MPATH: A Loop-free Multipath Routing Algorithm

SRINIVAS VUTUKURY J.J. BARCIA-LUNA-ACEVES

vutukury@cse.ucsc.edu jj@cse.ucsc.edu
Computer Sciences Department Computer Engineering Department

University of California University of California

Santa Cruz, CA 95064 Santa Cruz, California 95064

Networking and Security Center
Sun Microsystems Laboratories
Palo Alto, California 94303

Abstract—We present a distributed routing algorithm for computing multiple paths ~ Synchronization mechanism that spans only one hop, which makes it

between each source-destination pair in a computer network, such that the paths are more scalable than routing algorithms based on diffusing computations
loop-free at all times and are not necessarily of equal length. In this algorithm, routers spanning multiple hOpS.

exchange second-to-last hop on the shortest path to destinations in addition to short- . i . .
est distances, which are used to prevent the well-know count-to-infinity problem. The The paperis organlzed as follows. Section Il describes MPATH. Sec-

safety and liveness properties of the algorithm are proved and its performance is ana- 10N 111 presents the correctnes_s proofs _ShOWing that MPATH is |00F_"
lyzed. free at every instant, safe, and live. Section IV analyzes the complexity
of MPATH. Section V provides concluding remarks.

I. INTRODUCTION
II. DISTRIBUTED MULTIPATH ROUTING ALGORITHM

RIP[8] and many other routing protocols based on the distributed .
Bellman-Ford algorithm (DBF) for shortest-path computation suffé- Problem Formulation
from thebouncing effecand thecounting-to-infinityproblems, which A computer network is represented as a grépk: (N, L) whereN
limit their applicability to small networks using hop count as the megs set of nodes (routers) arddis the set of edges (links) connecting the
sure of distance. In the past several years, much research has pegfes. A costis associated with each link and can change over time, but
devoted to fixing these problems. In one approach, routers exchapgglways positive. Two nodes connected by a link are called adjacent
query and reply messages to synchronize distance updates, a technigdes or neighbors. The set of all neighbors of a given nisidenoted
that is sometimes callediffusing computationfl]. The loop-free rout- by N7, Adjacent nodes communicate with each other using messages
ing algorithm DUAL[3], which is used in EIGRP [2], and several aland messages transmitted over an operational link are received with no
gorithms based on distance vectors have been proposed that useefifyrs, in the proper sequence, and within a finite time. Furthermore,
fusing computations to overcome the counting-to-infinity problem e@fych messages are processed by the receiving node one at a time in
DBF [15], [11], [10], [20]. the order received. A node detects the failure, recovery and link cost
In another approach, routers exchange second-to-last hop to a desmges of each adjacent link within a finite time.
tination in addition to distance information so that they can determine The goal of our distributed routing algorithm is to determine at each
complete paths and prevent the count-to-infinity problem. These gbde; the successor set affor destinationj, which we denote by
gorithms are often called path-finding algorithms or source-tracing g;:(t) C N, such that the routing graphiG; () consisting of link set
gorithms [9], [14], [5] All these algorithms eliminate DBF's Count'{(m, n)|n c S]m (t)7 m € N} is free of |oops at every instan’[even
ing to infinity problem, and some of them (LPA [5]) are more efficienfyhen link costs are changing with time. The routing graig; (¢) for
than any of the routing algorithms based on link-state information preingle-path routing is a sink-tree rootedjabecause the successor sets
posed to date. Furthermore, LPA [5] is loop-free at every instant. TR(t) have at most one member. In multipath routing, there can be more
MPATH routing algorithm presented in this paper is a path-finding &han one member ifii (¢); therefore SG; (t) is a directed acyclic graph
gorithm [17], [18]. MPATH differs from prior path-finding algorithms ;i j as the sink node. There are potentially sevéi@l; (¢) for each
in that it uses the invariants, introduced in [19], to ensure multiple |°°Béstinationj; however, the routing graph we will construct is defined
free paths of unequal cost. _ o . bythe successor sef§(t) = {k|D} (t) < Di(t),k € N'}, whereD}
Another family of routing algorithms exchange link informations the shortest distance of noi® destinatiory. We call such a routing
to compute routing paths. These algorithms were first proposed ajidph theshortest multipattior destination;. After a series of link cost
widely used because they do not suffer from the count-to-infinity pro hanges which leave the network topology in arbitrary configuration,
lem of the distance vector algorithms. OSPF [12] and algorithms {Re distributed routing algorithm should work to mod#y7; in such
[16], [13] are some that belong to this family, which exchange comy\yay that it eventually converges to the shortest multipath of the new
plete topology information. A couple of routing algorithms have beeébnfiguration, without ever creating a loopSiz; during the process.
proposed that operate using partial topology information [4], [6], [7], Therefore, our solution to the routing problem consists of first com-

