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ABSTRACT 
 
 
 
Enemy integrated air defense systems (IADS) using low probability of 

intercept (LPI) emitters can cause significant problems for suppression of enemy 

air defense (SEAD) techniques.  New threat emitter configurations using low-

power random noise modulation have a significant processing gain unavailable to 

non-cooperative intercept receivers.  Consequently, the detection of these 

emitters can not be accomplished with conventional intercept receiver detection 

methods.  

This thesis examines the use of time-frequency, bi-frequency signal 

detection techniques to identify the parameters of the four types of continuous 

waveform noise radar recently reported. These include: (a) random noise, (b) 

noise plus frequency modulation continuous wave (FMCW), (c) noise FMCW 

plus sine and (d) random binary phase modulation.  Quadrature mirror filtering for 

wavelet decomposition is used to investigate the four types of noise signals in 

order to extract the signal parameters.  The FFT accumulation method for 

estimating the spectral correlation density function is also used to examine the 

cyclostationary bi-frequency properties of the waveforms.  In addition, the 

periodic autocorrelation function and periodic ambiguity function are studied to 

determine the waveform properties in the delay-Doppler offset domain.  Results 

show that non-cooperative intercept receivers can increase their processing gain 

using these types of signal processing techniques providing a more efficient 

response time to the threat.  
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EXECUTIVE SUMMARY 

Noise technology radar1 follows a paradigm shift in the radar and 

electronic warfare community.  The evolution is extraordinary.  Characterizing 

that paradigm shift is to go from megawatt transmission of modulated 

electromagnetic energy to milliwatt “background” noise, is as significant as the 

development of digital receivers.  

As often seen in electronic warfare, new technology spawns new 

countermeasures.  This leapfrogging seems endless and is further accelerated 

by the advent of digital technology and software receivers.  Several 

advancements have been made around the world to develop noise radar 

technology.  For example, Mr. Sune Axelsson in Sweden has devised processing 

improvements to expedite signal processing times.  Dr Liu Guosui in China has 

explored different techniques in the generation of random signal radar to 

enhance channel isolation, many of which he says can be expected on the 

battlefield.  Dr. Ram Narayanan in the United States has developed a model of 

broadcasting simple Gaussian noise and has suggested improvements for more 

practical applications.   

The approach of this thesis is to examine the various random noise 

modulations used by the LPI emitter and explore the processing tools available to 

the intercept receiver.  Simulations in MATLAB are done to characterize the 

different modulation techniques and intercept receiver strategies.  

This research effort looked at random noise radar (RNR) and random 

signal radar (RSR) techniques making up this category of Low Probability of 

Intercept (LPI) radar.  The approach is to model the noise radar transmitter 

technology in MATLAB and compare the key waveform parameters, such as the 

periodic autocorrelation and periodic ambiguity response.  The output of each 

                                            
1 Noise Technology Radar combines all of the concepts being developed using the noise as 

a transmission medium.  The two major classes include Random Noise Radar (RNR) and 
Random Signal Radar (RSR). 
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model is the in-phase and quadrature components of the noise waveforms at the 

output of the non-cooperative intercept receiver’s analog to digital converter. The 

digitized low-power random noise modulations are then processed through two 

intercept receiver analysis tools designed to extract the signal parameters.  

These analysis tools consist of time-frequency and bi-frequency transforms 

necessary for signal detection and parameter extraction.  From this, conclusions 

are made regarding the capabilities of these signal processing techniques to 

extract the threat emitter parameters. 

Most of the research in noise technology radar has been to realize a 

working methodology and implementing a prototype.  Thus, this effort advances 

the state of our understanding in countermeasures against anyone using this 

noise technology radar.  With the development of solid state microwave 

technology and very-large-scale-integration (VLSI), RNR concepts have come 

more to the forefront of field applications.  Most forms of RNR use a replica of the 

original transmitted noise waveform to correlate the target return signal.  To 

determine the target distance, RNR uses the power difference between the two 

correlated signals.  Doppler measurements can also be made using this 

waveform. 

There is a distinction between RNR and RSR.  RNR transmits white 

Gaussian noise while RSR uses a frequency modulated continuous waveform 

(FMCW) to modulate a bandlimited noise source.  Another form of RSR uses a 

FMCW modulated noise with an additional sine wave.  In addition, random phase 

modulation of a carrier frequency is also included as an RSR technique [12]. 

In summary, this thesis examines the four types of noise technology radar 

waveforms.  In addition, the use of a non-cooperative intercept receiver using 

time-frequency and bi-frequency signal processing techniques is examined in 

order to quantify the ability of the receiver to detect noise technology radar 

systems and extract the transmitted waveform parameters.   
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I. INTRODUCTION  

A. DETECTABILITY OF NOISE TECHNOLOGY RADAR  
Enemy integrated air defense systems (IADS) that use low probability of 

intercept (LPI) emitters can cause significant problems for suppression of enemy 

air defense (SEAD) techniques.  New threat emitter configurations that use for 

example, low-power random noise modulation, have a significant processing gain 

that is unavailable to friendly intercept receivers.  Consequently, the detection of 

these types of emitters can not be accomplished with conventional intercept 

receivers.  

Consistent with the classic leapfrog in radar technology development, a 

solution is needed to detect noise technology emitters and field this technique in 

the shortest time possible.  One approach would be through unmanned systems 

as they are well suited for the reconnaissance mission and live in a culture of 

rapid development and fielding. 

The main effort of this thesis is to examine the various random noise 

modulations that can be used by an LPI emitter and quantify the ability to detect 

these modulations and extract the waveform parameters.  Simulations in 

MATLAB are done to characterize the different noise modulation emitter designs. 

Simulations in MATLAB are also done to determine the performance of an 

intercept receiver in its ability to detect these noise signals using time-frequency 

and bi-frequency techniques.  

 

B. PRINCIPAL CONTRIBUTIONS  
1. Literature Search 
The first step in this thesis involved a literature search to investigate the 

various types of low-power random noise modulation, also known as noise 

technology radar [1]; followed by an investigation into who was conducting this 

development.  For example in [2], Mr. Ralf Stephan and Mr. Heinrich Loele at the 

Radio Frequency and Microwave Technology Institute, Technical University of 
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Ilmenau, Germany, explored pulse compression using random phase codes for 

medical applications.  Another well-publicized approach comes from Mr. Sune 

Axelsson from Sweden in [3], who explored several variables such as high-speed 

analog to digital conversion techniques.  He proposes using digital antenna beam 

forming and low-bit analog-to-digital converter (ADC) hardware to measure target 

approach angle.  Mr. Axelsson’s approach however is similar to Dr. Ram 

Narayanan’s RNR concepts initially developed at the University of Nebraska [4].  

Thus, modeling this approach was not accomplished, but a fair amount of 

explanation exists for Mr. Axelsson’s work in Appendix A – Other Worldwide 

Efforts in RNR.  For direction finding, Dr. Ram Narayanan uses the RNR 

monopulse as an effective architecture for angle estimation. This work is 

illustrated in [5].  Several others in Germany, Italy, and Singapore have 

attempted RNR generation or have used similar UWB techniques in other fields 

such as medicine – all with varying degrees of success.  Appendix A also 

addresses these efforts.     

The result of the literature research was a familiarization with noise 

technology radar and its two major groupings.  The leading architectures found 

fell into two main groups:  random signal radar (RSR) and random noise radar 

(RNR).  Other architectures involved varying design parameters.  In one of the 

most prominent forms of noise technology, RNR, a microwave noise source is 

used as the transmitted energy signal for target detection [1].  In its simplest 

form, the RNR receivers use a basic correlation between a delayed copy 

(reference) of the transmitted random white noise and the radar return.  By 

adjusting the delay of the reference signal to identify the correlation peak, one 

can extract the round trip time to the target, and subsequently the target’s range 

[5].  Another leading form of noise technology, RSR, uses a noise source that is 

modulated by a frequency modulated continuous waveform (FMCW).  In addition, 

another form of RSR uses an FMCW plus sine wave.  A random phase 

modulated carrier frequency is also considered a RSR [1].   
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2. Narayanan Interview 
Approaching various researchers of RNR became most fruitful with an 

interview with Dr. Ram Narayanan from The Pennsylvania State University.  Dr. 

Narayanan’s approach to noise technology radar comes in the form of RNR, 

which uses a microwave noise source as a broadcast signal [6].  This approach 

is the simplest and most promising in terms of LPI.  After the interview and 

extensive email traffic, the principles of RNR were defined and the specific 

application of Dr. Narayanan’s approach was clarified [4].  This discussion 

centered on the further understanding of RNR principles, clarification of 

worldwide efforts, application to future military systems, and modeling 

techniques.  This effort extensively helped illuminate this approach to noise 

technology and understand its potential. Much was gained from this experience 

to include several follow-on efforts planned with presentations to the space 

acquisitions community, use of government radar range testing facilities, future 

studies, and a potential small business programming effort.   

 

3. Analysis Approach 
The basic approach taken in this research was to model the transmitter 

techniques used in the RNR, RSR noise radar architectures found in the 

literature.  Then from the intercept receiver’s perspective, the waveform is 

captured and digitized at the intermediate frequency resulting in the in-phase and 

quadrature-phase components of the received “noise.” An electronic intelligence 

(ELINT) receiver is then considered in order to detect and identify the signal 

modulation parameters, such as noise bandwidth, modulation bandwidth, 

modulation period and the width of the random phase subcodes.  To do this, the 

ELINT receiver processes the intercepted signals using time-frequency and bi-

frequency signal processing techniques. To illustrate the capability of these types 

of techniques, plots are shown illustrating the signal characteristics that are 

recovered.  From these results, conclusions are made.   

The contributions of this thesis have not been found in the open literature.  

The significance of this thesis is the simulation of the LPI noise technology radar 
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signals (using MATLAB) along with the digital receiver and processing 

techniques for counter-LPI. In doing so, this thesis provided the opportunity to 

study the various trade-offs that are involved not only in the intercept receiver 

design but also in the development of noise technology radar. A designer can 

also pursue new concepts for their particular application, whether it is civilian or 

military.  Military designers may want to find a new approach to LPI, counter-LPI 

strategies.  Civilian designers may be struggling with the electromagnetic 

compatibility tradeoffs of a crowded radio frequency spectrum [7].  Thus by this 

approach, both communities can benefit. 

 

4. Modeling 
The noise radar transmitter models are developed in stages starting with 

the basic microwave noise modulation used in RNR, then moving to the three 

more complex RSR techniques.  To gauge the model accuracy, the interim 

results are plotted at significant steps in the transmitter design.  Once the model 

worked properly, another look was made to characterize the transmitted signal 

using additional functions.  The periodic autocorrelation (PACF) and periodic 

ambiguity function (PAF) were used to compare the noise radar receiver 

performance characteristics.   

From the intercept receiver perspective, time-frequency and bi-frequency 

signal processing techniques were examined.  Initial considerations included the 

Wigner-Ville distribution, Choi-Williams, cyclostationary analysis, and the use of 

Quadrature Mirror Filter Banks (QMFB).  Ultimately, the QMFB and the 

cyclostationary analysis were chosen and each intercepted noise technology 

waveform was compared using these techniques.  When analyzing each 

intercepted noise technology waveform, different layers of the QMFB analysis 

revealed various types of information about the intercepted noise waveform in 

time and frequency including the identification of which type of noise technology 

is being intercepted.  The cyclostationary analysis is especially useful for non-

cooperative intercept receivers and has many advantages to detect and identify 

LPI signals due to its interference rejection capabilities. Cyclostationary analysis 
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was used to examine the cycle-frequency characteristics of the noise modulation 

[8].  This type of analysis also reveals information such as noise bandwidth, 

carrier frequency, phase subcode widths in addition to the type of noise 

modulation being intercepted. It was found that the cyclostationary analysis gives 

good insight when examining the RSR type of waveforms [8].   

In the refinement of the tools and the concepts, exploratory efforts were 

made into the effects of phase, amplitude, frequency, filtering, application of 

noise, effects of complex or real noise, and randomness of phase, to name a 

few.  None of these efforts affected the primary design, but were helpful in 

understanding the architecture and validity of the model.  Comments to these 

efforts are made throughout the thesis. 

With consideration to all of the models, certain generalities apply.  The first 

of which is bandwidth.  Bandwidth is used to specify a range resolution [9, 4].  

Thus, a respectable 0.5 m range resolution is gained from a 300 MHz wide noise 

bandwidth, following [4]: 

 
2
cR
B

∆ =  (1) 

where c  is the speed of light and B  is the signal bandwidth.  To be efficient, all 

filters used within the transmitter models were developed in the Filter Design & 

Analysis tool in MATLAB.  To illustrate the effect of bandwidth, two noise 

bandwidth cases were developed. Specifically the 100 MHz wide noise, between 

300-400 MHz, and the 300 MHz wide noise between 200-500 MHz were built.  

