

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

A FRAMEWORK FOR THE MANAGEMENT OF
EVOLVING REQUIREMENTS IN SOFTWARE SYSTEMS

SUPPORTING NETWORK-CENTRIC WARFARE

by

Linda K Reynolds

June 2006

 Thesis Advisor: Man-Tak Shing
 Second Reader: Richard Riehle

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
A Framework for the Management of Evolving Requirements in Software Systems
Supporting Network-Centric Warfare
6. AUTHOR(S) Linda K. Reynolds

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
 Network-centric warfare (NCW) has changed the way the Department of Defense addresses technological

improvements for its military forces. No longer is the emphasis on enhancing the capabilities of a single platform, but the focus
is now on networking people, processes and technology to enable knowledge sharing and rapid decision-making.

The capabilities required to support network-centric operations (NCO) in the NCW environment must be supported
by new, innovative networked communication technologies. There are many sources of requirements for these software
systems supporting NCO, which may increase in number as the Services continue to develop the capabilities necessary for the
transformation to a fully networked military force. Requirements may also emerge and continue to evolve following the
fielding of a NCO capability because new technology has the potential to change how warfighters work. Requirements
evolution results in requirements engineering challenges associated with the acquisition and development of network-centric
software systems. As such, an approach is needed to provide for consistency in elicitation, management and documentation of
evolving requirements for technological capabilities supporting NCO.

The purpose of this research is to address the problem of evolving requirements. The requirements engineering
framework proposed by this thesis incorporates classification theory and requirements modeling principles, and is supported by
the Extensible Markup Language (XML) family of technologies. Particular attention has been paid to the selection of non-
proprietary, platform independent technology to ensure data can be exchanged between organizations.

The framework demonstrates a means by which requirements can be classified and structured in a standardized
format. The result is a set of requirements that is consistent in structure and content, and that can be easily shared among all
stakeholders because it utilizes one standard, non-proprietary format. This approach captures evolving software requirements
of fielded network-centric software systems for use in the development of future systems.

15. NUMBER OF
PAGES 121

14. SUBJECT TERMS
Requirements Engineering, Requirements Evolution, Faceted Classification, Extensible Markup
Language, XML, Unified Modeling Language, UML

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

A FRAMEWORK FOR THE MANAGEMENT OF EVOLVING
REQUIREMENTS IN SOFTWARE SYSTEMS SUPPORTING NETWORK-

CENTRIC WARFARE

Linda K Reynolds
Lieutenant Commander, United States Navy

B.S., Oregon State University, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2006

Author: Linda K Reynolds

Approved by: Man-Tak Shing

Thesis Advisor

Richard Riehle
Second Reader

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Network-centric warfare (NCW) has changed the way the Department of Defense

addresses technological improvements for its military forces. No longer is the emphasis

on enhancing the capabilities of a single platform, but the focus is now on networking

people, processes and technology to enable knowledge sharing and rapid decision-

making.

The capabilities required to support network-centric operations (NCO) in the

NCW environment must be supported by new, innovative networked communication

technologies. There are many sources of requirements for these software systems

supporting NCO, which may increase in number as the Services continue to develop the

capabilities necessary for the transformation to a fully networked military force.

Requirements may also emerge and continue to evolve following the fielding of a NCO

capability because new technology has the potential to change how warfighters work.

Requirements evolution results in requirements engineering challenges associated with

the acquisition and development of network-centric software systems. As such, an

approach is needed to provide for consistency in elicitation, management and

documentation of evolving requirements for technological capabilities supporting NCO.

The purpose of this research is to address the problem of evolving requirements.

The requirements engineering framework proposed by this thesis incorporates

classification theory and requirements modeling principles, and is supported by the

Extensible Markup Language (XML) family of technologies. Particular attention has

been paid to the selection of non-proprietary, platform independent technology to ensure

data can be exchanged between organizations.

The framework demonstrates a means by which requirements can be classified

and structured in a standardized format. The result is a set of requirements that is

consistent in structure and content, and that can be easily shared among all stakeholders

because it utilizes one standard, non-proprietary format. This approach captures evolving

software requirements of fielded network-centric software systems for use in the

development of future systems.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE OF STUDY..3
B. THESIS ORGANIZATION..4

II. THE ROLE OF REQUIREMENTS IN SOFTWARE SYSTEMS
DEVELOPMENT ..5
A. INTRODUCTION..5
B. REQUIREMENTS CLASSIFICATION ...5

1. Introduction..5
2. Functional Requirements ..6
3. Non-Functional Requirements..6
4. Shortcomings of Traditional Requirements Classification..............6

C. REQUIREMENTS ENGINEERING...7
1. Introduction..7
2. Requirements Development ..7

a. Requirements Elicitation and Analysis9
b. Requirements Specification and Validation...........................10

3. Requirements Management ..11
D. GOALS IN REQUIREMENTS ENGINEERING11
E. REQUIREMENTS RISK..13
F. FORMAL SOURCES OF REQUIREMENTS ...14

1. DOD Instruction 5000.2...14
2. Joint Capabilities Integration and Development System...............15
3. Clinger-Cohen Act ...15

G. ADDITIONAL SOURCES OF REQUIREMENTS16
1. Warfighter Feedback...16
2. Technical Evaluations and Warfighter Demonstrations................16

H. SUMMARY ..16

III. FRAMEWORK FOR THE INTEGRATION OF REQUIREMENTS
EVOLUTION ...19
A. INTRODUCTION..19
B. CRITERIA FOR A FRAMEWORK FOR THE INTEGRATION OF

REQUIREMENTS EVOLUTION ...20
1. Structured Requirements..20
2. Data Exchange Capability...20
3. Standard Input Format ...21

C. OVERVIEW OF FIRE..21
D. RESEARCH AND FRAMEWORK DEVELOPMENT

METHODOLOGY ..22
E. SUMMARY ..23

IV. ACTIVITIES REQUIRED TO MANAGE EVOLVING REQUIREMENTS.....25
A. INTRODUCTION..25

 viii

B. ACTIVITIES TO SUPPORT INTEGRATION OF EVOLVING
REQUIREMENTS...25
1. FIREc: Requirements Classification..26
2. FIREm: Classification Modeling ..26
3. FIREs: Standardize Warfighter Requirements27
4. FIREx: Data Exchange Capability...28

C. SUPPORT FOR REQUIREMENTS MANAGEMENT EFFORTS.........29
D. SUMMARY ..30

V. THE REQUIREMENTS CLASSIFICATION SCHEME31
A. INTRODUCTION..31
B. A LAYERED APPROACH TO CLASSIFYING REQUIREMENTS32

1. Strategic Layer Requirement..34
2. System Layer Requirement...35
3. Software Layer Requirement..36

C. FIREc: APPLICATION OF FACETED CLASSIFICATION
SCHEME TO EVOLVING REQUIREMENTS OF NETWORK-
CENTRIC TECHNOLOGIES ...36

D. FIREm: MODELING THE FACETED CLASSIFICATION...................39
E. SUMMARY ..40

VI. CASE STUDY ..41
A. SYSTEM SELECTION...41
B. PRELIMINARY ANALYSIS OF CHAT REQUIREMENTS42
D. FIREc: BUILDING THE CLASSIFICATION SCHEME43

1. Strategic Layer ...44
a. Content Analysis ...44
b. Facet Development..45

2. System Layer ..47
a. Content Analysis ...47
b. Facet Development..49

E. FIREm: MODELING THE FACETED CLASSIFICATION
SCHEME ..50
1. Strategic Layer UML Model...50
2. Strategic Layer UML Model with Supporting Metadata51
3. System Layer UML Model..51
4. System Layer UML Model with Supporting Metadata..................52

F. OVERVIEW OF CLASSIFICATION APPLICATION...........................52
G. FIREs: STRUCTURED REQUIREMENTS--DEVELOPMENT OF

THE XSD ..54
1. Strategic Layer XML Schema ..55
2. System Layer XML Schema ...62

H. FIREx: PROVIDING DATA EXCHANGE CAPABILITY......................64
1. XML Documents Representing Evolving Requirements65
2. Using XSLT to Transform XML Requirements Documents.........67

I. SUMMARY ..68

 ix

VII. CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK...........69
A. CONCLUSION ..69
B. FUTURE WORK...70

1. Developing a Requirements Domain Model70
2. Web-based Application Supporting Standard Input Format........71

APPENDIX A: SOURCES USED FOR DOMAIN ANALYSIS73

APPENDIX B: NAVY CHAT USER REQUIREMENTS75

APPENDIX C: CASE STUDY XML SCHEMAS ...79
STRATEGIC.XSD...79
STRATEGICLAYERTYPES.XSD ..81
SYSTEM.XSD ..83
SYSTEMLAYERTYPES.XSD ...85
REQINFO.XSD..87

APPENDIX D: CASE STUDY XML EVOLVING REQUIREMENTS
DOCUMENTS..91
STRATEGICREQUIREMENT.XML...91
SYSTEMREQUIREMENT.XML ..92

APPENDIX E: SAMPLE XSL STYLESHEET..95

LIST OF REFERENCES..99

INITIAL DISTRIBUTION LIST ...103

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Requirements Engineering Process (From: [GSAM03])...................................7
Figure 2. Rational Unified Process lifecycle (From: [CAN03]).8
Figure 3. Goal Requirements Feedback ..12
Figure 4. PIR Verification of the Initial Capabilities Document (From: [DAU])...........14
Figure 5. Activities required for the integration of evolving requirements.....................25
Figure 6. Transformation from Faceted Classification to Requirements using UML

and XML..28
Figure 7. Example of Web-based Faceted Classification (From:

www.facetmap.com) ..32
Figure 8. Layers of Software Requirements Classification...34
Figure 9. A faceted classification of requirements (From: [GLI05])37
Figure 10. UML Model of Requirements Classification from Figure 940
Figure 11. Chat Requirements 2001 – 2005 (From: [CAT05] ..43
Figure 12. Goal Facet at Strategic Layer...46
Figure 13. Strategic Layer Facets..46
Figure 14. Supporting Requirements Information Metadata...47
Figure 15. System Layer Facets ..49
Figure 16. UML Model of Strategic Layer Classification ..50
Figure 17. UML Model of Strategic Layer Classification with Supporting Metadata.....51
Figure 18. UML Model of System Layer Classification...51
Figure 19. UML Model of System Layer Classification with Supporting Metadata52
Figure 20. XSD Structure of Faceted Classification ...55
Figure 21. Strategic Layer XSD Design..56
Figure 22. Example of XSD Strategic Requirement Element from Strategic.xsd57
Figure 23. Strategic Layer Reference Identification Number ...57
Figure 24. Including Multiple Schemas in the Strategic Layer Schema58
Figure 25. Example from StrategicLayerTypes.xsd..58
Figure 26. XML Diagram of Strategic.xsd illustrating the inclusion of ReqInfo.xsd.......59
Figure 27. Example from ReqInfo.xsd illustrating requirements information

elements. ..60
Figure 28. Example from ReqInfo.xsd illustrating “DateType” element..........................61
Figure 29. Example from ReqInfo.xsd illustrating “AuthorType” element......................62
Figure 30. Example from ReqInfo.xsd illustrating “EmailType” and “PhoneType”

elements. ..62
Figure 31. Schema diagram of System.xsd ...63
Figure 32. XML Elements of the “SystemRequirementType” from System.xsd64
Figure 33. Sample from conforming XML Document generated from Strategic.xsd66
Figure 34. Screenshot illustrating transformation of the XML requirement document

StrategicRequirement.xml using the XSL stylesheet Strategy.xsl...................68

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Requirements characterized by faceted classification (From: [GLI05])..........37
Table 2. Strategic Layer Terminology ...45
Table 3. System Layer Terminology..48
Table 4. Analyzed IM/KM Requirements..54

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to give my heartfelt appreciation to my mother who has always given

me her unwavering support and who has equipped me with the tools to succeed. I would

also like to thank my advisors, Prof Man-Tak Shing and Richard Riehle, for their

guidance, patience and words of wisdom and Curt Blais for his help with XML. Finally, I

give my thanks to the unsung heroes of Student Services, ITACS, the Dudley Knox

Library and the curriculum offices. They keep us all moving in the right direction.

I dedicate this work to my children who are my joy and inspiration.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Since its introduction in 1998, the concept of network-centric warfare (NCW) has

changed the way the Department of Defense addresses technological improvements for

its military forces. No longer is the emphasis on enhancing the capabilities of a single

platform, but the focus is now on networking people, processes and technology to enable

knowledge sharing and rapid decision-making. According to Secretary of Defense

Donald Rumsfeld in 2003 [DIR05]:

…we must achieve: fundamentally joint, network centric, distributed
forces capable of rapid decision superiority and massed effects across the
battlespace. Realizing these capabilities will require transforming our
people, processes and military forces.

The capabilities required to support network-centric operations (NCO) in the

NCW environment must be supported by new, innovative networked communication

technologies. These technologies may be modifications to fully developed legacy

software systems that are programs of record (POR). They may also be prototypes,

commercial-off-the-shelf (COTS), or government-off-the-shelf (GOTS) systems either

introduced as a new capability or proposed as improved replacements for existing

systems. In each situation, many sponsors and organizations across the DOD may be

involved in the development, testing and evaluation of similar software applications to

support the transformation to NCW. These activities may ultimately result in the

duplication of efforts, especially those involving the identification and definition of

software user requirements.

There are many sources of requirements for software systems supporting NCO,

which may increase in number as the Services continue to develop the capabilities

necessary for the transformation to a fully networked military force. During the

development process, software requirements may originate from many groups of

stakeholders with differing viewpoints on what is necessary for warfighters to work

effectively and efficiently in the network-centric operational environment.

Requirements may also emerge following the fielding of a NCO capability because 1)

 2

new technology has the potential to change how the warfighter works and 2) the

operational environment in which it is used may change. As they gain experience with

the system, warfighters may be able to identify requirements that would improve their

interaction with the technology and, ultimately, their job performance. Warfighters may

also find the application lacks certain features or functionalities necessary to support the

evolving and possibly unpredictable operational environment in which they work. That

is, they may find that the system does not meet the operational requirements of the ever-

changing technological environment imposed by the transformation to NCW. Because of

these highly unpredictable issues, user requirements for network-centric software systems

may continue to evolve long after the system has completed the formal software

development process. There are very few mechanisms in place to ensure the resulting

requirements are evaluated for implementation in future systems. Requirements

evolution, therefore, results in requirements engineering challenges associated with the

acquisition and development of network-centric software systems. The following

challenges, if not adequately addressed, can influence the extent to which future network-

centric software systems meet operational objectives and user requirements:

• Capturing evolving software requirements of fielded network-centric

software systems for use in the development of future systems

• Consolidating, standardizing and documenting requirements from multiple

informal and formal sources

• Ensuring the requirements reflect high-level strategic and operational

goals

• Evaluating a network-centric system against requirements to determine if

it will meet its intended purpose and warfighters’ needs

• Ensuring the requirements elicitation process includes all stakeholders

Effectively managing these challenges requires a fundamental shift in how

requirements engineering practices address evolving requirements. Rather than consider

rapid and continuous changes to requirements as impediments to software system

development, these changes should be accepted and addressed by a requirements

 3

engineering approach that incorporates processes for handling them, especially following

the formal development process.

A. PURPOSE OF STUDY
The purpose of this research is to develop an approach to provide for consistency

in elicitation, management and documentation of requirements for technological

capabilities that have the highest likelihood of requirements evolution. In conducting this

work, we address three questions:

1. How can we collect evolving requirements data from potentially
thousands of geographically dispersed network-centric software
application users?

2. How can we standardize the evolving requirements data so it can be
effectively analyzed and used in the software development process?

3. How can we then make the standardized evolving requirements data
accessible across various DOD organizations without relying on
proprietary, expensive requirements management software?

To answer these questions, this thesis proposes a requirements engineering

framework that incorporates classification theory and requirements modeling principles,

supported by the Extensible Markup Language (XML) family of technologies. The intent

of this research is not to develop a fully-fledged web application to manage evolving

requirements. Rather, it is to suggest an approach, demonstrated with current

technologies, the DOD acquisition community could consider for implementation.

Because this approach focuses on managing requirements for a technological capability

rather than for one specific software system, we recommended it for consideration

throughout the life cycle of the capability. A rigorous application of this framework will

help prevent the unnecessary expenditure of limited resources for software systems that

either do not meet the needs of the warfighters or do not support the implementation of

network-centric warfare.

 4

B. THESIS ORGANIZATION
Chapter II provides the background information on requirements and

requirements engineering and the role each plays in software development.

Chapter III highlights the proposed framework for managing requirements

evolution and outlines the methodology used to develop the framework.

Chapter IV presents the activities of the proposed framework. Each activity is

discussed in detail, with an overview of the technology proposed for implementation.

Chapter V details the type of classification scheme used in the framework. This

chapter is dedicated to a discussion of the classification scheme because of its importance

to the framework.

Chapter VI is the case study. Each activity of the framework is demonstrated

using previously collected user requirements of an existing software system that supports

NCO.

The concluding chapter of this work is Chapter VII, where there also appears a

short discussion of related areas for future work.

 5

II. THE ROLE OF REQUIREMENTS IN SOFTWARE SYSTEMS
DEVELOPMENT

A. INTRODUCTION
Practitioners often cite poor requirements as the reason software systems fail to

meet the needs of the user [BRU04]. Inadequate, inconsistent or vague requirements can

result canceled projects or projects that are delivered late and over budget. As such, it is

critical to understand the role requirements play in software development.

Software requirements are commonly defined as the specific capabilities imposed

on a system that are a direct reflection of the users’ needs and that must be satisfied by

the technical solution ultimately designed to address the problem [LEF03]. The users

often express their needs in terms of what they expect of the system in relation to their

activities. They may also define their needs within the context of the high-level

operational goals for the system. Software system developers can then use these goals, in

conjunction with the users’ needs, to help define and specify the functional and non-

functional requirements for the system [ANT98]. The quality of the specified

requirements can have a significant impact not only on the quality of the final system, but

also on the system’s ability to meet the needs of the users. Requirements that are poorly

defined or incomplete can prevent system developers from identifying the most

appropriate technical solution. Therefore, generating quality requirements is an

important activity of software development, and it must include the system users.