[19] to eliminate the main limitation of topology-broadcast algorithm%utingDé using a shortest-path routing algorithm, and using it to com-

Except DASM[20] and MPDA[19], all of the above routing algo'pute Si. BecauseD" is nodek’s local variable, its value has to be

rithms focus on the provision of a single path to each destination. A

drawback of DASM is that it uses multi-hop synchronization, WhicﬁXp“CItIy or implicitly communicated tai. It Djy, is the value of

k ; ;
can limit its scalability. In this paper, we present the first path-findingj as known to node, the problem now becomes one of computing

routing algorithm that (a) provides multiple paths of unequal cost & (t) = {k|Dj(t) < Dj(t)}. However, because of non-zero prop-

each destination that are free of loops at every instant and (b) usédgtion delays, during network transitions there can be discrepancies
in the value ofD}“ and its copyDj,, ati, which may cause loops to

This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) urfl%l;m in SGJ" To prevent |9°ps- therefore, addltlonal constraints must
grants F30602-97-1-0291 and F19628-96-C-0038. be imposed when computirfgf. We show later that if the successor set

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2006 2. REPORT TYPE 00-00-2006 to 00-00-2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

MPATH: A Loop-free Multipath Routing Algorithm £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Santa Cruz,Department of Computer REPORT NUMBER
Engineering,Santa Cruz,CA,95064

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 6
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ProcedureINIT-PATH

{Invoked when the node comesjup.
1. Initialize all tables.
2. RunPATH algorithm.

End INIT-PATH

Algorithm PATH

{Invoked when a message M is received from neigtthor
or an adjacent link tdk has changed cost or when a node is
initialized.}
1. RunNTU to update neighbor tables.
2. RunMTU to update main tables.
3. For each destinationmarked ashanged
Add update entryq, D:, p}] to the new messagk/’.

Procedure NTU
{Called by PATH to process an evént.
1. If event is a message M from neighbar
a. For each entryj{ d, p] in M //Note d = D}, p = p}.)
SetDj};, « d andp}; « p.
b. For each destinatiopwith an entry in M,
Remove existing linksr, j) in T¢ and add new
link (m, 5, d) to Tj;, whered = D}, — D,
andm = pj;.
2. If link-down event, clear the neighbor tableskof
3. If link-up or link-cost change event,upddig
End NTU

Fig. 2. Neighbor Table Update Algorithm

4. Within finite amount of time, send messalg to
each neighbor.

End PATH C. ComputingD}

This subsection describes the shortest-path algorithm PATH (1) and
the next subsection describes how PATH is extended to compute mul-
tiple next-hops are determined basedlojx INIT-PATH is called at
node startup to initialize the tables; distances are initialized to infin-
ity and node identities to a null value. PATH is executed in response
to an event: either a receipt of an update message from a neighbor
or detection of an adjacent link cost or link status (up/down) change.
PATH invokes procedure NTU (Fig. 2), which first updates the neigh-
bor distance tables and then updafgswith links (m, n, d), where
d = D!, — D, andm = p,. PATH then invokes procedure MTU

. 3), which construct" by merging the topologie; and the ad-

nt linksl:. PATH is virtually identical to PDA [19], in the sense

though they differ in the information the routers exchange, inter-
ﬁ‘y they construct the partial topologies.
The merging process is straightforward if all neighbor topologies
T+) contain consistent link information, but when two or more neigh-