The second generality is to verify the ultra-wideband (UWB) requirement, which 

is the case in all four models.  For example, if a B = 300 MHz signal has a 

bandwidth greater than 25% of the carrier frequency cf = 350 MHz, then it is 

considered a UWB waveform.  As another consistency throughout the models 

the final code output is the in-phase and quadrature-phase components from the 

ADC.  These are pulled from the real and imaginary portions of the complex 

signal.  This data is then passed to the time-frequency and bi-frequency tools for 

analysis.  In the next section, the concept of LPI is discussed with RNR and 

RSR; a sub-category of this type of emitter. 
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C. LOW PROBABILITY OF INTERCEPT RADAR 
1. Characteristics 
A typical definition broadly describes the LPI radar as radar that uses low 

power, low antenna pattern sidelobes, wide bandwidth, and pulse compression to 

reduce the probability of being intercepted by a non-cooperative intercept 

receiver.  Limited transmission time or frequency “camouflage” among 

atmospheric attenuation effects are also common techniques [8].  To achieve 

some of these characteristics, different techniques are used.  For example, the 

modulated continuous wave (CW) signal has a low transmit power compared to 

the high peak power of digital pulse radar, yet with similar detection performance 

[8].  With antennas used in LPI, the antenna pattern may follow a pencil beam or 

fan beam with strong illumination taper to mitigate the sidelobes [8].  Finally, a 

wide signal bandwidth (depending on the application) is common and can be 

implemented in a variety of ways.   

Fundamental to LPI radar is the application of pulse compression as 

applied to a CW waveform.  General architectures used by LPI radar fall into four 

types: frequency modulation, phase modulation, a hybrid of both, and noise radar 

[8].  An example of a frequency modulation LPI waveform is the FMCW radar. 

The processing gain (or time bandwidth product) of the radar depends upon the 

selection of the modulation period mt  and the modulation bandwidth F∆  as [8]: 

 mPG t F= ∆  (2) 

LPI radar that phase modulate a CW waveform have a different processing gain 

and is giving by the code period T  multiplied by the inverse of the subcode 

period bt  as: 

 1
c

b

PG T N
t

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 (3) 

where cN  is the number of subcodes [8].  That is, the processing gain is directly 

dependent on the number of subcodes used. 

For both frequency and phase modulated LPI radar, a key characteristic is 

the coding with a reference signal. There are many forms of LPI signaling 
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including FMCW, polyphase coding (including Barker polyphase codes), 

frequency shift keying, and hybrids of phase or frequency modulation.  

Applications have been developed for altimeters, landing systems, surveillance, 

fire control, terrain avoidance, targeting, target acquisition, or practically any 

other radar application.  The FMCW signal is particularly effective for search-and-

track radar [8].  These techniques are becoming more prevalent with digital 

signal processing and the development of digital radar [8].  The fourth category, 

noise technology radar, is the subject of this thesis. 

 

2. Evolution of Intercept Receivers to Noise Technology 
As technology develops more capabilities in the digital arena, the digital 

receiver will dominate future electronic warfare.  The “strength” of the receiver is 

in the speed of the analog-to-digital converters (ADCs) with capabilities coming 

from the postdetection signal processing.  To extract the frequency information, 

the spectrum analyzer processes the downconverted incoming signal.  With the 

heterodyne approach to downconversion, the bandpass filter, local oscillator, and 

mixer are in series to convert the incoming signal first to an intermediate 

frequency (IF), then to a baseband.  At baseband, the receiver is looking for the 

in-phase and quadrature (I/Q) components from the phase and/or frequency 

modulated incoming LPI signal [8].  The Doppler shift information will also be 

contained in the I/Q components as the frequency translation will preserve the 

phase differences [10].  Thus, the digital receiver generates the I/Q components 

from the intercepted RNR, RSR waveforms. The data is then strobed to the 

signal processor where time-frequency and bi-frequency routines are used to 

extract the waveform characteristics.  

With the evolution of digital radios, radar, processing speeds, and memory 

size, digital radio frequency (RF) memories can be used to record emissions and 

sophisticated software can increase processing gain.  The digital radio frequency 

memory (DRFM) can capture radiated emissions for processing by the intercept 

receiver.  The DRFM is often used with a bandpass filter to focus on the 

expected frequency range and a local oscillator may be tuned to search within 
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the pass band.  As the signals are digitized, parallel processed, and 

reconstituted, the double sideband DRFM produces the phase of the captured 

signal using both an in-phase and quadrature channel [11].  This is why the 

digital processing components (I/Q) from the captured signal are presented to the 

time-frequency and bi-frequency analysis tools.   

 

D. RANDOM SIGNAL RADAR VS. RANDOM NOISE RADAR  
1. Terminology 
Much terminology exists as new technology emerges from the labs and 

into the working environment.  Terms such as UWB, RNR, and RSR often get 

interchanged with the newcomer.  To clarify, the term “random noise radar” 

(RNR) is defined as transmitting microwave noise that is not modulated. In 

contrast, “random signal radar” (RSR) uses random noise that is modulated [12].  

For the immediate future and this thesis, RNR and RSR fall into the general 

category of noise technology radar [1]. 

Now that UWB radar has been developed and fielded, it is helpful to use 

the UWB guidelines.  These guidelines are that as the fractional bandwidth of the 

radar is greater than 0.25 with no assignment to center frequency of the time-

bandwidth product [12].  Although defined, many still combine principles of UWB 

in modeling of RNR [4].  As with technology, our descriptive language will 

emerge with time.   

 

2. Random Noise Radar 
 RNR uses a microwave noise source as a transmitted energy signal for 

target detection and typical radar functions [1].  In its simplest form, the RNR 

receivers use a basic correlation between a delayed random white noise source  
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signal, and a radar return.  By adjusting the delay of the source signal to identify 

the correlation peak, one can extract the round trip time to the target, and 

subsequent target range [5]. 

Characteristically, RNR has the distinct advantages of suppressing range 

ambiguities, excellent range resolution (wideband), low range sidelobes, and 

high electronic protection capabilities due to its LPI nature [1].  This is not without 

a price.  One of the challenges RNR faces is the long processing time needed for 

integrating and smoothing the processed data.  At this early stage, these 

challenges limit their use in high-speed tracking, immediate threat warning, and 

target detection in aircraft [5].  Even with these temporary drawbacks, the 

advantages of large bandwidth and increased average power characteristics, 

RNR can be used in surveillance, altimetry, collision avoidance, foliage 

penetration, and sub-surface profiling.   

 

3. Random Signal Radar 
The types of RSR that exist include: Noise FMCW radar, Sine Plus Noise 

FMCW radar, Noise FMCW Fuse System, Random Position Pulse Radar, 

Random Binary Phase-Coded (RBPC) CW Radar, and Random Pulse Radar [1].  

Three of these technologies (Noise FMCW, Sine Plus Noise FMCW, and RBPC 

CW) were explored and modeled due to their usefulness and the availability of 

open source information. 

In contrast to RNR, RSR uses a signal modulated by a lower frequency 

noise source, as a transmitted energy signal for target detection and typical radar 

functions [1].  RSR has its advantages with an ideal “thumbtack” periodic 

ambiguity function, excellent range and Doppler resolution, and high electronic 

protection capabilities [1]. 

To simulate the emitters, the paper in reference [1] was reviewed for 

coding each of the three models.  Initially, Guosui et al composed the Noise 

FMCW and explored its advantages and shortcomings.  Next, the team added a 

sine wave (single tone) to overcome the effects of “leakage”. This adds to the 
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isolation between the transmit and receive channels.  This design is called the 

Sine Plus Noise FMCW.  It has limitations in the ability to detect high-velocity 

targets and long range targets.  Therefore, a new design is in order, namely the 

RBPC CW radar [1].   

Dr. Guosui and his team introduced several types of RSR in their 

research.  Initially, correlation RSR used the delayed source signal as a 

reference to correlate with the target return.  When the return signal is correlated, 

the peak of the correlation indicates the distance to the target, the delay of the 

reference signal determines the distance to the target, and the Doppler filter 

output bins determine the target velocity.  In another approach Guosui et al 

discuss the Spectrum Analysis RSR as another means to measure target 

distance after the return and source signal correlation.  This technique reveals 

the target distance by measuring the modulation frequency from the correlation 

with a spectrum analyzer [8]. 

The RSR challenges include measuring Doppler accurately, detecting long 

range targets, “leakage” or isolation between transmit and receive channels, and 

large ambiguity sidelobes. From these limitations, different architectures are 

proposed and explained throughout the thesis [1].  Another challenge RSR faces 

is the long processing time needed for integrating and correlating the target 

return.  This limits their use in high-speed tracking or immediate threat warning or 

target detection in aircraft [5].   

 

E. OVERVIEW OF THE THESIS  
This thesis is grouped into two primary sections: (1) the discussion of LPI 

noise technology radar and (2) the investigation of non-cooperative intercept 

receiver signal processing strategies to identify the noise characteristics from the 

intercepted waveform.  Figure 1 below illustrates the flow of the thesis.  The effort 

was first to design and build the software models for each of the four noise 

technology architectures.  Then the periodic ambiguity analysis was performed to 

examine at the performance of the emitter. Following this, the signal processing 
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models and analysis were developed from the perspective of the non-cooperative 

intercept receiver.  Finally, results were rolled up into the conclusion chapter.   

 

 

Figure 1.   Thesis Flow. 
 

Figure 2 below shows the future intercept receiver on board an unmanned 

aerial vehicle (UAV) intercepting the LPI emitter that uses noise technology 

radar.  In the past, conventional receivers could not distinguish noise technology 

radar from the background noise.  Now the received signal (Noise FMCW) 

appears nicely as shown on the left.  To the conventional intercept receiver, the 

noise FMCW waveform, (or any of the other noise technology waveforms) 

appear as noise; as shown on the right.  
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Figure 2.   Intercept Receiver versus LPI Noise Emitter. 

 

Chapter II – Noise Technology Radar Architectures contrasts the work of 

two leading open-source researchers.  The analysis tools for the emitter consist 

of concepts, which apply to both architectures – the periodic ambiguity function, 

periodic autocorrelation function, and the power spectral density function.  This is 

followed with an in depth discussion of each architecture.  The RNR section 

discusses the emitter as modeled in this thesis.  It discusses some of the math 

behind the technology, and the periodic ambiguity quick-look.  The RSR section 

is presented in the same manner for each of three leading RSR architectures.  

Reasons for design decisions are explained.   

Chapter III – Intercept Receiver Detection Results explains the two signal 

processing algorithms used for detecting the noise technology waveforms.  It 

shows the performance results for all the noise technology radar illustrated up to 

this point.   
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Chapter IV – Conclusions brings together the surprising results in the 

detection of signal characteristics from LPI radar using noise technology.  Also 

highlighted is the lack of analysis in the open source literature for intercepting 

noise technology radar.  As history shows, as a new technology appears, new 

tactics also appear to counter the original advantages.  This is a new technology, 

which is growing rapidly.  The reader may entertain the application to unmanned 

aerial systems.  To address findings outside of the scope of the thesis, yet 

relevant and related, two appendices highlight other worldwide efforts in noise 

technology and capabilities in the modeling tools.  In summary, the Conclusion 

chapter resubmits the main arguments with supporting computational results.   
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II. NOISE TECHNOLOGY RADAR ARCHITECTURES 

The noise technology radar techniques and models are presented in this 

section.  For convenience of the reader, the PACF and PAF are discussed first.   

 

A. PERIODIC AMBIGUITY ANALYSIS 
Periodic ambiguity analysis helps us understand range/velocity 

measurement accuracy, target resolution, and the response to clutter for a CW 

radar receiver.  Certain periodic ambiguity measurements can be used for this 

analysis, namely the periodic autocorrelation function (PACF) and the periodic 

ambiguity function (PAF).   

The PACF is helpful in identifying characteristics of a typical (periodic) CW 

signal. Consider for example a CW phase coded signal, the magnitude of the 

PACF is: 

 *

1

1( ) ( ) ( )
cN

b
nc

R rt u n u n r
N =

= +∑  (4) 

where r  is the delay, bt  is the subcode duration of the phase codes, cN  is the 

number of phase codes, ( )*u n r+  is the stored reference function, and n =± 0, 1, 

2, … etc, and ( )u n  is the received signal’s complex envelope also given as  

 ( ) ( )u t u t nT= +  (5) 

with T  equal to the code period c bT N t= in seconds.  In the results, the PACF is 

presented with the ACF for comparison. 

The PAF can be used to illustrate the magnitude of a matched filter for the 

coherent CW signal.  The PAF is also used to demonstrate the correlation of the 

received signal to the delayed version of the original transmitted signal [8]. For 

the results in this thesis, the number of delayed copies of the reference signal 

used in the correlation is N = 1. Increasing this number helps reduce the 

sidelobes that are present.   
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The PAF is given as: 

 ( ) * 2

0

1, ( ) ( )
NT

j t
NT u t u t e dt

NT
πνχ τ ν τ= −∫  (6) 

where τ  is the offset or delay and the delay rate of change is represented by the 

Doppler shift ν .  The PAF for N  periods is related to the single-period ambiguity 

function by a universal relationship as: 

 sin( )( , ) ( , )
sin( )NT T

N T
N T

πνχ τ ν χ τ ν
πν

=  (7) 

where 

 ( ) * 2

0

1, ( ) ( )
T

j t
T u t u t e dt

T
πνχ τ ν τ= −∫  (8) 

is the single period ambiguity function.  Thus the PAF has main lobes at 

0, 1, 2...Tν = ± ± [8].  The receiver is matched to an expected delay at a certain 

Doppler frequency.  When delay and Doppler shift are present, the receiver 

response is revealed in the ambiguity analysis.  In the periodic ambiguity plots 

the emitter performance is displayed as a function of the time delay (τ ) and 

Doppler shift (ν ).    

