
1

MPATH: A Loop-free Multipath Routing Algorithm

SRINIVAS VUTUKURY

vutukury@cse.ucsc.edu
Computer Sciences Department

University of California
Santa Cruz, CA 95064

J.J. GARCIA-LUNA-ACEVES

jj@cse.ucsc.edu
Computer Engineering Department

University of California
Santa Cruz, California 95064

Networking and Security Center
Sun Microsystems Laboratories

Palo Alto, California 94303

Abstract—We present a distributed routing algorithm for computing multiple paths
between each source-destination pair in a computer network, such that the paths are
loop-free at all times and are not necessarily of equal length. In this algorithm, routers
exchange second-to-last hop on the shortest path to destinations in addition to short-
est distances, which are used to prevent the well-know count-to-infinity problem. The
safety and liveness properties of the algorithm are proved and its performance is ana-
lyzed.

I. I NTRODUCTION

RIP[8] and many other routing protocols based on the distributed
Bellman-Ford algorithm (DBF) for shortest-path computation suffer
from thebouncing effectand thecounting-to-infinityproblems, which
limit their applicability to small networks using hop count as the mea-
sure of distance. In the past several years, much research has been
devoted to fixing these problems. In one approach, routers exchange
query and reply messages to synchronize distance updates, a technique
that is sometimes calleddiffusing computations[1]. The loop-free rout-
ing algorithm DUAL[3], which is used in EIGRP [2], and several al-
gorithms based on distance vectors have been proposed that use dif-
fusing computations to overcome the counting-to-infinity problem of
DBF [15], [11], [10], [20].

In another approach, routers exchange second-to-last hop to a des-
tination in addition to distance information so that they can determine
complete paths and prevent the count-to-infinity problem. These al-
gorithms are often called path-finding algorithms or source-tracing al-
gorithms [9], [14], [5]. All these algorithms eliminate DBF’s count-
ing to infinity problem, and some of them (LPA [5]) are more efficient
than any of the routing algorithms based on link-state information pro-
posed to date. Furthermore, LPA [5] is loop-free at every instant. The
MPATH routing algorithm presented in this paper is a path-finding al-
gorithm [17], [18]. MPATH differs from prior path-finding algorithms
in that it uses the invariants, introduced in [19], to ensure multiple loop-
free paths of unequal cost.

Another family of routing algorithms exchange link information
to compute routing paths. These algorithms were first proposed and
widely used because they do not suffer from the count-to-infinity prob-
lem of the distance vector algorithms. OSPF [12] and algorithms in
[16], [13] are some that belong to this family, which exchange com-
plete topology information. A couple of routing algorithms have been
proposed that operate using partial topology information [4], [6], [7],
[19] to eliminate the main limitation of topology-broadcast algorithms.

Except DASM[20] and MPDA[19], all of the above routing algo-
rithms focus on the provision of a single path to each destination. A
drawback of DASM is that it uses multi-hop synchronization, which
can limit its scalability. In this paper, we present the first path-finding
routing algorithm that (a) provides multiple paths of unequal cost to
each destination that are free of loops at every instant and (b) uses a

This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under
grants F30602-97-1-0291 and F19628-96-C-0038.

synchronization mechanism that spans only one hop, which makes it
more scalable than routing algorithms based on diffusing computations
spanning multiple hops.

The paper is organized as follows. Section II describes MPATH. Sec-
tion III presents the correctness proofs showing that MPATH is loop-
free at every instant, safe, and live. Section IV analyzes the complexity
of MPATH. Section V provides concluding remarks.

II. D ISTRIBUTED MULTIPATH ROUTING ALGORITHM

A. Problem Formulation

A computer network is represented as a graphG = (N;L) whereN
is set of nodes (routers) andL is the set of edges (links) connecting the
nodes. A cost is associated with each link and can change over time, but
is always positive. Two nodes connected by a link are called adjacent
nodes or neighbors. The set of all neighbors of a given nodei is denoted
by N i. Adjacent nodes communicate with each other using messages
and messages transmitted over an operational link are received with no
errors, in the proper sequence, and within a finite time. Furthermore,
such messages are processed by the receiving node one at a time in
the order received. A node detects the failure, recovery and link cost
changes of each adjacent link within a finite time.