! dBrs link tables contain conflicting information regarding a particular
the next sect!on._ o o link, the conflict must be resolved. Two neighbor tables are said to
The following information is maintained at each nade contain conflicting information regarding a link, if either both report

1. TheMain Distance Table:ontainsDj- andpj-, whereDj- is the the link with different cost or one reports the link and the other does

distance of nodéto destinatiory andp’ is the predecessor to des-NOt. Conflicts are resolved as follows: if two or more neighbor ta-
tinationj on the shortest path froirto j. The table also stores for Ples contain conflicting information of linkm, n), thenT" is up-
each destinatiopj, the successor sét, feasible distanc&Di, dated with link information reported by the neightietthat offers the
reported distanc&D’ and two flagshangedandreport-it shortest distance from the nodé¢o the head noden of the link, i.e.,
J . i [2 71 i i ; ; el

2. TheMain Link TableT" is the node’s view of the network and ¢ + Dmi = min{li + Dy, |k € N'}. Ties are broken in aonsis
contains links represented Iy, n, d) where(m, n) is a link tentmanner; one way is to break ties always in favor of lower address
with costd T ’ neighbor. Becauseitself is the head of the link for adjacent links, any

3 TheNeigHbor Distance Tabléor neighbork containsD’, and information about an adjacent link supplied by neighbors will be over-

b J

. S) . . . ridden by the most current information about the link available to node
P}, WhereD?, is the distance of neighbarto j as communicated . y

by k andpj- « Is the predecessor yoon the shortest path frodto
j as notified byk.

4. TheNeighbor Link Tablel} is the neighbok’s view of the net-
work as known tai and contains link information derived from
the distance and predecessor information in the neighbor dista
table.

5. Adjacent Link Tablestores the cosk, of adjacent link to each
neighbork. If a link is down its cost is infinity.

Fig. 1. The PATH Algorithm

at each nodeé for each destinationp satisfy certain conditions called
loop-free invariant conditions, then the snapshot at timithe routing
graphSG; (t) implied by S} (t) is free of loops.

B. Node Tables and Message Structures

As in DBF, nodes executing MPATH exchange messages contain
distances to destinations. In addition to the distance to a destinati
nodes also exchange the identity of the second-to-last node, also ¢
predecessor node, which is the node just before the destination nQ
on the shortest path. In this respect MPATH is akin to several prior
algorithms [5], [14], [9], but differs in its specification, verification an
analysis and, more importantly, in the multipath operation described

1.
After merging the topologies, MTU runs Dijkstra’s shortest path al-
gorithm to find the shortest path tree and deletes all links ffgnthat
are not in the tree. Because there can be more than one shortest-path
tree, while running Dijkstra’s algorithm ties are again broken in a con-
"W&ent manner. The distanc@§ and predecessop@ are then obtained
from T¢. The tree is compared with the previous shortest path tree and
only the differences are then reported to the neighbors. If there are
no differences, no updates are reported. Eventually all tables converge
Nodes exchange information using update messages which havesii¢h thatD; give the shortest distances and all message activity will
following format. cease.

1. An update message can one or more update entries. An update o
entry is a triplet f, d, p], whered is the distance of the node D- ComputingS;

sending the message to destinatjoandp is the predecessor on \MpATH described in this section determines the successoiséets

the path toj.) o by enforcing the Loop-free Invariant conditions (described below) us-
2. Each message carries two flags used for synchronizaliggry jng 4 neighbor-to-neighbor synchronization.
andreply.