 

B. MODEL GENERALITIES 
1. Model Outline 
Since two leading theories appear in the open literature, this thesis will 

look at the RNR model proposed by Dr. Ram Narayanan from The Pennsylvania 

State University and the RSR models proposed by Dr. Liu Guosui from the 

Nanjing University of Sciences & Technology, China. 

The beginning and end of all four software models are similar.  At the 

beginning, the initial variables are common and identified as the common 

variables.  At the end of each model, the plotting and saving functions are 

practically the same.  In the middle portion of each model, the unique code to 

that particular design is found.  Any variation to these areas will be explained in 

the respective section.   
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2. Common Variables 
Starting the design was the selection of transmit frequency.  For ease of 

design, the initial 350 MHz carrier frequency was chosen to be consistent with 

typical UHF search radar.  At this frequency, there are very slight weather effects 

on the mission of long range surveillance and short range acquisition [13].  

Taking another view, one can also consider the 350 MHz carrier frequency as the 

local oscillator (LO) or intermediate frequency (IF) signal; downconverted to 

1/10th of the transmitted signal in the S band (~3.5 GHz)2.   

Although configured for 350 MHz, the models can be modified for any 

frequency range, including frequencies meeting the UWB definition3.  The carrier 

frequency, or LO/IF signal, dictates the sampling frequency of 3 GHz to avoid 

aliasing from the carrier frequency (Nyquist interference).  Subsequent signal 

pass/stop band filters were built around these parameters.   

The emitter’s receiver bandwidth of 300 MHz was selected to give a large 

bandwidth about an expected carrier frequency to capture enough of the 

intercepted signal and for range resolution preferences.  A receiver bandwidth of 

100 MHz was also run for comparison.  Note, these models assume an intercept 

receiver has no a priori knowledge of the transmitted noise waveform.   

The observation interval is worthy of mention here as a variable of design.  

The observation interval is the time interval that the intercept receiver has to look 

at the emitter.  This duration is later used to quantify the time period to produce 

the number of samples for noise generation and timing.  The combination of the 

sampling frequency and observation interval provided the number of samples for 

processing of the intercepted signal.  Any observation interval can be used.  

There is no relationship between the observation interval and sampling 

frequency, except to determine the number of samples used, based on the 

equation [4]: 

 *o snsamples i f=  (9) 
                                            

2 Any frequency can be chosen for IF, but typically the IF is 10% of the carrier frequency [4]. 
3 UWB is defined as waveforms that have instantaneous fractional bandwidths greater than 

25% with respect to the center frequency [12]. 
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where oi  is the observation interval desired in seconds and sf  is the sampling 

frequency in Hz.  For example, 4 µsec * 3 GHz = 12000 samples. 

Another design factor chosen was the transmit noise power level of –40 

dB.  When higher values were chosen (e.g. 0 dB), the amplitude of the noise 

signal increased above the level for a normal thermal noise floor.  This would 

defeat the advantages of LPI, thus was not deemed realistic.  

After the user inputs are queried, the code produces a bandlimited white 

Gaussian noise using the “wgn” function in MATLAB.  Selecting the noise as 

either real or complex was another consideration. Complex Gaussian noise was 

used as referenced by Axelsson’s work [14].  From experimentation with the 

code, there were no noticeable effects from using either real or complex noise.  

Selection of the noise bandwidth depends on the desired range resolution.  In 

[15], Narayanan used 1-2 GHz for penetration through the soil in mine detection 

[4].  To keep the examples simple, two noise bandwidths are shown in this 

analysis for comparison purposes: 100 MHz and 300 MHz.   

Completing the processing, the final section of the model captures the I/Q 

components of the signal for further time-frequency processing.  These I & Q 

vectors must be row vectors for proper execution in MATLAB.  Additional 

variables are added as the models develop and will be explained in their 

respective sections. 

 

3. Filter Design 
Common FIR bandpass filters are built using the Filter Design & Analysis 

(FDA) tool in MATLAB’s Signal Processing toolbox.  In the form of a graphical 

user interface (GUI), this application creates the filter coefficients needed for 

signal processing.  With the FDA tool, the user can specify cutoff frequencies, 

filter types, and frequency pass ranges, avoiding the trial and error approach 

using the radar code.  In this thesis, the filters limit the bandwidth of the noise 

signal before transmission.  The 100 MHz filter band passed the signal from 300-

400 MHz, while the 300 MHz filter band passed the signal from 200-500 MHz.  If 
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the bandwidth or sampling frequency is altered, the designer must modify the FIR 

filters used to band limit the noise.  Further explanation of the FDA tool is 

included in Appendix B – Details of the FDA Tool. 

 

4. Emitter Output:  I and Q 
Since a digital transmitted signal is modeled, the processing goal is 

realized with in-phase and quadrature components of the intercepted signal from 

the ADC in the intercept receiver.  The “I” and “Q” variables are prepared in 

various methods explained in each section. 

At the end of the computational run, the user is queried to save the I/Q 

data in an intuitive file structure.  After being rounded to the nearest integer, the 

parameters are saved in the filename and saved in the working directory with a 

positive input from the user.  The data is then ready for analysis and plotting with 

the time-frequency and bi-frequency tools for potential signal characteristic 

recovery. 

 

5. PACF, PAF, and PSD Plotting Overview 
The left hand axis ( * cNν ) represents the normalized Doppler offset, while 

the right hand axis / btτ  represents the normalized delay offset.  The z axis 

( ),χ τ ν  represents the magnitude of the receiver’s periodic ambiguity function. 

For the RSR random binary phase coded waveform, the plot axes are a function 

of the code period (T ), the number of phase codes ( cN ), and the number of 

code periods used by the correlation receiver ( N ).  The PAF main lobe is 

observed on the delay axis at every *cN bsc , where cN  is the number of phase 

codes and bsc  is the number of samples per subcode width [8].  For the RNR the 

code period is the observation interval (the noise is continuously transmitted) and 

the code repeats on the delay axis at integer multiples of the number of samples 

in the observation interval.  For the two remaining RSR waveforms (noise FMCW 

and noise FMCW plus sine) the triangular code period is 2 mt  and the code 
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repeats every 2 s mf t  samples on the delay axis.  This data was generated using 

the “ambfn7.m” file and the “paf_preprocess.m” preprocessing file provided in the 

LPIToolbox in [8].  In the pre-processing GUI, several parameters need to be set 

and are explained in the respective analysis section.   

 

6. Frequency Modulated Continuous Wave Generation 
Guosui et al [1] make reference to the linear frequency modulation in their 

design. For noise FMCW and noise FMCW plus sine RSR models, the 

generation of the FMCW signal is the same.  Initially two extra variables are 

added for the linear frequency modulating ramp functions.  These variables are 

modulation bandwidth F∆  and the modulation period mt .  To realize this, the 

FMCW signal is first generated, followed by the multiplication with the noise 

waveform.  This is represented partially in the MATLAB code as: 
% TRIANGULAR FMCW GENERATION 
% sI1 is the In-Phase (I) transmitted signal for the up-ramp (without noise) 
% sI2 is the In-Phase (I) transmitted signal for the down-ramp (without noise) 
   sI1 = A*cos(2*pi*((f-deltaF/2).*t + deltaF/(2*tm).*t.^2)); 
   sI2 = A*cos(2*pi*((f+deltaF/2).*t - deltaF/(2*tm).*t.^2)); 

 
The quadrature components of the triangular waveform (FMCW) are prepared in 

a similar manner, simply shifted 90 degrees, by use of the sine function.  After 

the two I & Q components are combined, noise modulation (multiplication) is 

realized with multiplying by the complex white Gaussian noise.  Finally, the real 

and imaginary parts can be extracted for time-frequency processing.   

 
C. RANDOM NOISE RADAR 

1. Theory of Operation 
The primary function of the Narayanan RNR model is to detect the target 

range and Doppler frequency.  In this approach [15], Mr. Muhammad Dawood 

and Dr. Ram Narayanan generated RNR with a noise source with a Gaussian 

amplitude distribution and average power output of 0 dBm (1 mW) in the 1-2 GHz  
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range.  The major advantage of this technique is to capture the Doppler 

frequency of a moving target, through the use of heterodyne correlation 

techniques [14].   

Referencing Figure 3 below, the transmitted noise is between 1 to 2 GHz. 

The first bandpass filter (BPF) is centered at 1.5 GHz with a bandwidth of 1 GHz.  

The power divider (PD1) splits the signal into two parts; one part to be 

transmitted after a 100W amplifier while the second part is split off for later 

correlation with the receive signal, via a fixed delay line (DL1) and the variable 

delay line (DL2).  The variable delay line can be programmed for delays from 0 to 

19.968 µs in 0.156 ns steps.  To provide a reference signal for later correlation, 

MXR1 up-converts the lower sideband of a 160 MHz phase-locked oscillator and 

combines this with the reference source noise signal.  An oscillator of 160 MHz is 

a common and inexpensive component readily available commercially [14].  

MXR2 combines the 1-2 GHz return signal with the delayed replica of the source 

signal and the resultant signal is now centered on and filtered around 160 MHz at 

the IF BPF.  Continuing on, the received signal of interest continues down the 

PD3 (power divider 3), which splits into a logarithmic amplifier to capture the 

amplitude, and an I/Q detector to capture the in-phase and quadrature 

components for time-frequency and bi-frequency analysis described later.   

Worthy of mention in Figure 3 below are a few points on the Doppler 

resolution.  The Doppler return from the slow-moving target will show up at 

roughly 50 Hz about the carrier frequency, when using 1.5 GHz.  Seeking to 

isolate and keep this Doppler information, the model uses a low-pass filter at, 

e.g., 100 MHz.  This filtering also dispenses of undesirable harmonics of the 160 

MHz LO frequency [4].  This filtering results in focusing on the Doppler 

information using the RNR.   
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Figure 3.   Block Diagram – Complete Random Noise Radar [After 13]. 
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2. Overview and Transmitter Block Diagram 
The RNR architecture by Dr. Ram Narayanan uses a random microwave 

noise source that is bandlimited and amplified [6].  This thesis models the 

transmitter portion of the radar and uses the detected and digitized data for the 

input to the intercept receiver signal processing.  Without loss of generality, this 

thesis models the transmitted noise has a bandwidth 300B =  MHz to lay between 

200 MHz and 500 MHz. Figure 4 below illustrates the configuration of the 

transmitter. 

 

 

Figure 4.   Block Diagram – Transmitter of the Random Noise Radar. 
 

3. Mathematical Description 
The mathematical description for the complete emitter design is given in 

[6].  The transmitted signal (bandpass process) is expressed as: 
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where ( )X t  is the Gaussian noise process centered at 2 ofπ , with a bandwidth 

B , and 2
2o
Bfπ > .  For the received signal back at the radar, it can be shown 

that: 

 ' '( ) ( )cos{ [(1 ) ]} ( )sin{ [(1 ) ]}r c o o s o oX t X t t X t tω α τ ω α τ= + − − + −  (11) 

where the target at a distance R  will have a delay of 2
o

R
c

τ =  and be moving with 

a radial velocity oν  giving a delay o tτ α−  and 2~ o

c
να . 

 

4. Model Development and Results 
The MATLAB code was initially adopted from Dr. Ram Narayanan’s work 

with Mr. Dawood in [6].  However, extensive modification has taken place.  The 

design uses a random, white Gaussian noise signal, which is bandlimited.  

Using the baseline variables of the carrier frequency, bandwidth, 

amplitude, and noise power level, the code was run to ultimately produce the in-

phase and quadrature components for the time-frequency and bi-frequency 

processing.  Various plots were produced along the path shown in the block 

diagram.  Figure 5 illustrates the white Gaussian noise and Figure 6 illustrates 

the bandlimiting of this emitted signal. 
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Figure 5.   Wideband Microwave Noise Signal. 

 

                
Figure 6.   Bandlimited Microwave Noise Signal, cf  = 350 MHz, 300 MHz. 

 

Here the bandlimiting filters pass the noise signal between 200-500 MHz.  The 

frequency scale reflects the intercept receiver ADC sampling frequency of 3 GHz.   

A key performance element is the bandwidth.  For good range resolution, 

clutter discrimination, and LPI, the noise signal needs to spread the energy over 
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a large modulation bandwidth.  In this thesis, the noise bandwidth was chosen to 

be 300 MHz to provide a range resolution of 0.5 meters, following: 

 
2
cR
B

∆ =  (12) 

where B  is the signal bandwidth and c  is the speed of light.  

 

5. Receiver Periodic Ambiguity Results 
The emitter’s Doppler processing fidelity, range resolution, and response 

to clutter can be identified with the PACF and the PAF [8].  To begin the 

processing, certain inputs were made to the PAF generation process described 

in Appendix B [8].  Pre-processing parameters chosen for the PAF generation 

are shown in Table 1 below: 

 

Frequency-modulated signal Option 2

Periods used to include N : 1

Sampling frequency used sf  (Hz):
93 10×

Carrier frequency cf  (Hz): 6350 10×

Modulation period (s): 61 10−×

 

Table 1.   PAF Pre-processing Parameters – RNR. 
 

Examining the basic characteristics, the RNR model produced the 

following results about the transmitted noise signal.  Figure 7 shows the 

amplitude and phase versus the delay offset axis / btτ  (normalized by the 

subcode period which in this case is the sampling period 1/ sf ).   
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Figure 7.   RNR – Transmitted Signal Parameters. 

