GEOMETRIC DILUTION OF PRECISION 

The error in the calculated position is dependent on both the errors in the range 

measurements and the geometry of the fixed nodes.  The influence of the fixed node 

geometry is a phenomenon known as geometric dilution of precision (GDOP).  If each 

range arc is represented as an annulus to model the uncertainty in the measured range, the 

intersection of these annuli is then an area of likely target position.  If the angle θtr is 

defined with vertex at the intersection of the annuli and rays to the center of each 

annulus, then as θtr becomes very small, the GDOP effects become more pronounced.  

The effects of GDOP are minimized when θtr is 90°.  This is illustrated in Figure 7. 
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Figure 7.   Geometric Dilution of Precision (from [7]) 

 

When using range data from three nodes the limiting worst case of GDOP occurs when 

all of the fixed nodes are collinear.  In this case it is impossible to determine which side 

of the line corresponds to the true position.  Analytically this is because the matrix P 

from equation (3.3) given by 
  

(x2 − x1) ( y2 − y1)
(x3 − x2 ) ( y3 − y2 )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 is singular for the collinear case.  

Since the GDOP characteristics of the network are only dependent on the geometry of the 

fixed nodes, regions of high GDOP can be minimized during the network layout phase.  

A measure of the GDOP characteristics can be found by calculating the condition number 

of the P matrix [8].  A condition number near one indicates good GDOP characteristics 

while a large condition number indicates a nearly singular matrix and, as a result, poor 

GDOP characteristics. 
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IV. ALGORITHM IMPLEMENTATION  

A. PROGRAM ORGANIZATION 
The position fixing methods are implemented in Matlab.  The program is modular 

for readability, maintainability, and applicability to both simulated and actual measured 

data. 

1. Input and Data Acquisition 
Input mechanisms are provided for reading fixed node positions (latitude and 

longitude) in either decimal degrees or degrees, minutes, and seconds.  Ping ranges to 

these fixed nodes are also read from either text or Excel files.  Inputting the data outside 

the positioning function allows for readier use with other fixing algorithms without 

reloading the data files. 

2. Transformation from Latitude and Longitude to x-y 
For locating the fixed nodes and comparison to other positioning systems such as 

GPS or onboard inertial systems, coordinates in latitude and longitude are transformed 

into a local coordinate system.  Since the length of both a degree of latitude and a degree 

of longitude vary due to the shape of the Earth, these distances are specifically 

determined for the operating area according to equations provided by [9].  Once these 

lengths are locally determined for the operating latitude, a point such as one of the fixed 

nodes is chosen as the origin of the local coordinate system.  The latitude and longitude 

of each point of interest are subtracted from those of the origin point and a simple unit 

conversion based on the calculated degree lengths is performed to obtain coordinates in 

meters relative to the chosen origin. 

3. Position Determination 

Since this algorithm solves the set of three simultaneous equations given by 

equation (1.5), there are actually 
3
N⎛ ⎞

⎜ ⎟
⎝ ⎠

 positions calculated for each broadcast ping, 

where N is the number of fixed nodes.  The program does not assume a specific number 

of fixed nodes, so the value of 
3
N⎛ ⎞

⎜ ⎟
⎝ ⎠

 is calculated at the start of the program as a loop 

control parameter.  The combinations themselves are also generated according to the 
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algorithm in [10] for use as subscripts that index the specific node positions and ranges 

for each instance of calculation.  With a given set of node positions and ranges as inputs, 

the matrix and vector given in equation (3.2) are formed and the equation solved for 

[ ]T x y .  The position is then verified by comparing back-calculated ranges from the 

calculated position to the input ranges.  If these back-calculated ranges differ from the 

input ranges by more than 10% of the input ranges, the solution for that set of nodes is 

considered invalid and ignored.  When a solution has been calculated for each 

combination of fixed nodes, the valid solutions are averaged to determine a final position 

for that time instance.  In addition to calculating a solution for each combination of fixed 

nodes, a solution of the overdetermined difference linearization equation described in 

Chapter III is also calculated in order to compare the relative accuracy of these two 

methods.  For further comparison, the weighting method and center of mass method are 

calculated. 

4. Output 
The output of the program is normally a chartlet that shows the position of each 

fixed node and the final positions calculated for each time instance.  These plots are 

performed in a different function so that tracks from other position sources or calculated 

by other algorithms can be overplotted for comparison. 
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V. ALGORITHM TESTING WITH SYNTHETIC DATA  

A. ASSUMPTIONS AND SETUP 
In July 2005 ranging experiments were conducted in Monterey Bay using a 

Slocum glider UUV as a mobile node within a Seaweb network [4].  The fixed grid 

geometry in these experiments is used as the grid in the following simulations.  The 

recorded GPS positions and the associated x-y positions are shown in Table 1 and a chart 

of the node positions is given in Figure 8. 

 

 Latitude Longitude 
y Position 
Difference 

x Position 
Difference 

Node 
(Decimal 
Degrees) 

(Decimal 
Degrees) (meters) (meters) 

R10 36.70563 -121.96362 0.00 0.00 
R11 36.71463 -121.96367 998.75 -4.47 
R12 36.70837 -121.95308 304.06 941.79 
R13 36.6984 -121.95702 -802.33 589.73 
R14 36.69864 -121.96871 -775.69 -454.81 
R15 36.70852 -121.97417 320.71 -942.68 

Table 1.   Fixed node positions for simulations and July 2005 Slocum test showing original 
latitude/longitude and positions in meters relative to center node 

 

 
Figure 8.   July 2005 grid geometry 
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The condition number of the P matrix for each combination of three nodes is shown in 

Table 2.  As most of the condition numbers are between 1.5 and 2.1, this network shows 

good GDOP performance.  However there are some sets such as nodes R10, R11, and 

R14 that give weaker GDOP performance.  Detrimental effects from poor GDOP 

performance are minimized by discarding those solutions that fail to satisfy the original 

range equations within the 10% criteria discussed in Chapter IV. 

 
 

Nodes Condition Number  
of P matrix 

R10, R11, R12 2.0290 
R10, R11, R13 7.7187 
R10, R11, R14 9.3952 
R10, R11, R15 1.9820 
R10, R12, R13 1.9859 
R10, R12, R14 6.7679 
R10, R12, R15 7.5646 
R10, R13, R14 2.0441 
R10, R13, R15 7.9865 
R10, R14, R15 2.0839 
R11, R12, R13 1.3928 
R11, R12, R14 1.6504 
R11, R12, R15 3.5279 
R11, R13, R14 2.0178 
R11, R13 R15 3.1235 
R11, R14, R15 3.2134 
R12, R13, R14 1.3576 
R12, R13, R15 1.8224 
R12, R14, R15 1.5818 
R13, R14, R15 1.6182 

Table 2.   P matrix condition numbers for Monterey Bay Seaweb Grid 
 
 

1. Data Characteristics 
A mesh with spacing every 200m from (x,y) = (-1500, -1500) to (1500, 1500) 

resulted in 256 test points.  Error-free ranges from each of the six nodes to each of these 

256 points were calculated.  The error free ranges were then corrupted with simulated 

measurement noise according to 

 î i ir r r= + ∆  (5.1) 
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where ∆ri is Gaussian noise with mean zero and standard deviation σr (in meters).  These 

corrupted ranges were then used as the input to the four different position fix algorithms 

(with minor changes to the programs from [2] and [4] to use the same ranges in all four 

methods).  The calculated fix positions ˆ ˆ( , )i ix y  were compared to the true positions 

  (xi , yi )  of the 256 point mesh with the position error in meters given by 

 ( ) ( )
1/ 22 2ˆ ˆp i i i ie x x y y⎡ ⎤= − + −⎣ ⎦  (5.2) 

The entire mesh was tested in this manner 1000 times for each value of σr so that the 

resultant errors from each of the four algorithms could be compared. 

B. CASE STUDIES 

1. Data Set with Zero Range Error 
To ensure the validity of all of the position fix algorithms a data set with zero 

range error was used as an initial case.  All of the algorithms performed well in this case, 

with no errors greater then 0.5m.  Even for this simple case, the center of mass method 

has significantly larger errors than the other methods.  This indicates that for certain pairs 

of range circles the center of mass method is choosing the wrong solution.  The mean and 

maximum errors from each algorithm are presented in Table 3.  

 

 Combination 
method 

Overdetermined 
method 

Center of Mass 
Method 

Weighting 
Method 

mean error (m) 0.0039 0.0045 0.0126 0.0035 

max. error (m) 0.0103 0.0134 0.4716 0.0167 

Table 3.   Position error statistics for zero range error data 
 
 

2. Data Sets with Gaussian Range Error 
Several case studies were performed for the case of Gaussian range error.  The 

standard deviation values used were σr=4m, 15m, 30m, 50m, and 75m.  Histograms of 

the position errors from each algorithm and each σr value are shown in Figures 9-13.  As 

expected, the magnitude of the position errors increases with increasing range error, but 

from the histograms it can be seen that the maximum error from the two difference 

linearization methods is much less than that from the pairwise methods.  The mean, 
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standard deviation, and maximum errors, as well as confidence interval values for 50%, 

75%, 90%, 95%, and 99% are given in tables 4-8 following each group of histograms.  