The goal of our distributed routing algorithm is to determine at each
node i the successor set ofi for destinationj, which we denote by
Sij(t) � N i, such that the routing graphSGj(t) consisting of link set
f(m;n)jn 2 Smj (t); m 2 Ng is free of loops at every instantt, even
when link costs are changing with time. The routing graphSGj(t) for
single-path routing is a sink-tree rooted atj, because the successor sets
Sij(t) have at most one member. In multipath routing, there can be more
than one member inSij(t); therefore,SGj(t) is a directed acyclic graph
with j as the sink node. There are potentially severalSGj(t) for each
destinationj; however, the routing graph we will construct is defined
by the successor setsSij(t) = fkjD

k
j (t) < Di

j(t); k 2 N
ig, whereDi

j

is the shortest distance of nodei to destinationj. We call such a routing
graph theshortest multipathfor destinationj. After a series of link cost
changes which leave the network topology in arbitrary configuration,
the distributed routing algorithm should work to modifySGj in such
a way that it eventually converges to the shortest multipath of the new
configuration, without ever creating a loop inSGj during the process.

Therefore, our solution to the routing problem consists of first com-
putingDi

j using a shortest-path routing algorithm, and using it to com-
puteSij . BecauseDk

j is nodek’s local variable, its value has to be
explicitly or implicitly communicated toi. If Di

jk is the value of
Dk
j as known to nodei, the problem now becomes one of computing

Sij(t) = fkjDi
jk(t) < Di

j(t)g. However, because of non-zero prop-
agation delays, during network transitions there can be discrepancies
in the value ofDk

j and its copyDi
jk at i, which may cause loops to

form in SGj . To prevent loops, therefore, additional constraints must
be imposed when computingSij . We show later that if the successor set

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
MPATH: A Loop-free Multipath Routing Algorithm

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

ProcedureINIT-PATH
fInvoked when the node comes up.g
1. Initialize all tables.
2. RunPATH algorithm.

End INIT-PATH

Algorithm PATH
fInvoked when a message M is received from neighbork,
or an adjacent link tok has changed cost or when a node is
initialized.g
1. RunNTU to update neighbor tables.
2. RunMTU to update main tables.
3. For each destinationj marked aschanged,

Add update entry [j, Di
j , p

i
j] to the new messageM 0.

4. Within finite amount of time, send messageM 0 to
each neighbor.

End PATH

Fig. 1. The PATH Algorithm

at each nodei for each destinationj satisfy certain conditions called
loop-free invariant conditions, then the snapshot at timet of the routing
graphSGj(t) implied bySij(t) is free of loops.

B. Node Tables and Message Structures

As in DBF, nodes executing MPATH exchange messages containing
distances to destinations. In addition to the distance to a destination,
nodes also exchange the identity of the second-to-last node, also called
predecessor node, which is the node just before the destination node
on the shortest path. In this respect MPATH is akin to several prior
algorithms [5], [14], [9], but differs in its specification, verification and
analysis and, more importantly, in the multipath operation described in
the next section.

The following information is maintained at each nodei:

1. TheMain Distance TablecontainsDi
j andpij , whereDi

j is the
distance of nodei to destinationj andpij is the predecessor to des-
tinationj on the shortest path fromi to j. The table also stores for
each destinationj, the successor setSij , feasible distanceFDi

j ,
reported distanceRDi

j and two flagschangedandreport-it.
2. TheMain Link TableT i is the node’s view of the network and

contains links represented by(m; n; d) where(m; n) is a link
with costd.

3. TheNeighbor Distance Tablefor neighbork containsDi
jk and

pijk whereDi
jk is the distance of neighbork to j as communicated

by k andpijk is the predecessor toj on the shortest path fromk to
j as notified byk.

4. TheNeighbor Link TableT i
k is the neighbork’s view of the net-

work as known toi and contains link information derived from
the distance and predecessor information in the neighbor distance
table.