Let FDj-, called the feasible distance, be an 'estimate’ of the dis-

Procedure MTU
1. Clear link tablel™.
2. For each nodg # 4 occurring in at least on&},
a. FindMIN « min{Dj;, +Ij|k € N'}.
b. Letn be such thal/ IN = (Dj,, +1;,). (Ties are
brokenconsistently Neighborn is the preferred neighbor
for destinationy). For each link {, v, d) in T},
Add link (j, v, d) to T".
3. UpdateT™ with each linki:,.
4. Run Dijkstra’s shortest path algorithm @H to
find newDj, andp),. o
5. For each destinatioj) if D} or p; changed from
previous value, sathangedandreport-it flags forj.
End MTU

Fig. 3. Main Table Update Algorithm

tance of node to nodej in the sense thaFD;? is equal toDj- when

the network is in stable state, but to prevent loops during periods of

network transitions, it is allowed to be temporarily differ frdﬁj. The
key to loop-free routing is in maintainin@'Dj- such that the following
conditions are satisfied.

Loop-free Invariant Conditior(& F1)[19]:

FDj(t)
S (t)

IN

Di(t) keN'
{ k| Dji(t) < FD;(t)}

@)
@)

The invariant conditions (1) and (2) state that, for each destination

j, a nodei can choose a successor whose distange &3 known ta,
is less than the distance of noti® j that is known to its neighbors.

Theorem 1: [19] If the LFI conditions are satisfied at any tine
the SG; (t) implied by the successor sef$(t) is loop-free.
Proof: Letk € S}(t) then from (2) we have

ik(t) < FDj(t) 3)
At nodek, because nodeis a neighbor, from (1) we have
FDj(t) < D))
Combining (3) and (4) we get
FD(t) < FDi(t) (5)

Eq.(5) states that, i is a successor of noden a path to destina-

ProcedureINIT-MPATH
{Invoked when the node comesjup.
1. Initialize tables and run MPATH.
End INIT-MPATH

Algorithm M PATH
{Invoked when a message M is received from neiglbor
or an adjacent link tdk has changed.
1. RunNTU to update neighbor tables.
2. RunMTU to obtain newD; andpj.
3. If node isPASSIVEor node iSACTIVEA last reply arrived,
Resetgoactiveflag.
For each destinatiof marked aseport-it,
a. FD; < min{Dj, RD}}
b. If D; > RDj, Setgoactiveflag.
C. RDj + D;‘, .
d. Add [j, RD}, p%] to message\/’.
e. Cleameport-it flag for 5.
Otherwise, the node is ACTIVE and waiting for more replies,
For each destinatiof marked ashanged
f. FD} «+ min{D}, FD}}
4. For each destinatiohmarked ashanged
a. Clearchangedlag for j
b. Si « {k| D}, < FD;}
5. For each neighbak,
a.M' «+— M.
b. If event is agueryfrom k, Setreplyflag in M"'.
c. If goactiveset, Seqjueryflag in M".
d. If M"" non-empty, send/” to k.
6. If goactiveset, becomedCTIV E, otherwise
becomePASSIVE.
End MPATH

Fig. 4. Multi-path Loop-free Routing Algorithm

nodes to know Dfi (t), the distance from to nodej in the topology

tableT’* that nodel communicated to neighbdr. Because of non-zero
propagation delayl’* is a time-delayed version &*. We observe

that, if nodei delays updating of D} with D} until incorporates the
distanceD; in its tables, ther” D; satisfies the LFI condition.

MPATH (Fig. 4) enforces the LFI conditions by synchronizing the
exchange of update messages among neighbors gagryandreply
flags. If a node sends a message witluarybit set, then the node must
wait until areply is received from all its neighbors before the node is
allowed to send the next update message. The node is said to be in
ACTIVE state during this period. The inter-neighbor synchronization
used in MPATH spans only one hop, unlike algorithms that use diffus-
ing computation that potentially span the whole network(e.g., DASM
[20]).