The statistics presented in the tables also validate the use of the difference linearization 

algorithm.  In all of the tested cases, the mean, standard deviation, and maximum errors 

are smallest with the combination method of the difference linearization algorithm. 
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Figure 9.   Position error histograms for σr=4m  

 
 
 Combination 

Method 
Overdetermined 
Method 

Center of Mass 
Method 

Weighting 
Method 

Mean Error 5.2 6.0 11.0 5.5 
Error Std. 
Dev. 

3.0 3.7 12.3 4.0 

Max. Error 26.3 35.3 198.8 75.3 
50% Error 4.7 5.4 7.2 4.7 
75% Error 6.9 8.0 13.0 7.1 
90% Error 9.3 11.0 23.3 10.2 
95% Error 10.8 13.0 33.2 12.8 
99% Error 14.1 17.3 64.8 19.9 

Table 4.   Position error statistics for σr=4m, all values in meters 
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Figure 10.   Position error histograms for σr=15m  

 
 
 
 Combination 

Method 
Overdetermined 
Method 

Center of Mass 
Method 

Weighting 
Method 

Mean Error 19.5 22.6 35.4 20.8 
Error Std. 
Dev. 

11.2 13.6 32.7 15.1 

Max. Error 116.6 130.3 456.1 320.5 
50% Error 17.7 20.2 25.5 17.5 
75% Error 25.9 30.0 44.1 26.5 
90% Error 34.7 41.0 74.0 38.2 
95% Error 40.6 48.5 99.4 48.0 
99% Error 52.7 64.8 164.9 75.2 

Table 5.   Position error statistics σr=15m, all values in meters 
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Figure 11.   Position error histograms for σr=30m  

 
 
 
 Combination 

Method 
Overdetermined 
Method 

Center of Mass 
Method 

Weighting 
Method 

Mean Error 39.2 45.3 65.3 42.0 
Error Std. 
Dev. 

22.4 27.3 55.5 31.4 

Max. Error 186.9 273.1 813.0 868.5 
50% Error 35.6 40.3 49.0 35.3 
75% Error 52.0 59.9 83.0 53.2 
90% Error 70.0 82.1 134.6 76.7 
95% Error 81.4 97.2 175.4 96.7 
99% Error 105.4 129.9 273.3 155.9 

Table 6.   Position error statistics σr=30m, all values in meters 
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Figure 12.   Position error histograms for σr=50m  

 
 
 
 
 Combination 

Method 
Overdetermined 
Method 

Center of Mass 
Method 

Weighting 
Method 

Mean Error 65.2 75.6 103. 2 71.3 
Error Std. 
Dev. 

37.5 45.6 83.7 56.6 

Max. Error 317.9 420.0 1260.1 1603.3 
50% Error 59.1 67.3 79.5 58.9 
75% Error 86.6 100.1 132.1 89.7 
90% Error 116.0 137.1 209.7 130.0 
95% Error 135.8 162.3 269.6 166.6 
99% Error 176.9 216.2 409.9 275.2 

Table 7.   Position error statistics for σr=50m, all values in meters 
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Figure 13.   Position error histograms for σr=75m 

 
 
 
 Combination 

Method 
Overdetermined 
Method 

Center of Mass 
Method 

Weighting 
Method 

Mean Error 97.6 113.2 148.9 110.2 
Error Std. 
Dev. 

56.1 68.3 118.6 94.9 

Max. Error 489.9 638.1 1958.2 2874.9 
50% Error 88.5 100.7 116.6 89.1 
75% Error 129.7 150.0 191.0 135.9 
90% Error 173.9 205.1 298.6 200.8 
95% Error 203.3 243.0 382.4 261.3 
99% Error 264.4 324.7 575.5 470.9 

Table 8.   Position error statistics σr=75m, all values in meters 
 
 

3. Data Set with Only Positive Range Error 

A data set was also tested using ∆ri equal to the absolute value of a Gaussian 

distribution with σr=25m.  The absolute value was used because most of the error sources 
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discussed in Chapter III result in an overestimate of the range, the exception being 

underestimation of sound speed.  Again the combination method of the difference 

linearization algorithm showed the best performance of the methods tested.  Histograms 

of the error distribution are shown in Figure 14 with statistics in Table 9. 
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Figure 14.   Position error histograms for positive Gaussian error, σr=25m  

 

 

 Combination 
Method 

Overdetermined 
Method 

Center of Mass 
Method 

Weighting 
Method 

Mean Error 23.5 26.9 41.3 28.5 
Error Std. 
Dev. 

14.0 17.5 32.6 17.1 

Max. Error 123.6 200.9 454.5 360.9 
50% Error 21.0 23.3 32.9 25.7 
75% Error 31.7 36.0 51.0 36.7 
90% Error 42.8 50.3 78.7 49.3 
95% Error 50.0 60. 4 103.2 58.8 
99% Error 64.3 82.4 168.1 84.1 

Table 9.   Position error statistics for positive Gaussian error, σr=25m, all values in meters 
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C. TESTING RESULTS 

Throughout the range of σr values tested, the combination difference linearization 

method consistently performed the best of all four methods.  Also, for the case of 

Gaussian range errors, both the mean and standard deviation σp of the position error were 

found to be linear functions of σr as shown in Figure 15.  The slope of the line for mean 

error vs σr is 1.3 and the slope of the line for σp vs σr is 0.75.  Both lines have a zero 

intercept.  This result allows prediction of the position error if the distribution of input 

error is known. 
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Figure 15.   Mean and standard deviation of position error as a function of σr 
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VI. SYNTHETIC VEHICLE TRACKS  

A. ASSUMPTIONS AND SETUP 
Two simple tracks were simulated and tested in a similar manner to the mesh of 

known points tested in Chapter V.  The first track consisted of a single leg from  

(-1200, 700) to (900, -1100).  Fifty-one equally spaced points were calculated along the 

one leg defined by these waypoints.  The second track had two legs defined by the 

waypoints (-1200, 700), (-900 -500), and (900, -1100).  There were 101 equally spaced 

points along the second track, 50 per leg plus the final waypoint.  The tracks are shown in 

Figure 16.  Error-free ranges from each fixed node to each of the track points were 

calculated and corrupted with Gaussian noise for the simulations.  As in Chapter V, 1000 

iterations were performed for each noise value. 
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Figure 16.   Synthetic tracks 1 and 2 

 

B. CASE STUDIES 

Two values of Gaussian error were added to the ranges for each track.  The values 

of σr for these case studies were 4m and 50m.  Position error histograms are shown in 

Figures 17-19 with error statistics in accompanying Tables 10-13.  In all of the cases 

presented, the combination implementation of the difference linearization algorithm 

provides the best performance of the four methods. 
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Figure 17.   Position error histograms for single leg track with σr=4m 

 

 

 Combination 
Method 

Overdetermined 
Method 

Center of Mass 
Method 

Weighting 
Method 

Mean Error 4.2 5.0 9.5 5.1 
Error Std. 
Dev. 

2.3 2.9 7.2 3.5 

Max. Error 18.5 22.8 69.6 62.7 
50% Error 3.8 4.5 7.6 4.4 
75% Error 5.5 6.6 12.8 6.5 
90% Error 7.4 8.8 18.9 9.0 
95% Error 8.5 10.4 23.4 11.0 
99% Error 11.0 13.9 34.4 17.1 

Table 10.   Position error statistics for single leg track with σr=4m, all values in meters 
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Figure 18.   Position error histograms for single leg track with σr=50m 

 
 

 

 Combination 
Method 

Overdetermined 
Method 

Center of Mass 
Method 

Weighting 
Method 

Mean Error 39.4 45.6 72.1 58.0 
Error Std. 
Dev. 

23.4 29.2 44.9 36.6 

Max. Error 210.5 267.2 421.3 519.6 
50% Error 35.3 39.8 62.3 51.6 
75% Error 52.9 61.0 92.7 74.4 
90% Error 71.3 84.8 131.7 100.4 
95% Error 83.6 101.4 159.6 121.3 
99% Error 108.5 137.3 221.1 185.8 

Table 11.   Position error statistics for single leg track with σr=50m, all values in meters 
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Figure 19.   Position error histograms for two leg track with σr=4m 

 

 

 Combination 
Method 

Overdetermined 
Method 

Center of Mass 
Method 

Weighting 
Method 

Mean Error 3.6 4.2 10.2 4.4 
Error Std. 
Dev. 

2.1 2.6 10.4 2.4 

Max. Error 17.3 22.3 113.0 40.4 
50% Error 3.3 3.7 6.9 4.0 
75% Error 4.9 5.6 12.3 5.7 
90% Error 6.5 7.7 21.6 7.5 
95% Error 7.6 9.2 31.0 8.8 
99% Error 9.8 12.2 54.2 11.8 

Table 12.   Position error statistics for two leg track with σr=4m, all values in meters 
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Figure 20.   Position error histograms for two leg track with σr=50m 

 

 

 Combination 
Method 

Overdetermined 
Method 

Center of Mass 
Method 

Weighting 
Method 

Mean Error 58.4 73.0 117.9 66.0 
Error Std. 
Dev. 