 

 
 

Figure 8.   RNR – ACF & PACF Results. 
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Discernable from the ACF (top), the peak sidelobes appear at 

approximately –12 dB down from the main lobe.  On the PACF (bottom), one can 

tell the side lobes are also –12 dB.  Figure 9 illustrates the PAF where the peak 

sidelobes are observable. 

  

 

Figure 9.   RNR – Periodic Ambiguity Function. 
 

Along the delay offset axis, the scale is normalized by the subcode period 

bt .  The code repeats at intervals of the code period multiplied by the sampling 

frequency.  In this case, the PAF repeats at every 6000 points (2 µsec * 3 GHz).  

Note that the zero Doppler cut of the PAF is the PACF shown in Figure 8.  The 

sidelobes on the delay axis are noticeable, but small compared to the magnitude 

of the mainlobe.  On the normalized Doppler axis, the sidelobes are significant 

(~0.25).  Thus, this radar is expected to have challenges with the range 
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resolution, Doppler processing, and its response to clutter. Increasing the 

number of reference codes N used for the correlation process can reduce the 

sidelobes.  Windowing of the reference function in the receiver also helps to 

reduce the sidelobes. 

 

D. RANDOM SIGNAL RADAR – NOISE FMCW 
As in typical continuous wave radar, leakage (isolation) between transmit 

and receive antennas can affect long range detection performance due to the 

degraded sensitivity that results.  Although this thesis is focused on the source of 

transmission, the complete receiver design is included here to gain a better 

understanding of this noise technology.  The following radar designs attempt to 

progressively mitigate this CW leakage and illustrate the research ongoing with 

Dr. Guosui. 

 

1. Theory of Operation 
In the noise FMCW approach, a white Gaussian noise source is linearly 

frequency modulated by an FMCW waveform.  Figure 10 is shown to illustrate 

the full receiver architecture and follows from [16].  The return-source correlation 

takes place in the receiver’s front-end mixer.  After the mixer, the beat frequency 

starts with a certain frequency at zero range and gradually increases to reflect 

the increase in range.  At long range, the mixer output beat frequency represents 

the range to the target.  Optimized filters pass either the target signal with some 

noncorrelation signal or strictly the noncorrelation signal.  The power detectors 

detect the signal envelope and a difference amplifier selects the correct channel 

to determine the target distance.   
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Figure 10.   Block Diagram – Complete Noise FMCW Radar [After 16]. 
 

 

The inability to measure target speed due to a sawtooth triangular 

waveform, detect long range targets, and the significant leakage (isolation) 

between transmit and receive channels are limitations of this current Noise 

FMCW radar implementation.  To suppress CW leakage, the addition of another 

frequency has been implemented with the Sine Plus Noise FMCW radar [16]. 

 

2. Overview and Transmitter Block Diagram 
Figure 11 shows a detailed block diagram of the noise FMCW transmitter 

that uses a triangular FMCW waveform (target range and speed). With our 

approach, a microwave noise generator first produces a wideband noise. After 

this, the signal is band limited to 300 MHz, centered on 350 MHz. After band 

limiting, the noise signal modulates an FMCW signal with a center frequency of 

350 MHz.   
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Figure 11.   Block Diagram – Transmitter of the Noise FMCW Radar. 
 

After noise modulation, the resultant signal is high pass filtered to remove 

the complex lower sideband modulation leaving the transmitted signal with a B = 

600 MHz centered at 700cf = MHz.  Finally, the modulated signal is amplified 

before transmission.  In the actual model by Guosui, the received signal is 

correlated to a time-delayed version of this emission.  For the scope of this 

thesis, the transmitted signal is the one of interest, since the potential to intercept 

this signal is the goal. 

 

3. Mathematical Description 
In [16], Guosui characterizes transmission of the Noise FMCW as:  

 
 [ ]( ) cos ( )oe t E t tω θ= +  (13) 

where  

 1 1
0

( ) ( )
t

ft D t dtθ ξ= ∫  (14) 

The variable fD  is the angular frequency per volt and 1( )tξ  is the noise voltage 

of a stationary process with zero mean.  The return (echo) signal is lower in 
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amplitude, time delayed, and shifted in frequency (for a moving target).  The 

mathematical expressions for the complete Noise FMCW are found in [16].   

   

4. Model Development and Results 
This code was built to model the RSR designed by Dr. Lui Guosui [1] 

except a triangular FMCW waveform is used.  The design approach in this model 

is the use of a random, white Gaussian noise signal, to modulate the FMCW 

signal, which is then bandlimited.  The primary excursion here from the RNR 

model is the use of an FMCW signal.  A key performance element is the 

bandwidth.  For good range resolution for clutter discrimination and LPI, the 

FMCW signal spreads the energy over a large modulation bandwidth F∆ .  In this 

thesis, the F∆  was chosen to be 300 MHz to provide a range resolution of 0.5 

meters, following: 

 
2

cR
F

∆ =
∆

 (15) 

which is consistent with the range resolution equation used in the RNR section.   

After the quadrature components of the triangular FMCW waveform are 

prepared, the in-phase and quadrature components are pulled from the real and 

imaginary portions of the intercepted signal for time-frequency processing.  

Various plots were produced along the path shown in the block diagram.  The 

white Gaussian noise production and the bandlimiting of this noise are nearly 

identical from the RNR model and therefore not shown.  Next along the path of 

the block diagram is the FMCW signal, shown in the frequency domain in Figure 

12 below. 
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Figure 12.   Magnitude of the FMCW Signal, F∆  = 300 MHz, cf  = 350 MHz. 

 
The modulation bandwidth between 200-500 MHz is readily observed 

( F∆ = 300 MHz and is centered at 350 MHz).  The next two points along the path 

of the block diagram illustrate the noise modulation and bandlimiting after noise 

modulation, as shown in Figure 13 below. 

 

Figure 13.   Noise Modulated FMCW Signal, F∆  = 300 MHz, cf  = 350 MHz. 



34 

The modulation of the FMCW signal by the 350 MHz noise signal is 

readily observed.  For the upper sideband product, this modulation results in the 

new center frequency of 700 MHz as in Figure 13 above.  Realistically, the 

transmitted portion of the Noise FMCW signal is shown in Figure 14 below, and 

is an illustration of the magnitude spectrum after filtering with the high pass filter. 

 

Figure 14.   Noise FMCW Signal, F∆  = 300 MHz, cf  = 700 MHz – high passed. 

 

This would be the signal produced by the LPI emitter and captured by the 

intercept receiver.  Since emission conservation is key for LPI considerations, the 

lower sideband modulation product was chosen to be the emitted signal.  This 

also takes advantage of the less expensive hardware involved in building a lower 

frequency receiver.  The next section describes the Doppler processing fidelity 

and other signal characteristics from the emitter. 

 

5. Receiver Periodic Ambiguity Results 
The emitter’s Doppler processing fidelity, range resolution, and response 

to clutter can be identified with the PACF and the PAF [8].  To begin the  
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processing, certain inputs were made to the PAF generation process described 

in Appendix B [8].  Pre-processing parameters chosen for the PAF generation 

are shown in Table 2 below. 

 

 

Frequency-modulated signal Option 2

Periods used to include N : 1

Sampling frequency used sf  (Hz):
93 10×

Carrier frequency cf  (Hz): 6350 10×

Modulation period (s): 61 10−×

 

Table 2.   PAF Pre-processing Parameters – Noise FMCW. 
 

 

Examining the basic characteristics, the noise FMCW RSR model 

produced the following parameters about the transmitted noise signal.  Figure 15 

shows the amplitude and phase versus the delay offset axis normalized by the 

subcode period (the sampling period in this case).  The noise bandwidth of the 

signal was 300 MHz. 
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Figure 15.   Noise FMCW – Transmitted Signal Parameters. 
 

 By observation, the signal appears as random noise in both amplitude and 

phase.  The ACF and PACF of the transmitted signal are shown in Figure 16. 

Discernable from the ACF (top), the peak sidelobes appear at approximately –20 

dB down from the main lobe.  On the PACF (bottom), the side lobes are also –20 

dB.   

 

t/tbt/tb
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Figure 16.   Noise FMCW – ACF & PACF Parameters. 

 

 
Figure 17.   Noise FMCW – Periodic Ambiguity Function. 
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The PAF repeats at integer multiples of the code period multiplied by the 

sampling frequency.  In this case, the PAF repeats at every 6000 points (2 µsec * 

3 GHz).  The peak sidelobes in the normalized Doppler axis are noticeable 

(0.25). This radar is expected to have challenges with the range resolution, 

Doppler, and response to clutter.   

 
E. RANDOM SIGNAL RADAR – SINE PLUS NOISE FMCW 

1. Theory of Operation 
The Sine Plus Noise FMCW RSR uses an additional sine signal added to 

the noise source.  A block diagram of the transmitter is shown in Figure 18 [1].  

To account for the injected sine wave, the receiver uses two bandpass filters to 

expand the receiver’s frequency range for the Doppler plus noncorrelation signal 

and for the noncorrelation signal only.  The major difference between the noise 

FMCW and the Sine Plus Noise FMCW is the filters have bandwidths expanded 

to include multiples of the added sine signal within the return signal.  
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Figure 18.   Block Diagram – Complete Sine Plus Noise FMCW Radar [After 1]. 
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Although the Sine Plus Noise FMCW as implemented in [1] mitigates the 

CW leakage sidelobes more effectively than the Noise FMCW, their 

implementation cannot determine the speed of a moving target or detect a long 

range target (due mostly to their implementation using a sawtooth FMCW 

waveform as opposed to a triangular waveform such as modeled in this thesis).  

Thus, their research looks towards a more competitive form of RSR, the Random 

Binary Phase-Coded CW Radar to overcome the limitations of target velocity and 

long-range detection. 

 

2. Overview and Transmitter Block Diagram 
This form of noise technology employs an additional tone signal that is 

modulated by the white Gaussian noise which further modulates the FMCW 

waveform.  Figure 19 shows a detailed block diagram of the transmitter modeled 

in this thesis. 
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Figure 19.   Block Diagram – Transmitter of the Sine Plus Noise FMCW Radar. 
 

In this approach, a microwave noise generator produces noise to the 

desired range of operation.  After this, the signal is bandlimited to 300 MHz, 

centered on 350 MHz.  After the bandlimiting, the noise signal is added (added in 
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frequency, multiplied in time) to a single tone with a frequency of Tf = 350 MHz.  

The upper band is centered at 700 MHz from the modulation product and this 

new signal modulates an FMCW signal with a center frequency of 350 MHz.  

After noise modulation, the resultant signal is low pass filtered to remove the 

lower sideband modulation products.  Duplicate signals are unnecessary and 

counterproductive to LPI principles; therefore the upper sideband is eliminated 

(and also keeps the hardware complexity low).  Finally, the 600 MHz bandwidth 

signal with center frequency of 350 MHz is amplified before transmission.  In the 

model built by Guosui, the received signal is correlated to a time-delayed version 

of the emission. For the scope of this thesis, the transmitted source is the one of 

interest, since the potential to intercept this signal is the goal. 

 

3. Mathematical Description 
In [16], Guosui characterizes transmission of the Sine Plus Noise FMCW 

similarly to the Noise FMCW, but adds the additional signal as:  

 
 [ ]1 2( ) cos ( ) ( )oe t E t t tω θ θ= + +  (16) 

where  

 1 1( ) sin mt D tθ ω=  (17) 

 2 2 2
0

( ) ( )
t

ft D V t dtθ = ∫  (18) 

where the variable fD  is the angular frequency per volt and 2( )V t  is the 

modulated noise voltage of a normal stationary process with zero mean.  Also 

mω  is the additional tone frequency.     

 

4. Model Development and Results 
The primary excursion here from the RSR-Noise FMCW model is the use 

of an additional tone to the noise before modulating the FMCW signal.  This 

second tone frequency was added to the noise for leakage, or isolation between 

transmit and receive antennas [1, 17].  Although not explained in Guosui’s 
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literature, it is presumed the isolation is accomplished with the same frequency 

simply 180 degrees out in phase for hardware implementation [18].  This is 

observable in the code for the Sine Plus Noise-FMCW model.  To explore the 

phase impact, both 0 and π  phases were experimented, resulting in no effect to 

the output.  Additional variables have been added to characterize the added sine 

signal, as an arbitrary 350 MHz for the frequency and a normalized value of 1 for 

the signal amplitude.  The white Gaussian noise power is –40 dB.   

A key performance element is the bandwidth.  For good range resolution, 

clutter discrimination and LPI, the FMCW signal spreads the energy over a large 

modulation bandwidth F∆ .  In this thesis, the F∆  of the FMCW signal was 

chosen to be 300 MHz (centered at 350 MHz) to provide a range resolution of 0.5 

meters, following: 

 

 
2

cR
F

∆ =
∆

 (19) 

 

which is consistent with the range resolution equation used in earlier sections.   

 

After the quadrature components of the triangular FMCW waveform are 

prepared, the in-phase and quadrature components are pulled from the real and 

imaginary portions of the intercepted signal for time-frequency processing.  

Various plots were produced along the path shown in the block diagram.   