B. REQUIREMENTS CLASSIFICATION

1. Introduction
Several characteristics identify quality requirements. For example, requirements

must be verifiable and feasible to ensure they can be implemented within the given

resource constraints, necessary to meet the needs of the user, complete and correct

[WIE03]. Classification of requirements is the first step in developing requirements with

these characteristics. It provides developers with a way of understanding and managing

the requirements from a technical standpoint; it assists in mapping requirements to

 6

technical specifications necessary for implementation. Typically, requirements are

classified either as functional, which describe the system’s operation, or non-functional,

which express what the user expects from the system.

2. Functional Requirements
The functional requirements describe how the system must operate and how it

must interact with its environment. For example, a functional requirement of a chat client

may be the capability to log chat sessions.

3. Non-Functional Requirements
The non-functional requirements are constraints imposed on the system and are

usually referred to as quality attributes [WIE03], e.g. the “ilities”. The following is a

partial list of types of non-functional requirements applicable in the design and

development of software systems:

• Availability

• Reliability

• Efficiency

• Usability

• Interoperability

• Maintainability

• Portability

• Testability

A non-functional performance requirement for a chat client may be that it must

establish a chat session within 30 seconds after it receives the request chat session event.

4. Shortcomings of Traditional Requirements Classification
Although widely used in requirements engineering, traditional requirements

classification may not identify requirements that have both functional and non-functional

attributes. For example, a requirement may specify a necessary performance factor in

addition to a quality attribute. To address this issue, we will introduce a multi-faceted

layer approach to requirements classification in Chapter IV.

C. REQUIREMENTS ENGINEERING

1. Introduction
Software systems requirements engineering (RE) involve those efforts required to

ensure that a software system is designed with the functionalities necessary to meet the

needs of the users. According to [ZAV97], “Requirements engineering is the branch of

software engineering concerned with the real-world goals for functions of and constraints

on software systems.” While there are many proposed taxonomies for RE, one approach

suggests RE may be divided into functions associated with development and management

of requirements, as shown in Figure 1 from [GSAM03].

Figure 1. Requirements Engineering Process (From: [GSAM03])

2. Requirements Development
Requirements development involves collecting, analyzing, specifying, validating

and documenting the users’ needs for the software system. In the traditional software

development process, requirements elicitation, generation, and documentation are

functions that typically occur at the beginning stages of the development process, as

illustrated in Figure 2. These efforts ensure the system under development meets the

stakeholders’ and ultimately the user’s needs and goals. During the initial stages, the

development team will, in an attempt to better understand the problem domain, elicit the

needs of the customer, user and anyone else with a vested interest in the project,

collectively referred to as stakeholders. From this information, the developers, also

considered stakeholders, will propose the features necessary to address those needs. The

 7

needs and features form the basis for the software requirements that the development

team uses to build the technical solution [LEF03]. As such, it is critical that there are no

gaps or overlooked areas in the development activities because the final system will

certainly reflect these shortcomings. A series of questions from [GSAM03] may be used

to determine if the requirements development efforts have been adequate during the

elicitation and generation stages to develop quality requirements:

• Has there been extensive user involvement in developing the

requirements?

• Do all stakeholders understand and agree on how the system will be used?

• Are all stakeholders satisfied with the requirements?

• Do the developers understand the requirements?

• Are all requirements clear and unambiguous?

• Have you distinguished between needs and wants? Are requirements

relevant?

• Are requirements consistent with each other (i.e., they don’t conflict.)?

• Are requirements complete? Do the requirements cover everything that is

supposed to be accomplished?

Figure 2. Rational Unified Process lifecycle

(From: [CAN03]).

 8

 9

a. Requirements Elicitation and Analysis
Without quality requirements that accurately reflect the needs of the

stakeholders, especially users, development of a suitable technical solution is unlikely.

As such, an open channel of communication between developers and stakeholders is

critical to the success of a project. The failure to communicate is costly and can result in

poor quality requirements and ultimately a system that does not meet the needs of its

users. [BRU04] states the importance of communication in requirements elicitation:

Requirements elicitation is about communication among developers,
clients, and users to define a new system. Failure to communicate and
understand each others’ domains results in a system that is difficult to use
or that simply fails to support user’s work. Errors introduced during
requirements elicitation are expensive to correct, as they are usually
discovered late in the process, often as late as delivery.

Software developers with a comprehensive understanding of the

stakeholders’ requirements and the proposed system’s operational environment have a

greater likelihood of designing, developing and delivering a system within the stated

constraints that meets the stakeholders’ needs.

There are many approaches to eliciting user requirements, many of which

involve direct interaction and coordination between requirements engineers, additional

members of the software development team and the stakeholders [LEF03]. Requirements

engineers may conduct interviews with users and involve them in scenario development

in order to understand the problem domain. However, when the group of stakeholders is

large and geographically dispersed, it may not be possible to conduct frequent face-to-

face interviews or hold facilitated meetings for the collection of requirements data. As

such, they may supplement the primary elicitation techniques with requirements

modeling and simple, low-fidelity prototyping.1 Using pictures and models to represent

requirements enhances communication between stakeholders because they do not require

an advanced technical background to understand the concepts as they are illustrated

[WIE03]. The Unified Modeling Language™ (UML) has become the defacto industry

1 Low-fidelity prototypes are simple sketches or mockups of the system to be developed.

 10

standard and primary method of visually representing user requirements, supporting

software development.

The quality of requirements ultimately affects the quality of the final

product, as well as its ability to meet the needs of the users. Users may often submit

abstract or vague requirements during the elicitation phase, which make design decisions

difficult for software developers [WIE03]. As a result, once the stakeholders’ needs are

gathered, developers must conduct an analysis to define and scope the requirements.

Analysis of requirements is required to [SWEBOK04]:

1. Detect and resolve conflicts between requirements

2. Discover the bounds of the software and how it must interact with its
environment

3. Elaborate system requirements to software requirements.

Requirements analysis helps uncover inconsistencies or ambiguities through investigation

and analysis of the problem domain. Requirements analysis techniques include goal-

based analysis methods [ANT97] [LAM01], as well as structured and object-oriented

analysis methods.

b. Requirements Specification and Validation
Following analysis, the development team formally documents

requirements to specify what the design of the system must achieve. They may use a

Software Requirements Specification (SRS) to document the problem description, system

requirements, interface requirements, performance requirements, and design constraints.

Aside from an SRS, developers may choose to use alternative methods to record

requirements information. One choice may be to organize requirements in sets for

subsystems or systems with a particularly large number of requirements and documented

using a Vision document and supplemental specifications [LEF03]. Whatever the choice,

requirements documentation should be managed and maintained throughout the life of

the project and should be available for subsequent iterations of the software system.

Thorough documentation supports traceability, change management and can have a

significant impact on the quality of the final software system [LUQ04]. This information

can be managed either manually using a pen and paper or electronically with any number

of commercially available requirements management tools. The choice of documentation

 11

technique may depend on such factors as the size of the project and organization, budget

and experience of the developers.

After specification and review by stakeholders, the requirements must be

validated. Requirements validation is the final and necessary step of requirements

development (as presented in Figure 1) that ensures the specified requirements reflect the

wants and needs of the stakeholders. Validation entails examining 1) the requirements to

ensure, among other things, they are correct, complete and unambiguous and 2) the SRS

to ensure it is consistent, complete, modifiable and traceable [WIE03].

3. Requirements Management
Stakeholders and developers will often make changes to requirements following

specification. Controlling these changes is a function of requirements management.

Configuration control and traceability functions support the management of requirements

throughout the development process. These functions document changes to requirements

as well as relationships among requirements. Commercially available requirements

management tools, such as Borland© Caliber™ 2005 and Requirements Management

Database™, are available to support elicitation and management of requirements.

D. GOALS IN REQUIREMENTS ENGINEERING
Goal-based requirements engineering provides for the identification and

specification of requirements using goals that represent the customer’s needs for the

system. According to [LAM01], “A goal is an objective the system under consideration

should achieve. Goals may be formulated at different levels of abstraction, ranging from

high-level, strategic concerns to low-level, technical concerns.” At the highest level of

abstraction, the stakeholders’ objectives for the system should remain consistent

throughout the development process because they provide the justification for the

system’s development. However, at the lowest level, the implementation specificities

may change radically because, as previously discussed, changes to requirements are

common during the development process. Using goals to define requirements at the

beginning of the development process may reduce the number of changes to system

requirements. In goal-based RE, goals are used to provide the justification for the

requirements, allow for a level of abstraction necessary to evaluate requirements

alternatives and are often more stable than requirements [ANT97]. Requirements that are

products of (linked to) the high-level objectives for the system are, therefore, probably

more consistent and easier to manage than those not (linked).

Figure 3. Goal Requirements Feedback

Stakeholders should express their objectives, or goals, for the system under

consideration during the requirements elicitation process. Evaluation of these objectives

ultimately results in specified requirements. However, as portrayed in Figure 3 above,

existing requirements may also be the source of goals. Requirements engineers may

derive goals from documented operational and tactical requirements for the system, as

well as from the stakeholders’ espoused requirements for an existing or legacy system.

Use-case specifications, scenarios, and informal requirements documents are also sources

of goals [ANT98]. When goals are used to define requirements, it is reasonable to assume

they should meet the same quality criteria as requirements; they should be complete,

correct and feasible. As such, communication between stakeholders and developers is

critical but may be an improvement over non-goal based requirements elicitation because

of the evolutionary nature of goals [ANT00]. The use of goals to define requirements

may help resolve conflicting points of views among stakeholders; if they can agree on

what they want the system to achieve, they may be more likely to agree on the

requirements to fulfill those objectives.

 12

 13

E. REQUIREMENTS RISK
Risk is the possibility of an event having an adverse effect or outcome and is

associated with varying degrees of uncertainty. In recent years, risk management has

been identified as a critical function in any project and entails identifying, addressing and

eliminating those risks that threaten the success of the project [BOE91]. In particular,

risks related to requirements can have a tremendous impact on the cost of developing

software systems, the schedule required for its development and the ability of the system

to meet the user’s needs [FLO02]. Requirements risks can be the result of requirements

management efforts that do not adequately address the impact of changing requirements

and evolving operational environments. Risks can also result from communication

shortcoming between customers and developers [LEI02]. Requirements risks most

likely to have an impact on a software project are as follows [WIE98]:

• Lack of a clear product vision

• Lack of agreement of product requirements

• Inadequate customer involvement in requirements process

• Non-prioritized requirements

• New market with uncertain needs

• Rapidly changing requirements

• Ineffective requirements change management process

• Inadequate impact analysis of requirements changes

An extensive risk evaluation effort will be required when the number of

requirements is large, potentially resulting in procurement delays and increased project

costs [BOE01]. The solution may lie in the level of abstraction provided by defining and

assessing risks based on goals. This process has the potential to provide decision makers

with an expeditious way to identify significant deficiencies in the software system’s

ability to meet warfighters’ operational requirements. As discussed, stakeholder and

developers work to derive the goals for a software system from the overall operational

objectives and, to a limited extent, previously specified requirements. These goals help

in the specification of requirements—requirements that will be used to either develop or

procure a system. Therefore, it is likely a risk management strategy that involves

stakeholders early on in the process will help mitigate the risks of a software system not

fulfilling the overall operational objectives, much less the specified requirements.

Assigning priorities with stakeholder involvement at the initial stages of requirements

development is a critical first step in mitigating risks.

F. FORMAL SOURCES OF REQUIREMENTS
The acquisition community within DOD must adhere to stringent guidelines when

developing requirements for software systems. They must meet criteria established by

Federal law and DOD directives.

1. DOD Instruction 5000.2
Department of Defense Instruction 5000.2 provides for detailed guidance on the

acquisition of software systems. Before the initiation of the contracting process, the

operational goals and system requirements are developed, specified and submitted in a

series of capabilities documents shown in Figure 4. An Initial Capabilities Document at

Milestone A establishes the initial system requirements that are later refined at Milestone

B upon finalization of the Capabilities Development Document.

Figure 4. PIR Verification of the Initial Capabilities Document (From: [DAU])

 14

 15

2. Joint Capabilities Integration and Development System
Supporting DOD 5000.2 is the Joint Capabilities Integration and Development

System that requires a program sponsor conduct a series of functional analyses to show

the system acquisition supports core functions of the Federal Government and to validate

the relationship between DOD’s mission and the acquisition’s function. These analyses

are conducted before the instantiation of the Initial Capabilities Document required by

DOD Instruction 5000.2.

3. Clinger-Cohen Act
The Clinger-Cohen Act of 1996 (CCA) requires a post-implementation review

(PIR) for an IT system that is fielded and is operational in its intended environment. A

PIR must be conducted utilizing performance-based measures of effectiveness, otherwise

known as Outcome-based Performance Measures of Effectiveness (OPMs), which are

established before the formalization of the Initial Capabilities Document. According to

the Defense Acquisition Handbook, the overall intent of the PIR is to answer the

question, “Did the agency get what it needed as per the ICD?” The PIR may also provide

the opportunity for collecting requirements feedback from the users for consideration in

an evolutionary acquisition process. [DAU]

However, there can be several obstacles to collecting evolving requirements

during a PIR. A PIR may be difficult to plan due to the types of activities (Figure 3) and

can take many months to complete [DAU]. As a result, it may be the case the ICD for

the next system iteration or a similar software system is being planned well before the

PIR for the current system has been completed and the results analyzed. In the event the

planned acquisition introduces a new technological concept in an operational domain, the

OPMs that were established at the very beginning of the acquisition process may not

provide an accurate assessment of the warfighter’s current needs due to evolving

operational objectives. Again, the introduction of new technology may change how work

is performed and there may be no OPM to adequately assess this impact on the

warfighter’s performance.

 16

G. ADDITIONAL SOURCES OF REQUIREMENTS

1. Warfighter Feedback
There are informal sources of requirements that may be overlooked or may be just

too difficult to funnel back into the acquisition and software development process. Well

after the PIR is completed, the warfighter may continue to discover the functionalities

and intricacies of the new system and find the system in its current configuration does not

fully support the mission objectives of the operational unit. In addition, technical

difficulties with the system may preclude the warfighter’s ability to operate the system as

intended by its design. As such, non-traditional sources of requirements may be trouble

calls to help desks, casualty reports (CASREPS), Lessons Learned messages, or technical

representative (TECHREP) requests. These sources may provide the most valuable

requirements feedback because it is often the case the feedback occurs when the system is

being utilized in the most arduous operational environment, such as during training

exercises or deployment. Capturing this information is critical to ensuring warfighter

operational needs, in the form of requirements, are considered either for incorporation in

the next software build or during the acquisition process of a follow-on system.

2. Technical Evaluations and Warfighter Demonstrations
User requirements also result from activities associated with testing and

evaluating software systems prior to formal acquisition, during the software development

process, or following fielding. Proof-of-concept systems and prototypes may be tested

during warfighter demonstrations such as Fleet Battle Experiments (FBE), Limited

Objective Experiments (LOEs) and Sea Trial exercises to provide users with the

opportunity to evaluate these new technologies.

H. SUMMARY
Requirements engineering is an involved process that focuses on developing and

managing quality requirements. The elicitation activities are critical components of this

process because communicating with stakeholders using language they understand is

necessary to develop a system that meets their needs. Modeling is one way to enhance

communication between stakeholders, especially when a well-known modeling

 17

specification, such as UML, is used. The use of goals in requirements development can

also bridge the gap between stakeholders (and developers) and result in quality

requirements because stakeholders often express their needs in terms of what they want

the system to achieve.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

III. FRAMEWORK FOR THE INTEGRATION OF
REQUIREMENTS EVOLUTION

A. INTRODUCTION
Requirements development efforts do not occur only at the beginning stages of

the software development process as system requirements are often defined and refined

throughout the entire process. During development, the stakeholders’ expectations for

the system may change; they may have a better understanding of the required

functionalities and request the implementation of additional features. In addition,

changes in the operational environment may result in requests for additional system

requirements or refinements to the original requirements before the end of the

development process. The changes to requirements during development, referred to as

“requirements creep”, are difficult to manage and can have serious implications on cost,

schedule and functionality of the final system [ANT01]. As such, the effectiveness of

requirements engineering activities throughout the entire development process largely

determines the extent to which the software system ultimately meets the stakeholders’

requirements and operational objectives.

Requirements creep can also occur following development and delivery of the

software system and then becomes known as requirements evolution [ANTPOT01].

When a software system is fielded in a network-centric operational domain, there is a

high probability that requirements for the system will evolve, especially if the system

represents a new technological capability. Users will familiarize themselves with the

system, explore its technical possibilities and limitations, and determine how it can

improve their work processes. As a result, the users may find, after the system is fielded,

they require additional features or functionalities in order to perform their work

effectively and efficiently.

The problem of evolving requirements then becomes twofold: capturing the

requirements that evolve after the system has been fielded, and validating and analyzing

the requirements to ensure future software systems are either developed or procured with

the functionalities necessary to meet the evolving needs.

 20

B. CRITERIA FOR A FRAMEWORK FOR THE INTEGRATION OF
REQUIREMENTS EVOLUTION

We have identified three criteria that must be satisfied by a framework that

addresses evolving requirements of network-centric software systems: structured

requirements, data exchange capability and standard input format. We propose the

Framework for the Integration of Requirements Evolution (FIRE) to satisfy these criteria

and address the problems associated with requirements evolution in the NCW domain.

1. Structured Requirements
Problem: There is no process for standardizing evolving requirements data that is

generated independent of a development process.