31.2 40.5 87.0 49.7 

Max. Error 255.5 362.0 750.6 929.6 
50% Error 54.4 67.2 94.7 55.9 
75% Error 77.3 96.7 158.7 83.0 
90% Error 100.7 127.5 236.0 117.4 
95% Error 115.4 148.0 289.9 147.6 
99% Error 145.8 190.6 405.1 256.6 

Table 13.   Position error statistics for two leg track with σr=50m, all values in meters 
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C. TESTING RESULTS 

Although the statistical properties of the range values were the same, the mean 

and error covariance of the position errors for each set of cases were consistently smaller 

than those from similar tests in Chapter V.  This is most likely due to the fact that the 

tracks do not cover the entire possible range of GDOP effects. 
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VII. AT SEA TESTING  

A. JULY 2005 SEAWEB TESTING IN MONTEREY BAY 
The July 2005 Seaweb testing used a Slocum glider UUV as a mobile node to be 

tracked within the fixed grid [4].  This vehicle is buoyancy driven and as such has 

significant depth excursions during operation as illustrated in Figure 21. 
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Figure 21.   Slocum sawtooth motion (after [11]) 

 

A representative track from the Slocum experiment is shown in Figure 22.  This 

figure shows the potential for navigation improvement obtained by utilizing Seaweb 

position fixes.  Since the GPS, dead-reckoning, and Seaweb positions are not recorded for 

precisely the same times, an exact comparison is not possible, but it is apparent from the 

figure that the dead-reckoning positions did not match the GPS fix obtained by the 

vehicle when it returned to the surface.  The final dead-reckoning position is 227.1m 
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from the final GPS fix.  The Seaweb fixes, however, appear to track well with the true 

vehicle motion, with the final Seaweb fix only 66.4m from the GPS endpoint.  From the 

Seaweb fixes, it appears that the vehicle was attempting to follow the dead-reckoning 

track until it was pushed west by currents. 
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Figure 22.   Slocum UUV track from July 21, 2005 showing initial and final GPS and 

dead-reckoning positions, over-plotted with Seaweb fixes 

 

The ranging data used for positioning the Slocum are given in Table 14.  During 

this event, 21 broadcast ping requests were issued with a possibility of 126 responses 

from the fixed grid and 420 positioning combinations for the track.  Only 80 responses 

were actually received.  The responses are grouped in such a way that there were 99 

possible positioning combinations.  Valid solutions are obtained from 59 of these 99 

combinations.  The remaining 40 combinations yield solutions that do not satisfy the 10% 

agreement criterion with the measured ranges. 
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Time R10 R11 R12 R13 R14 R15 
1119:36 579.6 827.5 1423.9 1563.0 NaN 503.1 
1121:35 544.9 NaN 1416.3 NaN NaN 501.3 
1123:41 523.6 895.2 1413.4 1484.4 NaN 510.1 
1125:47 518.7 NaN 1409.4 NaN NaN NaN 
1128:35 504.6 NaN 1414.5 1420.2 979.5 NaN 
1132:05 437.4 NaN NaN 1331.4 882.1 607.5 
1137:34 NaN NaN 1415.8 NaN 784.0 NaN 
1139:32 418.6 NaN 1416.3 1204.5 727.2 735.0 
1141:26 435.3 NaN 1433.7 NaN 678.4 NaN 
1144:05 453.1 NaN 1427.7 1133.4 643.8 NaN 
1146:12 459.7 NaN 1439.5 NaN 595.3 NaN 
1150:39 499.8 NaN 1455.0 1024.0 528.7 949.5 
1152:44 541.2 NaN NaN 991.5 488.2 NaN 
1155:04 567.4 NaN 1484.1 971.1 455.8 1019.1 
1157:05 NaN NaN 1497.0 NaN 422.8 1065.7 
1159:08 619.6 1581.1 1510.0 927.6 404.8 NaN 
1201:24 667.9 NaN 1529.8 903.7 388.3 1137.1 
1204:06 716.1 NaN 1551.9 865.3 372.4 NaN 
1211:32 836.5 NaN 1617.9 829.2 361.8 NaN 
1213:36 986.4 NaN 1663.9 808.8 386.2 NaN 
1220:46 NaN NaN NaN 433.3 1480.9 NaN 

Table 14.   Range data for Slocum track 
 
 
B. SUBMARINE TRACK RECONSTRUCTION 

In October 2004, a submarine conducted tests with a Seaweb network.  The range 

data from this exercise are analyzed to create position fixes that are then compared to the 

SSN’s Ring Laser Gyro Navigation (RLGN) position estimates.  Calculated speeds from 

the RLGN data vary from 4.5 to 6.8kts, significantly faster than Seaweb tests with UUVs.  

A chart of this track is shown in Figure 23. 
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Figure 23.   Submarine track reconstruction chart 

 

As with the UUV experiments, another true fix source was not available for 

comparison during these tests.  However 15 of the 16 Seaweb fixes fell within the 

standard position uncertainty radius of 1nm from the RLGN reading taken at the same 

time.  The largest position difference was approximately 3350m, occurring at the course 

change in the track.  The RLGN position for this time is further to the north than the 

Seaweb fix.  This fix occurs on the edge of the network in an area with poor GDOP 

characteristics and as such is less likely to be accurate.  The good performance while 

operating in the interior of the network does show the utility of using an acoustic network 

as an underwater positioning system. 

 During this event, 16 ping requests were sent and 55 total responses were received 

from 17 nodes.  From these responses, 38 valid position fixes are generated. 
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VIII. CONCLUSIONS AND RECOMMENDATIONS  

A. CONCLUSIONS 
Despite the sometimes sparse data discussed in Chapter VII, the difference 

linearization algorithm and the available ranges consistently result in high quality fixes 

for an underwater positioning system.  The linear relationship observed in Chapter V 

between the distributions of range error and position error is a good step in characterizing 

the quality of the position fixes. 

B. RECOMMENDATIONS FOR FUTURE WORK 

1. Test with Vehicle in Receipt of GPS 

Although the simulations in Chapters V and VI indicate that the difference 

linearization algorithm performs better than previous fix methods, at-sea verification has 

been limited due to the fact that none of the vehicles tested were recording simultaneous 

fixes from a trusted source such as GPS.  Comparisons to the vehicles’ onboard inertial or 

dead-reckoning navigation systems have indicated that Seaweb ranges can be used to 

obtain a reasonable position fix.  Experimental control with a vehicle simultaneously 

recording both GPS and Seaweb fixes would allow for determination of the absolute 

quality of the Seaweb fixes. 

2. Algorithms that can Incorporate Asynchronous Ranges 

Experiments to date have used a broadcast ping from the mobile node to all fixed 

nodes in range to obtain the position fix.  As discussed in Chapter I, a range is calculated 

for each data transmission.  These data transmissions are normally sent in accordance 

with a routing table resulting in ranges from only a few fixed nodes at a time as opposed 

to all nodes for a broadcast ping.  In actual network operations, these data 

communications may occur more frequently than broadcast requests.  An algorithm that 

could incorporate asynchronous range data from such communications would increase 

the utility of the positioning system. This would also address the ability to calculate 

position fixes in the cases of poor broadcast ping response when only one or two fixed 

node responses are received. 
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3. GDOP Weighting 

As stated in Chapter III, the GDOP performance of a given set of nodes can be 

quantitatively assessed through the condition number of the P matrix of equation (3.3).  A 

possible method for improving the overall algorithm would involve a weighting scheme 

based on the condition number of the associated node set.  With this method, solutions 

that are expected to be good due to better GDOP characteristics would be more heavily 

favored than those from node sets with weaker GDOP performance. 

4. Programming Inefficiencies 

The combination algorithm is actually the slowest of the four methods presented, 

though still fast enough for real-time use.  Run time is a function of several variables, but 

one of the most significant is the number of fixed nodes in the network, which determines 

the number of combinations for which solutions will be calculated.  In a very large 

network it is likely that a mobile node will only be in range of a small fraction of fixed 

nodes at any given time.  While enough data should still be available for obtaining 

accurate position fixes, it would not be necessary to attempt to calculate positions from 

the more distant nodes.  An algorithm that uses the current position of the mobile node 

within the network to determine which fixed nodes to interrogate for ranges would 

improve the speed performance of the algorithm in large networks. 

5. Kalman Filter 
Integrating this algorithm with a Kalman filter would allow for prediction of the 

mobile node’s position and could also improve positioning accuracy.  The motion model 

in the Kalman filter could be used to eliminate position fixes that do not make sense in 

the context of the mobile nodes track history or other physical constraints. 

6. Integration with Other Navigation Sensors 
The accuracy of the positioning system could also be improved by including data 

from other navigation sensors on board the platform, such as course, speed, and depth.  

Similar to the Kalman filter, these data would improve the algorithm’s ability to predict a 

future position and compare this prediction with calculated fixes. 

7. Modeling and Testing for Error Estimation 
The synthetic data presented in Chapters V and VI give a prediction of position 

error when the statistics of the range errors are known.  In practice, these range errors are 



39 

difficult to predict.  A model that could predict range errors as a function of sound speed, 

water depth, and other factors would increase the usefulness of the insights gained in the 

synthetic testing. 