 Examining now the output of the noise generator with the added tone, the 

effect on modulation is clear with the shifting of noise by 350 MHz, as shown in 

Figure 20:  
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Figure 20.   Sine Plus Noise FMCW, Tone Modulation of Noise, cf  = 700 MHz. 

  

 

This tone is modulated by the white Gaussian noise.  Thus, the frequency 

shift due to modulation is observed and expected.  The final center frequency of 

the Sine Plus Noise FMCW is now at 700 MHz.  Next along the path of the block 

diagram, the magnitude spectrum plot of the Sine Plus Noise FMCW signal is 

shown in the frequency domain in Figure 21.  The bandlimiting between 200-500 

MHz is readily observed.  The next two points along the emitter path are shown 

in Figure 22 and illustrate the compound noise modulation of the Sine Plus Noise 

FMCW signal. 
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Figure 21.   Magnitude of the Sine Plus Noise FMCW Signal, cf  = 350 MHz. 

 

 
Figure 22.   Sine Plus Noise FMCW Signal, cf  = 350 MHz. 

 

The modulation of the 350 MHz FMCW signal by the compound signal is 

readily observed.  The compound signal is comprised of a 350 MHz noise signal 



44 

and the 350 MHz tone.  The resultant, modulated signal has a new center 

frequency of 1050 MHz.  Since this upper sideband product is not necessary, the 

lowpass portion is transmitted and shown in Figure 23 as: 

 

Figure 23.   Sine Plus Noise FMCW Signal, cf  = 350 MHz – low passed. 

 

This is the signal produced by the emitter and captured by the intercept 

receiver.  Since conservation of emissions is key for LPI considerations, the 

lower sideband modulation product was chosen to take advantage of the less 

expensive hardware involved in building a lower frequency receiver.  The next 

section describes the Doppler processing fidelity and other receiver 

characteristics using the PACF and PAF. 

 

5. Receiver Periodic Ambiguity Results 
The emitter’s Doppler processing fidelity, range resolution, and response 

to clutter can be identified with the PACF and the PAF [8].  To begin the  
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processing, certain inputs were made to the PAF generation process described 

in Appendix B [8].  Pre-processing parameters chosen for the PAF generation 

are shown in Table 3 below: 

 

Frequency-modulated signal Option 2

Periods used to include N : 1

Sampling frequency used sf  (Hz): 
93 10×

Carrier frequency cf  (Hz): 6350 10×

Modulation period (s): 61 10−×

Table 3.   PAF Pre-processing Parameters – Sine Plus Noise FMCW. 
 

Figure 24 shows the amplitude and phase of the Sine Plus Noise FMCW 

emitter versus the delay offset normalized by the subcode period.  The noise 

bandwidth of the signal is 300 MHz. 

t/tbt/tb  
Figure 24.   Sine Plus Noise FMCW – Transmitted Signal Parameters. 
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The signal appears as random noise in amplitude and phase.  The ACF 

and the PACF of the Sine Plus Noise FMCW waveform are shown in Figure 25. 

 

 

 

Figure 25.   Sine Plus Noise FMCW – ACF & PACF Parameters. 
 

 

 Discernable from the ACF (top), the peak sidelobes appear at 

approximately –22 dB down from the main lobe.  On the PACF (bottom), the 

peak side lobes are also about –22 dB.  The PAF of the Sine Plus Noise FMCW 

waveform are shown in Figure 26.  
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Figure 26.   Sine Plus Noise FMCW – Periodic Ambiguity Function. 
 

The delay offset axis, is normalized by the subcode period bt  and the code 

repeats at intervals of the code period multiplied by the ADC sampling frequency.  

In this case, the main lobe repeats at integer multiples of 6000 points (2 µsec * 3 

GHz).  Note that the zero Doppler cut of the PAF is the PACF shown in Figure 25 

above.  Also note the presence of significant sidelobes along the Doppler offset 

axis (~0.2).  The PACF and PAF illustrate the sidelobe structure of a matched 

filter receiver when the Sine Plus Noise FMCW waveform is used.  Thus, this 

radar waveform is expected to have challenges with the range resolution, 

Doppler, and response to clutter.  The sidelobes can be reduced by including 

additional periods of the reference waveform 1N >  in the receiver correlation  
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process.  Also, the use of a window function (mismatched receiver) can help 

reduce the sidelobes at the expense of increasing the width of the PAF 

correlation peak. 

 

F. RANDOM SIGNAL RADAR – RANDOM BINARY PHASE-CODED CW 
1. Theory of Operation 
The last RSR emitter waveform to be examined is the random binary 

phase coding of a CW carrier signal.   The random binary phase-coded (RBPC) 

CW radar uses a signal that is randomly phase modulated by either 0 or π .  The 

random phase code modulation results in a transmitted spectrum that is similar to 

a random Gaussian white noise source.  Some later improvements were made to 

enhance the isolation between transmit and receive channels. One primary 

improvement is intermittent emissions of the transmit radar. The illumination is as 

long as needed for long-range target acquisition.  A block diagram of the emitter 

is presented in Figure 27 [1]. 

  

Figure 27.   Block Diagram – Complete Random Binary Phase-Coded CW 
Radar [After 1]. 
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2. Overview and Transmitter Block Diagram 
The random binary phase modulation emitter technology employs random 

phases on a single tone signal.  For example, with a subcode period of bt = 0.001 

µsec, the transmitted signal appears as wideband noise with 1B =  GHz to the 

intercept receiver. A detailed model of the transmitter is shown in Figure 28. 

 

 

Figure 28.   Block Diagram – Transmitter of the Random Binary Phase-Coded 
CW Radar. 

 

With this approach, an oscillator produces a single tone at cf  = 300 MHz. This 

value is chosen to compare the results with the previous three models after the 

intercept receiver processing. A Bernoulli number generator randomly produces 

the phase values 0 or π  for use in phase modulating the tone signal [19].  

Finally, the phase modulated signal is amplified before transmission.  

 

3. Mathematical Description 
This phase values are random and created by Bernoulli trials [1, 19].  The 

sequence can be represented by variable S  with a probability distribution of: 

 
 [ ]1 0.5P S = ± =  (20) 

 

where the mean value of S  is equal to 0 [19]. 
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4. Model Development and Results 
A model was built to simulate the RSR designed by Guosui [1].  The 

design approach in this model is the use of a random binary phase (0 or π ) on a 

tone frequency.  Note that no noise source is used in this approach. 

Consequently, no bandlimiting or filtering needs to be included in the hardware.  

The bandwidth of the random binary phase modulation is 

 1c

b

fB
cpp t

= =  (21) 

where cpp  is the number of cycles of the carrier frequency in a subcode, and bt  

is the subcode period. The carrier frequency used is cf = 300 MHz to compare 

detection results with the other three software models.  

In later designs, the isolation issue was addressed with intermittent 

interruption of the CW waveform [7].  This gave the operator improved LPI 

performance and ability to detect long-range targets.  To address this concept in 

future work, the assumption would be to use the smallest number of phase codes 

in order to obtain the required SNR for target detection.  

Waveforms with two different bandwidths were generated.  The first 

waveform used cpp = 1 and the second waveform used cpp = 3.  The number of 

phase codes was set to cN = 16.  Figure 29 illustrates the power spectral density 

(PSD) of the tone signal that is used.  Figure 30 illustrates the PSD for the 

waveforms after the phase modulation.  In Figure 30, the plot on the left is with 

cpp = 1 ( B =300 MHz) and the plot on the right is for cpp = 3 ( B =100 MHz).  
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Figure 29.   RBPC – PSD of Tone Signal cf = 300 MHz. 

 

 

Figure 30.   RBPC – PSD after Phase Modulation (left cpp = 1, right cpp = 3). 
 

 
The PSD gives the appearance of a noise waveform and the two 

bandwidths appear as expected. Although some periodic structure is noticeable 

this quickly diminishes when the code period T contains a larger number of 

subcodes ( cN 16).  Figure 31 illustrates the 16 subcode (random) phase 

values used to generate the example waveforms shown in Figure 30.   
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Figure 31.   RBPC – cN = 16 Random Phase Values for the Two Examples 
Shown in Figure 30. 

 

5. Receiver Periodic Ambiguity Results 
The emitter’s Doppler processing fidelity, range resolution, and response 

to clutter can be identified with the PACF, PAF, and the PSD [8].  The RBPC 

waveform that is received is correlated to a time-delayed version of the emission. 

To begin processing, certain inputs were made to the PAF generation process 

described in Appendix B [8].  Pre-processing parameters chosen for the PAF 

generation are shown in Table 4 below: 

Phase-modulated signal Option 1

Periods used to include N : 1

Sampling frequency used sf  (Hz):
93 10×

Carrier frequency cf  (Hz): 83 10×

Cycles per phase cpp : 1 or 3

Number of phase codes, cN : 16

 

Table 4.   PAF Pre-processing Parameters – RBPC. 
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The RBPC model output is illustrated in Figure 32 and shows the 

amplitude and phase versus the delay offset axis normalized by the subcode 

period. For the cpp =1 case, /b ct cpp f= =3.33 ns. For the cpp =3 case, 

/b ct cpp f= =10 ns. 

 

 

Figure 32.   RBPC – Amplitude and Phase Values for cpp =1 (left) and cpp =3 
(right). 

 

The number of samples within the code period is determined by 

 * *samples c s
c

cppN N f
f

=  (22) 

resulting in 160 ( cpp = 1) or 480 ( cpp = 3).   

 

The ACF and the PACF are shown in Figure 33. The peak sidelobes 

appear at approximately –10 dB down from the main lobe.   Also note the 

mainlobe width is much larger than the other RSR and RNR emitters.  The PAF 

is shown in Figure 34 and illustrates the large sidelobes that occur with cN = 16.  

Note again that the zero-Doppler cut of the PAF is the PACF.  

 

t/tb t/tbt/tb t/tb
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Figure 33.   RBPC – ACF & PACF Parameters. 

 

 

 

Figure 34.   RBPC – Periodic Ambiguity Function 16cN = . 

 

The PACF and PAF illustrate high sidelobes with this RSR model.  Thus, this 

radar is expected to have challenges with the range resolution, Doppler, and 

response to clutter.   
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III. INTERCEPT RECEIVER SIGNAL PROCESSING AND 
DETECTION RESULTS 

A. ANALYSIS TOOLS FOR SIGNAL DETECTION PROCESSING  
This section presents the time-frequency and bi-frequency signal 

processing methods used to analyzed the RSR and RNR waveforms discussed 

in the previous section. 

 

1. Quadrature Mirror Filter Banks 
Quadrature mirror filter bank (QMFB) techniques perform a wavelet 

decomposition of the input signal and have good capability to extract the time-

frequency characteristics of the intercepted waveform such as the carrier 

frequency, code rate, bandwidth, modulation period, and phase changes [8].    

The non-cooperative intercept receiver uses the QMFB to analyze the signal in 

layers. As the signal propagates through the layers, a tradeoff in time and 

frequency resolution is obtained [8]. That is, at the first layer, the resolution is 

large in frequency but small in time. As the number of layers increases, the 

frequency resolution gets smaller as the time resolution gets larger.  Figure 35 

below illustrates the layer structure within the QMFB and the tradeoff in time and 

frequency resolution that occurs.  Each wavelet pair of filters consist of one 

highpass filter (G) and one lowpass filter (H) as shown within the tree structure. 
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Figure 35.   QMFB Filter Bank Tree. 

 

The frequency resolution for any layer l is [8] 

 ( )2 2 1
s s

l
F

f ff
N

∆ = =
−

 (23) 

where L  is total number of layers, FN  is the number of tiles displayed in 

frequency, and sf  is the sampling frequency.  The time resolution for any layer l 

is [8] 

 ( )
2

2 1

L
s

L l
Ts

ft
Nf −

∆ = =
−

 (24) 

where TN  is the number of tiles in time. By selecting the correct layer, the 

observer can identify the waveform parameters of interest.  To determine the 

total number of layers, the QMFB MATLAB code displays the number of layers  
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necessary to process the signal.  The number of layers depends upon the record 

length ( 2L ).  Zero padding is used if the number of samples within the intercepted 

signal is not a power of 2.   

Getting started with the QMFB time-frequency tool, the GUI in Figure 36 

below shows what data was needed for execution: 

 

 
Figure 36.   QMFB Implementation GUI. 

 

The emitter model produced a data file, which was used for the input 

signal; along with the proper directory.  Of particular importance was the ADC 

sampling frequency (3 GHz), which carried over from the emitter model.  The 

layer selection was consistently chosen at 6, as this provided a good trade off in 

time and frequency resolution to illustrate detection results.  One exception 



58 

however, was realized in the RBPC model analysis, where layer 2 was chosen 

for accurate time resolution.  This resolution was necessary to correlate the 

peaks and valleys of the QMFB results with the phase changes from the 

intercepted signal.  Other signal characteristics, such as bandwidth and carrier 

frequency, were also observed and are available in Layer 9 or 11.  Layer 11 is 

the highest odd numbered layer displaying the signal characteristics with high 

frequency resolution. 