With informal requirements collection techniques, such as surveys, usability

studies, and field tests, there may be no formal method available to format and manage

the resulting information. Requirements data may simply be collected as part of a larger

effort, and then analyzed, documented, and distributed in report form in natural language.

In order to develop a comprehensive, consistent set of user requirements, a stakeholder

must have access to all documentation and devote a considerable amount of time to

extracting and reconciling the pertinent information. This approach is extremely

ineffective because it is subjective; each stakeholder may have a different interpretation

of the information, resulting in dissimilar sets of requirements. The data may not

distinguish between a functional or nonfunctional requirement or include descriptions of

requirements attributes. As a result, the data generated by these various groups will not

result in a reliable, concise set of requirements suitable for use in software development.

Solution: A structured format, using predefined attributes, that helps

stakeholders, including users and developers, formulate their needs into precisely defined

requirements. The method used to structure the requirements must also satisfy the

remaining criteria.

2. Data Exchange Capability
Problem: The RE efforts of traditional software development methods may not

adequately provide for the collection, integration and utilization of user requirements

after the military component takes delivery of the software system.

 21

It is likely software requirements will change rapidly and frequently in the NCW

operational environment, well after the system has completed the software development

process. However, there may not be a standard process for the submission, validation

and verification of evolving requirements for inclusion in the next version or build of the

system. In addition, organizations may not have the ability to exchange requirements

information because each may use a different type of requirements management tool,

resulting in dissimilar formats or file types.

Solution: Data exchange capability of requirements information using

nonproprietary, platform independent technology.

3. Standard Input Format
Problem: Requirements originate from many different groups of stakeholders who

are not involved in the acquisition or development process.

User requirements will originate from system users, evaluators, testers and

developers. As previously discussed, it is difficult to collate information from numerous

sources, especially if the results are documented using different formats. In addition, the

information collected during field evaluations may reflect high-level requirements that

need further development; the collected requirements may only indicate what tasks the

warfighter needs the system to support. It may be extremely difficult to identify and

track additions, deletions, or modifications to existing requirements due to the

inconsistencies in collection and data reporting techniques.

C. OVERVIEW OF FIRE
The framework suggested for managing evolving requirements is based on three

basic, yet very important elements of requirements engineering:

1. Stakeholder involvement in the requirements development process

2. Requirements modeling

3. Requirements documentation.

FIRE is an iterative approach, which is necessary to manage the complexities

associated with evolving requirements of software systems supporting NCW operations.

It is based on requirements development principles, incorporating a layered faceted

 22

classification scheme to define and manage warfighter input. The goal of FIRE is not to

replace the RE efforts during the software development process. Rather, it is to suggest

an approach for standardizing the data associated with evolving user requirements and

making it accessible to any organization involved in developing software systems

supporting NCW operations. Our approach supplements the requirements elicitation and

generation efforts of the formal development process, which is beneficial when access to

those system users who may be constrained by geographical or operational limitations.

In addition, it supports requirements reuse because of the accessibility of requirements

data and focus on using operational goals as the basis and justification for the abstract,

high-level user requirements of a technological capability.

D. RESEARCH AND FRAMEWORK DEVELOPMENT METHODOLOGY
The approach suggested for the management and integration of requirements

evolution will be developed and explained in the following steps:

1. Develop a method for structuring requirements:

a. Research and identify a classification scheme to define and
represent evolving requirements.

b. Research and identify a modeling approach to visually represent
the classification scheme.

c. Research the potential of XML technology to standardize evolving
requirements data.

2. Demonstrate requirements data exchange functionality:

a. Research and identify a data format capable of facilitating
production and consumption of evolving requirements data that
does not rely on proprietary applications.

b. Demonstrate transformation of standardized requirements
information.

3. Propose a standard input format for requirements data. A fully functional
web application is beyond the scope of this thesis and should be the focus
of future work. In Chapter VII, we will present our recommendation for
an input format suitable to capture evolving requirements data.

 23

E. SUMMARY
We propose a framework to address evolving requirement that focuses on

structuring requirements data and providing data exchange capability without relying on

proprietary software applications.

 24

THIS PAGE INTENTIONALLY LEFT BLANK

IV. ACTIVITIES REQUIRED TO MANAGE EVOLVING
REQUIREMENTS

A. INTRODUCTION

This framework and its activities, as shown in Figure 5, provide for the

integration of evolving requirements that are generated during the software development

process, and they address the problem of requirements evolution in fielded systems.

These activities are recommended either in conjunction with the software development

process or as an independent effort.

B. ACTIVITIES TO SUPPORT INTEGRATION OF EVOLVING
REQUIREMENTS
The activities in this approach focus on the collection, classification, and

documentation of requirements. The specification and verification of requirements

should occur during the software development process, leveraging the expertise of the

development team. We recommended the activities described in this section as the first

steps in addressing the inherent difficulties associated with collecting, classifying and

integrating evolving requirements.

Figure 5. Activities required for the integration of evolving requirements.

 25

 26

1. FIREc: Requirements Classification
Classification of requirements is important because it assists developers in

determining the type of technical solution required to address the stated need.

Requirements engineers use traditional classification schemes to identify requirements as

either functional or non-functional. However, this may not be an appropriate type of

classification to use when the requirements are high-level, abstract or informally stated.

In addition, warfighters may not be able to explicitly state their needs for the system

using terms specific to the RE discipline. Therefore, this work proposes a layered,

faceted classification scheme that addresses the natural language requirements of

warfighters while decomposing the requirements from high-level objectives to specified,

low-level requirements. This is the first of three activities involved in structuring the

requirements, the first criterion that must be met by our framework. The classification is

developed from domain specific documents that describe the objectives for the capability

under consideration. Extracting these objectives is a function of the classification efforts.

We will present a requirements classification scheme in Chapter IV.

The use of high-level objectives as the basis for the classification is important

primarily because they directly reflect the stakeholders’ needs and changes in the

operational environment. The high-level objectives espoused by stakeholders for the

software systems supporting NCW operations express what the system is expected to

achieve in its operational environment. If there are changes in the operational

environment, the objectives for the system must change, as well. Therefore, requirements

defined by the objectives, or goals, for the system are more apt to meet the changing

needs of the stakeholders than requirements not linked to goals. We believe defining and

classifying requirements and managing changes at this level of abstraction ensures the

resulting requirements support the evolutionary nature of NCW operations.

2. FIREm: Classification Modeling
In the FIREm activity, modeling serves a two-fold purpose. First, we use it to

develop and manage the layered classification scheme. Second, it provides a visual

representation of the attributes of requirements, facilitating communication between

stakeholders.

 27

3. FIREs: Standardize Warfighter Requirements
The importance of standardizing and documenting requirements data cannot be

overstated; thorough documentation supports traceability, change management and can

have a significant impact on the quality of the final software system [LUQ04]. However,

for the purposes of managing evolving requirements outside of the formal development

process, it is not realistic to assume an SRS and supporting documentation with fully

specified requirements are available at all times. Personnel constraints would preclude

such an administrative burden. As such, it may be more practical to utilize the

functionality of a commercial-off-the-shelf RE tool that generates working documents

and models for internal use and supports traceability and change management. This type

of functionality is especially attractive when there are numerous modifications to the

requirements or there are a large number of requirements; the application may be able to

generate working documents immediately following any changes.

However, there may be several downsides to using a “heavyweight” RE tool; it

may be expensive, difficult to learn and impossible to customize [BAN]. The solution is

to apply technology that is widely available, easy to use, nonproprietary and inexpensive,

such as that offered by the Extensible Markup Language (XML) family of technologies.

The Extensible Markup Language is a subset of the Standard Generalized Markup

Language (SGML) and, like SGML, is a metalanguage that sets the standard for

specialized markup languages. Developed in 1996, XML 1.1 was last published as a

World Wide Web Consortium (W3C) recommendation in February 2004. The details of

XML can be found in the Extensible Markup Language (XML) 1.1 W3C

Recommendation 04 February 2004 [W3C].

The use of XML technology in software engineering has been explored for

managing requirements [BAN], developing scenarios [PEN04] and in UML-based

verification tools [MAR05]. XML is platform independent, portable, and is capable of

representing many different types of data. The intent of this research is to recommend a

framework that provides for the standardization and broad accessibility and utilization of

evolving requirements data. We propose, therefore, to use XML to transform,

standardize and document requirements based on the UML model generated in the

FIREm activity, which is the visual representation of the faceted classification scheme

generated in FIREc. Figure 6 illustrates this approach.

In Chapter VI, we will demonstrate our approach for standardizing warfighter

requirements using an XML Schema. As defined by [W3Ca], “XML Schemas express

shared vocabularies and allow machines to carry out rules made by people. They provide

a means for defining the structure, content and semantics of XML documents”.

XSD

XSL

XML
INSTANCE

UML

FACETED
CLASSIFICATION REQUIREMENT

Figure 6. Transformation from Faceted Classification to

Requirements using UML and XML

4. FIREx: Data Exchange Capability
Information exchange using the web has become a standard way of doing

business; organizations across DOD rely on the web for administrative and operational

information, classified and unclassified. This exchange of information occurs using a

variety of formats ranging from text documents, Excel spreadsheets, or PowerPoint files.

However, in the past few years DOD organizations have begun to adopt the Extensible

Markup Language (XML) to exchange information. As a standardized format for shared

data exchanges across the web, XML has become one of the most popular and fastest

growing text formats for web content since Hypertext Markup Language (HTML) first

made its appearance over a decade ago.

Making requirements information electronically available in conforming XML

documents has the potential to provide all stakeholders with an increased awareness of

what is required to meet warfighters’ needs. It can enhance their knowledge of the

operational environment, its technical limitations and challenges and the usability of the
 28

 29

technological capability. Using XML to represent requirements ensures the content is not

only standardized, but it is also accessible from virtually any location on the globe. With

XML, evolving requirements information can be available across a common domain in a

structured format specifically designed for those who need the information.

Some of the benefits of this approach are:

• Organizations are not required to rely on special software applications to
access information because XML is platform independent.

• Developers across organizations can have access to the same set of user
requirements.

• The ability to exchange requirements data prevents the duplication of
requirements collection, analysis and documentation efforts.

• Knowledge of existing requirements may serve as building blocks for
additional requirements that more precisely reflect the needs of the users.

C. SUPPORT FOR REQUIREMENTS MANAGEMENT EFFORTS
Although specific requirements management activities (as depicted in Figure 1)

have not been formally included in the proposed framework, the classification of

requirements we propose does aid in maintaining traceability of requirements and

assessing the impact of changes. These functions are especially important when

managing evolving requirements, primarily because of the likelihood there will be an

increasing number of requirements changes as the system becomes more mature.

Stakeholders will add new requirements as they discover more ways for the technology to

expand to fit the operational environment. In addition, there will be an increase in the

number of changes to existing requirements as warfighters gain knowledge of the system

and can express their requirements in more precise qualitative or quantitative terms.

Moreover, change management and analysis functions provide for the identification and

elimination of duplicate requirements, as well as the means to clarify ambiguous or ill-

defined requirements.

 30

D. SUMMARY
Very few software development projects occur in an environment where

requirements engineers and development teams have access to all stakeholders. It is

more often the case where the customer who is funding the project represents system

users during the requirements development process; the personnel who will be using the

system may be geographically separated from the development team or may be

unavailable due to operational commitments. For this reason, we believe the web and the

XML family of technologies are resources capable of facilitating the development and

management of evolving requirements.

 31

V. THE REQUIREMENTS CLASSIFICATION SCHEME

A. INTRODUCTION
In the framework proposed by this research, we use a layered faceted

classification scheme to represent evolving NETWORK-CENTRIC requirements by

categories, abandoning the traditional classification of all requirements as either

functional or non-functional. Commonly used in library science to catalog and organize

information, faceted classification uses [WYN92]:

…clearly defined, mutually exclusive, and collectively exhaustive aspects,
properties, or characteristics of a class or specific subject. Such aspects,
properties, or characteristics are called facets of a class or subject.

Faceted classification schemes are also used outside of the library science

discipline. A recent study discovered 60% of e-commerce web sites use some form of

faceted classification to represent information [ADK05]. Popular websites such as

Wine.com and Epicurious.com utilize faceted classification schemes to allow customers

greater latitude in searching for products and services. In fact, wine is often the subject

of demonstrations on faceted classifications because of the many dimensions along which

it can be classified, as illustrated in Figure 7. Faceted classifications have also been

suggested in software engineering for cataloging reuse components [PRI91] and

industrial automation software components [LUC01].

Figure 7. Example of Web-based Faceted Classification (From: www.facetmap.com)

B. A LAYERED APPROACH TO CLASSIFYING REQUIREMENTS

Stakeholders will often have different perspectives on requirements based on their

role in the project. Stakeholders who are not users may have requirements for a software

system based on fiscal or regulatory constraints, or that they express as functions of their

overarching business objectives [LEF03]. Some of these non-user stakeholders may be

concerned only with the system’s ability to meet the goals of the organization and not

with the implementation details. Users, familiar with the operational environment, may

be able to express what they want the system to achieve, but they may not know if their

requirements are technically feasible or if they conflict with other requirements. Finally,

developers must be able to design and implement system features based on verified,

specified requirements. As the requirements development process moves from elicitation

to specification, the requirements should become more precisely defined, moving from a

relatively abstract goal-based need to a requirement that is unambiguous and consistent.

 32

 33

A layered approach to requirements classification is recommended to address the

varying levels of abstraction in requirements definitions. It is also beneficial when the

classification is composed of many elements. Although this type of fine-grained

classification results in a precise definition, it may be difficult to manage. We build upon

the concept of levels of requirements discussed in [WIE03]. Requirements become more

exactly defined as they traverse from the bottom layer of the classification to the top;

each layer of requirements information builds upon the last. We identify the layers

developed in FIREc as Strategic (non-user stakeholders), System (user) and Software

(developer), as shown in Figure 8. It is important to note the terms ‘system’ and

‘software’ appear in [SWEBOK] to refer to user requirements and system requirements,

respectively. We find the use of these terms appropriate in this context, as well. In this

thesis, we apply our framework at the Strategic and System layers of the classification,

with analysis at the Software level reserved for future work. We have chosen to focus our

efforts on developing the Strategic and System layers of the classification scheme. It is at

this degree of abstraction we can demonstrate how our approach classifies, structures and

standardizes evolving user requirements. Classification at the Software layer, while

essential, is best implemented during a software development process guided by the

expertise of the software development team.

STRATEGIC

SYSTEM

SOFTWARE

DEGREE OF PRECISENESS OF
REQUIREMENTS DEFINITION

HIGHEST

LOWEST

DEGREE OF
ABSTRACTION

HIGHEST

LOWEST

Figure 8. Layers of Software Requirements Classification

At the most abstract layer, called Strategic, we classify requirements according to

the non-user stakeholders’ high-level operational goals or objectives for the system.

Classifying a requirement at the highest level ensures the system meets the organizations

strategic goals and focuses on the “why” of system development [OGC]. The System

layer then builds upon the classification scheme in the Strategic layer and includes facets

for user-defined requirements. This layer focuses on the “what” of user requirements, i.e.

what the users want the system to achieve. At the Software layer, the focus is on the

“how” of system development and the requirements are even more rigorously defined

with a classification scheme based, in part, on the work of [GLI05].

1. Strategic Layer Requirement
A requirement at the strategic layer is in its most abstract form. It is defined in

accordance with the high-level objectives, or goals for the software system. As discussed,

linking requirements to the underlying goals improves requirements consistency and

manageability and ensures the resulting system reflects the stakeholders’ needs. Either a

requirement is defined initially by the characteristics of the Strategic layer, or it can be
 34

 35

decomposed from a fully specified requirement into the form delineated by the Strategic

layer. Either way, the requirement must possess the attributes of the Strategic Layer to be

fully defined according to the classification scheme. An example of FORCEnet2

requirements at the Strategic layer taken from [CNO05]:

1. Provide each decision maker the ability to depict situational information in
a tailorable, user-defined, shareable, primarily visual representation.

2. Provide distributed groups of decision makers the ability to cooperate in
the performance of common command and control activities by means of
a collaborative work environment.

3. Store, catalogue and retrieve all information produced by any node on the
network in a comprehensive, standard repository so that the information is
readily accessible to all nodes and compatible with the forms required by
any nodes, within security restrictions.

The preceding examples are capabilities the FORCEnet architecture must support,

i.e., they are requirements for systems operating under the FORCEnet construct. These

requirements are expressed as objectives for the system to achieve. For example, the first

requirement supports the goal of maintaining situational awareness, the second

requirement supports command and control, and the third requirement is necessary for

systems to provide information management.

2. System Layer Requirement
The System layer includes attributes that define the requirements from the user’s

perspective. As discussed, a System layer requirement states what the user expects the

system to achieve; the tasks the system must be able to provide support for the user to

conduct work. A requirement at this layer is linked to the underlying Strategic layer

requirement, which is based on the high-level objectives for the system. For example, the

third Strategic requirement in the preceding paragraph refers to the need to store, catalog

and retrieve information, a requirement that supports information management. We may

state a requirement at the System layer of the classification as follows: “All Navy chat

messages must be time stamped with a date and time to allow recreation of events”. This

2 FORCEnet is the architectural framework and operational construct for Naval Network-Centric
Warfare. It is “a critical link in network-centric warfare and a transformational architecture for the Navy
and Marine Corps that integrates sensors, networks, decision aids, weapons and supporting systems into a
highly adaptive human-centric maritime system that operates from the seabed to space and from sea to
land.” SPAWAR, RADM Slaught, Keynote Address, 2002. Retrieved 16APR06 from:
http://www.chips.navy.mil/archives/02_Summer/authors/index2_files/network_centric.htm

 36

requirement meets the high-level objective expressed at the Strategic layer because it

supports the cataloging function of information management. It also answers “what” the

users expect the system to achieve.