5. Adjacent Link Tablestores the costlik of adjacent link to each
neighbork. If a link is down its cost is infinity.

Nodes exchange information using update messages which have the
following format.

1. An update message can one or more update entries. An update
entry is a triplet [j, d, p], whered is the distance of the node
sending the message to destinationj andp is the predecessor on
the path toj.

2. Each message carries two flags used for synchronization:query
andreply.

ProcedureNTU
fCalled by PATH to process an event.g
1. If event is a message M from neighbork,

a. For each entry [j, d, p] in M //Note d = Dk
j , p = pkj .)

SetDi
jk d andpijk p.

b. For each destinationj with an entry in M,
Remove existing links (n, j) in T i

k and add new
link (m, j, d) to T i

k, whered = Di
jk �D

i
mk

andm = pijk.
2. If link-down event, clear the neighbor tables ofk;
3. If link-up or link-cost change event,updatelik;

End NTU

Fig. 2. Neighbor Table Update Algorithm

C. ComputingDi
j

This subsection describes the shortest-path algorithm PATH (1) and
the next subsection describes how PATH is extended to compute mul-
tiple next-hops are determined based onDi

j . INIT-PATH is called at
node startup to initialize the tables; distances are initialized to infin-
ity and node identities to a null value. PATH is executed in response
to an event: either a receipt of an update message from a neighbor
or detection of an adjacent link cost or link status (up/down) change.
PATH invokes procedure NTU (Fig. 2), which first updates the neigh-
bor distance tables and then updatesT i

k with links (m; n; d), where
d = Di

nk �D
i
mk andm = pink. PATH then invokes procedure MTU

(Fig. 3), which constructsT i by merging the topologiesT i
k and the ad-

jacent linkslik. PATH is virtually identical to PDA [19], in the sense
that though they differ in the information the routers exchange, inter-
nally they construct the partial topologies.

The merging process is straightforward if all neighbor topologies
(T i

k) contain consistent link information, but when two or more neigh-
bors link tables contain conflicting information regarding a particular
link, the conflict must be resolved. Two neighbor tables are said to
contain conflicting information regarding a link, if either both report
the link with different cost or one reports the link and the other does
not. Conflicts are resolved as follows: if two or more neighbor ta-
bles contain conflicting information of link(m; n), thenT i is up-
dated with link information reported by the neighbork that offers the
shortest distance from the nodei to the head nodem of the link, i.e.,
lik + Di

mk = minflik + Di
mkjk 2 N

ig. Ties are broken in aconsis-
tentmanner; one way is to break ties always in favor of lower address
neighbor. Becausei itself is the head of the link for adjacent links, any
information about an adjacent link supplied by neighbors will be over-
ridden by the most current information about the link available to node
i.

After merging the topologies, MTU runs Dijkstra’s shortest path al-
gorithm to find the shortest path tree and deletes all links fromT i that
are not in the tree. Because there can be more than one shortest-path
tree, while running Dijkstra’s algorithm ties are again broken in a con-
sistent manner. The distancesDi

j and predecessorspij are then obtained
from T i. The tree is compared with the previous shortest path tree and
only the differences are then reported to the neighbors. If there are
no differences, no updates are reported. Eventually all tables converge
such thatDi

j give the shortest distances and all message activity will
cease.

D. ComputingSij

MPATH described in this section determines the successor setsSij ,
by enforcing the Loop-free Invariant conditions (described below) us-
ing a neighbor-to-neighbor synchronization.

Let FDi
j , called the feasible distance, be an ’estimate’ of the dis-

3

ProcedureMTU

1. Clear link tableT i.
2. For each nodej 6= i occurring in at least oneT i

k,
a. FindMIN minfDi

jk + likjk 2 N
ig.

b. Letn be such thatMIN = (Di
jn + lin). (Ties are

brokenconsistently. Neighborn is the preferred neighbor
for destinationj). For each link (j, v, d) in T i

n,
Add link (j; v; d) to T i.

3. UpdateT i with each linklik.
4. Run Dijkstra’s shortest path algorithm onT i to

find newDi
j , andpij .