Assume that all nodes are in PASSIVE state initially with correct

tion 7, thenk's feasible distance tg is strictly less than the feasible distances to all other nodes and that no messages are in transit or pend-
distance of nodéto j. Now, if the successor sets define a loop at timiaig to be processed. The behavior of the network, where every node
t with respect tgj, then for some nodg on the loop, we arrive at the runs MPATH, is such that when a finite sequence of link cost changes
absurd relation¥’ DY (t) < FDj(t). Therefore the LFI conditions are occurs in the network within a finite time interval, some or all nodes go

sufficient for loop-freedom. |

through a series of PASSIVE-to-ACTIVE and ACTIVE-to-PASSIVE

The invariants used in LFI are independent of whether the algorithstate transitions, until eventually all nodes become PASSIVE with cor-
uses link states or distance vectors; in link-state algorithms, suchrest distances to all destinations.
MPDA, the Dj, are computed locally from the link-states communi- Let a node in PASSIVE state receive an event that results in changes
cated by the neighbors while in distance-vector algorithms, like the its distances to some destinations. Before the node sends an up-

MPATH presented here, th@j,c are directly communicated.

The invariants (1) and (2) suggest a technique for compLﬁ;'r(g)
such that the successor graf’; (¢) for destination; is loop-free at

every instant. The key is determinidgD;, (¢) in Eq. (1), which requires

date message to report new distances, it checks if the disfaj-me

any destinatiory has increased above the previously reported distance
RD:. If none of the distances increased, then the node remains in
PASSIVE state. Otherwise, the node setsdheryflag in the update

message, sends it to each neighbor, and goes into ACTIVE state. Whernwe show that

in ACTIVE state, a node cannot send any update messages or increase ; X

FD:. After receiving replies from all its neighbors the node is allowed FDj(t) < Djt) tE€ [tn,tnt1] (8)
to increaseFDj- and report any changes that may have occurred sin,

the time it has transitioned to ACTIVE state, and if none of the dis'g-(li}Om Theorem 2 we have

tances increased beyond the reported distance, the node transitions to FD: (tn) < min{ RD: (tn_1), RD: (tn)} 9)
PASSIVE state. Otherwise, the node sends the next update message i ! B . Z i !

with thequerybit set and becomes ACTIVE again, and the whole cycle FDj(tnt1) < min{RDj(tn), RDj(tnt1)} (10)
repeats. If a node receives a message withgtnery bit set when in FD}- t) < FD;'- (tn) t € [tn,tnt1) 11

PASSIVE state, it first modifies its tables and then sends back an up-

date message with theply flag set. Otherwise, if the node happen&ombining the above equations we get
to be in ACTIVE state, it modifies the tables but because the node is
not allowed to send updates when in ACTIVE state, the node sends
back an empty message with no update information andetblg bit

set. If a reply from a neighbor is pending when the link to the neighbor

fails then an implicit reply with infinite distance is assumed, Becau ocessed by neighbdr. Because of the non-zero propagation delay
replies are given immediately to queries and replies are assumed tQ be any link' is suéh that, < ¢ < tn.1 and becaus®D! is
given upon link failure, deadlocks due to inter-neighbor SynChronizﬁiodified att. and remains unc%an ed("t we aet J

tion cannot occur. Eventually, all nodes become PASSIVE with correct " ged (fh, tn+1) 9
distances to destinations, which we prove in the next section. RD}(t,—1)

FDi(t) < min{RD}(tn—1),RD}(tn)} t € [tn,tns1](12)

Let ¢’ be the time when message sent gt ¢,, is received and

< DE(t) tEl[tat) (13)
< DRt te[t tus] (14)

[Il. CORRECTNESS ORMPATH RDj(tn)

To show the correctness of MPATH, we prove the following: (LFrom Eq. (13) and (14) we get
MPATH eventually converges witDj- giving the shortest distances and
(2) the successor graphG; is loop-free at every instant and eventu- _ _
ally converges to the shortest multipath. PATH works essentially like min{RD}(tn 1), RDj(tn)} < DJi(t) t€ [tn,tns1] (15)
PDA[19] except that the kind of update information exchanged is differ-) . ;
ent; PDA exchanges link-state while PATH exchanges distance-vectgfgm (12) a.nc.i _(1_5) the |nduct|v§ stepn(8) follows. BecaE’sIéj (to) <
with predecessor information. Internally both represent this inform&i(to) at initialization, from induction we have thaf Dj(t) <
tion as partial topologies communicated by the neighbors. So, thg:(t) for all t. Given that the successor sets are computed based on
correctness proof of PATH is identical to PDA. The convergence &tD:, it follows that the LFI conditions are always satisfied. According
MPATH directly follows from the convergence of PATH because exo the Theorem 1 this implies that the successor gi&@h is always
tensions to MPATH are such that update messages in MPATH are oldgp-free. []
delayed a finite amount of time. A node generates update messages .
only to report changes in distances and predecessor, so after conve-lr-he following theorem shows that MPATH correctly computes the