3. Software Layer Requirement
A requirement at the Software layer is the most precisely defined requirement.

Not only is it linked to the high-level objectives for the system and the user’s needs, but it

also includes information necessary for specification and verification during the

development process. Using the previous example, a requirement at the Software layer

may be, “The system will store a timestamp consisting of ISO 8601 date and time as an

attribute of the message data.”

C. FIREc: APPLICATION OF FACETED CLASSIFICATION SCHEME TO
EVOLVING REQUIREMENTS OF NETWORK-CENTRIC
TECHNOLOGIES

The use of a faceted classification scheme to categorize requirements overcomes

the difficulties associated with classifying requirements with quality and functional

attributes. It provides for the categorization of “fuzzy” non-functional requirements—

requirements that possess both functional and non-functional attributes or that have

functional or non-functional characteristics depending on how stakeholders express them.

Figure 9 from [GLI05] depicts an alternative approach to the typical classification of

requirements with four mutually exclusive categories—Representation, Kind,

Satisfaction and Role. Each of the categories, or facets, consists of elements commonly

used to define and specify requirements. Characterization of requirements is achieved by

varying the combinations of facets. Table 1 illustrates examples of requirements

characterized using this classification scheme. [GLI05]

Figure 9. A faceted classification of requirements (From: [GLI05])

REQUIREMENT CLASSIFICATION

“The system shall compute the sum of all applicable
deductions.”

Kind: function
Representation: operational
Satisfaction: hard
Role: prescriptive

“The system shall be easy to use by casual users.”

Kind: specific quality
Representation: qualitative
Satisfaction: soft
Role: prescriptive

“The response time shall be less than 1 s on average”

Kind: performance
Representation: quantitative
Satisfaction: soft
Role: prescriptive

Table 1. Requirements characterized by faceted classification (From: [GLI05])

There are significant benefits associated with using a faceted of classification

scheme to characterize requirements in addition to those offered by [GLI05]. It is much

 37

 38

easier to update than a purely hierarchical classification (tree structure); categories, each

supporting multiple hierarchies, are added as needed to the faceted classification.

However, in a hierarchical classification, rearranging the hierarchy is necessary to

accommodate the new information. The faceted classification scheme is evolvable and

extensible; there is no limit to the number of categories and each category can

accommodate an unlimited number of requirement attributes. In addition, the controlled

vocabulary results in improved search capabilities for documented information; the

scheme creates a common vocabulary for the requirements, and keywords from this

vocabulary define the search parameters. The user has the flexibility to determine along

which axis to conduct the search for requirements information. Finally, a faceted

classification is a natural fit with XML representation of data; XML can represent each

facet of the classification using elements and attributes.

There are also many benefits associated with using a faceted classification to

represent evolving requirements for software systems supporting NCW. The ability to

tailor and quickly adapt the classification schemes to the domain reflecting technological

advances is especially important in the rapidly changing NCW environment. As

discussed in the preceding section, two of the key benefits associated with faceted

classification schemes are that they are evolvable and extensible. The ability to modify

the specification to be either more precise by adding more facets or more abstract by

using fewer facets [LUC01] is a critical consideration when the group of stakeholders is

diverse, representing not only different organizations, but also different positions of

authority in the military command structure. In addition, the ability to rapidly search and

evaluate requirements is an important consideration because changes to systems

supporting NCW operations can occur quickly and frequently. This is a vast

improvement over current methods we have observed of documenting and accessing

evolving requirements. Requirements information from informal sources is often

submitted and documented in natural language, making it difficult and extremely time

consuming to sort and evaluate without the use of parsers. Finally, a faceted

classification helps resolve or eliminate ambiguous or poorly defined requirements before

submission to the software development process.

 39

The facets, when applied to the software requirements domain, must represent

logical divisions of information about the requirements, namely their attributes, behaviors

and constraints. However, we submit that facets can also be used to categorize additional

attributes of the requirements to provide amplifying information particular to the NCW

operational environment, clarification on warfighter input or to address inconsistencies in

the data. In addition, we believe facets may be included in the classification to document

a requirement’s metadata, such as originator, priority, date created or modified, etc. The

faceted approach suggested by [GLI05] offers a new way to approach classifying

requirements. As suggested by its author, extending the classification scheme with

additional facets is a consideration to enhance its usefulness in requirements

classification.

D. FIREm: MODELING THE FACETED CLASSIFICATION
As discussed in Chapter II, modeling is used to visually represent requirements

information, improving the elicitation efforts between stakeholders and developers.

Modeling can produce a picture that needs very little, if any, technical expertise to

understand. It presents information at a well organized, high-level of abstraction,

effectively isolating stakeholders from the technical details and allowing them to

concentrate on the “bigger picture”, namely ensuring the modeled requirements reflect

their needs.

We submit the same holds true for modeling the classification of requirements.

Specifying a model captures all of the information germane to our proposed requirements

classification scheme. To support our work, we propose to use UML to model the faceted

classification scheme developed in FIREc. With UML modeling, the facets and attributes

can be represented using a widely recognized specification language and at high level of

abstraction that is understandable, as well as extensible. As an example, [LUC01]

demonstrates how UML modeling of a faceted classification scheme improves the

understanding and functionality of the components in a reuse environment.

Modeling a faceted classification using UML is not an extremely complicated or

time-consuming process. A class is an entity that represents each main facet, or heading,

of the classification. The elements under each heading are attributes of that class.

Because we are not concerned with modeling functionality, methods will not appear in

the class diagram. We model the relationships between classes with the same notation

used when modeling software applications. For the Representation and Kind classes, we

have used the commonly used “has a” and “is a” phrases to demonstrate the suitability of

the aggregation and inheritance relationships, respectively. The Satisfaction and Role

classes are modeling as general associations. Figure 10 illustrates one possible UML

model of the requirements classification shown in Figure 9.

Figure 10. UML Model of Requirements Classification from Figure 9

E. SUMMARY

We propose a layered faceted classification to address the different levels of

abstraction in requirements definitions. UML modeling provides a comprehensive, visual

depiction of the faceted classification scheme, improving communication between

stakeholders during the collection efforts of evolving requirements. Requirements

standardization (FIREs), the next activity in the FIRE framework, will be discussed in the

following chapter as we present our case study.

 40

 41

VI. CASE STUDY

A. SYSTEM SELECTION
Instant messaging that involves groups of people, commonly called ‘chat’, has

evolved as a critical Network Centric Warfare capability in U.S. Naval operations,

providing military commanders and thousands of military personnel with the ability to

conduct multiple, real-time conversations. Once confined to social or casual interactions

in the general community, Commercial-Off-The-Shelf (COTS) chat applications such as

MS Chat and Lotus Sametime are often used by surface Navy personnel in lieu of radio

transmitter (RT) circuits to coordinate and conduct command and control operations, as

well as logistical and administrative functions. As such, chat has become a primary

collaborative tool used in establishing and maintaining situational awareness (SA)

through knowledge sharing particularly in the maritime domain.

However, as the chat technology becomes more mature and embedded in tactical

operations, Navy personnel discover the applications do not fully meet their

requirements. Evaluations of chat applications during Fleet exercises, such as Trident

Warrior in support of FORCEnet, have determined that chat applications currently in

Navy ships do not meet all of the warfighters’ needs [CAT05a]. Although there has been

much work in identifying these shortfalls and replacing or modifying the tools to support

the requirements, there continue to be difficulties in meeting the rapidly changing needs

of the warfighter. To date, there is no existing methodology or process to include

evolving requirements in the development process of the follow-on system to ensure all

user requirements are satisfied. The development and subsequent utilization of such a

method will ensure applications are developed and that meet not only the formally

identified requirements, but also those that result from day-to-day operational use.

We have chosen to focus our efforts on applying the framework proposed by this

research to the U.S. Navy’s real-time, online communication systems, commonly referred

to as ‘chat’ tools. We will henceforth refer to these tools collectively as Navy Chat.

 42

B. PRELIMINARY ANALYSIS OF CHAT REQUIREMENTS
Since 2001, several organizations have been involved in collecting and analyzing

data on Navy Chat use, usability, architecture, and required functionality, as listed in

Appendix A. The compilation of the resulting information is part of a larger attempt to

develop a source of information for the facilitation of discussions, to build consensus and

to identify gaps in user requirements [CAT05]. It is important to note this is not an

exhaustive listing of all Navy Chat requirements. We chose to limit the focus of our

study to the requirements in [CAT05] because they represent the needs of naval maritime

chat users, the focus of our study.

We added the Navy Chat user requirements from [CAT05] to an Excel

spreadsheet to facilitate an initial examination of the data. We then sorted the

requirements by date and graphed them as a function of time to illustrate the number of

requirements collected from system users during field evaluations and from surveys over

a four year period. As shown in Figure 11, the number of documented user requirements

has increased dramatically from 2001 to 2005. The problem of managing evolving

requirements initially appeared to be determining how to handle this significant increase.

Although we expected an increase in requirements over time indicating users have

become more familiar with the technology, the sharp increase from 2003 to 2005 was

thought provoking. A closer look at the requirements data resulted in some interesting

conclusions. For one, there appeared to be several duplicate requirements; the authors

identified similar requirements from one year to the next, but used slightly different

wording, e.g., the requirements “provides logging capabilities” and “logs chatroom

conversations”. Two, there was no standardized way of representing requirements; the

requirements information was extremely high-level and abstract with no identified

attributes, behaviors, or constraints. Three, all requirements appeared to be created

equally; priorities were not assigned to the requirements. We recognize that [CAT05] has

been developed as a quick reference for Navy Chat user requirements and is not intended

to document fully specified software requirements. However, we believe our framework

will be useful for creating a standardized source that can serve as both a quick reference

to the growing number of requirements and as input to the software development process.

Chat Requirements

0
10
20
30
40
50
60
70
80
90

2001 2003 2005

Year

R

eq
ui

re
m

en
ts

Figure 11. Chat Requirements 2001 – 2005 (From: [CAT05]

D. FIREc: BUILDING THE CLASSIFICATION SCHEME

Developing a classification scheme for evolving requirements entailed creating

facets based, as closely as possible, on goal and requirements-oriented terminology used

by the stakeholders in the NCW operational environment. This ensured the classification

scheme represented requirements information particular to the NCW domain.

There are several recommended procedures for building a faceted classification

scheme [RAN62][SPI98][DEN03]. The critical steps of these procedures are

summarized as follows:

1. Content analysis: Investigate the subject domain to retrieve common
terms.

2. Group common terms: Combine similar terms identified in the first step.

3. Facet Creation: Identify major categories that can be represented as
relevant, mutually exclusive facets.

4. Facet ordering: Place terms in appropriate facets. Order facets and terms
in a manner appropriate to the planned retrieval.

The development of each layer of our proposed classification scheme will follow

the above steps. However, rather than perform one content analysis for the entire

 43

 44

requirements domain, we will perform a content analysis for the Strategic and System

layers in the classification scheme.

1. Strategic Layer

a. Content Analysis
A content analysis at the Strategic layer required an examination of

documents that could answer “why” the software system is required. In particular,

documents that describe the types of high-level objectives the stakeholders expect the

system to meet. The documents selected for the content analysis at this layer appear in

Appendix A. With Navy Chat applications as the focus of our case study, the analysis

must include NCW, Navy Chat, and FORCEnet related documentation. We found

reoccurring terms and concepts throughout the available, unclassified documents on the

aforementioned topics. Because the intent at the Strategic layer is to define requirements

in accordance with high-level goals, we focused on identifying goal-related terms or

phrases. The terminology we extracted from the documentation and used for our

Strategic layer content analysis is shown in Table 2.

We found the process at this level required subjective analysis. For

example, we discovered the term ‘coordination’ frequently used in the documentation, as

well as ‘situational awareness’. Based on experience, ‘situational awareness’ can also

refer to ‘real-time coordination’. Thus, one of our objectives for the content analysis was

to select terminology that was the least likely to result in facets with dual meanings. A

possible solution may be to develop an associated list of synonyms for each facet,

carefully selecting terms to support the mutual exclusivity requirement. Again, the

content analysis at this layer was largely subjective due to the abstract nature of the topic

under investigation.

 45

NCW/NCO FORCENET CHAT

Increased battlespace awareness Reliable communication (comms) Information and
knowledge mngmt

Improved command and control Store, catalog, retrieve information Interoperability

Rapid, superior decision
making

Readily accessible information Enhanced situational
awareness

Coordination of complex
military ops

Visual display of situational information Bandwidth efficient
comms

Self-synchronization Share situational information Secure, authentic comms

Improved understanding of
higher command’s intent

Collaborative environment for command
and control activities

Reliable comms

Improved understanding of
operational situation

Information Assurance Support collaboration

Reduce uncertainty of fighting Multiple security domains and levels Real-time conversation

Shared knowledge Tracking and engagement information on
environmental, neutral, hostile elements

Up-to-the-minute
command and control

Speed of command Process, sort, analyze information

Increasing responsiveness Accessibility to raw data

Dissemination of commander’s
intent

Survivability during network outages

 Standard repository of compatible
information

Table 2. Strategic Layer Terminology

b. Facet Development
The intent of using facets to classify requirements is to provide a more

precise definition than that achieved by using natural language. The facets developed

from the content analysis must be representative of the domain under consideration,

easily understood, and sufficient in quality and quantity to provide the desired level of

precision in requirements definition. Developing the Strategic layer of the classification

is the first step in this process, linking high-level goals to requirements. To that end, we

combined the common terms and phrases identified in the content analysis associated

with goals and designated the primary facet as ‘Goal’. Within this facet, the goal-related

attributes are shown in Figure 12.

-Interoperability
-Situational Awareness
-Information Assurance
-IM/KM
-Communicate
-Command & Control

Goal

Figure 12. Goal Facet at Strategic Layer

We identified three additional facets at the Strategic layer—Behavior,

StrategicAgent, and Dimension (Figure 13). The Behavior facet identifies the general

capabilities of all FORCEnet systems, and the StrategicAgent facet refers to NCW/NCO

constituents affected by the objective. The force and command facets are modeled using

inheritance and appear as subclasses of the StrategicAgent superclass. The elements of

these facets are examples chosen to illustrate our approach; there may be additional

elements appropriate to the NCW/NCO and FORCEnet domain. The Dimension facet

reflects the areas upon which developmental efforts of FORCEnet systems must focus

[CNO05] and serves to define the general domain for the Strategic layer requirement.

-Share
-Display
-Track
-Process
-Sort
-Analyze

Behavior

Figure 13. Strategic Layer Facets

The remaining facets classify additional supporting information, or

metadata, about the requirement such as the author, its descriptive data and the system to

which it applies (Figure 14). Included in the supporting metadata is a Priority facet to

 46

allow stakeholder-assigned requirements priorities, supporting preliminary risk

management efforts. There is technically no limit to the number of facets in this type of

classification scheme, but we limited our focus to a number sufficient to demonstrate our

approach. It is important to note the metadata can be included at either the Strategic

layer or the System layer; we will illustrate both approaches. The UML diagrams in

Figures 16 and 17 illustrate all of the facets developed for use at the Strategic layer. We

will discuss these diagrams in the following section.

 47

Figure 14. Supporting Requirements Information Metadata

The facets chosen for the Strategic layer provide the most abstract

classification of requirements, one based on high-level strategic goals, as well as

metadata about the requirements themselves. The facets meet the mutual exclusivity

requirement. For example, a goal can never be an agent or a service.

2. System Layer

a. Content Analysis
The content analysis at the System layer entails evaluating documentation

pertaining specifically to Navy Chat. The purpose of the content analysis at this level is

to build upon the results of the content analysis at the Strategic Layer and establish the

common vocabulary to help answer “what” the user needs the system to do. We

 48

evaluated several unclassified documents, listed in Appendix A, and the results are shown

in Table 3. Again, it is important to note the terminology in Table 3 is only a sample

from the available documentation used to demonstrate our approach.

During the content analysis at the Strategic level, we found a considerable

number of technical concepts used in conjunction with operational objectives. For

example, it was clear the phrase “visual display of situational information” referred to the

importance of maintaining situational awareness. It also referred to the use of a visual

display, which underscored the importance of human-computer interface (HCI), or user-

computer interface, technology to goal achievement. At the System level, we also

discovered terminology consistent with the need for HCI technology support; the content

analysis terminology at this layer refers to message characteristics implemented through

the user interface, such as font, text color, etc. Reflecting the subjective nature of the

content analysis and facet selection, we chose to incorporate a facet called ‘Supporting

Technology’ at the System layer that is based on terminology found at both the Strategic

layer and the System layer.

 CHAT

Chat Text-based
Message

Persistent Unix/Windows
compatible

Control Access

Authenticate Search View Send Network stability

Support multiple
applications

Communicate to
limited listeners

Listen Receive Configurable

Broadcast to
multiple users

Semi-permanent
chatrooms

Distributed
server
architecture

Client-to-server
architecture

Organic chat
capability

Private chatrooms Standing
chatrooms

Supports
emoticons

Monitor Alerts users to new
message

Support low data
rates

Public chatrooms Server-server
data
compression

Servers Auto-
Reconnect

Font is tailorable

Message is easy to
read

Supports good
usability practices

Whisper Share files Supports multiple
layouts

Tile windows Resize windows Alert users to
lost comms

View multiple
rooms

Filter

Table 3. System Layer Terminology

b. Facet Development
As with the Strategic layer, the facets reflect the grouping of like terms.

We identified the first facet for the System layer as ‘Supporting Technology’; each

requirement is associated with a general technology. Additional categories derived from

the content analysis and grouping of like terms include the Process, Component and

System Agent facets (Figure 15). The Process facet includes system capabilities in

support of the Navy Chat user’s common functions, such as chat, whisper, send and view.

The Component facet includes the category of Navy Chat system components to which

the requirement applies, such as hardware, software, server, or client. The System Agent

facet identifies the specific stakeholder that the requirement must address at the System

layer, to include the user. Because of the subjectivity inherent in this process, there may

be redundancy in the Supporting Technology and Component facets. However, any

redundancy or inconsistency can be addressed by either removing or modifying facets,

illustrating how our approach meets the changeability principle as discussed in Chapter

III.