5. For each destinationj, if Di
j or pij changed from

previous value, setchangedandreport-it flags forj.
End MTU

Fig. 3. Main Table Update Algorithm

tance of nodei to nodej in the sense thatFDi
j is equal toDi

j when
the network is in stable state, but to prevent loops during periods of
network transitions, it is allowed to be temporarily differ fromDi

j . The
key to loop-free routing is in maintainingFDi

j such that the following
conditions are satisfied.

Loop-free Invariant Conditions(LFI)[19]:

FD
i
j(t) � D

k
ji(t) k 2 N i (1)

S
i
j(t) = f k j Di

jk(t) < FD
i
j(t)g (2)

The invariant conditions (1) and (2) state that, for each destination
j, a nodei can choose a successor whose distance toj, as known toi,
is less than the distance of nodei to j that is known to its neighbors.

Theorem 1: [19] If the LFI conditions are satisfied at any timet,
theSGj(t) implied by the successor setsSij(t) is loop-free.

Proof: Let k 2 Sij(t) then from (2) we have

D
i
jk(t) < FD

i
j(t) (3)

At nodek, because nodei is a neighbor, from (1) we have

FD
k
j (t) � D

i
jk(t) (4)

Combining (3) and (4) we get

FD
k
j (t) < FD

i
j(t) (5)

Eq.(5) states that, ifk is a successor of nodei in a path to destina-
tion j, thenk’s feasible distance toj is strictly less than the feasible
distance of nodei to j. Now, if the successor sets define a loop at time
t with respect toj, then for some nodep on the loop, we arrive at the
absurd relationFDp

j (t) < FD
p
j (t). Therefore the LFI conditions are

sufficient for loop-freedom.
The invariants used in LFI are independent of whether the algorithm

uses link states or distance vectors; in link-state algorithms, such as
MPDA, theDi

jk are computed locally from the link-states communi-
cated by the neighbors while in distance-vector algorithms, like the
MPATH presented here, theDi

jk are directly communicated.
The invariants (1) and (2) suggest a technique for computingSij(t)

such that the successor graphSGj(t) for destinationj is loop-free at
every instant. The key is determiningFDi

j(t) in Eq. (1), which requires

ProcedureINIT-MPATH
fInvoked when the node comes up.g
1. Initialize tables and run MPATH.

End INIT-MPATH

Algorithm MPATH

fInvoked when a message M is received from neighbork,
or an adjacent link tok has changed.g
1. RunNTU to update neighbor tables.
2. RunMTU to obtain newDi

j andpij .
3. If node isPASSIVEor node isACTIVE^ last reply arrived,

Resetgoactiveflag.
For each destinationj marked asreport-it,

a.FDi
j minfDi

j ; RD
i
jg

b. If Di
j > RDi

j , Setgoactiveflag.
c.RDi

j Di
j

d. Add [j, RDi
j , p

i
j] to messageM 0.

e. Clearreport-it flag for j.
Otherwise, the node is ACTIVE and waiting for more replies,

For each destinationj marked aschanged,
f. FDi

j minfDi
j ; FD

i
jg

4. For each destinationj marked aschanged,
a. Clearchangedflag for j
b. Sij fkjD

i
jk < FDi

jg
5. For each neighbork,

a.M 00 M 0.
b. If event is aqueryfrom k, Setreply flag inM 00.
c. If goactiveset, Setqueryflag inM 00.
d. If M 00 non-empty, sendM 00 to k.

6. If goactiveset, becomeACTIV E, otherwise
becomePASSIV E.

End MPATH

Fig. 4. Multi-path Loop-free Routing Algorithm

nodei to knowDk
ji(t), the distance fromi to nodej in the topology

tableT k
i that nodei communicated to neighbork. Because of non-zero

propagation delay,T k
i is a time-delayed version ofT i. We observe

that, if nodei delays updating ofFDi
j withDi

j until k incorporates the
distanceDi

j in its tables, thenFDi
j satisfies the LFI condition.

MPATH (Fig. 4) enforces the LFI conditions by synchronizing the
exchange of update messages among neighbors usingqueryandreply
flags. If a node sends a message with aquerybit set, then the node must
wait until a reply is received from all its neighbors before the node is
allowed to send the next update message. The node is said to be in
ACTIVE state during this period. The inter-neighbor synchronization
used in MPATH spans only one hop, unlike algorithms that use diffus-
ing computation that potentially span the whole network(e.g., DASM
[20]).