 
 



40 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



41 

APPENDICES 

A. MATLAB PROGRAMS DEVELOPED FOR THIS THESIS 
function [a b] = uuv_main 
% 
% Thesis Main Program for difference linearization algorithm, can be 
run as 
% a function for comparison to other algorithms.  Output matrix a is 
% position fix matrix for combination method, b is position fix matrix 
for 
% overdetermined method. 
% 
% Mike Reed 
% Naval Postgraduate School Master's Thesis 
% June 2006 
% 
  
global num_dims all_nodes num_nodes range_data; 
  
% clear 
% close all; 
  
% get user input for node file, range file, and number of dimensions to 
% trilaterate (2 or 3) 
% node_file = input(['\nPlease enter the name of the file that contains 
'... 
%     'the fixed node positions. \n' 'The current working directory is 
'... 
%     pwd '/.\n\n'], 's'); 
% node_mode = input(['\nPlease enter the format for the node 
position'... 
%     'file. [1]\n'... 
%     '1 - Degrees Minutes Seconds \n' ... 
%     '2 - Decimal Degrees \n\n']); 
% % default conditional goes here and loop to ensure 1 or 2 is entered 
% num_dims = input(['\nPlease enter the number of dimensions for '... 
%     'position fixing, 2 or 3. \n\n']); 
% % default conditional goes here and loop to ensure 2 or 3 is entered 
% range_file = input(['\nPlease enter the name of the file that 
contains '... 
%     'the ranging data. \n' 'The current working directory is '... 
%     pwd '/.\n\n'], 's'); 
%  
%  
%  
num_dims = 2; 
%  
% % over_determined = 0; 
%  
% % input node positions so 
% % 
% %             |node1_x, node1_y, node1_z| 
% %             |node2_x, node2_y, node2_z| 
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% % all_nodes = |node3_x, node3_y, node3_z| 
% %             |node4_x, node4_y, node4_z| 
% %             |node5_x, node5_y, node5_z| 
% %             |node6_x, node6_y, node6_z| 
% %               
%  
% pos_file = input('Enter the output file name. \n', 's'); 
  
% % node_file = '../Dec92005/node_gps.txt'; 
% node_mode = 2; 
% node_file = '../Dec92005/sean_nodes.txt'; 
% % node_file = '../Dec92005/taswex_node.txt'; 
% all_nodes = node_read(node_file, node_mode); 
% if num_dims == 3 
%     heights = [0 -8 0 2 -3 -33]'; 
%     all_nodes = [all_nodes heights]; 
% end 
  
num_nodes = length(all_nodes(:,1)); 
  
% need to get data in form  
% time_data = [timestamp(1), timestamp(2), ... timestamp(N)] 
% 
%              |range1(1), range1(2), ... range1(N)| 
%              |range2(1), range2(2), ... range2(N)| 
% range_data = |range3(1), range3(2), ... range3(N)| 
%              |range4(1), range4(2), ... range4(N)| 
%              |range5(1), range5(2), ... range5(N)| 
%              |range6(1), range6(2), ... range6(N)| 
% 
  
  
% range_data = node_ranges; 
  
% range_file = '../simulations/rng_grid_200.txt'; 
% waypoints, transposed to match output where each colums is an 
[X,Y,(Z)] 
% set 
% sym_track_b = [-1000 -1000 20; -750 0 80; 750 0 80; 1000 1000 20]'; 
% sym_track_c = [-1000 -1000 50; -750 0 50; 750 0 50; 1000 1000 50]'; 
% range_file = '../Dec92005/Node4out_b.txt'; 
% all_data = dlmread(range_file, ' '); 
% range_data = dlmread(range_file, ' ', 0, 3)'; 
  
% a = 1.05; 
% err_mult = 1;   % + 0.025*randn(size(range_data)); 
% err_add = 10*(randn(size(range_data))); 
% max(max(err_mult)) 
% min(min(err_mult)) 
% mean(std(err_mult)) 
%  
% range_data = err_mult .* range_data + err_add; 
  
% time_data = all_data(:,1:6); 
% range_data = all_data(:,3:end)'; 
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% range_file = '../Dec92005/taswex_data.xls'; 
% range_data = xlsread(range_file); 
% range_data = (range_data(2:end, :))'; 
  
% Jul 21 track5 
% all_data = xlsread ... 
%     ('../Sean/Thesis Definite/Read-in excel 
files/program_jul21_ping_ranges'); 
% range_data = all_data(86:106, 1:6)'; 
  
time_data = [1:length(range_data(1,:))]; 
  
% now calculate positions from all combinations of data at each time 
step, 
% then calculate a center of mass position by averaging over the 
% combinations 
% 
  
% delta_time = time_diff(time_data); 
set_mat = comb_gen(length(all_nodes(:,1)), num_dims + 1); 
num_combs = combination(num_nodes, num_dims + 1); 
  
mult_pos = []; 
mult_error = zeros(num_combs, length(time_data)); 
for time_count = 1:length(time_data) 
     
%    if over_determined 
        nan_ranges = sum(isnan(range_data(:, time_count))); 
        if (num_nodes - nan_ranges) < (num_dims + 1) 
            best_pos_od(:,time_count) = NaN; 
        else 
                [best_pos_od(:, time_count), err_vect] = ... 
                    veh_pos_od(range_data(:, time_count), all_nodes, 
0); 
        end 
 %   else 
        for set_count = 1:num_combs 
            set_list = set_mat(set_count, :); 
            range_set = range_data(set_list, time_count); 
            node_set = all_nodes(set_list, :); 
            [mult_pos(set_count, :, time_count), ... 
                mult_error(set_count, time_count)] = ... 
                veh_pos(range_set, node_set, 0); 
        end % for set_count 
            best_pos(:, time_count) = 
(nanmean(mult_pos(1:end,:,time_count)))'; 
  %      end % if over_determined 
end % for time_count 
  
a = best_pos'; 
b = best_pos_od'; 
  
% figure; 
% hold on; 
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% if num_dims == 2 
%     plot(all_nodes(:,1), all_nodes(:,2), 'rx'); 
%     plot(a(:,1), a(:,2), 'b+-'); 
% %     plot(b(:,1), b(:,2), 'mo-.'); 
% %     plot(mult_pos(:,1), mult_pos(:,2), 'go'); 
% %     plot(sym_track_c(1,:), sym_track_c(2,:), 'k+--'); 
% %     plot(real_node6(1), real_node6(2), 'go'); 
%     axis equal; 
% %     xlim([-1200 1200]); 
% %     ylim([-1200 1200]); 
% %     legend('Fixed Nodes', 'Mean Combination Fix', 'Overdetermined', 
... 
% %         'Individual Fix', 'location', 'Best'); 
% %     title('2-D estimation'); 
% else 
%     plot3(all_nodes(:,1), all_nodes(:,2), all_nodes(:,3), 'rx'); 
%     plot3(a(:,1), a(:,2), a(:,3), 'b.-'); 
% %     plot3(b(:,1), b(:,2), b(:,3), 'mo-.'); 
% %     plot3(sym_track_c(1,:), sym_track_c(2,:), sym_track_c(3,:), 
'k+--'); 
%     legend('Fixed Nodes', 'By Combinations', 'Overdetermined', ... 
%         'Waypoints', 'location', 'Best'); 
%     title('3-D estimation'); 
% % title('Ranged positions for node 7 without gateway ranges'); 
% % xlabel('meters'); 
% % ylabel('meters'); 
% end 
  
 
function b = node_read(a, format) 
% 
% gets fixed lat/long position from file a in either degrees, minutes, 
% seconds (format = 1) or decimal degrees and converts to local 
coordinate  
% system in meters (format =2).  Origin of the local coordinate system 
is  
% the first node in the file. 
% 
% Mike Reed 
% Naval Postgraduate School Master's Thesis 
% June 2006 
% 
node_gps = dlmread(a); 
  
switch format 
    case 1 
% use following two lines if data file is in degrees, minutes, seconds 
% node_lat = dms2deg(node_gps(:,1), node_gps(:,2), node_gps(:,3)); 
% node_long = dms2deg(node_gps(:,4), node_gps(:,5), node_gps(:,6)); 
node_long = dms2deg(node_gps(:,1), node_gps(:,2), node_gps(:,3)) 
node_lat = dms2deg(node_gps(:,4), node_gps(:,5), node_gps(:,6)) 
    case 2 
% use the fillowing two lines if data file is in decimal degrees 
node_lat = node_gps(:,1); 
node_long = node_gps(:,2); 
end 
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[latlen, longlen] = lat_len(mean(node_lat)); 
  
  
node_lat_rel_d = node_lat - node_lat(1); 
node_long_rel_d = node_long - node_long(1); 
  
node_lat_rel_m = node_lat_rel_d * latlen; 
node_long_rel_m = node_long_rel_d * longlen; 
  
b = [node_long_rel_m node_lat_rel_m]; 
 
 
function [latlen, longlen] = lat_len(lat)  
% 
% taken from http://pollux.nss.nima.mil/calc/degree.html conversion to 
% units other than meters also available there. 
% 
% Compute lengths (in meters) of degrees of latitude and longitude 
based 
% on latitude 
% 
% Mike Reed 
% Naval Postgraduate School Master's Thesis 
% June 2006 
% 
  
%       Convert latitude to radians 
        lat = deg2rad(lat); 
  
%       Set up "Constants" 
        m1 = 111132.92;     % latitude calculation term 1 
        m2 = -559.82;       % latitude calculation term 2 
        m3 = 1.175;         % latitude calculation term 3 
        m4 = -0.0023;       % latitude calculation term 4 
        p1 = 111412.84;     % longitude calculation term 1 
        p2 = -93.5;         % longitude calculation term 2 
        p3 = 0.118;         % longitude calculation term 3 
  
%       Calculate the length of a degree of latitude and longitude in 
meters 
        latlen = m1 + (m2 * cos(2 * lat)) + (m3 * cos(4 * lat)) + ... 
                (m4 * cos(6 * lat)); 
        longlen = (p1 * cos(lat)) + (p2 * cos(3 * lat)) + ... 
                    (p3 * cos(5 * lat)); 
 
 
function b = comb_gen(n, k) 
% 
% b = comb_gen(n, k) 
% 
% Generates all combinations (order does not matter) of 1:n taken k  
% elements at a time.  Each element is listed as a row of the output 
% matrix. 