 

2. Cyclostationary Signal Analysis 
Since all digital signals have some parameters that vary with time, better 

spectral analysis results can be obtained if signals are modeled as a 

cyclostationary process. Classifying digitally modulated signals as cyclostationary 

means their characteristics fall into two general definitions.  First, their 

probabilistic parameters, mean and correlation, vary in time with single or 

multiple periodicity.  Second, there is a non-zero correlation exhibited between 

certain frequency components when their frequency separation is related to the 

periodicity of interest (e.g., symbol rate, carrier frequency). That is, the signals 

have spectral correlation, where the signal is correlated with frequency shifted 

versions of itself, at certain frequency shifts.  For example, a signal x(t) is 

cyclostationary with cycle frequency α  if and only if, some of its delay product 

waveforms ( ) *( ) ( )z t x t x tτ= −  (for some delays) exhibit a spectral line at a 

frequency α .  In the spectral domain, cyclostationarity is evident as a spectral 

correlation. The spectral correlation properties of the signal are evident in cyclic 

autocorrelation function ( )xRα τ  and the spectral correlation density (SCD) function 

( )xS fα .   
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The cyclic spectral density or cyclic spectrum is given as  

 ( ){ } *1( ) lim
2 2x x T TT

S f R X f X f
T

α α α ατ
→∞

⎛ ⎞ ⎛ ⎞= ℑ = + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (25) 

where α  is the cycle frequency and 

 22

2

( ) ( )
T

j fu
TTX f x u e duπ−

−= ∫  

is the Fourier transform of the time-domain signal ( )x u . The cyclic spectral 

density exists on the two-dimensional bi-frequency plane with frequency f  and 

cycle frequency α  [8].   

Two methods to estimate the cyclic spectral density are the time-

smoothing FFT accumulation method and the direct frequency-smoothing 

method. For this work, the time smoothing FFT accumulation method (TFAM) is 

used. Figure 37 below shows a block diagram of the TFAM. 
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Figure 37.   Block Diagram – Cyclostationary TFAM. 

 

The TFAM divides the frequency plane into smaller channel pair regions 

and FFTs one block at a time in an effort to reduce the number of computations 

required to estimate the SCD.  The signal is first windowed with e.g., a Hamming 

window. Then a sliding N’ point short FFT is generated followed by a baseband 
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frequency translation. The correlation product is then formed and the output is 

smoothed with a second P point FFT to generate the SCD 
'
( , )

NxS n kγ . Here γ  is 

the cycle-frequency and k is the frequency (change of variables due to a discrete 

version of the SCD).  

 

 
Figure 38.   Cyclostationary GUI. 

 
Software computation of the SCD using the TFAM was done using 

MATLAB and the GUI shown in Figure 38. Parameters needed include the ADC 

sampling frequency used (3 GHz) the frequency resolution df (10 MHz) and the 

Grenander’s uncertainty value M (M = 2).  The setup also requires the file name, 

and file directory.   
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B. RANDOM NOISE RADAR MODEL 
1. QMFB 
The QMFB detection results for the RNR are shown in Figure 39 for layer 

6. As observed in layer 6 the noise bandwidth of 300 MHz and duration of signal 

(4 µsec) are evident on the time frequency plane. The signal is centered at a 

frequency of cf = 350 MHz. 

 

Figure 39.   QMFB for RNR, cf  = 350 MHz, Noise B = 300 MHz. 

 

Note determining the distribution of the noise is a subject beyond the scope of 

this thesis and a subject of future study. The 100 MHz noise bandwidth waveform 

(not shown) revealed similar results, with the bandwidth 1/3 the size observed in 

Figure 39 above.   

Concluding these results, it would be obvious to the trained operator that 

an artificial noise signal with no modulation has been intercepted.  It could be 

reasoned the QMFB is an effective tool against the Narayanan model of RNR. 
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2. Cyclostationary 
In this application, the TFAM technique is used to estimate the SCD for 

the RNR signal.  From the plot shown in Figure 40 below, one can observe the 

signal appearing in four separate locations on the bi-frequency plane. This is due 

to the quadrant symmetry of the SCD. 

 

 

Figure 40.   CSA for RNR, cf  = 350 MHz, Noise B = 300 MHz. 

 

Looking closely at the right-most quadrant, Figure 41 shows several distinctive 

features.  As expected, the noise is centered at twice the carrier frequency (700 

MHz) along the cycle frequency (x) axis.  Also, the noise bandwidth of 300 MHz 

can be identified on both the cycle frequency axis (from midpoint to either end of 

the diamond) or the frequency axis (diamond tip to diamond tip).  
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Figure 41.   CSA for RNR, cf  = 350 MHz, Noise B = 300 MHz – zoomed. 

 

Summarizing, the cyclostationary results on the RNR signal gives a significant 

indication of the noise emitter in the SCD.  It could be reasoned this bi-frequency 

tool is effective against RNR signals. With experience, the operator can use the 

bi-frequency results not only to measure the waveform parameters but to also 

identify which type of emitter is present. 

 

C. RANDOM SIGNAL RADAR – NOISE FMCW RADAR 
In this section, the time-frequency and bi-frequency analysis tools are 

used to examine the characteristics of the noise FMCW radar. The signal 

intercepted is a noise modulated triangular FMCW signal centered at cf = 350 
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MHz with modulation bandwidth F∆ = 300 MHz (200 MHz to 500 MHz).  For this 

emitter, two modulation cycles are transmitted and intercepted.  The noise 

bandwidth examined the SCD with the QMFB and is B = 300 MHz (200 MHz to 

500 MHz). The ADC sampling frequency is sf =3 GHz.   

 

1. QMFB 
In this example, the noise bandwidth is B = 300 MHz. Within the QMFB    

L = 12 layers, layer 6 is used to identify the significant information about the 

intercepted signal since this layer presents a good trade-off in identifying the 

waveform parameters in both time and frequency.  Figure 42 shows the QMFB 

layer 6 for the intercepted waveform.  Note the triangular shape of the linear 

FMCW signal is observed.  Also revealed is the modulation bandwidth F∆ = 300 

MHz as well as the noise bandwidth of B = 300 MHz.   

 

Noise bandwidth
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1mt = msNoise bandwidth

350cf = 350cf =
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1mt = ms1mt = ms1mt = ms

 
Figure 42.   QMFB for Noise FMCW Radar, Noise B = 300 MHz. 
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Note from Figure 13, the total noise modulated FMCW waveform bandwidth 

extends from 400 MHz (200 MHz + 200 MHz) to 1000 MHz (500 MHz + 500 

MHz) centered at 700 MHz.  The modulation period of mt = 1 µsec is also 

observable. In summary, the QMFB analysis can extract the important 

parameters of the RSR noise FMCW waveform exactly.  Note that this 

information is not available using PSD techniques (since the phase information is 

not preserved in the autocorrelation function).  

 

2. Cyclostationary 
In this example, the noise bandwidth within the noise FMCW emitter is set 

to B = 300 MHz. Since in this case the noise bandwidth and the modulation 

bandwidth overlap, the total noise FMCW bandwidth transmitted B = 300 MHz.  

The time-smoothing technique was chosen to estimate the SCD.  From Figure 

43, one can observe the signal appearing in four separate quadrants on the bi-

frequency plane.  

 

 
Figure 43.   CSA for Noise FMCW, cf  = 350 MHz, F∆ = 300 MHz, Noise B = 

300 MHz. 
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Examining the right most quadrant, as shown in Figure 44 below, the 

diamond is centered at 1200 MHz, which is twice the center frequency of the 

modulated signal.  Theoretically, the center frequency is expected at 1400 MHz, 

from twice the center frequency of the two modulated signals (350 MHz for the 

noise and 350 MHz for the FMCW signal).  The difference of 200 MHz is 

observed as an offset through several scenarios changing the FMCW modulation 

bandwidth as shown in Table 5 below. 
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Figure 44.   CSA for Noise FMCW, cf  = 350 MHz, F∆ = 300 MHz, Noise B = 

300 MHz. 
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F∆ (MHz) Offset (MHz) Center frequency observed (MHz) 

500 250 1150 

300 200 1200 

200 100 1300 

100 50 1350 

1 0 1400 

 

Table 5.   Noise FMCW Modulation Bandwidth Effects. 
 

Other signal characteristics, such as the signal bandwidth of F∆ = 300 

MHz can be measured along the cycle frequency axis, as expected.  The 

bandwidth can also be measured along the frequency axis as well.  This sweep 

bandwidth shows nicely in the QMFB results.  Thus, there is enough information 

for the trained operator to notice an unnatural signal is the captured emission. 

In summary for the cyclostationary results on the RSR signal, there is 

significant indication of a source signal.  It could be reasoned the time-frequency 

and bi-frequency tools are effective against the Noise FMCW signal. 

 

D. RANDOM SIGNAL RADAR – SINE PLUS NOISE FMCW RADAR 
In this section the time-frequency QMFB and the bi-frequency CSA are 

applied to the Sine Plus Noise FMCW intercepted waveform.  The transmitted 

signal is the same noise modulated triangular FMCW signal as in Section C, 

however there is an additional tone signal at ( Tf = 350 MHz) modulation that is 

present.  To review, the noise bandwidth extends from 200 MHz to 500 MHz and 

the FMCW modulation bandwidth extends from 200 MHz to 500 MHz. Modulation 

by the tone signal at 350 MHz creates the noise in two bands.  The upper band 

extends from 750 MHz to 1350 MHz while the lower band extends from 50 MHz 
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to 650 MHz.  As shown in Figure 22, the lowpass filter retains the lower side 

band for transmission (50 MHz to 650 MHz).   

 

1. QMFB 
Layer 6 is again chosen to extract the parameters of the intercepted 

waveform.  Figure 45 below shows the results of the two triangular waveforms 

that are intercepted.  Note that the total waveform bandwidth is 600 MHz (50 Hz 

to 650 Hz) centered at 350 MHz as expected.  Also shown is the noise bandwidth 

of B = 300 MHz evident about the FMCW waveform.  The modulation period of 

the triangular waveform is also easily determined as mt = 1µ s. 
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Figure 45.   QMFB for Sine Plus Noise FMCW, cf  = 350 MHz, Noise B = 300 

MHz. 
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In summary, to the trained operator the QMFB can correctly extract the 

parameters of the noise FMCW plus sine waveform demonstrating that the 

QMFB represents an effective tool against this form of RSR. 

 

2. Cyclostationary 
In this application, the time smoothing technique was chosen to estimate 

the SCD.  As in other results, the signal appears in four separate locations.  In 

addition, the signal in Figure 46 below is modulated by a noise signal with 300 

MHz wide bandwidth. 

 

 

Figure 46.   CSA for Sine Plus Noise FMCW, cf  & noisef  = 350 MHz, Noise B = 
300 MHz. 

 

Examining the right most quadrant, as shown in Figure 47, the diamond is 

centered at 525 MHz, which is twice the center frequency of the modulated 

signal.  Theoretically, the center frequency is expected at 1400 MHz, from twice 

the center frequency of the two modulated signals (350 MHz for the noise and  
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350 MHz for the FMCW signal).  The difference of 200 MHz is observed as an 

offset through several scenarios changing the FMCW modulation bandwidth as 

shown in Table 5.   

For the carrier frequency, the signal frequency intercepted is that of the 

low-passed, compound Sine Plus Noise FMCW signal, centered at 350 MHz, and 

is 180 degrees out of phase.  This phase shift effectively pulls the noise 

modulation from the cyclostationary results.  Although the shape is expected to 

be centered at twice this frequency, it appears to be centered 200 MHz to the left 

of the expected value of 700 MHz (twice the 350 MHz FMCW center frequency).   

Again the offset shows as in the Noise FMCW model in Table 5.  The results of 

Figure 47 below still provide the trained operator enough information to flag the 

signal of interest. 
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Figure 47.   CSA for Sine Plus Noise FMCW, cf  & noisef  = 350 MHz, Noise B = 

300 MHz – zoomed. 
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Examining the zoomed view in Figure 47 above, the cycle frequency (x) 

axis length of this shape displays twice the bandwidth, or 600 MHz wide (200-

800 MHz on the figure), as expected.  Along the frequency (y) axis, the 

bandwidth of 300 MHz is observed, as expected.  One interesting point however 

is the centering of the shape.  For any signal, the resultant shape is expected at 

twice the center frequency.  Therefore, the signal is expected at 700 MHz, but 

with compounded noise modulation, the centering is at 500 MHz.  Thus, there is 

enough information for the trained operator to notice an unnatural signal in the 

intercepted emission. 

In summary for the cyclostationary results on the RSR signal, there is 

significant indication of a source signal.  It could be reasoned the time-frequency 

and bi-frequency tools are effective against the Sine Plus Noise FMCW model of 

RSR. 

 

E. RANDOM SIGNAL RADAR – RANDOM BINARY PHASE-CODED CW 
RADAR 
The RBPC radar uses a random phase modulation to achieve LPI 

characteristics. The tone signal used is Tf = 300 MHz. This tone frequency was 

chosen to later compare QMFB and cyclostationary results with the previous two 

RSR models. The phase change for each subcode is randomly selected as either 

0 or π . Both cpp = 1 (B = 300 MHz) and cpp = 3 (B = 100 MHz) are investigated.  

The ADC sampling frequency is sf =3 GHz. 

 

1. QMFB 
To extract signal characteristics with the QMFB, a range of layers were 

explored.  Twelve layers were generated for the RBPC waveform.  For fine time 

resolution  Layer 2 is shown in order to examine the phase information of the 

intercepted signal.  Correlation of the layer 2 phase change with that of the 

transmitted signal illustrates the unique capabilities of the QMFB.  For fine 

frequency detail the middle QMFB layers are most useful (e.g., layer 5 or 6).  
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Details such as the bandwidth and carrier frequency can be easily observed 

since the middle layers represent a good tradeoff between time and frequency 

resolutions. 