Assume that all nodes are in PASSIVE state initially with correct
distances to all other nodes and that no messages are in transit or pend-
ing to be processed. The behavior of the network, where every node
runs MPATH, is such that when a finite sequence of link cost changes
occurs in the network within a finite time interval, some or all nodes go
through a series of PASSIVE-to-ACTIVE and ACTIVE-to-PASSIVE
state transitions, until eventually all nodes become PASSIVE with cor-
rect distances to all destinations.

Let a node in PASSIVE state receive an event that results in changes
in its distances to some destinations. Before the node sends an up-
date message to report new distances, it checks if the distanceDi

j to
any destinationj has increased above the previously reported distance
RDi

j . If none of the distances increased, then the node remains in
PASSIVE state. Otherwise, the node sets thequeryflag in the update

4

message, sends it to each neighbor, and goes into ACTIVE state. When
in ACTIVE state, a node cannot send any update messages or increase
FDi

j . After receiving replies from all its neighbors the node is allowed
to increaseFDi

j and report any changes that may have occurred since
the time it has transitioned to ACTIVE state, and if none of the dis-
tances increased beyond the reported distance, the node transitions to
PASSIVE state. Otherwise, the node sends the next update message
with thequerybit set and becomes ACTIVE again, and the whole cycle
repeats. If a node receives a message with thequerybit set when in
PASSIVE state, it first modifies its tables and then sends back an up-
date message with thereply flag set. Otherwise, if the node happens
to be in ACTIVE state, it modifies the tables but because the node is
not allowed to send updates when in ACTIVE state, the node sends
back an empty message with no update information and thereply bit
set. If a reply from a neighbor is pending when the link to the neighbor
fails then an implicit reply with infinite distance is assumed, Because
replies are given immediately to queries and replies are assumed to be
given upon link failure, deadlocks due to inter-neighbor synchroniza-
tion cannot occur. Eventually, all nodes become PASSIVE with correct
distances to destinations, which we prove in the next section.

III. C ORRECTNESS OFMPATH

To show the correctness of MPATH, we prove the following: (1)
MPATH eventually converges withDi

j giving the shortest distances and
(2) the successor graphSGj is loop-free at every instant and eventu-
ally converges to the shortest multipath. PATH works essentially like
PDA[19] except that the kind of update information exchanged is differ-
ent; PDA exchanges link-state while PATH exchanges distance-vectors
with predecessor information. Internally both represent this informa-
tion as partial topologies communicated by the neighbors. So, the
correctness proof of PATH is identical to PDA. The convergence of
MPATH directly follows from the convergence of PATH because ex-
tensions to MPATH are such that update messages in MPATH are only
delayed a finite amount of time. A node generates update messages
only to report changes in distances and predecessor, so after conver-
gence no messages will be generated. The following theorems show
that MPATH provides instantaneous loop-freedom.

Theorem 2: For the algorithm MPATH executed at nodei, let tn be
the time whenRDi

j is updated and reported for then-th time. Then,
the following conditions always hold.

FD
i
j(tn) � minfRDi

j(tn�1); RD
i
j(tn)g (6)

FD
i
j(t) � FD

i
j(tn) t 2 [tn; tn+1) (7)

Proof: From the working of MPATH in Fig. 4, we observe that
RDi

j is updated at line 3c when (a) the node goes from PASSIVE-
to-ACTIVE because of one or more distance increases (b) the node
receives the last reply and goes from ACTIVE-to-PASSIVE state (c)
the node is in PASSIVE state and remains in PASSIVE state because
the distance did not increase for any destination (d) the node receives
the last reply but immediately goes into ACTIVE state. The reported
distanceRDi

j remains unchanged during the ACTIVE phase. Because
FDi

j is updated at line 3a each timeRDi
j is updated at line 3c, Eq. (6)

follows. When the node is in ACTIVE phase,FDi
j may also be modi-

fied by the statement on line 3f, which implies Eq. (7).