-OS
-HW
-SW
-Interface
-Client
-Server

Component

Figure 15. System Layer Facets

As with the Strategic layer, all facets appear to meet the mutual

exclusivity requirement for faceted classification. However, there may be one possible

exception. We identified Communicate as a high-level goal; the chat systems supporting

NCW operations must satisfy the communication requirements. We also identified

Communications as a Supporting Technology; communications technology usually refers

to the equipment supporting the act of communicating.

 49

E. FIREm: MODELING THE FACETED CLASSIFICATION SCHEME
The UML models shown in Figures 16 through 19 represent the Strategic and

System layers of the faceted classification scheme developed in FIREc. UML notation

denotes the relationships between facets, as well as the multiplicity of the associations. A

reference identification attribute identifies the requirement at every layer of the

classification. We show alternative methods for modeling the supporting requirements

metadata, in part to demonstrate the ease of change associated with this approach.

Changing the degree of requirements definition entails adding, deleting or modifying

facets in any layer of the faceted classification and representing these changes in the

respective UML models. Not only is the classification scheme easy to change and

tailorable to any specific domain, but using UML to model it means its visualization is

easy to change, as well.

1. Strategic Layer UML Model

Figure 16. UML Model of Strategic Layer Classification

 50

2. Strategic Layer UML Model with Supporting Metadata

-refId
STRATEGIC REQUIREMENT

-Interoperability
-Situational Awareness
-Information Assurance
-IM/KM
-Communication
-Command & Control

Goal

-Name
-Nomenclature

System

-Date : date
-Author : author
-Description : description
-Priority : priority

Requirement Information

-Name
-Role
-Organization

author

-Created
-Modified
-Deleted

date

-Text Description
-Rationale
-Supporting Documentation

description

fulfills
describes

supports

-High
-Medium
-Low

priority

1

1..*

1

1

1

1

1

*

1..*

1

-Physical
-IT
-Data
-Cognitive
-Organizational
-Operating

Dimension

1

1

-Share
-Display
-Track
-Process
-Sort
-Analyze

Behavior

1

1

1

1

*

1

refers to

-Military Force : force
-Command : command

StrategicAgent

-Navy
-Army
-AirForce
-MarineCorps
-Allied
-Joint

force

-JFCOM
-CFFC
-COCOM
-JTF

command

Figure 17. UML Model of Strategic Layer Classification

 with Supporting Metadata

3. System Layer UML Model

Figure 18. UML Model of System Layer Classification

 51

4. System Layer UML Model with Supporting Metadata

Figure 19. UML Model of System Layer Classification with Supporting Metadata

F. OVERVIEW OF CLASSIFICATION APPLICATION

To implement our approach, we determined we needed to link the requirements to

the high-level goals (objectives) for the system and we required a standardized approach

for classification. We selected the two primary facets—Goal and Dimension—based on

our content analysis for the first layer of the classification scheme. As discussed, the first

layer of facets allows for rapid sorting and evaluation of requirements based on keywords

defined by the highest, most abstract goals in the classification. Evaluation at the first

layer helps to eliminate the most obvious discrepancies, such as duplicate requirements.

To support a preliminary evaluation of the requirements data by our classification

scheme, we developed a simple Access relational database, incorporating selected facets

at the Strategic layer. The preliminary requirements data from the generated Excel

spreadsheet was imported and each requirement was evaluated and categorized by the

facets, beginning with the Strategic level. Appendix B illustrates the classification of

 52

 53

requirements by Strategic facets, Dimension and Goal, and the System layer facet

Supporting Technology.

The first evaluation of the documented requirements indicated we could perform

the classification using the Strategic level facet Goal. However, using one facet only

provided minimal refinement because of the degree of abstraction in the documented

requirements. As a result, we determined we could achieve an even more refined

classification of the requirements at the Strategic level by including the Dimension facet

in the classification scheme. Taking the classification one step further using the Access

database, we included the System layer facet Supporting Technology in our analysis.

The initial analysis of the requirements defined by the selected Strategic layer and

System layer facets of our classification indicated there were indeed duplicate

requirements. The inconsistencies were apparent when the requirements were

categorized according to the classification scheme suggested above. The first set of

requirements data we analyzed included those requirements categorized by the goal

IM/KM (information management/knowledge management). The data is shown in Table

4. The requirements in italics are those we found to be inconsistent (duplicates) upon

applying the faceted classification scheme using the two primary facets of the Strategic

layer and one System layer facet. In both cases, the requirements originated three years

before their modification. This analysis substantiated our use of the faceted classification

scheme to improve the process of defining and classifying requirements, as well as the

searchability of requirements data.

 54

Requirement Goal Dimension Supporting Tech
Automatic download of logs IM/KM IT Networking
Logs should be controlled centrally at the
server

IM/KM IT Networking

Messages should be sent to server IM/KM IT Networking
Logs chatroom conversations IM/KM IT Data Management
Provides logging capabilities IM/KM IT Data Management
Logs non-permanent chatrooms IM/KM IT Data Management
Ability to control how much of the historic
log is downloaded when user logs on

IM/KM IT Data Management

Logs should be searchable within a
certain time segment

IM/KM IT Data Management

Logs must be readily available to users for
review of past events

IM/KM IT Data Management

Logs the entry/exit of members in the
room

IM/KM IT Data Management

Ability to search for specific information
since last logon

IM/KM IT Data Management

Timestamp Messages IM/KM Data Data Management
Timestamp messages should include date
and time

IM/KM Data Data Management

Supports file transfer IM/KM Data Data Management
Logging of private messages should be
configurable

IM/KM Cognitive User-Computer
Interface

Table 4. Analyzed IM/KM Requirements

G. FIREs: STRUCTURED REQUIREMENTS--DEVELOPMENT OF THE

XSD

As discussed in Chapter IV, the purpose of the XML Schema is to define and

constrain the content and structure of XML documents. We followed an object-oriented

approach to develop the XML Schema (XSD) necessary to define both the vocabulary

and structure as represented by our layered faceted requirements classification. This

approach supports extensibility, allowing for changes to the type and scope of

requirements data. Using the UML diagrams developed in FIREm, we associated each

layer of the classification scheme with a set of XML Schemas; each set is comprised of a

schema representing the class structure and a schema defining the attributes. Each

classification layer’s set of schemas inherits the composition and attributes of the

preceding one, as shown in Figure 20. An association class represents the supporting

metadata, or requirements information that enhances the classification. As discussed, this

metadata (requirements information) is not unique to any particular layer in the

classification. This decomposition allows additional facets to provide amplifying

administrative information without complicating the classification scheme and allows for

reusability. Because we use the UML representation of the classification to derive the

XML Schema, the instances (XML documents) that conform to the schema contain the

information needed to define evolving requirements.

The tools used to develop the XSD and supporting XML documents are

MDXSYS Limited XMLobjective 1.2© [MDX] and Altova XMLSpy v2006 sp2 [ALT],

both Integrated Development Environments that support the visual design of XML

Schemas and editing and validation of XML documents. It is important to note the

schemas developed in this work only represent functional concepts; they do not conform

to the Department of the Navy XML Naming and Design Rules Version 2.0 [DONCIO].

Implementation of the approach recommended in this thesis would require full

compliance with [DONCIO].

Figure 20. XSD Structure of Faceted Classification

1. Strategic Layer XML Schema
The Strategic layer XSD incorporates the facets developed in FIREc and is

structured according to the UML model developed in FIREm. The design of the Strategic

layer XML Schema, with supporting requirements metadata, is shown in Figure 21. The

requirement defined at the Strategic layer, named “StrategicRequirementType”, is a

 55

complex element, composed of a sequence of child elements that represent the facets of

the classification (Figure 22). Each child element must occur in the order they are

defined and at least one time in the conforming XML document, as denoted by the

occurrence indicators “sequence” and “minOccurs”. Each element refers to the name of

the corresponding complexType or simpleType element that defines it. For example, the

element below is named “Goal” of type “GoalType”, which is a primary facet of the

Strategic layer of the classification (refer to Figure 16).

<xs:element minOccurs="1" name="Goal" type="req:GoalType"></xs:element>

The simpleType element “GoalType” must occur at least once in the conforming XML

document. This ensures the resulting requirement is linked to a high-level objective, or

goal, for the system. The default value for the occurrence “minOccurs” is 1, so we chose

not to include it in the schema.

Figure 21. Strategic Layer XSD Design

The namespace declaration xmlns:req="http://www.nps.edu/requirements

allows us to define data elements unique to our domain of interest by using the prefix

“req”.

 56

 57

 <xs:element name="StrategicRequirementType">
 <xs:complexType>
 <xs:sequence>
 <xs:annotation>
 <xs:documentation> The DimensionType
establishes the general domain of the Strategic layer requirement.
The GoalType establishes what strategic goal needs to be met by the
requirement. The StrategicAgentType defines the operational
stakeholder. The BehaviorType provides an abstract definition of the
technical capability addressed by the requirement. The ReqInfoType
includes the text description of the requirement, system and POC.
</xs:documentation>
 </xs:annotation>
 <xs:element name="Dimension"
type="req:DimensionType"/>
 <xs:element name="Goal" type="req:GoalType"/>
 <xs:element name="Behavior"
type="req:BehaviorType"/>
 <xs:element name="StrategicAgent"
type="req:StrategicAgentType"/>
 <xs:element name="ReqInfo"
type="req:ReqInfoType"/>
 </xs:sequence>
 <xs:attribute name="strategicRefID"
type="req:strategicRefIDType" use="required"/>
 </xs:complexType>
 </xs:element>

Figure 22. Example of XSD Strategic Requirement Element from Strategic.xsd

As shown in Figure 23, the requirement defined by the XML Schema

Strategic.xsd is identified by a four-digit identification number, <xs:simpleType

name="strategicRefIDType">, and restricted to the long number format, as defined by

<xs:restriction base="xs:long">. The reference identification number is required

for the resulting XML document to conform to the Strategic layer schema, and it must

match the specified pattern. In this example, the “strategicRefID” of a conforming XML

document must have four-digits, each digit a number from 0 to 9.

<xs:simpleType name="strategicRefIDType">
 <xs:restriction base="xs:long">
 <xs:pattern value="[0-9]{4}"></xs:pattern>
 </xs:restriction>

 </xs:simpleType>

<xs:attribute name="strategicRefID" type="req:strategicRefIDType"

use="required"></xs:attribute>

Figure 23. Strategic Layer Reference Identification Number

 58

The simple element types “GoalType”, “DimensionType”, “StrategicAgentType”

and “BehaviorType” are defined in the XML document StrategicLayerTypes.xsd. The

“ReqInfoType” complex element represents the requirements metadata and is defined in

the XML document ReqInfo.xsd. Both documents appear in Appendix C. The

StrategicLayerTypes.xsd and ReqInfo.xsd are included in the Strategic layer schema

Strategic.xsd by using <xs:include</xs:include>, as shown in Figure 24.

 <xs:include schemaLocation="StrategicLayerTypes.xsd"></xs:include>

 <xs:include schemaLocation="ReqInfo.xsd"></xs:include>

Figure 24. Including Multiple Schemas in the Strategic Layer Schema

 The simpleType element “GoalType”, as shown in Figure 25, is defined by a

string of characters, whitespace, tabs and carriage returns, as indicated by the string

datatype shown in <xs:restriction base="xs:string">. In addition, the content of

the element is restricted to the value indicated by the enumeration constraint. In the

example shown in Figure 25, the conforming XML document must specifically include

“Interoperability”, “SituationalAwareness, “InformationAssurance”, etc. as an entry of

the simpleType “GoalType”.

<xs:simpleType name="GoalType">
 <xs:annotation>
 <xs:documentation>
 The GoalType links the requirement to the highest level strategic
concern; restricted to
enumerated values</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Interoperability"></xs:enumeration>
 <xs:enumeration
value="SituationalAwareness"></xs:enumeration>
 <xs:enumeration
value="InformationAssurance"></xs:enumeration>
 <xs:enumeration value="CommandControl"></xs:enumeration>
 <xs:enumeration value="Communication"></xs:enumeration>
 <xs:enumeration value="IMKM"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>

Figure 25. Example from StrategicLayerTypes.xsd

The design of ReqInfo.xsd follows the UML model that is shown in Figure 14.

The diagram in Figure 26 represents the XML structure of the ReqInfo UML model, as it

is included in the Strategic layer schema. As previously discussed, the number of

elements required to capture the data can be changed depending on the desired level of

abstraction in the requirements definition.

Figure 26. XML Diagram of Strategic.xsd illustrating the inclusion of ReqInfo.xsd.

As shown in Figure 27, the complex type “ReqInfo” is defined by the order

indicator <xs:sequence> as predefined sequence of child elements. Both the

 59

 60

“DescriptionType” and “ReqAuthorType” elements can have unlimited occurrences as

defined by the occurrence indicator maxOccurs="unbounded". This ensures the

conforming XML document allows for an unlimited number of changes to a requirement

or the addition of amplifying information by multiple authors. The changes appear as

additional elements in the conforming XML document, supporting the evolution of

requirements. Again, because of the modularity of the ReqInfo.xsd, the requirements

information may also be included at any layer or all layers of the classification.

<xs:complexType name="ReqInfoType">
 <xs:annotation>
 <xs:documentation>Sequence of elements defines the
requirement metadata. Description and ReqAuthor can occur an unlimited
number of times to support revisions to a requirement. System, Date
and Priority can only occur once.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element minOccurs="1" name="System"
type="req:SystemType"></xs:element>
 <xs:element maxOccurs="unbounded" minOccurs="1"
name="Description" type="req:DescriptionType"></xs:element>
 <xs:element maxOccurs="unbounded" minOccurs="1"
name="ReqAuthor" type="req:AuthorType"></xs:element>
 <xs:element minOccurs="1" name="Date"
type="req:DateType"></xs:element>
 <xs:element minOccurs="1" name="Priority"
type="req:PriorityType"></xs:element>
 </xs:sequence>
</xs:complexType>

Figure 27. Example from ReqInfo.xsd illustrating
requirements information elements.

The “DateType” is a datatype that specifies the date the requirement has been

created, modified or deleted (Figure 28). While there is no limit to the number of

occurrences of the “Revised” element, and no requirement for an occurrence of the

“Deleted” element, the “Created” element must occur at least once. This ensures a

modification to, or deletion of, an existing requirement includes the respective date. The

format for the date datatype is included in the XML Schema definition of the form

YYYY-MM-DD.

 61

 <xs:complexType name="DateType">
 <xs:annotation>
 <xs:documentation>Sequence of elements gives the date each
requirement is created,revised and deleted. Created and Deleted can
only occur once, but Revised can occur an unlimited number of times to
capture changes to requirements.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element minOccurs="1" name="Created"
type="xs:date"></xs:element>
 <xs:element maxOccurs="unbounded" minOccurs="0"
name="Revised" type="xs:date"></xs:element>
 <xs:element minOccurs="0" name="Deleted"
type="xs:date"></xs:element>
 </xs:sequence>
 </xs:complexType>

Figure 28. Example from ReqInfo.xsd illustrating “DateType” element.

In the ReqInfo.xsd, a primary email address of the author is required, but there are

also options for either a primary or secondary phone number or a secondary email

address, as shown in Figure 29. The email address is defined by the simpleType element

“EmailType” and the phone number is defined by the simpleType element “PhoneType”,

and both are restricted to a pattern value as shown in Figure 30. In the “EmailType” and

“PhoneType” simpleType elements, the <xs:restriction base="xs:token"> is used

to accommodate the a phone number and email address, removing the white space

characters, carriage returns and tabs. The pattern value can be tailored for any desired

format in either datatype.

 62

<xs:complexType name="AuthorType">
 <xs:annotation>
 <xs:documentation>Sequence of elements specifies POC
information.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element minOccurs="1" name="Name"
type="xs:string"></xs:element>
 <xs:element minOccurs="1" name="Title"
type="xs:string"></xs:element>
 <xs:element minOccurs="1" name="Organization"
type="xs:string"></xs:element>
 <xs:element minOccurs="1" name="PrimaryEmail"
type="req:EmailType"></xs:element>
 <xs:choice>
 <xs:element minOccurs="0" name="PrimaryContactNumber"
type="req:PhoneType"></xs:element>
 <xs:element minOccurs="0" name="SecondaryContactNumber"
type="req:PhoneType"></xs:element>
 <xs:element minOccurs="1" name="SecondaryEmail"
type="req:EmailType"></xs:element>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

Figure 29. Example from ReqInfo.xsd illustrating “AuthorType” element

<xs:simpleType name="EmailType">
 <xs:restriction base="xs:token">
 <xs:pattern value="([\.a-zA-Z0-9_])+@([a-zA-Z0-9_])+(([a-zA-Z0-
9_])*\.([a-zA-Z0-9_])+)+"></xs:pattern>
 </xs:restriction>

</xs:simpleType>
<xs:simpleType name="PhoneType">
 <xs:restriction base="xs:token">
 <xs:pattern value="(\-[0-9]{3})+(\-[0-9]{3})+(\-[0-
9]{4})"></xs:pattern>
 </xs:restriction>

</xs:simpleType>

Figure 30. Example from ReqInfo.xsd illustrating “EmailType”
 and “PhoneType” elements.

2. System Layer XML Schema
We used a similar approach used to develop the schemas at both the Strategic and

System layers. Again, we relied on the extensibility and modularity of XML to represent

requirements data, merging and building upon the data structured at the Strategic layer, as

shown in the schema diagram in Figure 31.