 

 
Figure 48.   QMFB for RBPC and Correlation to Phase Change. 

 

To demonstrate the capability of the lower layers in determining the exact 

structure of the intercepted waveform, Figure 48 (top) shows the random phase 

values that were used to generate an RBPC LPI waveform with cf = 300 MHz 
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and cpp = 3 (B = 100 MHz).  Each subcode width is bt = 10 ns. In Figure 48 

(bottom), the layer 2 results for this waveform are shown.  Note that the positions 

of the phase change are readily noticed within the layer 2 results and correlate 

well with the random phase values that were used.  In Figure 49, layer 5 is 

examined for cpp =1 (B = 300 MHz) and layer 6 for cpp =3 (B = 100 MHz).  The 

carrier frequency and bandwidth are both observable to the operator. 

 

 

 
Figure 49.   QMFB for RBPC, cf  = 300 MHz, cpp  Disparity. 

 

 

 

For fine frequency information, the higher order layers can be examined.  

For example, Figure 50 below shows layer 9 for a cpp = 1 and layer 11 for a     

cpp = 3 (center frequency of 300 MHz).  Note that the duration of the signal 

cannot be determined due to the large (coarse) resolution in time that occurs with 

the upper layers. 
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Figure 50.   QMFB for RBPC – Frequency Resolution. 
 
 
In summary, the QMFB is highly effective for determining the presence of 

the random binary phase modulation waveform.  The layer that is used is 

dependent on the type of information being extracted.  Detailed phase analysis 

can be conducted using the lower layers however the presence of noise can 

degrade this capability.  To the trained operator the QMFB represents an 

effective tool against the RBPC CW model of RSR. 

 

2. Cyclostationary 
The cyclostationary tools applied to the RBPC model of RSR is examined below.  

The signal shown is a common 300 MHz tone.  For computational simplicity, the 

cyclostationary frequency resolution (df) was 10 MHz and the Grenander’s 

uncertainty value M = 2.  The first set of results will illustrate the cpp = 1 

waveform as shown in Figure 51 below.  Note the four quadrant symmetry that is 

present as well as the difference in signal texture.  Figure 51 shows the zoom 

view into the right-most quadrant,  
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Figure 51.   CSA for RBPC, cf  = 300 MHz, cpp =1. 

 

 
Figure 52.   CSA for RBPC, cf  = 300 MHz, cpp =1 – zoomed. 
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The waveform is centered upon twice the carrier frequency or 2 cf = 600 MHz 

along the cycle frequency axis. The bandwidth can also be measured along the 

cycle frequency axis from the midpoint of 600 MHz to the right edge of the 

diamond or from the midpoint to the left edge of the diamond as shown. The 

bandwidth can also be measured along the frequency axis as shown.  

 

Figure 53 examines the case with for cpp = 3 (B = 100 MHz). Note the 

difference in bandwidth is immediately apparent on the bi-frequency plane.  

 

 
Figure 53.   CSA for RBPC, cf  = 300 MHz, cpp =3. 
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Figure 54.   CSA for RBPC, cf  = 300 MHz, cpp =3 – zoomed. 

 

Zooming into the right most quadrant, the waveform is again centered at 

600 MHz or twice the carrier frequency of 300 MHz. The bandwidth also can be 

measured as shown along the cycle frequency axis and frequency axis.  

In summary, the cyclostationary results on RBPC signal show good 

waveform details in both the cycle frequency axis and frequency axis and 

represents an effective tool against the RBPC CW model of RSR. 
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IV. CONCLUSION 

A. FINDINGS ON NOISE TECHNOLOGY RADAR 
The basic approach taken in this research was to model the noise 

technology radar transmitter techniques found in the literature. Both the RSR and 

RNR LPI techniques were modeled. From the non-cooperative intercept 

receiver’s perspective, the LPI waveform was digitized (in-phase and quadrature 

components) and both time-frequency and bi-frequency signal processing 

techniques were used to identify the waveforms as well as extract the signal 

parameters.  From the preliminary analysis in this thesis, the conclusion is that 

these techniques are highly effective against the RSR and RNR noise technology 

emitters. 

Significant other research was reviewed and contributed to the 

understanding of the noise technology concepts being examined.  These 

references (23–41) are listed in the Reference section at the end of this thesis. 

They range from alternate research paths and application by the leading authors, 

to modifications by other researchers worldwide seeking to improve on the 

leading architectures of RNR and RSR.  Further research into aspects of noise 

technology radar would benefit by review of these references. 

 
1. Random Noise Radar 
Observing the time-frequency tools shows the QMFB can clearly extract 

the bandwidth and center frequency from the intercepted RNR signal.  The 

cyclostationary analysis also gives us solid frequency and bandwidth information.  

Concluding these results, it would be obvious to the trained operator that an 

artificial signal is in the noise.   

 

2. Random Signal Radar 
Regarding the Noise FMCW radar, the transmitted signal characteristics 

such as the ramp frequency, FMCW modulation bandwidths, and a modulation  
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period of 1 µsec clearly come forward in the QMFB time-frequency tool.  This 

applies for all noise bandwidth cases as well, with appropriate frequency shifts 

due to modulation.     

An interesting discovery comes from the cyclostationary results of the 

Noise FMCW architecture.  The noise modulation shifts the center of the shape 

by the lower range of the sweep (ramp) bandwidth F∆  (200 MHz).  This was 

unexpected and a significant discovery of another signal characteristic.  Further 

investigation may take place in follow-on study with this discovery.  Standard 

signal characteristics were observable, such as bandwidth and modulation 

frequency.    

Regarding the Sine Plus Noise FMCW radar, the transmitted signal 

characteristics show explicitly from the QMFB tool.  For example, intermodulation 

products show explicitly, centered at 350 and 1050 MHz respectively; along with 

the range of FMCW modulation bandwidths (200-500 MHz).  For realistic 

application, the upper sideband product was filtered out for increased LPI and a 

lack of advantage from this repeated signal.  Three noise bandwidth cases were 

studied to reveal the ability to capture signal characteristics despite the LPI noise 

bandwidth variations from an emitter.   

Again the cyclostationary results showed exciting results with the 

indication of the modulation bandwidth frequency range.  This is found with 

close-up views of the four-shape, SCD.  Results also showed the centering of the 

shape off by 200 MHz, coincident with the lower sweep (ramp) bandwidth 

frequency, for both noise modulated and non-noise modulated cases.   

Regarding the Random Binary Phase-Coded CW radar, the analysis 

shows the QMFB to be a highly effective tool.  Generic bandwidth and center 

frequency characteristics are identifiable in the higher layers (7-11).  Looking at 

Layer 2, the analyst can pick out phase changes by the peaks and valleys of the 

QMFB.  As an additional signal characteristic, distinct code repetitions in the 

middle (5-7) layers can be observed by a discerning operator. 
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Concluding with the cyclostationary results on RBPC signal, the original 

300 MHz tone appears nicely even for the untrained operator for the time-

smoothing approach, as expected.  As with non-noise-modulated results, the 

signal is centered at twice the center frequency and the bandwidth is observable 

along the frequency (y) axis; and twice the bandwidth along the cycle frequency 

(x) axis.  It could be reasoned the time-smoothing approach to the 

cyclostationary analysis is an effective tool against the RBPC CW model of RSR. 

In comparison of the sidelobe performance, each noise technology 

architecture utilized the same analysis – examining the PAF for the highest peak 

sidelobe.  The resultant decibel level provided insight into the estimated periodic 

ambiguity of the transmitting radar.  Table 6 summarizes the noise radar side 

lobe performances. 

 

ARCHITECTURE 
OBSERVED HIGHEST  

SIDELOBE LEVEL (dB) 

RNR  –12 

RSR – Noise FMCW –20 

RSR – Sine Plus Noise FMCW –22 

RSR – RBPC 
–10 ( cpp =1)  

–12 ( cpp =3) 

 

Table 6.   Observed Sidelobe Comparison among Noise Technology Architectures. 
 

Considering the resolution of the charts and variability in the detection 

algorithms, it is concluded the observed levels to be relevant and a good 

predictor of ambiguity.  Further investigation may take place in follow on study. 
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Concluding these results, the time-frequency and bi-frequency tools are 

effect against noise technology radar.   

 

B. POTENTIAL APPLICATION 
1. Intelligence Surveillance and Reconnaissance 
Future work would find a way to realize these techniques in hardware for 

the global emergence of noise technology radar.  Coincidental to this evolution is 

the emergence and increased capability for unmanned aerial systems.  In this 

application, the physical size, speed, and mission length form a natural stealth 

operating scenario.  Adding traditional radar on this platform would negate much 

of this progress.  Therefore, addition of noise technology radar is a natural fit and 

evolutionary step to surveillance or anti-terrorism applications. 

  

2. Model Enhancements 
There were several areas in this thesis which could be the foundation for 

future work.  One point involves Doppler.  This capability is not produced in this 

thesis, but may be a straightforward addition by modeling the entire receiver.  

Early efforts in this thesis included more of the receiver, but were abandoned for 

the interest in intercept capability.   

Another opportunity for future work may lie in examining the effect of 

variable observation intervals (pulse widths).  There is no relationship in the 

model between the observation interval and sampling frequency, except to 

determine the number of samples used.  However, this would be an interesting 

section in a future book on the topic, or a conference paper. 

Although filtering and LO selection can help focus the bandwidth of 

interest, a busy signal environment would be another endeavor for future work.   

This analysis was conducted with one intercept receiver against one emitter 

signal.  Future research may be more realistic considering an operating 

environment. 
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To confirm the assumption about intermittency with the RBPC radar, a 

future researcher could add random zeroing to the long numbers of phase codes 

to research any unforeseen behavior with random intermittency effects on the 

data.  It is unexpected at this point, but not confirmed.  Whatever the future holds 

for this technology, there is room to explore both military and civilian applications. 
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APPENDIX A – OTHER WORLDWIDE EFFORTS IN RNR 

A. CONTRIBUTIONS OF AXELSSON – SWEDEN 
1. Approach 
Mr. Sune Axelsson has research interests in sensors, modeling of terrain 

background, noise radar, and high-resolution (synthetic aperture) radar.  He is 

currently working in Sweden.  Mr. Axelsson’s work suggests using random noise 

to phase or frequency modulate a sine wave as an alternative to the random 

signal generated by a microwave source.  Several advantages emerge in this 

approach to noise technology radar.  Initially, a higher transmitted mean power 

can be achieved.  This can offer the radar operator improved range resolution by 

increasing the noise bandwidth of the modulated carrier beyond that of the 

modulating signal.  As an additional advantage, the range sidelobes are 

suppressed beyond the 4 dB improvement seen through simple random biphase 

modulation.  These distinct advantages seem attractive for applications in 

synthetic aperture radar mapping, altimetry, and scatterometry.  For improved 

range correlation, Axelsson suggests an additional technique reintroducing noise 

before a fast, but simple analog-to-digital converter (ADC) in the return channel.  

This seeks to overcome the substantial integration time needed for Doppler 

processing [14].  This approach is extremely close to that proposed by 

Narayanan; therefore it is not studied in detail.  As an example in Equation 9 in 

Axelsson [14], the sine wave modulated by noise can be written in the complex 

form as:  

 [ ]( ) exp ( )oS t A j t j tω φ= +  (26) 

where the amplitude A  is constant and the phase ( )tφ  varies with time.  In 

contrast, Narayanan allows the amplitude to be a random function of time, as 

described in Equation 2 in the paper, “Radar Penetration Imaging Using Ultra-

wideband Random Noise Waveforms” [20].  Otherwise the logic flow and 

principles are the same [4].  Axelsson’s approach is highlighted here because of 

the extensive open literature sources and the improvements, such as enhanced 

ADC processing. 
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2. Model of Transmitted Waveform 
Axelsson in [3] proposes an alternative solution to the delay line idea used 

by other researchers.  Instead of using a variable delay line applied to the 

reference signal, this approach variably delays the I/Q output components of the 

digital source signal and correlates them with the target (receive) signal I/Q 

components.  Figure 55 below illustrates the complete receiver as: 

 

 

Figure 55.   Block Diagram – Digital Range and Doppler Processing [From 2]. 
 

In Figure 55 above, Axelsson shows the digital delay introduced after the 

signal processing takes place to meet the speed requirements of real-time 

processing.  After the noise source transmits the signal to the antenna, the 

carrier frequency ( 0f ) is mixed and used to offset the intermediate frequency ( if ) 

in MIXER3.  Looking closer, the reference (transmitted) signal is variably delayed 
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(in the ADCs) after the signal is downconverted from the intermediate frequency 

( if ) and the Ir/Qr components are extracted (DEMOD block in Figure 55 above).  

The return signal also sees the down conversion and I/Q demodulation.  The two 

signals are then correlated for range Doppler processing.   

For long noise sequences, Axelsson proposes modifying the 

velocity/range processing into two separate steps.  First step is forming N range 

cells with integration time shorter than the Doppler shifts of the received signals.  

Then, the second step is repeating this processing for M time steps.  From this, a 

signal vector for each range cell that varies the time phase by the Doppler shift is 

produced.  Each signal vector then goes through an FFT giving the 

range/Doppler matrix as the output, as shown in Figure 55 above.  This FFT is 

where the speed is gained in the processing computations.   