46 

% 
% This algorithm is taken from Discrete Mathematics and Its 
Applications,  
% by Kenneth H. Rosen, Random House, New York, NY 1988 (first edition)  
% p. 227  
% 
% uses:  
%   combination() 
% 
% used by: 
%   uuv_main() 
% 
% Mike Reed 
% Naval Postgraduate School Master's Thesis 
% June 2006 
% 
  
num_combs = combination(n,k); 
comb_vect = 1:k;        % first line 
comb_mat = comb_vect; 
  
for comb_count = 2:num_combs 
    elem_count = k; 
    while comb_vect(elem_count) == (n - k + elem_count) 
        elem_count = elem_count - 1; 
    end 
    comb_vect(elem_count) = comb_vect(elem_count) + 1; 
    count_2 = (elem_count + 1):k;    % Matlab will not create 
decrementing  
            % vectors unless the decrement is specified, ie 5:1 will 
NOT 
            % create [5 4 3 2 1] but 4:-1:1 would create [4 3 2 1].  
Thus,  
            % if elem_count >= k, count_2 will be an empty matrix and 
the  
            % following line indexing on count_2 will be ignored.  
    comb_vect(count_2) = comb_vect(elem_count) + count_2 - elem_count; 
    comb_mat = [comb_mat; comb_vect]; 
end 
b = comb_mat; 
 
 
function [b, error_out] = veh_pos(ranges, node_pos, error_in) 
% 
% [b, error] = veh_pos(range, node_pos) 
% 
% triangulate the cartesian coordinates of a point b in n dimensions by  
% triangulating given the straight line distances (ranges) to the 
unknown  
% point from n+1 knownn locations (node_pos). 
%  
% The set of equations to be solved for (x,y) are of the form 
% 
% r1^2 = (x-x1)^2 + (y-y1)^2  
% 
% where r1 is an element of ranges and (x1,y1) are given by a row of  
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% node_pos).  These equations are solved by subtracting pairs of 
equations  
% which eliminates squared terms of the unknowns and leads to equations 
of  
% the form 
% 
% [x] = (2*(x2 - x1))\((r1^2 - r2^2) - (x1^2 - x2^2)) 
% 
% (see thesis report for full derivation) 
% 
% since this method relies on the difference between positions, it can 
% return a position even if the range circles don't intersect, so we 
check 
% the calculated position with range_check(), which solves for ranges 
from 
% the calculated position to the known locations.  range_check places a 
'1' 
% in the error vector if the position does not match with the measured  
% ranges.  If any input range is zero or NaN, the output position is 
% returned as a vector of NaN values and a '2' is placed in the error 
% vector. 
% 
% uses:  
%   sqr_diff(), pos_diff(), range_check(), nan_tester() 
% 
% Mike Reed 
% Naval Postgraduate School Master's Thesis 
% June 2006 
% 
  
error_out = error_in; 
        range_diff_sqr = sqr_diff(ranges);      % (r1^2 -r2^2) 
        node_diff = pos_diff(node_pos);         % (x2 - x1) 
        node_diff_sqr = sqr_diff(node_pos);     % (x1^2 - x2^2) 
        node_diff_inv = pinv(2*node_diff); 
  
        diff_sqr_vect = range_diff_sqr - node_diff_sqr; 
  
        b = 2*node_diff \ (range_diff_sqr - node_diff_sqr); 
         
        [b, error_out] = range_check(b, ranges, node_pos); 
        if error_out ~= 0 
             b = [NaN NaN]; 
        end % if range_error 
 
 
function [b, error_out] = veh_pos_od(ranges, node_pos, error_in) 
% 
% [b, error] = veh_pos(range, node_pos) 
% 
% triangulate the cartesian coordinates of a point b in n dimensions by  
% triangulating given the straight line distances (ranges) to the 
unknown  
% point from n+1 knownn locations (node_pos). 
%  
% The set of equations to be solved for (x,y) are of the form 
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% 
% r1^2 = (x-x1)^2 + (y-y1)^2  
% 
% where r1 is an element of ranges and (x1,y1) are given by a row of  
% node_pos).  These equations are solved by subtracting pairs of 
equations  
% which eliminates squared terms of the unknowns and leads to equations 
of  
% the form 
% 
% [x] = (2*(x2 - x1))\((r1^2 - r2^2) - (x1^2 - x2^2)) 
% 
% (see thesis report for full derivation) 
% 
% since this method relies on the difference between positions, it can 
% return a position even if the range circles don't intersect, so we 
check 
% the calculated position with range_check(), which solves for ranges 
from 
% the calculated position to the known locations.  range_check places a 
'1' 
% in the error vector if the position does not match with the measured  
% ranges.  If any input range is zero or NaN, the output position is 
% returned as a vector of NaN values and a '2' is placed in the error 
% vector. 
% 
% uses:  
%   sqr_diff(), pos_diff(), range_check(), nan_tester() 
% 
% Mike Reed 
% Naval Postgraduate School Master's Thesis 
% June 2006 
% 
  
error_out = error_in; 
% find and remove NaN's before creating pos_diff and sqr_diff 
    nan_index = find(isnan(ranges)); 
    ranges(nan_index) = []; 
    node_pos(nan_index,:) = []; 
    if length(ranges) > 2 
%      
        range_diff_sqr = sqr_diff(ranges);      % (r1^2 -r2^2) 
        node_diff = pos_diff(node_pos);         % (x2 - x1) 
        node_diff_sqr = sqr_diff(node_pos);     % (x1^2 - x2^2) 
        node_diff_inv = pinv(2*node_diff); 
  
        diff_sqr_vect = range_diff_sqr - node_diff_sqr; 
  
 
        b = 2*node_diff \ (range_diff_sqr - node_diff_sqr); 
         
        [b, range_error] = range_check(b, ranges, node_pos); 
        if range_error ~= 0 
            error_out = [error_out, range_error]; 
        end % if range_error 
%     % end % if nan_tester 
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    else 
        b = NaN; 
        range_error = 2; 
    end 
 
 
 
function b = pos_diff(a) 
% 
% 
% returns a matrix that is the difference of the rows of the input 
matrix. 
% In general, if a has dimensions m x n, b will have dimensions (m-1) x 
n. 
% 
%      |x1 y1|                           |(x2 - x1), (y2 - y1)| 
% If a=|x2 y2| then pos_diff returns b = |(x3 - x2), (y3 - y2)| 
%      |x3 y3| 
% 
% nb that pos_diff subtracts the upper row from the lower row, which is  
% opposite from the operation of sqr_diff.  pos_diff requires that the  
% input matrix a have at least 2 row but supports any higher number of  
% dimensions. 
% 
% used by:  
%   veh_pos() 
% 
% Mike Reed 
% Naval Postgraduate School Master's Thesis 
% June 2006 
% 
  
b = a(2:end, :) - a(1:end-1, :); 
 
 
function b = sqr_diff(a) 
% 
% 
% returns a column vector of the differences of squared range or 
position 
% data.   
%      |a1|                         |a1^2 - a2^2| 
% If a=|a2| then sqr_diff returns b=|a2^2 - a3^2|  
%      |a3| 
% 
%      |x1 y1|                         |(x1^2 - x2^2)+(y1^2 - y2^2)| 
% If a=|x2 y2| then sqr_diff returns b=|(x2^2 - x3^2)+(y2^2 - y3^2)| 
%      |x3 y3| 
% 
% nb that sqr_diff subtracts the lower row from the upper row, which is  
% opposite from the operation of pos_diff.  sqr_diff requires that the  
% input matrix a have at least 2 rows but supports any higher number of  
% dimensions. 
% 
% used by:  
%   veh_pos() in both forms above. 
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% 
% Mike Reed 
% Naval Postgraduate School Master's Thesis 
% June 2006 
% 
  
sqr_mat = a(1:end-1, :).^2 - a(2:end, :).^2; 
b = sum(sqr_mat, 2); 
 
 
function [pos_out, error] = range_check(pos_in, range, node_pos) 
% 
% b = range_check(position, range, node_pos) 
% 
% checks that the straight line differences between a calculated point  
% (position) and a set of given fixed locations (node_pos) is equal to 
% measured ranges (range) within an acceptable error 
% 
% returns 0 if the calculated range and measured range match 
% returns 1 if the calculated range and measured range do not match 
% 
% uses: 
%   veh_pyth() 
% 
% used by: 
%   veh_pos() 
% 
% Mike Reed 
% Naval Postgraduate School Master's Thesis 
% June 2006 
% 
  