Figure 31. Schema diagram of System.xsd

The requirement defined at the System layer is represented by the complexType

element “SystemRequirementType”, which is composed of a sequence of child elements

including the elements of type “StrategicLayerType” and “ReqInfoType” that implement

the elements and datatypes defined by Strategic.xsd and ReqInfo.xsd, as illustrated in

Figure 32. A attribute is assigned at each layer, identified as “strategicRefId” and

systemRefId, that serves as a unique reference identification number for each instance of

Strategic or System layer requirement. As previously discussed, the ReqInfo.xsd can be

implemented at either the Strategic layer, the System layer or both with the
<xs:include</xs:include>.

 63

 64

 <xs:element name="StrategicRequirementType">
 <xs:complexType>
 <xs:sequence>
 <xs:annotation>
 <xs:documentation> The DimensionType
establishes the general domain of the Strategic layer requirement.
The GoalType establishes what strategic goal needs to be met by the
requirement. The StrategicAgentType defines the operational
stakeholder. The BehaviorType provides an abstract definition of the
technical capability addressed by the requirement. The ReqInfoType
includes the text description of the requirement, system and POC.
</xs:documentation>
 </xs:annotation>
 <xs:element name="Dimension"
type="req:DimensionType"/>
 <xs:element name="Goal" type="req:GoalType"/>
 <xs:element name="Behavior"
type="req:BehaviorType"/>
 <xs:element name="StrategicAgent"
type="req:StrategicAgentType"/>
 <xs:element name="ReqInfo"
type="req:ReqInfoType"/>
 </xs:sequence>
 <xs:attribute name="strategicRefID"
type="req:strategicRefIDType" use="required"/>
 </xs:complexType>
 </xs:element>

Figure 32. XML Elements of the “SystemRequirementType” from System.xsd

H. FIREx: PROVIDING DATA EXCHANGE CAPABILITY
Being able to access and utilize requirements information without relying on

proprietary software is one of the key factors in managing evolving requirements. XML

is a platform neutral and programming language independent technology, which offers a

flexible way to represent and manage requirements data. Because the XML document

conforms to a schema that defines its structure and content, it contains standardized data

suitable for use by applications designed to process the data. Notably, one of the design

goals for XML is, “It shall be easy to write programs which process XML documents”

[W3C].

The XML documents that conform to defining schemas contain requirements data

that can be interchanged across the Internet. The data within these documents can be

retrieved using the XML Document Object Model (DOM) in the case of small

 65

documents.3 Or, the data in large XML documents can be parsed using the Simple API

for XML (SAX) that is an open source project hosted by SourceForge [SAX]. Large

amounts of XML data can be stored using native XML databases or XML-enabled

enterprise database systems, providing the ability to add, modify, or search XML

documents. The XML Query (XQuery) language can be used to extract and process the

data contained in XML documents. Most commonly, the XML Path language (XPath)

and Extensible Stylesheet Language Transformations (XSLT) are used together in a

stylesheet to process specific parts of XML documents and convert the data to another

form of output. These technologies, which belong to the XSL family of recommendations

[W3Cb], operate on the hierarchical elements of the source XML document to transform

the data into a result tree with a different structure. This transformation may be necessary

simply so the data can be presented in such a way that is more easily read than its

associated XML document. In addition, it may be used to restructure an existing XML

document by selecting, removing, or renaming the source elements for more efficient,

effective data exchange.

In this section, we present the sample XML documents representing the

requirements data generated from the first three activities of our framework. In addition,

we present a simple stylesheet to demonstrate how XSL and XML can be used to

transform this data without relying on expensive, proprietary software applications.

1. XML Documents Representing Evolving Requirements
Classification at the Strategic layer results in a requirement in what is probably its

most abstract form. However, even at this layer, the facets of the classification can

provide information that is useful in reducing inconsistencies in requirements, as

demonstrated in the preceding section. In Figure 33, we provide an excerpt from an

XML document that conforms to the XML Schemas Strategic.xsd and ReqInfo.xsd and

contains preliminary information for a Navy Chat requirement at the Strategic level of the

classification. The XML requirement document, in its entirety, is shown in Appendix D.

3 “The Document Object Model is a platform- and language-neutral interface that will
allow programs and scripts to dynamically access and update the content, structure and
style of documents.” W3C Architecture Domain, Retrieved 19APR06 from:
http://www.w3.org/DOM/#what

 66

<Dimension>Cognitive</Dimension>
 <Goal>SituationalAwareness</Goal>
 <Behavior>ShareInformation</Behavior>
 <StrategicAgent>
 <Command>JFCOM</Command>
 <MiltaryForces>Navy</MiltaryForces>
 </StrategicAgent>
 <ReqInfo>
 <System>
 <SystemName>Navy Chat</SystemName>
 <SystemNomenclature>not available</SystemNomenclature>
 </System>
 <Description>
 <TextDescription>Chat technologies on afloat units must
provide warfighters with visual cues/indicators to aid in maintaining
situational awareness </TextDescription>

Figure 33. Sample from conforming XML Document generated from Strategic.xsd

The sample requirement for Navy Chat, shown in Figure 33, is structured

according to the classification scheme and the associated XML schema. The elements

<Goal>, <Behavior>, <StrategicAgent>, and <ReqInfo> are the XML

representations of the corresponding facets of the classification. We have included

sample entries in each of the elements to illustrate the use of XML to standardize the

format of data.

The conforming XML document based on the System layer schema contains data

that defines the requirement at both the Strategic and the System layer. At each layer of

the classification, the requirement is defined according to the layer-specific facets,

defined by StrategicLayerTypes.xsd and SystemLayerTypes.xsd, as well as by the facets

that capture the requirements metadata, as defined by ReqInfo.xsd. The XML

requirement document, as it is defined at the System layer, can also be found in Appendix

D. Again, we have populated the elements of the System layer XML requirement

document with example data based on [CAT05] appearing in Appendix B to demonstrate

our approach.

There are many benefits of using XML to represent requirements information.

First, all data particular to one requirement is captured in one XML document. In the

XML requirement document, each layer of the classification is associated with a

reference identification number that is unique to that layer, aiding in traceability. This

 67

document also illustrates the capability of the classification scheme and associated

schemas to capture revisions to requirements complete with author, point of contact

information and date of revision. In addition, a priority is assigned at each layer;

inconsistent priority assignments between layers may indicate there is a mismatch that

exists between the stakeholders’ goals (StrategicAgent) and the warfighers’ needs

(SystemAgent). Secondly, XML documents are searchable. Data across a collection of

XML requirement documents can be retrieved by searching by element, attribute or text

content because each XML requirement document has exactly the same structure as

defined by the schemas. This means, for example, a stakeholder could retrieve all

requirements that are classified by the child element “Interoperability” defined by the

Strategic layer complexType element “GoalType”.

2. Using XSLT to Transform XML Requirements Documents
A crucial part of being able exchange standardized data is having the capability to

view it and extract that which is required. As previously discussed, XPath and XSLT are

used to 1) transform an XML document into an easy-to-read form such as HTML and 2)

manipulate the elements of the source XML document. In both of these cases, the XSLT

stylesheet is applied to an XML document to produce the desired output. Using

XMLobjective and the open source web development framework Apache Cocoon [APA],

we developed a stylesheet to transform and view the Strategic layer XML document that

appears in Appendix D. The web content is shown below in Figure 34 and the complete

stylesheet appears in Appendix E. Again, this is a very simple example of how XML,

XSL and XPath can be used to structure and transform requirements data.

Figure 34. Screenshot illustrating transformation of the XML requirement

document StrategicRequirement.xml using the XSL stylesheet Strategy.xsl

I. SUMMARY
In this chapter, we presented our case study to demonstrate how the Framework

for Requirements Evolution (FIRE) approach can be used to classify and manage

evolving requirements. We demonstrated a method for classifying user requirements that

is based on a stakeholder defined faceted classification scheme. In addition, we

illustrated how UML, XML and XSL can be used to model, standardize and transform

requirements data ultimately providing structured requirements and universal data

exchange capability.

 68

 69

VII. CONCLUSION AND RECOMMENDATIONS FOR FUTURE
WORK

A. CONCLUSION
All software systems are designed and built to meet a set of requirements as set

forth by the stakeholders. These requirements define the qualities and functions that must

be addressed by a technical solution. Requirements, however, have a propensity to

change, both during and after the software development process. This is particularly true

in a fast-paced operational environment because users will put a system to the test and in

doing so discover its capabilities and limitations. Additionally, as the DOD undergoes the

transformation to NCW, new technical solutions supporting network-centric operations

may change how warfighters perform their jobs, potentially resulting in new

requirements. Ultimately, unless there are mechanisms in place to capture and integrate

evolving requirements, software systems will not meet all of the users’ needs.

 There are no boundaries associated with evolving requirements of software

systems supporting NCW/NCO. User requirements originate from every group of

stakeholders, from the warfighters who use and maintain the systems to the organizations

responsible for acquiring them. In addition, frequently occurring warfighter

demonstrations may result in the collection and documentation of user requirements for

new technologies. Unfortunately, there is no formal process for collecting and

integrating evolving requirements from all of these sources. The result is a set of

requirements that is neither consistent in structure nor content and cannot be easily shared

among all stakeholders due to varying data formats. In addition, the warfighters’ needs

may be expressed in terms of what operational goals need to be supported, resulting in

requirements that are defined a high level of abstraction. Managing evolving

requirements that span countless organizations and many groups of stakeholders requires

an approach that, as a starting point, defines requirements according to operational goals

and that utilizes technology that is neither platform dependent nor proprietary. As such,

we recommend a framework incorporating a non-traditional method of classifying

requirements, which is modeled in UML to provide visualization and implemented with

 70

XML to provide structure and content. We believe this approach is necessary to develop

requirements that are standardized and easily exchanged across organizations without

relying on expensive software applications.

We recommend a faceted classification scheme to provide a way of defining and

classifying requirements without relying on subjectively interpreted and difficult to

manage natural language requirements. Predefined attributes serve to guide the user

during submission of requirements information. The faceted classification scheme is

tailorable to be domain specific, a characteristic not found in current tools. It is also easy

to change; updating or changing the classification simply means adding, deleting, or

modifying facets as required. We believe UML is a natural choice for modeling this

classification because it is widely used, easily understood and can represent a scheme that

is mostly non-hierarchical.

We base our approach on the premise the web is available to manage

requirements discovered, changed or deleted based on warfighters’ experience with the

technology. Access to the web is assumed for any operational unit that is part of the

NCW transformation, as well as for any organization within DOD that needs access to

requirements information for research and development of software systems supporting

NCW. Clearly, using the XML standard for data exchange over the web supports our

objectives of providing 1) structured requirements and 2) non-platform specific data

exchange.

It is important to note the intent of this approach is not to add a complicated

procedure for collecting and managing requirements. Rather, it is to ensure evolving

requirements accurately reflect the warfighters’ true needs, are as consistent and complete

as possible, and can be integrated with the formal software development process.

B. FUTURE WORK

1. Developing a Requirements Domain Model
The facets of our classification scheme and associated XML elements were the

result of a very subjective interpretation of the information we collected for the domain

 71

analysis. In practical application, formal development of an ontology or taxonomy would

be necessary to establish the requirements domain. An ontology would define the

semantic structure of the domain, which could them be used to further develop and refine

the structure and content of the XML documents. Open source tools such as Protégé

OWL [PRO] are available to develop the concepts and relationships of the knowledge

base for the software requirements domain.

2. Web-based Application Supporting Standard Input Format
The most effective way to capture evolving requirements is to provide

stakeholders (in particular users/warfighters) with a highly accessible, user-friendly way

to contribute their ideas and results of their experiences with the technology. Although

requirements engineers often use surveys, questionnaires and interviews to elicit

requirements during the software development process, these tools are not practical when

the group of stakeholders is large, geographically dispersed and possibly involved in

military operations. As such, a web-based application is probably the most suitable tool

to collect requirements directly from the warfighter. This type of tool has the potential to

reach all stakeholders, even those with limited communication capabilities or who cannot

participate in traditional elicitation processes due to operational commitments. It would

also serve as a data collection medium for requirements previously documented in text

files or spreadsheets, as well as those generated from informal sources such as trouble

calls or CASREPs. A fully-functional web-based application utilizing a standard input

format would be the focus of future work to implement our recommended approach.

A standard input format for XML content can be achieved using the XML

application XForms. Recently added as a W3C recommendation, XForms offers several

advantages over commonly used HTML forms, such as device independence and reuse of

existing schemas to define data elements and maintain validation constraints [W3Cc].

More information can be found at [W3c] regarding application and implementation. One

of the major hurdles to implementing XForms has been lack of native browser support.

However, support is growing; the browser plug-in formsPlayer and open source

JavaScript FormFaces are both available to support the XForms standard.4

4 formPlayer available at http://www.formsplayer.com/content/index.html and FormFaces is available
at http://sourceforge.net/projects/formfaces/

 72

THIS PAGE INTENTIONALLY LEFT BLANK

 73

APPENDIX A: SOURCES USED FOR DOMAIN ANALYSIS

Bentrup, John A. and Sunoy N. Banerjee. Memo: Fleet Chat Requirements. Center for
Naval Analysis. June 2003.

Galdorisi, George, Jeff Clarkson, Jeff Grossman, and Mike Reilley. Composable
FORCEnet Command and Control: The Key to Energizing the Global Information Grid
to Enable Superior Decision Making. The Ninth International Command & Control
Research and Technology Symposium. September 2004. Retrieved 05May06 from:
http://www.dodccrp.org/events/2004/ICCRTS_Denmark/CD/track01.htm

Heacox, Nancy J., Ronald A. Moore, Jeffrey G. Morrison, and Rey F. Vturralde. Real-
time Online Communication: ‘Chat’ Use in Navy Operations.

FORCEnet Capabilities: 15 Capabilities Necessary to Implement the FORCEnet Concept.
FORCEnet website. Retrieved 06May06 from: http://forcenet.navy.mil/

Jara, Timothy and Matt Lisowski. Don’t Silence Navy Chat. Proceedings, September
2003.

Network Centric Warfare: Background and Oversight Issues for Congress. CRS Report
for Congress, June 2, 2004. Retrieved 06May06 from:
http://www.fas.org/man/crs/RL32411.pdf

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

APPENDIX B: NAVY CHAT USER REQUIREMENTS 5

Requirement Goal Dimension Supporting Tech
Maintain an accurate list of chat
participants to reduce ping rate (or,
reduce ping rate to maintain
accurate list)

SA IT Networking

Maintain chat history during
network outages

SA IT Networking

Maintain screen contents on
reconnect

SA IT Networking

Automatic system reconnect SA IT Networking
Distributed server architecture SA IT Networking
Receive transcript of chat
messages upon entering chat
room.

SA IT Data Management

Monitor chat sessions without
participating

SA IT Communications

Ability to rejoin chatrooms
immediately and automatically

SA IT Communications

Locate specific person SA IT Communications
Locate chat rooms SA IT Communications
Ability to rejoin chatrooms several
times an hour

SA IT Communications

Ability to send message to one
user

SA IT Communications

Ability to use the client when the
server is offline

SA IT Communications

Chat room access should be
controlled by individuals or groups

SA IT Communications

Supports hidden rooms SA IT Communications
Supports multiple chatroom types SA IT Communications
Ability to launch private chat via a
room

SA IT Communications

Allows temporary chat room SA IT Communications
Supports use of multiple user ID's SA IT Communications
Participate in multiple rooms
simultaneously

SA IT Communications

Supports functional account/user
names

SA IT Communications

Allows users to join or leave a
chatroom

SA IT Communications

Indication user is reading a private
message

SA Cognitive User-Computer Interface

5 Source: [CAT05]

 76

Requirement Goal Dimension Supporting Tech
Provides indication of members
joining and leaving

SA Cognitive User-Computer Interface

System alerts should be hidden on
demand

SA Cognitive User-Computer Interface

Provides alert for new messages SA Cognitive User-Computer Interface
Provides audio alert to keywords SA Cognitive User-Computer Interface
Alert modality is configurable by
the user

SA Cognitive User-Computer Interface

Supports tiled windows SA Cognitive User-Computer Interface
Legibly display information on
message

SA Cognitive User-Computer Interface

Ability to turn off join/depart
messages related to other users

SA Cognitive User-Computer Interface

Ability to visually monitor at least
10 rooms at once

SA Cognitive User-Computer Interface

Supports visual alerts SA Cognitive User-Computer Interface
Provide indication that someone
wants to chat

SA Cognitive User-Computer Interface

Supports audio alerts SA Cognitive User-Computer Interface
Ability to monitor several chat
rooms at once

SA Cognitive User-Computer Interface

User nicknames should be flexible SA Organizational N/A
Provides a standardized naming
convention

SA Organizational N/A

Functional account can remain
online during watch turnover

SA Organizational N/A

Automatic download of logs IM/KM IT Networking
Logs should be controlled centrally
at the server

IM/KM IT Networking

Messages should be sent to server IM/KM IT Networking
Logs chatroom conversations IM/KM IT Data Management
Provides logging capabilities IM/KM IT Data Management
Ability to search for specific
information since last logon

IM/KM IT Data Management

Ability to control how much of the
historic log is downloaded when
user logs on

IM/KM IT Data Management

Logs should be searchable within
a certain time segment

IM/KM IT Data Management

Logs must be readily available to
users for review of past events

IM/KM IT Data Management

Logs the entry/exit of members in
the room

IM/KM IT Data Management

Logs non-permanent chatrooms IM/KM IT Data Management
Timestamp Messages IM/KM Data Data Management

 77

Requirement Goal Dimension Supporting Tech
Timestamp messages should
include date and time

IM/KM Data Data Management

Supports file transfer IM/KM Data Data Management
Chatroom layout is configurable IM/KM Cognitive User-Computer Interface
Logging of private messages
should be configurable

IM/KM Cognitive User-Computer Interface

Provides server interoperability Interoperability IT Networking
Provides support for WAP or
mobile device

Interoperability IT Networking

Provides support for handheld
devices

Interoperability IT Networking

UNIX and Windows compatible Interoperability IT Communications
Single version of chat software Interoperability IT Communications
Standardized chat server policies Interoperability Organizational N/A
Supports tactical platforms/units
with capability of 10Kbps per
enclave