ence no messages will be generated. The following theorems s rtestmultipath. L
tghat MPATH provig(]jes instantz?neous loop-freedom g Theorem4: (Liveness property) A finite time after the last change

in the network, thd);? give the correct shortest distances a‘i’jd:
Theorem 2: For the algorithm MPATH executed at nodldett, be {k|D} < Dj,k € N},

the time whenR D] is updated and reported for theth time. Then, Proof: The proof is similar to the proof of Theorem 4 in [19].

the following conditions always hold. The convergence of MPATH follows directly from the convergence of
PATH because the update messages in MPATH are only delayed a finite
time as allowed at line 4 in algorithm PATH. Therefore, the distances

mz‘n{RDj- (tn_l),RDj- (tn)} (6) Dj- in MPATH also converge to shortest distances. Because changes

F D§ (tn) t € [tn,tni1) @ to D; are a.Iways. reported. to .th.e ngighbors anci are incorporated by the

neighbors in their tables in finite timB}, = Dj for k € N* after
Proof: From the working of MPATH in Fig. 4, we observe thatconvergence. From line 3a in MPATH, we observe that when node

RD! is updated at line 3c when (a) the node goes from PASSIvEecomes passiveD; = D; holds true. Because all nodes are passive
to-ACTIVE because of one or more distance increases (b) the nddeconvergence it follows thaf; = {k|Dj, < FDj,k € N'} =
receives the last reply and goes from ACTIVE-to-PASSIVE state (¢)c|D§“ < Dj-, ke N} |
the node is in PASSIVE state and remains in PASSIVE state because
the distance did not increase for any destination (d) the node receives
the last reply but immediately goes into ACTIVE state. The reported The simulations compare the control overhead and convergence
distanceR D; remains unchanged during the ACTIVE phase. Becausitnes of MPATH, TOPB and DASM. TOPB is a link-state algorithm
FDj- is updated at line 3a each tinﬁéD;3 is updated at line 3c, Eq. (6) that closely approximates OSPF, which is a link-state algorithm for
follows. When the node is in ACTIVE phasE,D} may also be modi- which commercial implementations exist and whose convergence time
fied by the statement on line 3f, which implies Eq. (7). W s fairly constant and depends on the diameter of the network. Ideally,
MPATH should approach the convergence times of TOPB, that is the
‘Theorem3: (Safety property) At any time, the successor setsextra time needed to enforce loop-freedom should be negligible. We
S;(t) computed by MPATH are loop-free. expect MPATH to have far less message overhead because of its re-
Proof: The proof is based on showing that tﬁd)j- ande com- liance on only partial topology. On the other hand DASM is the only
puted by MPATH satisfy the LFI conditions. Lét be the time when distance-vector routing algorithm to date that provides loop-free mul-
RD;3 is updated and reported for theth time. The proof is by induc- tipaths to each destination. DASM achieves loop-freedom through dif-
tion on the intervalt,, t»+1]. Let the LFI condition be true up to time fusing computations that span the whole network. In contrast, MPATH

FDi(tn)