acc_error = 0.1;    % acceptable error as a percentage of range 
if abs((range - veh_pyth(pos_in, node_pos))./range) ... 
        < acc_error 
    error = 0;      % position and range values check 
else 
    error = 1;      % position and range values do not check 
    for i = 1:length(pos_in(:,1)) 
        for j = 1:length(pos_in(1,:)) 
            if abs(pos_in(i,j)) == inf 
                pos_in(i,j) = NaN; 
            end % if a 
        end % for j 
    end % for i 
end % if 
pos_out = pos_in; 
 
function b = veh_pyth(position, node_pos) 
% 
% b = veh_pyth(position, node_pos) 
% 
% uses the Pythagorean theorem to calculate the ranges from a point  
% (position) to each of a set of fixed nodes with locations given by 
the  
% rows of node_pos. 
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%  
% 
%               |x|                |x1 y1| 
% if position = |y| and node_pos = |x2 y2| then veh_pyth returns 
%                                  |x3 y3| 
% 
%         |(x - x1)^2 + (y - y1)^2| 
% b = sqrt|(x - x2)^2 + (y - y2)^2| such that each row i of b is the  
%         |(x - x3)^2 + (y - y3)^2| 
% 
% straight line range from (x,y) to the location (xi,yi) given in row i 
of  
% node_pos.  veh_pyth supports any number of dimensions and fixed 
points. 
% 
% used by: 
%   range_check() 
% 
% Mike Reed 
% Naval Postgraduate School Master's Thesis 
% June 2006 
% 
  
dims = length(node_pos(1,:));   % dims = number of rows in node_pos 
num_nodes = length(node_pos(:,1)); 
  
for count = 1:length(position(1,:)); 
    distance(:,:,count) = ones(num_nodes, 
dims)*diag(position(:,count)); 
end 
  
for count = 1:length(position(1,:)); 
    distance(:,:,count) = (distance(:,:,count) - node_pos).^2; 
end 
  
b = sqrt(sum(distance,2)); 
  
 
 
 
B. MATLAB PROGRAMS USED BY PREVIOUS THESES (WITH 

MODIFICATIONS FOR DATA COMPARISON) 

1. Center of Mass Method [4] 
function fix_pos = complete_program 
  
%This program was used to run simulation one with the center of mass 
method 
%It also contains all parts to run simulation two and track the glider 
with 
%real data 
  
global all_nodes range_data; 
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% close all %closes all open figure windows 
% clear all %clears all variables, functions, etc from memory 
% clc       %clears command window 
  
  
% path(path, '../Read-in excel files'); 
% % inserted data read-in code from uuv_main() 
num_dims = 2; 
% % node_file = 'node_gps.txt'; 
% node_mode = 2; 
% node_file = 'sean_nodes.txt'; 
% % node_file = 'taswex_node.txt'; 
% all_nodes = node_read(node_file, node_mode); 
node_pos = all_nodes; 
if num_dims == 3 
    heights = [0 -8 0 2 -3 -33]'; 
    node_pos = [node_pos heights]; 
end 
% % real_node4 = all_nodes(2,:) 
% % real_node5 = all_nodes(3,:) 
% % real_node6 = all_nodes(4,:) 
% % real_node7 = all_nodes(5,:) 
% % real_node8 = all_nodes(6,:) 
% %  
% % all_nodes = all_nodes([2 3 5 6], :); 
% num_nodes = length(all_nodes(:,1)); 
  
% node_pos=xlsread('program_stationary_nodes'); %node_pos will read 
from an  
    %excel file to take the positions of the nodes that were used in 
the  
    %experiment  
  
%----------------------------------------------------------------------
---- 
%glider_pos=xlsread('simulation2_inner'); %used for the simulation of 
the 
                                          %inner track 
                                                                                      
%glider_pos=xlsread('simulation2_outer'); %used for the simulation of 
the 
                                          %outer track   
                                           
%glider_pos=xlsread('program_jul20_glider_ins_pos'); %used to read in 
the 
    %dead reckoning positioning data from the Glider.  
% glider_pos=xlsread('program_jul21_glider_ins_pos'); 
% glider_pos = dlmread('../../../simulations/pos_grid_truth.txt'); 
%glider_pos=xlsread('program_jul22_glider_ins_pos'); 
%----------------------------------------------------------------------
---- 
  
%----------------------------------------------------------------------
---- 
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%gps=xlsread('program_jul20_gps_fix'); %Imports excel files with the 
gps                                     
% gps=xlsread('program_jul21_gps_fix'); %data for each day 
%gps=xlsread('program_jul22_gps_fix'); 
%----------------------------------------------------------------------
---- 
  
% This loop will determine the node to node ranges 
(internode_ranges(i,j)), 
% which are straight line distances, as well as those ranges translated 
to  
% the xy plane. This length, internode_ranges_xy (or rij in diagrams), 
will 
% be less than the straight line distance unless the two nodes are at 
the  
% same depth. 
  
for(i=1:1:size(node_pos,1)); 
    for(j=1:1:size(node_pos,1)); 
        if(i~=j); 
            x_diff(i,j)=node_pos(i,1)-node_pos(j,1);   
            y_diff(i,j)=node_pos(i,2)-node_pos(j,2);  
%             z_diff=node_pos(i,3)-node_pos(j,3);  
            internode_ranges(i,j)=sqrt(x_diff(i,j)^2+y_diff(i,j)^2); 
%+... 
%                 z_diff^2);   
%             internode_ranges_xy(i,j)=sqrt((internode_ranges(i,j)^2-
... 
%                 z_diff^2)); 
            internode_ranges_xy(i,j)=internode_ranges(i,j); 
        end 
    end   
end      
  
% G=input... 
%     ('Enter the number of times the glider position should be 
simulated'); 
  
ping_ranges = range_data';   % 
dlmread('../../../simulations/rng_grid_a1b0.txt'); 
ping_ranges_xy = ping_ranges;     
  
G=length(ping_ranges(:,1)); 
  
%For simulation 2, G=1:1:size(glider_pos,1).  
% for (i=1:1:G); %make a list of positions equal to G for the 
simulation 
%      glider_pos(i,1)=(.5-rand(1))*2000; 
%      glider_pos(i,2)=(.5-rand(1))*2000; 
%      glider_pos(i,3)=(rand(1)*100); 
% end 
     
% To find the ranges that would be present between the glider and each 
node 
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% a matrix is created to determine the distances with some random 
error, as 
% was seen in the experiment. ping_ranges(g,k) looks at the glider 
position 
% for each (g) and gives the range to each node for that step in the 
loop  
% (g=1:1:G). An error of up to +/- 10m is used and added to the ranges.  
% ping_ranges_xy(1,k) takes the range when transformed down to the xy 
plane  
% as described in Chapter IV. 
  
for (g=1:1:G); 
    clear xgood ygood yoga xoga yogb xogb xogab yogab %This  
        %clears all variables that may change in length for different 
        %values of g. 
         
    %------------------------------------------------------------------
---- 
    %ping_ranges=xlsread('program_jul20_ping_ranges'); %These commands 
read 
        %in files which contain the ping ranges for each day's data 
%     ping_ranges=xlsread('program_jul21_ping_ranges'); 
    %ping_ranges=xlsread('program_jul22_ping_ranges'); 
    %------------------------------------------------------------------
---- 
  
%     for (k=1:1:size(node_pos,1)); 
%         ping_ranges(g)=sqrt((node_pos(k,1)-glider_pos(g,1))^2+... 
%             (node_pos(k,2)-glider_pos(g,2))^2+... 
%             (node_pos(k,3)-glider_pos(g,3))^2); 
%         %ping_error(g)=0; %No ping error was used for figures 27 and 
28 
%         ping_error(g)=20*(.5-rand(1)); %Used for a +/- 10m range 
error 
%         ping_ranges(g)=ping_ranges(g)+ping_error(g); 
%         ping_ranges_xy(g,k)=sqrt((ping_ranges(g))^2-(node_pos(k,3)-
... 
%             glider_pos(g,3))^2); 
%     end 
     
    % Now the ranges between each node as well as the ranges from each 
node 
    % to the glider have been determined at every step from 1:1:G. 
These 
    % have also all been translated onto the xy plane. The next step is 
to  
    % find which triangles form real solutions. While all nodes would 
have  
    % ranges in this simulation, not all ranges were found at every 
time  
    % step in the experiment. Solution are only going to be present for 
    % range circles that touch, though. The situation described in 
Chapter 
    % IV, section E, part 1 will not be taken into account since it has 
no 
    % real affect on the final solution 
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        for (i=1:1:size(node_pos,1)); 
            r1=ping_ranges_xy(g,i); 
            for (j=1:1:size(node_pos,1)); 
                if(i~=j); 
                    r2=internode_ranges_xy(i,j); %These give the three 
                    r3=ping_ranges_xy(g,j);      %sides of the triangle 
                    theta(i,j)=law_of_cosines(r1,r2,r3); %theta will 
give  
                    %the angle between the two nodes and node i to the  
                    %glider(Chapter IV)  
                    if(isreal(theta(i,j))==1);  
                        theta_good(i,j)=theta(i,j); 
                    else 
                        theta_good(i,j)=NaN; 
                    end 
                end 
            end 
        end 
         