Comms Physical Networking

Limits number of users in chat
sessions to 2000

Comms IT Networking

Minimizes the initial bandwidth
cost to connect to server

Comms IT Networking

Chat server is scalable to support
approx 700 rooms simultaneously

Comms IT Networking

Bandwidth efficient Comms IT Networking
Shipboard servers maintain
onboard chat during outages

Comms IT Networking

User restricted to 40 concurrent
chat sessions

Comms IT User-Computer Interface

Messages are in real-time Comms Data Networking
Provides server-to-server
compression of data

Comms Data Networking

System supports low data rates Comms Data Networking
Messages are text-based Comms Data Data Management
User authentication can be set to
optional

IA IT Security

Supports temporary password
protections on chatrooms

IA IT Security

Ensures security by avoiding
computer-to-computer file transfers

IA IT Security

Provides user authentication IA IT Security
User authentication is lightweight IA IT Security
Broadcast chat C & C IT Communications
Provides alert to users of TAO
action

C & C Cognitive User-Computer Interface

Track new information C & C Cognitive User-Computer Interface

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

APPENDIX C: CASE STUDY XML SCHEMAS

STRATEGIC.XSD
<!-- edited with XMLSpy v2006 sp2 U (http://www.altova.com)
and XMLObjective 1.2 mdxsys (http://www.xmlobjective.com) by
Linda Reynolds (Naval Postgraduate School) April 200 -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:req="http://www.nps.edu/requirements"
targetNamespace="http://www.nps.edu/requirements"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:include schemaLocation="StrategicLayerTypes.xsd"/>
 <xs:include schemaLocation="ReqInfo.xsd"/>
 <xs:simpleType name="strategicRefIDType">
 <xs:annotation>
 <xs:documentation>This is a unique reference
identification number for a
requirement defined at the Strategic layer of the
classification</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]{4}"/>
 </xs:restriction>
 </xs:simpleType>
 <!--The StrategicRequirementType is referenced when the
requirement is only defined
at the Strategic layer.-->
 <xs:element name="StrategicRequirementType">
 <xs:complexType>
 <xs:sequence>
 <xs:annotation>
 <xs:documentation> The DimensionType
establishes the general domain of the Strategic layer requirement. The
GoalType establishes what strategic goal needs to be met by the
requirement. The StrategicAgentType defines the operational
stakeholder.BehaviorType provides an abstract definition of the
technical capability addressed by the requirement. The ReqInfoType
includes the text description of the requirement, system and POC.
</xs:documentation>
 </xs:annotation>
 <xs:element name="Dimension"
type="req:DimensionType"/>
 <xs:element name="Goal" type="req:GoalType"/>
 <xs:element name="Behavior"
type="req:BehaviorType"/>
 <xs:element name="StrategicAgent"
type="req:StrategicAgentType"/>
 <xs:element name="ReqInfo"
type="req:ReqInfoType"/>
 </xs:sequence>
 <xs:attribute name="strategicRefID"
type="req:strategicRefIDType" use="required"/>

 80

 </xs:complexType>
 </xs:element>

 <xs:complexType name="StrategicLayerType">
 <xs:annotation>
 <xs:documentation>
 The StrategicLayerType element is referenced when the requirement
is defined at System layer.In this example, the elements contained in
the complexTypes "StrategicRequirementType and "StrategicLayerType" are
the same.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="Dimension"
type="req:DimensionType"/>
 <xs:element name="Goal" type="req:GoalType"/>
 <xs:element name="Behavior" type="req:BehaviorType"/>
 <xs:element name="StrategicAgent"
type="req:StrategicAgentType"/>
 <xs:element name="ReqInfo" type="req:ReqInfoType"/>
 </xs:sequence>
 <xs:attribute name="strategicRefID"
type="req:strategicRefIDType" use="required"/>
 </xs:complexType>
</xs:schema>

 81

STRATEGICLAYERTYPES.XSD
<!-- edited with XMLSpy v2006 sp2 U (http://www.altova.com)
and XMLObjective 1.2 mdxsys (http://www.xmlobjective.com) by
Linda Reynolds (Naval Postgraduate School) April 2006-->

<xs:schema
 attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.nps.edu/requirements"
 xmlns:req="http://www.nps.edu/requirements"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="DimensionType">
 <xs:annotation>
 <xs:documentation>
 The DimensionType defines the general domain for FORCEnet
developmental efforts
as defined by CNO N6[CNO05]; restricted to enumerated
values</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Physical"></xs:enumeration>
 <xs:enumeration value="IT"></xs:enumeration>
 <xs:enumeration value="Data"></xs:enumeration>
 <xs:enumeration value="Cognitive"></xs:enumeration>
 <xs:enumeration value="Organizational"></xs:enumeration>
 <xs:enumeration value="Operating"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="GoalType">
 <xs:annotation>
 <xs:documentation>
 The GoalType links the requirement to the highest level strategic
concern; restricted to
enumerated values</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Interoperability"></xs:enumeration>
 <xs:enumeration
value="SituationalAwareness"></xs:enumeration>
 <xs:enumeration
value="InformationAssurance"></xs:enumeration>
 <xs:enumeration value="CommandControl"></xs:enumeration>
 <xs:enumeration value="Communication"></xs:enumeration>
 <xs:enumeration value="IMKM"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="BehaviorType">
 <xs:annotation>
 <xs:documentation>
 The BehaviorType defines the general domain of the technical
capability; restricted to
enumerated values</xs:documentation>

 82

 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="ShareInformation"></xs:enumeration>
 <xs:enumeration
value="DisplayInformation"></xs:enumeration>
 <xs:enumeration value="TrackTargets"></xs:enumeration>
 <xs:enumeration value="ProcessData"></xs:enumeration>
 <xs:enumeration value="SortData"></xs:enumeration>
 <xs:enumeration value="AnalyzeData"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="StrategicAgentType">
 <xs:annotation>
 <xs:documentation>
 The StrategicAgentType links the requirement to the highest level
strategic command and Service
supported</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="Command"
type="req:CommandType"></xs:element>
 <xs:element name="MiltaryForces"
type="req:ForcesType"></xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="CommandType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="JFCOM"></xs:enumeration>
 <xs:enumeration value="CFFC"></xs:enumeration>
 <xs:enumeration value="COCOM"></xs:enumeration>
 <xs:enumeration value="JTF"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="ForcesType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Navy"></xs:enumeration>
 <xs:enumeration value="Army"></xs:enumeration>
 <xs:enumeration value="AirForce"></xs:enumeration>
 <xs:enumeration value="Joint"></xs:enumeration>
 <xs:enumeration value="Allied"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

 83

SYSTEM.XSD
<!-- edited with XMLSpy v2006 sp2 U (http://www.altova.com)
and XMLObjective 1.2 mdxsys (http://www.xmlobjective.com) by
Linda Reynolds (Naval Postgraduate School) April 2006-->
<xs:schema
 attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.nps.edu/requirements"
 xmlns:req="http://www.nps.edu/requirements"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:include schemaLocation="SystemLayerTypes.xsd"></xs:include>

 <xs:include schemaLocation="Strategic.xsd"></xs:include>

 <xs:include schemaLocation="ReqInfo.xsd"></xs:include>

 <xs:simpleType name="systemRefIDType">
 <xs:annotation>
 <xs:documentation>This is a unique reference identification
number for a
requirement defined at the System layer of the
classification</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]{4}"></xs:pattern>
 </xs:restriction>
 </xs:simpleType>

 <xs:element name="SystemRequirementType">
 <xs:complexType>
 <xs:sequence>
 <xs:annotation>
 <xs:documentation> The SupportingTechnologyType
defines the general technology associated with the specific software
system for each requirement. The ProcessType element defines the system
capabilities in support of Navy Chat users' common functions.
ComponentType classifies the requirement according to a category of
Navy Chat system components. SystemAgentType defines the specific
category of stakeholders to which the requirement applies. These
elements, with the exception of ProcessType are generic enough to
support any System layer requirement.
</xs:documentation>
 </xs:annotation>
 <xs:element minOccurs="1" name="Process"
type="req:ProcessType"></xs:element>
 <xs:element minOccurs="1" name="SupportingTechnology"
type="req:SupportingTechnologyType"></xs:element>
 <xs:element minOccurs="1" name="Component"
type="req:ComponentType"></xs:element>
 <xs:element minOccurs="1" name="SystemAgent"
type="req:SystemAgentType"></xs:element>
 <xs:element minOccurs="1" name="ReqInfo"
type="req:ReqInfoType"></xs:element>

 84

 <xs:element minOccurs="1" name="StrategicLayer"
type="req:StrategicLayerType"></xs:element>
 </xs:sequence>
 <xs:attribute name="systemRefID"
type="req:systemRefIDType"></xs:attribute>
 </xs:complexType>
 </xs:element>

</xs:schema>

 85

SYSTEMLAYERTYPES.XSD
<!-- edited with XMLSpy v2006 sp2 U (http://www.altova.com)
and XMLObjective 1.2 mdxsys (http://www.xmlobjective.com) by
Linda Reynolds (Naval Postgraduate School) April 2006-->
<xs:schema
 attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.nps.edu/requirements"
 xmlns:req="http://www.nps.edu/requirements"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="ProcessType">
 <xs:annotation>
 <xs:documentation>
 The ProcessType defines the technical capability supported by the
System requirement; restricted to enumerated values. This element is
domin specific, in this example defining Navy Chat</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Whisper"></xs:enumeration>
 <xs:enumeration value="Chat"></xs:enumeration>
 <xs:enumeration value="FileTransfer"></xs:enumeration>
 <xs:enumeration value="Search"></xs:enumeration>
 <xs:enumeration value="Send"></xs:enumeration>
 <xs:enumeration value="View"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="SupportingTechnologyType">
 <xs:annotation>
 <xs:documentation>
 The SupportingTechnologyType links the System layer requirement to
a technical domain; restricted to enumerated values.
</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Networking"></xs:enumeration>
 <xs:enumeration value="Security"></xs:enumeration>
 <xs:enumeration value="DataManagement"></xs:enumeration>
 <xs:enumeration
value="UserComputerInterface"></xs:enumeration>
 <xs:enumeration value="MultiMedia"></xs:enumeration>
 <xs:enumeration value="Communication"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="ComponentType">
 <xs:annotation>
 <xs:documentation>The ComponentType classifies the
requirement according to category of software system components;
restricted to enumerated values.</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="OS"></xs:enumeration>
 <xs:enumeration value="HW"></xs:enumeration>

 86

 <xs:enumeration value="SW"></xs:enumeration>
 <xs:enumeration value="Interface"></xs:enumeration>
 <xs:enumeration value="Client"></xs:enumeration>
 <xs:enumeration value="Server"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="SystemAgentType">
 <xs:annotation>
 <xs:documentation>The SystemAgentType classifies the
requirement according to a
 System layer category of Navy Chat
stakeholders; restricted to enumerated values.</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="User"></xs:enumeration>
 <xs:enumeration value="User"></xs:enumeration>
 <xs:enumeration value="Technician"></xs:enumeration>
 <xs:enumeration value="Developer"></xs:enumeration>
 <xs:enumeration value="Analyst"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

 87

REQINFO.XSD
<!-- edited with XMLSpy v2006 sp2 U (http://www.altova.com)
and XMLObjective 1.2 mdxsys (http://www.xmlobjective.com) by
Linda Reynolds (Naval Postgraduate School) April 2006-->

 <xs:schema
 attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.nps.edu/requirements"
 xmlns:req="http://www.nps.edu/requirements"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="ReqInfoType">
 <xs:annotation>
 <xs:documentation>Sequence of elements defines the
requirement metadata. Description and ReqAuthor can occur an unlimited
number of times to support revisions to a requirement. System, Date
and Priority can only occur once.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element minOccurs="1" name="System"
type="req:SystemType"></xs:element>
 <xs:element maxOccurs="unbounded" minOccurs="1"
name="Description" type="req:DescriptionType"></xs:element>
 <xs:element maxOccurs="unbounded" minOccurs="1"
name="ReqAuthor" type="req:AuthorType"></xs:element>
 <xs:element minOccurs="1" name="Date"
type="req:DateType"></xs:element>
 <xs:element minOccurs="1" name="Priority"
type="req:PriorityType"></xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="SystemType">
 <xs:annotation>
 <xs:documentation>Sequence of elements supplies system name
and nomenclature.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element minOccurs="1" name="SystemName"
type="xs:string"></xs:element>
 <xs:element minOccurs="0" name="SystemNomenclature"
type="xs:string"></xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="DateType">
 <xs:annotation>
 <xs:documentation>Sequence of elements gives the date each
requirement is created, revised and deleted. Created and Deleted can
only occur once, but Revised can occur an unlimited number of times to
capture changes to requirements.</xs:documentation>
 </xs:annotation>
 <xs:sequence>

 88

 <xs:element minOccurs="1" name="Created"
type="xs:date"></xs:element>
 <xs:element maxOccurs="unbounded" minOccurs="0"
name="Revised" type="xs:date"></xs:element>
 <xs:element minOccurs="0" name="Deleted"
type="xs:date"></xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="AuthorType">
 <xs:annotation>
 <xs:documentation>Sequence of elements specifies POC
information.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element minOccurs="1" name="Name"
type="xs:string"></xs:element>
 <xs:element minOccurs="1" name="Title"
type="xs:string"></xs:element>
 <xs:element minOccurs="1" name="Organization"
type="xs:string"></xs:element>
 <xs:element minOccurs="1" name="PrimaryEmail"
type="req:EmailType"></xs:element>
 <xs:choice>
 <xs:element minOccurs="0" name="PrimaryContactNumber"
type="req:PhoneType"></xs:element>
 <xs:element minOccurs="0" name="SecondaryContactNumber"
type="req:PhoneType"></xs:element>
 <xs:element minOccurs="1" name="SecondaryEmail"
type="req:EmailType"></xs:element>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="EmailType">
 <xs:annotation>
 <xs:documentation>Email address restricted to format
established by pattern value</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:pattern value="([\.a-zA-Z0-9_])+@([a-zA-Z0-9_])+(([a-
zA-Z0-9_])*\.([a-zA-Z0-9_])+)+"></xs:pattern>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="PhoneType">
 <xs:annotation>
 <xs:documentation>Phone number restricted to format
established by pattern value</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:pattern value="([0-9]{3})+(\-[0-9]{3})+(\-[0-
9]{4})"></xs:pattern>
 </xs:restriction>
 </xs:simpleType>

 89

 <xs:complexType name="DescriptionType">
 <xs:annotation>
 <xs:documentation>Provides textual description,
justification and supporting documentation in string
format</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element minOccurs="1" name="TextDescription"
type="xs:string"></xs:element>
 <xs:element minOccurs="0" name="Rationale"
type="xs:string"></xs:element>
 <xs:element minOccurs="0" name="SupportingDocumentation"
type="xs:string"></xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="PriorityType">
 <xs:annotation>
 <xs:documentation>Priority of requirement restricted to
values specified by enumeration</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="High"></xs:enumeration>
 <xs:enumeration value="Medium"></xs:enumeration>
 <xs:enumeration value="Low"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

 90

THIS PAGE INTENTIONALLY LEFT BLANK

 91

APPENDIX D: CASE STUDY XML EVOLVING REQUIREMENTS
DOCUMENTS

STRATEGICREQUIREMENT.XML
<?xml version="1.0" encoding="UTF-8"?>
<!--Information contained within this document is for demonstration
purposes only -->
<StrategicRequirementType
 strategicRefID="0001"
 xmlns="http://www.nps.edu/requirements"
 xmlns:requirements="http://www.nps.edu/requirements"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.nps.edu/requirements
I:\Strategic\Strategic.xsd">
 <Dimension>Cognitive</Dimension>
 <Goal>SituationalAwareness</Goal>
 <Behavior>ShareInformation</Behavior>
 <StrategicAgent>
 <Command>JFCOM</Command>
 <MiltaryForces>Navy</MiltaryForces>
 </StrategicAgent>
 <ReqInfo>
 <System>
 <SystemName>Navy Chat</SystemName>
 <SystemNomenclature>not available</SystemNomenclature>
 </System>
 <Description>
 <TextDescription>Chat technologies on afloat units must
provide warfighters with visual cues/indicators to aid in maintaining
situational awareness </TextDescription>
 <Rationale>Chat capability has become a standard for
maintaining SA in an operational environment</Rationale>
 <SupportingDocumentation>Supporting documentation can
include lessons learned,OPTASKS,CASREPS, etc.</SupportingDocumentation>
 </Description>
 <ReqAuthor>
 <Name>John A. Smith</Name>
 <Title>Program Manager</Title>
 <Organization>Any Organization</Organization>
 <PrimaryEmail>JohnASmith@email.com</PrimaryEmail>
 <PrimaryContactNumber>123-456-7890</PrimaryContactNumber>
 </ReqAuthor>
 <Date>
 <Created>2005-04-07</Created>
 </Date>
 <Priority>High</Priority>
 </ReqInfo>
</StrategicRequirementType>