Theorem 3: (Safety property) At any timet, the successor sets
Sij(t) computed by MPATH are loop-free.

Proof: The proof is based on showing that theFDi
j andSij com-

puted by MPATH satisfy the LFI conditions. Lettn be the time when
RDi

j is updated and reported for then-th time. The proof is by induc-
tion on the interval[tn; tn+1]. Let the LFI condition be true up to time

tn, we show that

FD
i
j(t) � D

k
ji(t) t 2 [tn; tn+1] (8)

From Theorem 2 we have

FD
i
j(tn) � minfRDi

j(tn�1); RD
i
j(tn)g (9)

FD
i
j(tn+1) � minfRDi

j(tn); RD
i
j(tn+1)g (10)

FD
i
j(t) � FD

i
j(tn) t 2 [tn; tn+1) (11)

Combining the above equations we get

FD
i
j(t) � minfRDi

j(tn�1); RD
i
j(tn)g t 2 [tn; tn+1](12)

Let t0 be the time when message sent byi at tn is received and
processed by neighbork. Because of the non-zero propagation delay
across any link,t0 is such thattn < t0 < tn+1 and becauseRDi

j is
modified attn and remains unchanged in(tn; tn+1) we get

RD
i
j(tn�1) � D

k
ji(t) t 2 [tn; t

0) (13)

RDi
j(tn) � Dk

ji(t) t 2 [t0; tn+1] (14)

From Eq. (13) and (14) we get

minfRDi
j(tn�1); RD

i
j(tn)g � D

k
ji(t) t 2 [tn; tn+1] (15)

From (12) and (15) the inductive step (8) follows. BecauseFDi
j(t0) �

Dk
ji(t0) at initialization, from induction we have thatFDi

j(t) �

Dk
ji(t) for all t. Given that the successor sets are computed based on

FDi
j , it follows that the LFI conditions are always satisfied. According

to the Theorem 1 this implies that the successor graphSGj is always
loop-free.

The following theorem shows that MPATH correctly computes the
shortest multipath.

Theorem 4: (Liveness property) A finite time after the last change
in the network, theDi

j give the correct shortest distances andSij =

fkjDk
j < Di

j ; k 2 N
ig.

Proof: The proof is similar to the proof of Theorem 4 in [19].
The convergence of MPATH follows directly from the convergence of
PATH because the update messages in MPATH are only delayed a finite
time as allowed at line 4 in algorithm PATH. Therefore, the distances
Di
j in MPATH also converge to shortest distances. Because changes

toDi
j are always reported to the neighbors and are incorporated by the

neighbors in their tables in finite timeDi
jk = Dk

j for k 2 N i after
convergence. From line 3a in MPATH, we observe that when nodei

becomes passiveFDi
j = Di

j holds true. Because all nodes are passive
at convergence it follows thatSij = fkjDi

jk < FDi
j ; k 2 N ig =

fkjDk
j < Di

j ; k 2 N
ig.

IV. SIMULATION RESULTS

The simulations compare the control overhead and convergence
times of MPATH, TOPB and DASM. TOPB is a link-state algorithm
that closely approximates OSPF, which is a link-state algorithm for
which commercial implementations exist and whose convergence time
is fairly constant and depends on the diameter of the network. Ideally,
MPATH should approach the convergence times of TOPB, that is the
extra time needed to enforce loop-freedom should be negligible. We
expect MPATH to have far less message overhead because of its re-
liance on only partial topology. On the other hand DASM is the only
distance-vector routing algorithm to date that provides loop-free mul-
tipaths to each destination. DASM achieves loop-freedom through dif-
fusing computations that span the whole network. In contrast, MPATH

5

0

1 2

3

4 5 6

7

8 9 10

11

Fig. 5. CAIRN Topology used in simulations

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M
E

S
S

A
G

E
 L

O
A

D
 IN

 B
Y

T
E

S

LINK IDs

PROTOCOL OVERHEAD

’MPATH’
’OSPF’
’DASM’

Fig. 6. Link failures. Message overhead

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
IM

E
 IN

 M
IL

LI
S

E
C

O
N

D
S

LINK IDs

PROTOCOL OVERHEAD

’MPATH’
’OSPF’
’DASM’

Fig. 7. Link failures. Convergence times

uses only neighbor-to-neighbor synchronization. It is interesting to
see how convergence times are effected by the synchronization mech-
anisms. Also, it is not obvious how the control message overheads of
DASM and MPATH compare.