<
FDj(t) <

IV. SIMULATION RESULTS

PROTOCOL OVERHEAD
1200 e e

2 'OSPF" -

1000

MESSAGE LOAD IN BYTES
a
a

Fig. 5. CAIRN Topology used in simulations o

8 9 10 11 12 13 14 15 16 17
LINK IDs

PROTOCOL OVERHEAD
e e

. T T Fig. 8. Link recoveries. Message overhead

3500

3000 -

PROTOCOL OVERHEAD
1600 —

2500 |

1400
2000 -
1200 1

1500 [| A

1000 |

MESSAGE LOAD IN BYTES

1000 |- d

=)
TIME IN MILLISECONDS

8 9 10 11 12 13 14 15 16 17
LINK IDs

Fig. 6. Link failures. Message overhead P B

R
10 11 12 13 14 15 16 17

8 9
LINK IDs

3500 PROTOCOL OVERHEAD
T T " wpATH o Fig. 9. Link recoveries. Convergence times

3000 -

2500 |

of multiple links can change simultaneously and repeatedly before the
tables converge to the latest costs. This is the case when near-optimal
delay routing of [19] is used, in which the link costs are periodically

2000 |

TIME IN MILLISECONDS

wer measured and reported. For these reasons, we simulate only single link-
iy status changes and multiple link-cost changes.
@ Link-status changesEach link is made to fail and recover in turn,

and the control message overhead and convergence times are measured
in each case. The worst-case and the averages of control message over-
head and convergence times are given in Table 1. Figs. (6)-(9) show
Fig. 7. Link failures. Convergence times the overheads associated with each event. For link failures and recover-
ies MPATH has lower average message overhead than TOPB, which is
due to use of partial topologies. However, due to synchronization used
uses only neighbor-to-neighbor synchronization. It is interesting f@r providing loop-freedom, the worst-case message overhead is higher
see how convergence times are effected by the synchronization mdeh-MPATH.. MPATH has larger overhead than DASM under link re-
anisms. Also, it is not obvious how the control message overheadsceyeries because, though neither invokes synchronization, MPATH ex-
DASM and MPATH compare. changes predecessor information in addition to distances. Under link-
The performance metrics used for comparison are the control mlures, DASM requires more messages than MPATH because of the
sage overhead and the convergence times. We use the event-dripglihop synchronization that DASM uses. Same argument can be ap-
real-time simulator CPT from Nokia and perform simulations on thidlied for the convergence times.
CAIRN topology shown in Fig. Svww.cairn.net). For simplicity, we Multiple link-cost changesWhen near-optimal routing framework
use a flat topology without area aggregation; there is no reason to isdmplemented as in [19], multiple links change cost simultaneously.
lieve area aggregation would favor one routing algorithm over otherslo study the protocol behavior under such scenarios, costs of multi-
Two types of events are triggered in the network: link-status chang@§ links is changed simultaneously and the performance is measured.
(link failures and link recovery) and link-cost changes. In practice linkshe average message overhead and convergence times are shown in
and nodes are highly reliable and change status much less frequeth§y/Table 1. MPATH has lower worst-case and average message over-
than link costs which are a function of the traffic on the link. For sinfad than TOPB and DASM. MPATH has lower worst-case and av-
plicity, We do not simulate node failures because of the problems Rfage convergence times than DASM. The average convergence time
sulting due to loss of sequence numbers by the nodes, which only eff@&tMPATH is also lower than TOPB. Only in the worst-case, MPATH
the functioning of TOPB here. showed higher convergence times than TOPB, which is again due to
We also restrict link-status changes to a single change; that is, ofichronization used in MPATH.
one link failure or link recovery can occur at any time during the mea-
surement interval. Because in backbone networks the links and nodes
in the network are highly reliable, simultaneous multiple topological We have presented the first path-finding routing algorithm that pro-
changes are much less likely to occur and it is reasonable to asswides multiple paths between each source-destination pair that need not
that tables converge between topological changes. However, link comsessarily have equal costs and that are loop-free at every instant. The

8 9 10 11 12 13 14 15 16 17
LINK IDs

V. CONCLUSIONS

TABLE 1 [19] S. Vutukury and J.J. Garcia-Luna-Aceves. A Simple Approximation to Minimum Delay Routing.
Proc. of ACM SIGCOMMSept. 1999.