 

3. Receive Signal Correlation Using Binary and Low-bit ADC 
Although the benefit of real-time processing may be realized, naturally, 

there is a cost.  The binary or low-bit analog-to-digital converter (ADC) has 

limitations manifested in degraded sidelobe suppression.  Therefore to mitigate 

this phenomenon, Axelsson in [3] adds random noise into the down-conversion 

process.  By introducing additional noise before or after the down-conversion, 

there is no effect on the correlation function, as follows.  Nominally, the average 

peak-to-sidelobe ratio (PSR) is:  

 

2

2
S

SPSR N
σ

= =
 (27) 

where S  is the correlation sum of the received and transmitted signals, sσ  is the 

variance of this sum, and N  is the time-bandwidth product ( 2* *N B T= ) defined 

by the number of independent noise samples during measurement (T ).  As 

another illustration, the high-resolution ADC has the following PSR:  

 ( )
4

4 2 2 11
x

x x z

N NPSR
N N SNR

σ
σ σ σ −

= =
⎡ ⎤+ −⎣ ⎦  (28) 
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where x  is the signal sequence of independent random numbers (noise) with 

zero mean and variance.  As an example with N =104 and SNR= –10 dB, the 

PSR is 30 dB.  For the case of the binary and low-bit ADC, the effect of adding 

noise back into processing before the ADC, produces the PSR as:  

 
( )

1
2 2

22 arcsin
1

SNRPSR N
SNRπ

⎡ ⎤
⎧ ⎫⎪ ⎪⎛ ⎞ ⎢ ⎥= ⎨ ⎬⎜ ⎟ ⎢ ⎥+⎝ ⎠ ⎪ ⎪⎩ ⎭⎢ ⎥⎣ ⎦  (29) 

where N  is the time-bandwidth product ( 2* *N B T= ) defined by the number of 

independent noise samples during measurement (T ).   

With a large SNR, the binary ADC approaches the performance of the 

high-resolution ADC.  With a small SNR, the PSR approaches 
22* *N SNR

π
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

which gives an improvement factor of 4 dB.  Therefore, an inexpensive, low-bit 

ADC overcomes the limitation of low sidelobe suppression.  However, the 

question arises about where to add the noise.  Axelsson suggests adding noise 

to both reference and receive channels is not necessary.  Through the equations 

in [3], adding noise to the reference side has little effect due to the averaging that 

takes place in the correlation.  Therefore, Axelsson’s model efficiently adds noise 

only to the receive channel for ADC processing. 

In conclusion, the addition of small levels of noise (–10 dB) before the 

ADC in the receive channel reduces sidelobes and improves performance.  

Fortunately, these levels of noise are easy to find on the electronic battlefield, 

thus may be used as an asset rather than “noise.” 

 

B. CONTRIBUTIONS OF OTHERS 
This section is a brief survey of other RNR generation and/or correlation 

techniques found in the open literature.  Many other researchers and their work 

are described; including the mathematics involved with signal processing and LPI 

signals.   
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1. Logistic-Map Based Binary Phase Code 
Mr. Xin Wu and the staff of the Radar Laboratory of the Nanyang 

Technological University in Singapore have devised a way of using binary phase 

coding for radar pulse compression [21].  Using the pulse compression approach 

to LPI radar, the researchers found the performance of their Logistic-Map based 

Binary Phase Code (LMBPC) generation is similar to that of the random binary 

codes used in RSR.  However, the generation is much simpler and not limited by 

the length of the code.  Mr. Wu proposes a binary phase code with a low peak 

side lobe without tradeoffs to Doppler tolerance.  To generate this technique, the 

logistics map follows the equation below and is sensitive to initial conditions, 

thereby allowing for an almost infinite number of LMBPC waveforms.  This is 

much simpler, faster, and reproducible over the creation using Bernoulli trials. 

 ( ) ( )1 1n n n nx f x rx x+ = = −  (30) 

where [0,4]r∈  and [0,1]nx ∈ .  The variable r  is the bifurcation (dividing by two) 

parameter.  In trials, the logistics map exhibits chaotic behavior between 0 and 1, 

when r =4. 

In exploring the periodic ambiguity function, the researchers suggest the 

response of the matched filter to the Doppler shifted return, sheds light onto the 

performance of the radar.  Their response resembles the ideal thumbtack, 

indicating the accuracy of the ability to measure the range and velocity of the 

target.  For reference, the LMBPC periodic ambiguity function follows: 

 
( ) ( ) ( ), ( ) * exp 2x d x dt f u t u t T j f t dtπ

∞

−∞

Χ = +∫
 (31) 

where ( )u t  is the envelope of the LMBPC waveform, *u  is the complex 

conjugate, xT  is the time delay, and df  is the Doppler frequency. 

For further separation between detection range and Doppler tolerance, the 

team proposed replacing the single matched filter in traditional pulse 

compression with a bank of shorter matched filters.  Thus by increasing the 

number of parallel correlators, they saw an increase in the maximum detection 

range, range resolution, and maximum Doppler tolerance, respectively: 
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max 2

BcnBTR =
 (32) 

 
2

BcTR∆ =  (33) 

 
max

1
2d

B

f
BT

=
 (34) 

where c  is the speed of light, n  is the number of pulses, B  is the total length of 

the correlators, and BT  is the bit duration of the pulse.  For example, modifying a 

few parameters makes way for strong performance characteristics accordingly: 

 

If: Performance results in:

BT  is 0.05 µsec R∆  = 7.5m 

B  is 256 maxdf  = 39062.5 Hz 

maxR  is 30 km n  becomes 16 

 

Table 7.   LMBPC Pulse Compression Improvement Factors. 
 

Although, this approach is beneficial, it still relies on expensive hardware, often a 

limiting factor for many organizations.  

 

2. Random Phase Code for Pulse Compression 
Ralf Stephan and Heinrich Loele and the staff of the Radio Frequency and 

Microwave Technology Institute at the Technical University of Ilmenau, Germany 

were working on an analog version of RNR for medical applications [2].  They 

were focusing on a variable delay line to achieve a suitable bandwidth.  They 

needed a variable delay to change the range bins and could not quite get what 

they were looking for in the hardware used.  Most of the effort was in hardware 

and some components were modeled in Simulink [22]. 
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C. OTHER NARAYANAN CONTRIBUTIONS 
Professor Narayanan has explored many variations of RNR with various 

individuals over the years.  In the research for this thesis, these exploratory steps 

became fundamental to the research and growth of understanding this new noise 

radar technology.  The information is presented here for background on the field. 

 

1. Random Pulse Modulation 
Working with Mr. Yan Zhang in [5], Dr. Ram Narayanan considered the 

RNR receiver as an estimator of the correlation function.  From this statistical 

point of reference, they explain the mean squared error (MSE) and show how a 

fielded system should arrive at the lowest variance of range resolution in the 

shortest time.  To overcome the extensive processing time and signal smoothing 

requirements, they propose architecture with the monopulse RNR and find it to 

behave as traditional monopulse radar to give decent angle tracking capability.  

The focus here will propose using the interferometer and RNR monopulse as 

receiver architecture for real-time angle estimation. 

As an estimator of correlation, the notional receiver is depicted in Figure 

56 below, with key design elements.  First, the bandpass filter selects the 

frequency range of interest and boosts the signal-to-noise ratio (SNR).  Second, 

the low pass filter (LPF) further reduces the mixed receive/transmit signal and the 

digital signal processor (DSP) averages the result to extract a “smoothed” 

resultant signal.    

 

 
 

Figure 56.   Block Diagram – RNR Monopulse Correlation Receiver [From 5]. 
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Two of the major design considerations were the integration time and the 

LPF bandwidth.  With an increase in observation time, an increase in velocity 

resolution and a reduction in sidelobes of the correlation between the transmitted 

and received signals are also observed.  For example, an observation time of 50 

µsec results in an elongated periodic ambiguity function of the dc components, 

while an observation time of 50 msec results in a clean spike in the periodic 

ambiguity function [5].  The LPF extracts the dc component from the correlation 

output and must maintain a short rise time to allow for quick estimates from a fast 

moving target: 

 1
rise

pass

t
ω

∝  (35) 

 

where passω  is the LPF cutoff frequency.  For the advantage of quick rise time, a 

design cost of additional frequency components at the output must be budgeted. 

 

2. Random Noise Monopulse Radar 
Again working with Mr. Yan Zhang in [5], Dr. Ram Narayanan considered 

the random noise monopulse radar as an alternative.  Figure 57 below illustrates 

the overall layout of this design concept.  Each of the two receive channels 

correlates the sum and difference channels with a delayed transmitted signal 

replica.  Then the dc components are extracted before calculating the complex 

correlation between the sum and difference channels overall. 

With the assumptions the target speed is much smaller than the speed of 

light and the separation distance between the two receive horn antennas is very 

small compared with the target range.  This equation mirrors that of the output of 

standard single frequency monopulse radar.  Illustrating the alternative design 

concept, Figure 57 below highlights the effort on the sum and difference 

channels:  
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Figure 57.   Block Diagram – Monopulse RNR [From 5]. 
 

After running several simulations, Narayanan and Zhang found this 

Monopulse RNR to perform similarly to the traditional monopulse radar.  Their 

emphasis for design considerations is on integration time, LPF bandwidth, and 

signal propagation in receivers. 

 

3. Advantages of the Variable Delay Line 
Working with Mr. Muhammad Dawood in [15], Dr. Ram Narayanan 

generated RNR, constant PSD, and average power output of 0 dBm (1 mW) in 

the 1-2 GHz range.  The variable delay line work is different from the standard 

RNR model through the addition of a variable delay line just before the 

Upconverter mixer running to the receive signal mixer.  The major advantage of 

this model is to improve coherence between a target among interference and the 

receiver.  Theoretical statistics on clutter performance were verified through 

experimentation and found in [14].  
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APPENDIX B – DETAILS OF THE FDA TOOL 

A. PARAMETER SELECTION 
Filtering the signal in this thesis was accomplished with use of the Filter 

Design and Analysis (FDA) tool as part of the Signal Processing toolbox in 

MATLAB.  Filtering applications take place in all models.  Initially, the RNR and 

RSR designs call for bandlimiting the reference source during the echo 

correlation in the transmitting receiver.  In this thesis, bandlimiting the noise was 

accomplished by passing the white Gaussian noise through filters created in the 

FDA tool.  The 100 MHz filter band passed the signal from 300-400 MHz, while 

the 300 MHz filter bandpassed the signal from 200-500 MHz.  To minimize the 

maximum ripple in the pass bands, the Equiripple type of a finite-duration 

impulse response (FIR) filter was chosen.  This FIR was chosen as an effort to 

consider practical applications at every design option.  Experiments with the 

Butterworth type of infinite-duration impulse response (IIR) filter showed 

dispersed results in the time-frequency processing, and thus dismissed.  To 

illustrate this description, an example of the FDA tool is shown in Figure 58 

below: 
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Figure 58.   FDA Tool GUI. 

 

Upon opening the FDA tool, specifying the filter began with the Response 

Type options, which the designer can intuitively select.  The bandpass, lowpass, 

and highpass filters used in this thesis followed the naming convention: local-

pass type-frequency.  Each filter requirement was mentioned in the respective 

section.  Back on the FDA tool, the Design Method section provides further 

specification, depending on the application.  The Equiripple filter was chosen to 

minimize ringing in all filter designs.  The Filter Order was minimized to approach 

realistic conditions.  Selecting the Frequency Specifications was intuitive with 

sharper stop bands increasing the filter order, as preferred.  The Magnitude 

Specifications were chosen to be –80 dB in the stop bands to focus on the cutoff 

values.  Realistic values for hardware may be selected here depending on the  
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fiscal budget for the applied design.  After specifications were made, the Design 

Filter button on the bottom of the GUI was selected to display the magnitude 

response and produce the filter order. 

 

B. OUTPUT UTILIZATION 
The designer is not finished here.  To convert the filter coefficients into a 

usable format, the designer must use the Export feature under the File menu.  

Several options to saving location become available, but the “.mat” file option 

was chosen for files to be located in the respective directory.  The name for the 

coefficients was chosen in this thesis as, “nps.”  Ending the effort was naming 

convention for the file, which used the pass type and the frequency described 

above. 

Using the FDA tool saved large amounts of time, increased confidence in 

accuracy, and was highly intuitive.  As a desirable feature of heterodyne 

correlation, the return signal should be at the intermediate frequency (IF).  

Ideally, the Doppler return will show in a few Hz around the IF (usually +/- 50 Hz 

for a slower aircraft target).  So, narrow band filters with sharp cutoffs are needed 

to pass only the desired information (5-10 MHz around IF).  Also, sharp cutoffs 

are preferred to reduce extraneous noise from getting into the detector and 

degrading the SNR.  In Narayanan’s original work [4] to suppress the high-

frequency IF harmonics produced from the I/Q Detector, lowpass filters are 

designed for 200 MHz.  A key point to note is the I/Q detector generates the in-

phase and quadrature lowpass equivalent frequencies of the original bandpass 

signal; and both the I and Q signals are lowpass signals at the Doppler frequency 

[4].  One point on Doppler, the capability is not produced in this model, but may 

be an easy addition for future work.  For this modeling, the received signal is 

simulated. 
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