The performance metrics used for comparison are the control mes-
sage overhead and the convergence times. We use the event-driven
real-time simulator CPT from Nokia and perform simulations on the
CAIRN topology shown in Fig. 5 (www.cairn.net). For simplicity, we
use a flat topology without area aggregation; there is no reason to be-
lieve area aggregation would favor one routing algorithm over others.

Two types of events are triggered in the network: link-status changes
(link failures and link recovery) and link-cost changes. In practice links
and nodes are highly reliable and change status much less frequently
than link costs which are a function of the traffic on the link. For sim-
plicity, We do not simulate node failures because of the problems re-
sulting due to loss of sequence numbers by the nodes, which only effect
the functioning of TOPB here.

We also restrict link-status changes to a single change; that is, only
one link failure or link recovery can occur at any time during the mea-
surement interval. Because in backbone networks the links and nodes
in the network are highly reliable, simultaneous multiple topological
changes are much less likely to occur and it is reasonable to assume
that tables converge between topological changes. However, link costs

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M
E

S
S

A
G

E
 L

O
A

D
 IN

 B
Y

T
E

S

LINK IDs

PROTOCOL OVERHEAD

’MPATH’
’OSPF’
’DASM’

Fig. 8. Link recoveries. Message overhead

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
IM

E
 IN

 M
IL

LI
S

E
C

O
N

D
S

LINK IDs

PROTOCOL OVERHEAD

’MPATH’
’OSPF’
’DASM’

Fig. 9. Link recoveries. Convergence times

of multiple links can change simultaneously and repeatedly before the
tables converge to the latest costs. This is the case when near-optimal
delay routing of [19] is used, in which the link costs are periodically
measured and reported. For these reasons, we simulate only single link-
status changes and multiple link-cost changes.

Link-status changes:Each link is made to fail and recover in turn,
and the control message overhead and convergence times are measured
in each case. The worst-case and the averages of control message over-
head and convergence times are given in Table 1. Figs. (6)-(9) show
the overheads associated with each event. For link failures and recover-
ies MPATH has lower average message overhead than TOPB, which is
due to use of partial topologies. However, due to synchronization used
for providing loop-freedom, the worst-case message overhead is higher
for MPATH.. MPATH has larger overhead than DASM under link re-
coveries because, though neither invokes synchronization, MPATH ex-
changes predecessor information in addition to distances. Under link-
failures, DASM requires more messages than MPATH because of the
multihop synchronization that DASM uses. Same argument can be ap-
plied for the convergence times.

Multiple link-cost changes:When near-optimal routing framework
is implemented as in [19], multiple links change cost simultaneously.
To study the protocol behavior under such scenarios, costs of multi-
ple links is changed simultaneously and the performance is measured.
The average message overhead and convergence times are shown in
the Table 1. MPATH has lower worst-case and average message over-
head than TOPB and DASM. MPATH has lower worst-case and av-
erage convergence times than DASM. The average convergence time
for MPATH is also lower than TOPB. Only in the worst-case, MPATH
showed higher convergence times than TOPB, which is again due to
synchronization used in MPATH.

V. CONCLUSIONS

We have presented the first path-finding routing algorithm that pro-
vides multiple paths between each source-destination pair that need not
necessarily have equal costs and that are loop-free at every instant. The

6

TABLE 1

Control messages (bytes)
Worst-case Avg Std-dev

Link failures
TOPB 555.00 555.00 0.00
DASM 3312.00 1052.70 792.19
MPATH 1160.00 443.29 266.06