    % Each good pair of nodes (that also have ping ranges) will give an 
xy  
    % solution. Because of errors and delay times, these positions will 
not 
    % be the same as for all other pairs' solutions. Factoring all of 
them  
    % together will lead to a real, approximate solution. Values for  
    % theta_good for all solutions at each ping time have now been  
    % calculated. The following will calculate phi and then gamma for 
each 
    % solution. 
     
    count=0; 
    for(i=1:1:size(node_pos,1)); %i from 1 to 7  
        for(j=i+1:1:size(node_pos,1)); %Only compare the 1st node to 
all  
            %others and then the second to nodes 3-7, and so on 
            if isnan(theta_good(i,j))==0 & (i~=j); %if theta_good is 
not  
                %NaN, then look at that i,j combination 
                count=count+1; 
                if (x_diff(i,j)==0); %if both nodes happen to lay 
directly   
                              %n-s of each other (not necessary for 
this 
                              %experiment, but may be needed for a 
future 
                              %experiment, and... 
                    if (node_pos(i,2)<node_pos(j,2)); %the y 
                        %value of node i is less than the y value of  
                        %node j (figure 17)... 
                        phi_prime=pi/2; %then phi (the angle between 
the x 
                            %axis and the line between the two nodes 
with  
                            %node i as the origin) is pi/2) and... 
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                        phi(i,j)=phi_prime; 
                    else phi_prime=-pi/2; %If the y value of node i is  
                        %larger, then phi is -pi/2  
                         phi(i,j)=phi_prime; 
                    end  
                else phi_prime=atan(abs(y_diff(i,j))/abs(x_diff(i,j))); 
%If   
                    % the x difference is NOT 0 between the two nodes,  
                    % and... 
                    if ((node_pos(i,1)<node_pos(j,1))&... 
                       (node_pos(i,2)<=node_pos(j,2)));  
                        phi(i,j)=phi_prime; %In first quadrant 
                    elseif((node_pos(i,1)>node_pos(j,1))... 
                       &(node_pos(i,2)<=node_pos(j,2))); 
                        phi(i,j)=pi-phi_prime; %In second quadrant 
                    elseif((node_pos(i,1)>node_pos(j,1))&... 
                       (node_pos(i,2)>=node_pos(j,2))); 
                        phi(i,j)=pi+phi_prime; %In third quadrant 
                    elseif((node_pos(i,1)<node_pos(j,1))&... 
                       (node_pos(i,2)>=node_pos(j,2))); 
                        phi(i,j)=-phi_prime; %In fourth quadrant 
                    end 
                end 
  
                gamma_a(i,j)=phi(i,j)+theta_good(i,j); %Each set of 
nodes  
                    %will give two values of gamma corresponding to the 
two 
                    %solutions 
                gamma_b(i,j)=phi(i,j)-theta_good(i,j);  
                 
                % The following part will be used for finding the 
solutions 
                % using the center of mass method. xoga is the x value 
from 
                % the center node to the glider for solution a. Since  
                % either solution a or b will be good, only one will be  
                % kept  
                 
                xoga(count)=node_pos(i,1)+ping_ranges_xy(g,i)*... 
                    cos(gamma_a(i,j)); %This is the first x value of 
the  
                        %solution for every i,j combination 
                xogb(count)=node_pos(i,1)+ping_ranges_xy(g,i)*... 
                    cos(gamma_b(i,j)); %This is the second x value of 
the  
                        %solution for node i  
                yoga(count)=node_pos(i,2)+ping_ranges_xy(g,i)*... 
                    sin(gamma_a(i,j)); 
                yogb(count)=node_pos(i,2)+ping_ranges_xy(g,i)*... 
                    sin(gamma_b(i,j)); 
            end 
        end 
    end 
     
    % Calculate center of mass for all the points 
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    xogab=[xoga xogb]; %Combines all xoga and xogb into one vector 
    yogab=[yoga yogb]; 
  
    cmx=nanmean(xogab); %nanmean takes the mean of all numbers and  
    cmy=nanmean(yogab); %doesn't account for anything that is NaN 
     
    % Now, throw out the point that is farther away from the center of 
mass 
    % between the two [(xoga,yoga) or (xogb,yogb)] 
         
    count=1; %A counter is started that will only increase by 1 every  
        %time a certain condition is met 
    for c = 1:count; 
        cmadiff(c)= sqrt((cmx - xoga(c))^2 + (cmy - yoga(c))^2);  
            %Calculates the distance between the center of mass and  
            %solution a 
        cmbdiff(c)= sqrt((cmx - xogb(c))^2 + (cmy - yogb(c))^2); 
        if cmadiff(c)==NaN    %For an xoga,yoga pair that is not a 
number  
            %(happens when the range errors shrink the ranges so that 
theta  
            %is imaginary), make the distance to the center of mass 
very 
            %large 
            cmadiff(c)=10000; 
            break 
        end 
        if cmbdiff(c)==NaN; 
            cmbdiff(c)=10000; 
            break 
        end 
        if cmadiff(c) <= cmbdiff(c); %Only use the point that is closer 
of  
                %the two 
            count=count+1; 
            xgood(count) = xoga(c); 
            ygood(count) = yoga(c);     
        else 
            count=count+1; 
            xgood(count) = xogb(c); 
            ygood(count) = yogb(c); 
        end 
    end 
     
    cmx2=nanmean(xgood); %Take the new center of mass of the good 
points 
    cmy2=nanmean(ygood); 
     
    good_count=0; 
    for c = 1:count; 
        cmadiff(c)= sqrt((cmx2 - xoga(c))^2 + (cmy2 - yoga(c))^2); 
        cmbdiff(c)= sqrt((cmx2 - xogb(c))^2 + (cmy2 - yogb(c))^2); 
         if cmadiff(c)==NaN 
            cmadiff(c)=10000; 
            continue 



58 

        end 
        if cmbdiff(c)==NaN; 
            cmbdiff(c)=10000; 
            continue 
        end 
        if cmadiff(c) <= cmbdiff(c); 
            good_count=good_count + 1; 
            xgood(good_count) = xoga(c); 
            ygood(good_count) = yoga(c); 
        else 
            good_count=good_count + 1; 
            xgood(good_count) = xogb(c); 
            ygood(good_count) = yogb(c); 
        end 
    end 
     
    % Now, take another center of mass to calculate the final position 
    xfinal2(g)=nanmean(xgood);  
    yfinal2(g)=nanmean(ygood); 
     
%     sdxfinal=nanstd(xgood); 
%     sdyfinal=nanstd(ygood); 
     
    %------------------------------------------------------------------
---- 
    %The following part was used to run simulation one with the 
weighting  
    %method 
  
    %W=zeros(size(xogab,1),1); 
    %for(i=1:1:size(xogab,1)); 
        %for(j=i+1:1:size(xogab,1)); 
            %factor=100; 
            %delta_x(i,j)=xogab(i)-xogab(j); %Find the difference in x 
                %position between every solution and every other 
solution 
            %delta_y(i,j)=yogab(i)-yogab(j); 
            %dxy=(delta_x(i,j))^2+(delta_y(i,j))^2; 
            %if dxy>=1;         %For two solutions that are far from 
                %W(i,j)=(1/dxy) %each other, this is the weight value 
            %else               %If they are very close, they get a 
weight                    
                %W(i,j)=factor; %of 100       
            %end 
        %end 
    %end 
    %Wsum=sum(nansum(W)); %Take the sum of all of the weights. Since W 
                           %will be a 2 dimensional matrix, sum up the  
                           %columns first, and then sum those up 
                            
    %Each xogab,yogab solution now has a weight. Taking each solutions 
    %weight and dividing by the total weight will give a percentage of 
    %total weight for that solution. Multiplying that percentage by its 
x 
    %and y position will contribute to the final solution. The higher 
the 
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    %weight percentage, the higher the contribution. 
    