 92

SYSTEMREQUIREMENT.XML
<?xml version="1.0" encoding="UTF-8"?>
<!-- The information contained in this document is for demonstration
purposes only -->
<SystemRequirementType
 systemRefID="0001"
 xmlns="http://www.nps.edu/requirements"
 xmlns:requirements="http://www.nps.edu/requirements"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.nps.edu/requirements
I:\Strategic\System.xsd">
 <Process>Chat</Process>
 <SupportingTechnology>UserComputerInterface</SupportingTechnology>
 <Component>Client</Component>
 <SystemAgent>User</SystemAgent>
 <ReqInfo>
 <System>
 <SystemName>Navy Chat</SystemName>
 <SystemNomenclature>Applicable
SystemNomenclature</SystemNomenclature>
 </System>
 <Description>
 <TextDescription>Alert modality for new messages on chat
client must be configurable by user via the mouse or the
keyboard</TextDescription>
 <Rationale>Watchstanders in operational environment must be
able to set the alert status manually depending on level of
activity</Rationale>
 <SupportingDocumentation>Applicable Supporting
Documentation</SupportingDocumentation>
 </Description>
 <Description>
 <TextDescription>Alert modality for new messages on chat
client must be configurable by user via the mouse or the keyboard to
include sound and text highlighting</TextDescription>
 <Rationale>Watchstanders in operational environment must be
able to set the alert status manually depending on level of
activity</Rationale>
 <SupportingDocumentation>Applicable Supporting
Documentation</SupportingDocumentation>
 </Description>
 <ReqAuthor>
 <Name>John B Smith</Name>
 <Title>Navy Sailor</Title>
 <Organization>USS AnyShip</Organization>
 <PrimaryEmail>SailorsPrimaryEmail@email.com</PrimaryEmail>
 <PrimaryContactNumber>123-456-7890</PrimaryContactNumber>
 </ReqAuthor>
 <ReqAuthor>
 <Name>John C Smith</Name>
 <Title>Another Navy Sailor</Title>
 <Organization>USS AnotherShip</Organization>

<PrimaryEmail>AnotherSailorsPrimaryEmail@email.com</PrimaryEmail>
 <PrimaryContactNumber>555-666-7777</PrimaryContactNumber>

 93

 </ReqAuthor>
 <Date>
 <Created>2005-05-19</Created>
 <Revised>2005-06-05</Revised>
 </Date>
 <Priority>High</Priority>
 </ReqInfo>
 <StrategicLayer strategicRefID="0001">
 <Dimension>Cognitive</Dimension>
 <Goal>SituationalAwareness</Goal>
 <Behavior>ShareInformation</Behavior>
 <StrategicAgent>
 <Command>JFCOM</Command>
 <MiltaryForces>Navy</MiltaryForces>
 </StrategicAgent>
 <ReqInfo>
 <System>
 <SystemName>CHAT</SystemName>
 <SystemNomenclature>Applicable
SystemNomenclature</SystemNomenclature>
 </System>
 <Description>
 <TextDescription>Chat technologies on afloat units must
provide warfighters with visual and audio cues/indicators to aid in
maintaining situational awareness</TextDescription>
 <Rationale>Chat capability has become a standard for
maintaining SA in operational environments</Rationale>
 <SupportingDocumentation>Supporting Documentation to
include CASREPS, OPTASKS,lessons learned,
etc.</SupportingDocumentation>
 </Description>
 <ReqAuthor>
 <Name>John A. Smith</Name>
 <Title>Program Manager</Title>
 <Organization>DOD Organization</Organization>
 <PrimaryEmail>PMPrimaryEmail@email.com</PrimaryEmail>

<SecondaryEmail>PMSecondaryEmail@email.com</SecondaryEmail>
 </ReqAuthor>
 <Date>
 <Created>2005-04-07</Created>
 </Date>
 <Priority>High</Priority>
 </ReqInfo>
 </StrategicLayer>
</SystemRequirementType>

 94

THIS PAGE INTENTIONALLY LEFT BLANK

 95

APPENDIX E: SAMPLE XSL STYLESHEET

<?xml version='1.0' encoding='ISO-8859-1'?>

<!-- Developed using XMLobjective 1.2 mdxsys by Linda Reynolds at Naval
Postgraduate School
April 2006 -->
<!-- For demonstration purposes only-->

<xsl:stylesheet
 version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <html>
 <body>
 <h1>
 <center>NCW STRATEGIC LEVEL REQUIREMENT</center>
 </h1>
 <h3><center>For demonstration purposes
only</center></h3>
 <table border="4" width="97%">
 <tr bgcolor="#3333FF">
 <th>
 <h2>REQUIREMENT INFORMATION</h2>
 </th>
 </tr>
 </table>
 <table border="4" width="97%">
 <tr bgcolor="#FFFFFF">
 <th>SYSTEM NAME</th>
 <th>SYSTEM NOMENCLATURE</th>
 </tr>
 <xsl:for-each
select="StrategicRequirementType/ReqInfo/System">
 <tr>
 <td>
 <xsl:value-of
select="SystemName"></xsl:value-of>
 </td>
 <td>
 <xsl:value-of
select="SystemNomenclature"></xsl:value-of>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 <table border="4" width="97%">
 <tr bgcolor="#FFFFFF">
 <th>TEXT DESCRIPTION</th>
 <th>RATIONALE</th>
 <th>SUPPORTING DOCUMENTATION</th>
 </tr>

 96

 <xsl:for-each
select="StrategicRequirementType/ReqInfo/Description">
 <tr>
 <td>
 <xsl:value-of
select="TextDescription"></xsl:value-of>
 </td>
 <td>
 <xsl:value-of
select="Rationale"></xsl:value-of>
 </td>
 <td>
 <xsl:value-of
select="SupportingDocumentation"></xsl:value-of>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 <table border="4" width="97%">
 <tr bgcolor="#FFFFFF">
 <th>AUTHOR</th>
 <th>ORGANIZATION</th>
 <th>EMAIL</th>
 <th>PHONE NUMBER</th>
 </tr>
 <xsl:for-each
select="StrategicRequirementType/ReqInfo/ReqAuthor">
 <tr>
 <td>
 <xsl:value-of
select="Name"></xsl:value-of>
 </td>
 <td>
 <xsl:value-of
select="Organization"></xsl:value-of>
 </td>
 <td>
 <xsl:text> Primary: </xsl:text>
 <xsl:value-of
select="PrimaryEmail"></xsl:value-of>
 <xsl:text> Secondary: </xsl:text>
 <xsl:value-of
select="SecondaryEmail"></xsl:value-of>
 </td>
 <td>
 <xsl:text> Primary: </xsl:text>
 <xsl:value-of
select="PrimaryContactNumber"></xsl:value-of>
 <xsl:text> Secondary: </xsl:text>
 <xsl:value-of
select="SecondaryContactNumber"></xsl:value-of>
 </td>
 </tr>
 </xsl:for-each>
 </table>

 97

 <table border="4" width="97%">
 <tr bgcolor="#FFFFFF">
 <th>DATE REQUIREMENT ADDED</th>
 <th>REVISION DATE</th>
 <th>DATE REQUIREMENT DELETED</th>
 </tr>
 <xsl:for-each
select="StrategicRequirementType/ReqInfo/Date">
 <tr>
 <td>
 <xsl:value-of
select="Created"></xsl:value-of>
 </td>
 <td>
 <xsl:value-of
select="Revised"></xsl:value-of>
 </td>
 <td>
 <xsl:value-of
select="Deleted"></xsl:value-of>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 <table border="4" width="97%">
 <tr bgcolor="#3333FF">
 <th>
 <h2>PRIMARY CLASSIFYING INFORMATION</h2>
 </th>
 </tr>
 </table>
 <table border="4" width="97%">
 <tr bgcolor="#FFFFFF">
 <th>COMMAND LEVEL</th>
 <th>MILITARY COMPONENT REQUIRING
CAPABILITY</th>
 <th>TECHNICAL DIMENSION</th>
 <th>STRATEGIC GOAL</th>
 <th>PRIORITY</th>
 </tr>
 <xsl:for-each
select="StrategicRequirementType/StrategicAgent">
 <td>
 <xsl:value-of
select="CommandType"></xsl:value-of>
 </td>
 <td>
 <xsl:value-of
select="MilitaryForces"></xsl:value-of>
 </td>
 </xsl:for-each>
 <xsl:for-each
select="StrategicRequirementType/Dimension">
 <td>
 <xsl:value-of select="*"></xsl:value-of>

 98

 </td>
 </xsl:for-each>
 <xsl:for-each
select="StrategicRequirementType/Goal">
 <td>
 <xsl:value-of select="*"></xsl:value-of>
 </td>
 </xsl:for-each>
 <xsl:for-each
select="StrategicRequirementType/ReqInfo/Priority">
 <td>
 <xsl:value-of select="*"></xsl:value-of>
 </td>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

 99

LIST OF REFERENCES

[ADK05] Adkisson, Heidi P. Use of Faceted Classification. webdesignpractices.
Retrieved 19APR06 from: http://www.webdesignpractices.com/navigation/facets.html

[ALT] Altova. XMLSpy® 2006. Retrieved 19APR06 from: http://www.altova.com/

[ANT97] Anton, Annie. I., "Goal Identification and Refinement in the Specification of
Software-Based Information Systems," Ph.D. Dissertation, Georgia Institute of
Technology, Atlanta, GA, 1997.

[ANT98] Anton, Annie I., and Potts, Colin. The Use of Goals to Surface Requirements
for Evolving Systems. In Proceedings of the IEEE International Conference on Software
Engineering (ICSE), pp. 157 - 166, 1998.

[ANT00] Anton, Annie I, Dempster J., and Seige, D. Managing Use Cases During Goal-
Driven Requirements Engineering: Challenges Encountered and Lessons Learned. IEEE
International Conference on Software Engineering (ICSE 2000), Limerick, Ireland, 2000.

[ANT01] Anton, Annie I, Carter, Ryan A., Williams, Laurie and Dagnino, Aldo.
Evolving Beyond Requirements Creep: A Risk-Based Evolutionary Prototyping Model,
Fifth IEEE International Symposium on Requirements Engineering (RE'01), 2001

[ANTPOT01] Anton, Annie I. and Potts, Colin. Functional Paleontology: System
Evolution as the User Sees It, icse, p. 0421, 23rd International Conference on Software
Engineering (ICSE'01), 2001.

[APA] The Apache Cocoon Project. Retrieved 05MAY06 from:
http://cocoon.apache.org/2.1/features.html

[BAN] Bannerman, Steve W. A Middleweight Requirements Management Framework.
Retrieved 19APR06 from: http://reqs.tigris.org/pdfs/mrmf.pdf

[BOE91] Boehm, Barry. Software Risk Management: Practices and Principles. IEEE
Software, 1991.

[BOE01] Boehm, Barry and Port, Dan. Risk-Based Strategic Software Design: How
Much COTS Evaluation is Enough? Third International Workshop on
Economics-Driven Software Engineering Research, Toronto, Canada, 2001.

[BRU04] Bruegge, Bernd and Dutoit, Allen H. Object-Oriented Software Engineering.
Pearson Prentice Hall, 2004.

 100

[CAN03] Cantor, Murray. Organizing RUP SE Projects. IBM developerWorks.
Retrieved 19APR06 from:
http://www-128.ibm.com/developerworks/rational/library/814.html

[CAT05] Catanzaro, Jean Ph.D. and Gwynne, John Ph.D. Compiled Chat User
Requirements, Pacific Science and Engineering Group, August 19, 2005

[CAT05a] Catanzaro, Jean PhD, Gwynne, John PhD and Mitchell, Craig PhD. Usabilty
of Chat in the Maritime Coalition Environment: Empirical Findings from a Limited
Objective Experiment for Trident Warrior 05. Pacific Science and Engineering,
September 2005 (Limited distribution).

[CNO05] Chief of Naval Operations, FORCEnet Functional Concept. February 7, 2005.
Retrieved 19APR06 from: http://cno-n6.hq.navy.mil/Director_Net-
Centric_Warfare/OPNAV_N71/FORCEnet/index.htm

[DEN03] Denton, William. How to Make a Faceted Classification and Put It On the Web,
Nov. 2003. Retrieved 19APR06 from: http://www.miskatonic.org/library/facet-web-
howto.html.

[DIR05] Director, Force Transformation, Office of the Secretary of Defense. The
Implementation of Network-Centric Warfare, Washington, DC, 2005.

[DONCIO] Department of the Navy, Office of the DON, Chief Information Officer.
XML Naming and Design Rules, January 2005.

[FLO02] Florence, Al. CrossTalk; The Journal of Defense Software Engineering,
Reducing Risks Through the Proper Specification of Software Requirements, April 2002.
Retrieved 19APR06 from: http://www.stsc.hill.af.mil/crosstalk/2002/04/florence.html

[GLI05] Glinz, M. Rethinking the Notion of Non-Functional Requirements. Proceedings
of the Third World Congress for Software Quality (3WCSQ 2005). Munich, Germany,
Vol. II, pp. 55-64, 2005.
Retrieved 19APR06 from: http://www.ifi.unizh.ch/groups/req/staff/glinz/activities.html

[GSAM03] Software Technology Support Center. Guidelines for Successful Acquisition
and Management of Software-Intensive Systems: Weapon Systems, Command and
Control Systems, Management Information Systems - Condensed Version 4.0 February
2003.
Retrieved 19APR06 from: http://www.stsc.hill.af.mil/resources/tech_docs/gsam4.html

[LAM01] van Lamsweerde, Axel. Goal-Oriented Requirements Engineering: A Guided
Tour. Invited mini-tutorial paper 5th IEEE International Symposium on Requirements
Engineering. Toronto, Canada. August 2001.

 101

[LEF03] Leffingwell, Dean and Widrig, Don. Managing Software Requirements; A Use
Case Approach. Addison-Wesley, 2003.

[LEI02] Leishman, Theron and Cook, Dr. David A. CrossTalk; The Journal of Defense
Software Engineering, Requirements Risks Can Drown Software Projects, April 2002.
Retrieved 19APR06 from: http://www.stsc.hill.af.mil/crosstalk/2002/04/leishman.html

[LUC01] de Lucena, Vicente Ferreira Jr. Facet-Based Classification Scheme for
Industrial Automation Software Components. Sixth International Workshop on
Component-Oriented Programming at ECOOP 2001, Budapest, Hungary, 19 June 2001.
Retrieved 19APR06 from: http://research.microsoft.com/~cszypers/events/WCOP2001/

[LUQ04] Luqi, Lin Zhang, Berzins, Valdis and Qiao, Ying. Document Driven
Development for Complex Real-Time Systems, IEEE Transactions on Software
Engineering, Vol 30, No 12, Dec 2004.

[MAR05] Martinez, J., del Mar Gallardo, M., Merino, P. and Pimentel, E. ed. Hongji
Yang. Abstracting UML Behavior Diagrams for Verification. Software Evolution with
UML and XML. Idea Group Publishing, Inc., 2005.

[MDX] MDXSYS Limited, XMLobjective 1.2©. Retrieved 19APR06 from:
http://www.xmlobjective.com/

[OGC] Office of Government Commerce, OGC Successful Delivery Toolkit™ 2005,
Version 5.03. Retrieved 19APR06 from:
http://www.ogc.gov.uk/sdtoolkit/reference/documentation/p11_busreqts.html

[PRI91] Prieto-Diaz R. Implementing Faceted Classification for Software Reuse. Comm.
of the ACM, 34(5):pp. 89 - 97, May 1991.

[PEN04] Penna, Giuseppe D., Benedetton I., Laurenzi, Anna R., and Orefice, S. A
Methodology for Scenario Development Proceedings of Sixteenth International
Conference on Software Engineering and Knowledge Engineering (SEKE) , 20-
24/6/2004, Banff, Alberta, Canada, pp. 7 - 12, Knowledge Systems Institute, 2004.

[PRO] Protégé Owl. An Ontology Editor for the Semantic Web. Stanford University.
Retrieved 05MAY06 from: http://protege.stanford.edu/plugins/owl/index.html

[RAN] Ranganathan, S.R. Elements of Library Classification. Asia Publishing House,
1962.

[SAX] SAX: Simple API for XML. SourceForge.net. Retrieved 19APR06 from:
http://sourceforge.net/project/showfiles.php?group_id=29449

 102

[SPI] Spiteri, Louise. A Simplified Model for Facet Analysis. Original publication:
Canadian Journal of Information and Library Science V23, pp 1-30, April-May 1998.
Reprinted: The Information Architecture Institute. Retrieved 05MAY06 from:
http://iainstitute.org/pg/a_simplified_model_for_facet_analysis.php

[SWEBOK04] IEEE Computer Society Professional Practices Committee. Guide to the
Software Engineering Body of Knowledge, 2004.
Retrieved 19APR06 from: http://www.swebok.org/

[WIE98] Wiegers, Carl E. Software Development, Know Your Enemy: Software Risk
Management, October 1998.
Retrieved 19APR06 from: http://www.processimpact.com/articles/risk_mgmt.html

[WIE03] Wiegers, Karl E. Writing Quality Requirements. Process Impact. Retrieved
05MAY06 from: http://www.processimpact.com/articles/qualreqs.html

[WYN92] Wynar, Bohdan S. and Taylor, Arlene. Introduction to Cataloging and
Classification. 8th ed. Libraries Unlimited: 1992 .

[W3C] W3C, Extensible Markup Language (XML) 1.1 W3C Recommendation 04
February 2004. Retrieved 19APR06 from:
http://www.w3.org/TR/2004/REC-xml11-20040204/#sec-intro

[W3Ca] W3C, Architecture Domain. XML Schema.
Retrieved 21APR06 from: http://www.w3.org/XML/Schema

[W3Cb] W3C, Extensible Stylesheet Language (XSL) Version 1.0. W3C
Recommendation 15 October 2001.
Retrieved 26APR06 from: http://www.w3.org/TR/xsl/

[W3Cc] W3C, XForms 1.0. W3C Recommendation 14 March 2006. Retrieved
05MAY06 from: http://www.w3.org/TR/2006/REC-xforms-20060314/

[ZAV97] Zave, P. Classification of Research Efforts in Requirements Engineering. ACM
Computing Surveys, 29(4): pp. 315-321, 1997.

 103

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Man-Tak Shing
Computer Science Department
Naval Postgraduate School
Monterey, StateCA

4. Richard Riehle
Computer Science Department
Naval Postgraduate School
Monterey, CA

5. Peter Denning

Computer Science Department
Naval Postgraduate School
Monterey, CA

6. Linda Reynolds

Space and Naval Warfare Systems Center
Det Norfolk
Norfolk, VI