Control messages (bytes) [20] W. T. Zaumen and J.J. Garcia-Luna-Aceves. Loop-Free Multipath Routing Using Generalized Dif-
Worst-case Avg Std-de; fusing ComputationsProc. IEEE INFOCOM March 1998.
Link failures
TOPB 555.00 555.00 0.00

DASM 3312.00 1052.70 792.19
MPATH 1160.00 443.29 266.06)

Link recoveries

TOPB 552 552 552
DASM 1120.0 353.41 266.43
MPATH 944 423.52 230.95

Link-cost changes

TOPB 9384.00 9384.00 0.00
DASM 11520.00 10050.93 742.10
MPATH 6856.00 5272.53 702.51

Convergence times (ms)

Worst-case Avg Std-de!
Link failures
TOPB 1.46 1.20 0.14
DASM 3.30 2.16 0.78
MPATH 2.02 1.11 0.42
Link recoveries
TOPB 1.46 1.20 0.14
DASM 1.48 0.97 0.39
MPATH 1.52 1.08 0.37
Link-cost changes

TOPB 5.48 5.48 0.00
DASM 9.82 7.75 0.71
MPATH 6.46 4.87 0.77

routing algorithm is designed around a set of loop-free invariant condi-
tions and uses inter-nodal synchronization that spans no more than one
hop. Using simulations, the performance of the routing algorithm, in
terms of control message overhead and convergence times, is compared
with other algorithms. The multiple next-hop choices that MPATH
makes available at each node can be used for traffic load-balancing and
minimizing delays in the network [19].

REFERENCES

[1] E.W.Dijkstra and C.S.Scholten. Termination Detection for Diffusing Computatidnformation
Processing Lettersl1:1-4, August 1980.

[2] D. Farinachi. Introduction to enhanced IGRP(EIGR@jsco Systems Incluly 1993.

[3] J.J. Garcia-Luna-Aceves. Loop-Free Routing Using Diffusing Computati®BEE/ACM Trans.
Networking 1:130-141, February 1993.

[4] J.J. Garcia-Luna-Aceves and J. Behrens. Distributed, scalable routing based on vectors of link states.
IEEE Journal on Selected Areas in Communicatj@stober 1995.

[5] J.J. Garcia-Luna-Aceves and S. Murthy. A path-finding algorithm for loop-free routite=/ACM
Trans. NetworkingFebruary 1997.

[6] J.J. Garica-Luna-Aceves and M. Spohn. Scalable link-state internet roufirg. International
Conference on Network ProtocolSctober 1998.

[7] J.J. Garica-Luna-Aceves and M. Spohn. Source tree adaptive roBtog.International Conference
on Network ProtocolsOctober 1999.

[8] C. Hendrick. Routing Information ProtocdRFC, 1058, june 1988.

[9] P. A. Humblet. Another Adaptive Distributed Shortest Path AlgorithtBEE Trans. Commun.
39:995-1003, June 91.

[10] J. M. Jaffe and F. H. Moss. A Responsive Distributed Routing Algorithm for Computer Networks.
IEEE Trans. Commun30:1758-1762, July 1982.

[11] P. M. Merlin and A. Segall. A Failsafe Distributed Routing ProtocdEEE Trans. Commup.
27:1280-1287, September 1979.

[12] J. Moy. OSPF Version 2RFC, 1247, August 1991.

[13] R.Perlman. Fault-tolerant broadcast of routing informat@omputer Networks and ISDN, 1983.

[14] B. Rajagopalan and M. Faiman. A Responsive Distributed Shortest-Path Routing Algorithm with
Autonomous Systemsnternetworking: Research and Experien2e51-69, March 1991.

[15] A. Segall. Optimal distributed routing for virtual line-switched data netwollEEE Trans. Com-
mun, 27:201-209, January 1979.

[16] J. Spinelli and R. Gallager. Event Driven Topology Broadcast without Sequence NunhBEiS.
Trans. Commun37:468—-474, 1989.

[17] S. Vutukury and J.J. Garcia-Luna-Aceves. An algorithm for multipath computation using distance-
vectors with predecessor informatidProc. of ICCCN Oct. 1999.

[18] S. Vutukury and J.J. Garcia-Luna-Aceves. A Distributed Algorithm for Multipath Computation.
GLOBECOM'99 1999.