    %for i=1:1:length(xogab); 
        %for j=1:1:length(xogab); 
            %x_fin(i,j)=W(i,j)/Wsum*xogab(i);   
            %y_fin(i,j)=W(i,j)/Wsum*yogab(i); 
    %end 
    %end 
     
    %xfinal2=sum(nansum(x_fin)); 
    %yfinal2=sum(nansum(y_fin)); 
    %------------------------------------------------------------------
---- 
     
%     hold on 
     
    %------------------------------------------------------------------
---- 
%     plot(glider_pos(g,1),glider_pos(g,2),'b*') %These were all used 
to 
        % make graphs for real data and for simulation two 
%     plot(node_pos(:,1),node_pos(:,2),'ks') 
%     plot(xogab,yogab,'ro','MarkerSize',5) 
%     plot(xgood,ygood,'ro','MarkerSize',10) 
     
     
    %------------------------------------------------------------------
---- 
     
%     error(g)=sqrt((xfinal2(g)-glider_pos(g,1))^2+(yfinal2(g)-... 
%         glider_pos(g,2))^2); %Used in simulations 
     
end %This closes the primary loop     
% plot(xfinal2, yfinal2,'r+:','MarkerSize',10)   
% plot(gps(:,1),gps(:,2),'r-.') 
  
fix_pos = [xfinal2; yfinal2]'; 
  
% pos_file = ('../../../simulations/sean_pos_out_a095b0.txt'); 
% out_fid = fopen(pos_file, 'w'); 
% write_count = fprintf(out_fid, '%g %g\n', fix_pos'); 
% st = fclose(out_fid); 
%  
% ave_error=mean(error) 
% sd_error=std(error) 
% max_error=max(error) 
%      
% figure(2) 
% hist(error,20) 
% sorted_error=sort(error); %Sorts all error values 
% percent50_error=sorted_error(.5*G)  %These give the percentiles of 
error  
% percent75_error=sorted_error(.75*G) %for the simulations 
% percent90_error=sorted_error(.9*G) 
% percent95_error=sorted_error(.95*G) 
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% percent99_error=sorted_error(.99*G)   

 

2. Weighting Method [2] 
function xy_position = determine_pos 
  
%ENS Matthew Hahn 
%6 MAY 2005 
%this version of the algorithm takes in an Excel data file with the 
ranges from each 
%time sample and loops through the rows to garner a solution at each 
point in time 
  
global all_nodes range_data; 
  
% close all 
% clear all 
% clc 
  
% non_mobile_nodes_10_May=xlsread('fixed_node_positions'); 
% pings_ranges=xlsread('july21_ping_ranges'); 
%  
% Lat=zeros(size(non_mobile_nodes_10_May,1),1); 
% Long=zeros(size(non_mobile_nodes_10_May,1),1); 
%  
% for(k=1:1:size(non_mobile_nodes_10_May,1)) 
%     Lat(k)=non_mobile_nodes_10_May(k,1) + 
(non_mobile_nodes_10_May(k,2)/60); 
%     Long(k)=(non_mobile_nodes_10_May(k,3)- 
(non_mobile_nodes_10_May(k,4)/60)); 
% end 
%  
% %we establish the first node (R10) as the origin and measure all 
other node locations 
% %relative to it 
% node_positions=zeros(size(non_mobile_nodes_10_May,1),2); 
% node_positions(1,:)=[0 0]; 
% for(k=2:1:size(non_mobile_nodes_10_May,1)) 
%     node_positions(k,2)=(Lat(k)-Lat(1))*111325; %1 degree latitude is 
equal to 111km 
%     node_positions(k,1)=(Long(k)-
Long(1))*111325*cos(Lat(1)*(pi/180)); 
% end 
  
node_positions = all_nodes; 
pings_ranges = range_data'; 
  
n_xy=node_positions; 
  
%it is useful to create a matrix containing all inter-node ranges 
%so that they will be available for future calculations 
range_set=zeros(size(n_xy,1),size(n_xy,1)); 
for(i=1:1:size(n_xy,1)) 
    for(j=1:1:size(n_xy,1)) 
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        if(i~=j) 
            x_diff=n_xy(i,1)-n_xy(j,1); 
            y_diff=n_xy(i,2)-n_xy(j,2); 
            range_set(i,j)=sqrt(x_diff^2+y_diff^2); 
            range_set(j,i)=range_set(i,j); 
        end 
    end 
end 
  
%we now import the Excel file which has the range data for each node at 
each  
%time sample (rows represent times, column numbers = node numbers) 
% ranges=pings_ranges(24:32,:); 
ranges=pings_ranges(:,:); 
  
%now we begin the primary loop, which estimates the position of the 
mobile node  
%for each set of sampled data (assume every 5 min for now, record time 
stamps for 
%further analysis later) 
for(a=1:1:size(ranges,1)) 
  
clear pairs R_1 R_2 R_3 theta_a org xax L_o_x delta_x delta_y phi 
phi_prime 
clear theta gamma_a gamma_b x y W alpha x_diff y_diff x_fin y_fin 
  
% figure(a) 
%  
% hold on 
% %now we need to compute ranges from each fixed node to the mobile 
node 
% for(i=1:1:size(n_xy,1)) 
%     %now draw a range circle from the fixed node in consideration 
%     %non-available ranges given a value >= 10^10, so we do not plot 
%     %ranges circles of magnitude greater than or equal to 10^10 
%     if(ranges(a,i)<=(10^10)) 
%     plot(n_xy(:,1),n_xy(:,2),'ks') 
%     draw_circle(ranges(a,i),n_xy(i,1),n_xy(i,2)); 
%     end 
% end 
  
  
% grid 
%for(i=1:1:size(n_xy,1)) 
 %   text(n_xy(i,1)+15,n_xy(i,2)+15,num2str(i+9)); 
 %end 
%now that we have all possible node pairs (from range__set), we  
%determine which ones will yield a real solution for mobile node 
position 
pairs=zeros(size(range_set,1),size(range_set,2)); 
for(i=1:1:size(pairs,1)) 
    for(j=1:1:size(pairs,1)) 
        if(i~=j) 
            R_1=ranges(a,i); 
            R_2=ranges(a,j); 
            R_3=range_set(i,j); 
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            theta_a=cosines_law(R_1,R_3,R_2); 
            if(imag(theta_a)==0) 
                pairs(i,j)=1; 
                pairs(j,i)=pairs(i,j); 
            end 
        end 
    end 
end 
  
%now we determine the xy coordinates of the two possible solutions for 
each pair 
%that yields a real solution for theta 
c=1; 
for(i=1:1:size(pairs,1)) 
    for(j=i:1:size(pairs,1)) 
        if(pairs(i,j)==1) 
            org=[n_xy(i,1) n_xy(i,2)]; 
            xax=[n_xy(j,1) n_xy(j,2)]; 
            L_o_x=range_set(i,j); 
            delta_x=xax(1,1)-org(1,1); 
            delta_y=xax(1,2)-org(1,2); 
            if(delta_x==0) %case of an infinite value of inverse 
tangent 
                if(org(1,2)>xax(1,2)) 
                    phi=-pi/2; 
                else 
                    phi=pi/2; 
                end 
            else 
                phi_prime=atan(abs(delta_y)/abs(delta_x)); 
                if((org(1,1)>xax(1,1))&(org(1,2)>xax(1,2))) 
                    phi=phi_prime+pi; %3rd quadrant 
                elseif((org(1,1)>xax(1,1))&(org(1,2)<xax(1,2))) 
                    phi=pi-phi_prime; %2nd quadrant 
                elseif((org(1,1)<xax(1,1))&(org(1,2)>xax(1,2))) 
                    phi=2*pi-phi_prime; %4th quadrant 
                elseif((org(1,1)<xax(1,1))&(org(1,2)<xax(1,2))) 
                    phi=phi_prime; 
                end 
            end 
            %find abs value of angle of solution offset from new xaxis 
            %this is easily determined using the law of cosines, 
            %where "opp side" (see function code) is range: xax to 
mobile node 
            theta=cosines_law(ranges(a,i),L_o_x,ranges(a,j)); 
            %soln will be endpoint of vector: range from origin, 
+origin 
            %coordinates, angle equal to gamma (a or b) calculated 
already 
            gamma_a=phi+theta; 
            gamma_b=phi-theta; 
             
             
             
            x(c,1)=org(1,1)+ranges(a,i)*cos(gamma_a); 
            x(c+1,1)=org(1,1)+ranges(a,i)*cos(gamma_b); 
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            y(c,1)=org(1,2)+ranges(a,i)*sin(gamma_a); 
            y(c+1,1)=org(1,2)+ranges(a,i)*sin(gamma_b); 
            c=c+2; 
        end 
    end 
end 
  
%calculate weight values... 
W=zeros(size(x,1),1); 
for(i=1:1:size(x,1)) 
    for(j=1:1:size(x,1)) 
        if(j~=i) 
            alpha=2; 
            x_diff=x(i)-x(j); 
            y_diff=y(i)-y(j); 
            W(i)=W(i)+ (x_diff^2+y_diff^2)^-alpha; 
        end 
    end 
end 
  
W_sum=sum(W); 
  
for(i=1:1:size(W,1)) 
    x_fin(i)=((W(i)/W_sum)*x(i)); 
    y_fin(i)=((W(i)/W_sum)*y(i)); 
end 
x_position(1,a)=sum(x_fin); 
y_position(1,a)=sum(y_fin); 
  
% latitude_soln(1,a)=(x_position(1,a)/111325)+Lat(1); 
% 
longitude_soln(1,a)=(y_position(1,a)/(111325*cos(Lat(1)*(pi/180))))+Lon
g(1); 
  
% hold on 
% %plot(x,y,'r*') 
% %plot(x_position,y_position,'g:+') 
% plot(x_position(a),y_position(a),'r^') 
% hold off 
  
  
%pause(0.5) 
end 
  
xy_position = [x_position; y_position]'; 
  
% figure(a+1) 
% hold on 
% plot(n_xy(:,1),n_xy(:,2),'k*'); 
% plot(x_position,y_position,'g:+') 
% for(i=1:1:size(n_xy,1)) 
%    text(n_xy(i,1),n_xy(i,2),num2str(i+8)); 
% end 
% grid 
% x_position; 
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% y_position; 
% latitude_soln; 
% longitude_soln; 
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