Link recoveries

TOPB 552 552 552
DASM 1120.0 353.41 266.43
MPATH 944 423.52 230.95

Link-cost changes

TOPB 9384.00 9384.00 0.00
DASM 11520.00 10050.93 742.10
MPATH 6856.00 5272.53 702.51

Convergence times (ms)
Worst-case Avg Std-dev

Link failures
TOPB 1.46 1.20 0.14
DASM 3.30 2.16 0.78
MPATH 2.02 1.11 0.42

Link recoveries

TOPB 1.46 1.20 0.14
DASM 1.48 0.97 0.39
MPATH 1.52 1.08 0.37

Link-cost changes

TOPB 5.48 5.48 0.00
DASM 9.82 7.75 0.71
MPATH 6.46 4.87 0.77

routing algorithm is designed around a set of loop-free invariant condi-
tions and uses inter-nodal synchronization that spans no more than one
hop. Using simulations, the performance of the routing algorithm, in
terms of control message overhead and convergence times, is compared
with other algorithms. The multiple next-hop choices that MPATH
makes available at each node can be used for traffic load-balancing and
minimizing delays in the network [19].

REFERENCES

[1] E.W.Dijkstra and C.S.Scholten. Termination Detection for Diffusing Computations.Information
Processing Letters, 11:1–4, August 1980.

[2] D. Farinachi. Introduction to enhanced IGRP(EIGRP).Cisco Systems Inc., July 1993.

[3] J.J. Garcia-Luna-Aceves. Loop-Free Routing Using Diffusing Computations.IEEE/ACM Trans.
Networking, 1:130–141, February 1993.

[4] J.J. Garcia-Luna-Aceves and J. Behrens. Distributed, scalable routing based on vectors of link states.
IEEE Journal on Selected Areas in Communications, October 1995.

[5] J.J. Garcia-Luna-Aceves and S. Murthy. A path-finding algorithm for loop-free routing.IEEE/ACM
Trans. Networking, February 1997.

[6] J.J. Garica-Luna-Aceves and M. Spohn. Scalable link-state internet routing.Proc. International
Conference on Network Protocols, October 1998.

[7] J.J. Garica-Luna-Aceves and M. Spohn. Source tree adaptive routing.Proc. International Conference
on Network Protocols, October 1999.

[8] C. Hendrick. Routing Information Protocol.RFC, 1058, june 1988.

[9] P. A. Humblet. Another Adaptive Distributed Shortest Path Algorithm.IEEE Trans. Commun.,
39:995–1003, June 91.

[10] J. M. Jaffe and F. H. Moss. A Responsive Distributed Routing Algorithm for Computer Networks.
IEEE Trans. Commun., 30:1758–1762, July 1982.

[11] P. M. Merlin and A. Segall. A Failsafe Distributed Routing Protocol.IEEE Trans. Commun.,
27:1280–1287, September 1979.

[12] J. Moy. OSPF Version 2.RFC, 1247, August 1991.

[13] R. Perlman. Fault-tolerant broadcast of routing information.Computer Networks and ISDN, 7, 1983.

[14] B. Rajagopalan and M. Faiman. A Responsive Distributed Shortest-Path Routing Algorithm with
Autonomous Systems.Internetworking: Research and Experience, 2:51–69, March 1991.

[15] A. Segall. Optimal distributed routing for virtual line-switched data networks.IEEE Trans. Com-
mun., 27:201–209, January 1979.

[16] J. Spinelli and R. Gallager. Event Driven Topology Broadcast without Sequence Numbers.IEEE
Trans. Commun., 37:468–474, 1989.

[17] S. Vutukury and J.J. Garcia-Luna-Aceves. An algorithm for multipath computation using distance-
vectors with predecessor information.Proc. of ICCCN, Oct. 1999.

[18] S. Vutukury and J.J. Garcia-Luna-Aceves. A Distributed Algorithm for Multipath Computation.
GLOBECOM’99, 1999.

[19] S. Vutukury and J.J. Garcia-Luna-Aceves. A Simple Approximation to Minimum Delay Routing.
Proc. of ACM SIGCOMM, Sept. 1999.

[20] W. T. Zaumen and J.J. Garcia-Luna-Aceves. Loop-Free Multipath Routing Using Generalized Dif-
fusing Computations.Proc. IEEE INFOCOM, March 1998.

