AFRL-IF-RS-TR-2006-276

Final Technical Report
September 2006

KNOWLEDGE-INTENSIVE, INTERACTIVE AND
EFFICIENT RELATIONAL PATTERN LEARNING

UNIVERSITY OF WISCONSIN-MADISON

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. L835/50

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT
This report has been reviewed by the Air Force Research Laboratory, Information

Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical

Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2006-276 has been reviewed and is approved for publication.

APPROVED: /sl

CRAIG S. ANKEN
Project Engineer

FOR THE DIRECTOR: Is/

JOSEPH CAMERA

Chief, Information & Intelligence Exploitation Division
Information Directorate

REPORT DOCUMENTATION PAGE 0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,

1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,

Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
SEP 06 Final Sep 01 — Mar 06

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

KNOWLEDGE-INTENSIVE, INTERACTIVE AND EFFICIENT F30602-01-2-0571

RELATIONAL PATTERN LEARNING

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

31011G
6. AUTHOR(S) 5d. PROJECT NUMBER
David Page, Jude Shavlik EELD
5e. TASK NUMBER
01
5f. WORK UNIT NUMBER
06
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Wisconsin-Madison REPORT NUMBER
6743 Medical Sciences Center, 1300 University Ave. N/A
Madison Wisconsin 53706
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
Defense Advanced Research Projects Agency AFRL/IFED
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505 11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2006-276

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA #06-607

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes the work to develop and evaluate state-of-the-art relational pattern learning algorithms for the Evidence
Assessment, Grouping, Linking and Evaluation (EAGLE) program. The University of Wisconsin team consisted of leaders in
relational data mining and relational machine learning, in particular inductive logic programming (ILP). Major contributions by the
team included the development of an ILP system implemented entirely in database operations, FOIL-D, and a statistical relational
learning (SRL) system that incorporates explicit probabilistic constraints into ILP, CLP(BN). CLP(BN) incorporates all the
representational power of probabilistic relational models (PRMs) but uses an ILP approach to learning. Another major contribution is
the definition and development of View Learning, an approach to change of representation for SRL. Though SRL systems are
particularly well-suited to the goals of EAGLE — indeed, the field of SRL received much of its impetus for growth from EAGLE —
these systems have been constrained to work with the input representation, typically a relational schema. View Learning in SRL
permits the definition of a new schema — a new view of the database — better suited to the learning goals. This project also made
advances within learning ensembles, including the DECORATE approach to diverse ensembles, the use of bagging within ILP, the
GLEANER algorithm to construct ensembles of relational rules having varying trade-offs of precision and recall, and a parallel
implementation of bagging in ILP. The project also contributed novel stochastic search algorithms for ILP.

15. SUBJECT TERMS
Machine learning, inductive logic programming, probabilistic, data mining

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF [18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF PAGES Cralg S. Anken
a. REPORT b. ABSTRACT Jc. THIS PAGE UL 218 19b. TELEPONE NUMBER (Include area code)
U U U

Abstract

This report describes the work to develop and evaluate state-of-the-art relational
pattern learning algorithms for the Evidence Assessment, Grouping, Linking and
Evaluation (EAGLE) program. The University of Wisconsin team consisted of leaders in
relational data mining and relational machine learning, in particular inductive logic
programming (ILP). Major contributions by the team included the development of an
ILP system implemented entirely in database operations, FOIL-D, and a statistical
relational learning (SRL) system that incorporates explicit probabilistic constraints into
ILP, CLP(BN). CLP(BN) incorporates all the representational power of probabilistic
relational models (PRMs) but uses an ILP approach to learning. Another major
contribution is the definition and development of View Learning, an approach to change
of representation for SRL. Though SRL systems are particularly well-suited to the goals
of EAGLE - indeed, the field of SRL received much of its impetus for growth from
EAGLE - these systems have been constrained to work with the input representation,
typically a relational schema. View Learning in SRL permits the definition of a new
schema — a new view of the database — better suited to the learning goals. This project
also made advances within learning ensembles, including the DECORATE approach to
diverse ensembles, the use of bagging within ILP, the GLEANER algorithm to construct
ensembles of relational rules having varying trade-offs of precision and recall, and a
parallel implementation of bagging in ILP. The project also contributed novel stochastic
search algorithms for ILP.

Each of the preceding contributions resulted in one or more publications in major
computer science venues, such as the International Joint Conference on Artificial
Intelligence (IJCALI), the International Conference on Uncertainty in Artificial
Intelligence (UAI), the International Conference on Machine Learning(ICML), the
International Conference on Inductive Logic Programming (ILP), the International
Conference on Intelligence Analysis (ICIA), the National Conference on Artificial
Intelligence (AAAI), and the Machine Learning Journal, and included the ICIA’05 Best
Technical Paper and the ILP’04 Best Student Paper.

Table of Contents

SECtION 1. EXECULIVE SUMIMANYoitiiiiiieiiiitie ittt bttt bbbt s e e bbbt st et ene e e ennas 1
Section 2. TEChNICAl SUMIMANY ..ot bttt e bbb bt ene e e nnas 2
2.1 CLP(BN): Incorporating Explicit Probabilities into ILP............ccccocovvnnirninnen. 2
2.2 View Learning for Statistical Relational Learning...............cccccccooevovevsiinevsiccieiennn, 2
2.3 Stochastic Search in Inductive Logic Programming.........c.ccccccceveveiieierersnsrsienns 3
24 The DECORATE AIQOrithmcc.cooooviiiiesee e 3
25 ILP in Database Operations: FOIL-D ... 4
2.6 Varying Precision-Recall Tradeoff: GLEANER ... 4
Section 3. LiSt OF PUBIICALIONSoiiiiiiiiee ettt bbb 5
Section 4. Appendix: Published Papers in Chronological Order ... 7
Constructing Diverse Classifier Ensembles using Artificial Training -
EXAMPIES ... s 8
Scaling Up ILP to Large Examples: Results on Link Discovery for
COUNTEI-TEITOFISIM ... 14
CLP(BN): Constraint Logic Programming for Probabilistic Knowledge.......... 29
An Empirical Evaluation of Bagging in Inductive Logic Programming............. 37
Lattice-Search Runtime Distributions May be Heavy-Tailed.............c..cccccocovne. 56
Relational Data Mining with Inductive Logic Programming for Link _
DISCOVEIY ... 71
ILP: A Short Look Back and a Longer Look Forward ..., 90
FOIL-D: Efficiently Scaling FOIL for Multi-relational Data Mining of _
Large DAtASELS ... 107
Using Bayesian Classifiers to Combine RUIES............cocoiienes 125
Learning an Approximation to Inductive Logic Programming Clause
EVAIUBLION. ... 139
Learning Ensembles of First-Order Clauses for Recall-Precision Curves:
A Case Study in Biomedical Information Extraction..............cccccccoooeveisieicnnne. 157
A Monte Carlo Study of Randomised Restarted Search in ILP.......................... 175

Establishing Identity Equivalence in Multi-Relational Domains (Best
Technical Paper at International Conference on Intelligence Analysis

2005) ...t 193
View Learning for Statistical Relational Learning: With an Application to
MaMMOGEAPRNY ... 199

Learning to Extract Genic Interactions Using Gleaner

Section 1: Executive Summary

Most algorithms for statistical classification, supervised machine learning or data
mining assume every example or data point is represented by a feature-vector; a feature-
vector specifies a value for each of a fixed set of variables or attributes. This feature-
vector representation is assumed by popular and well-know learning algorithms such as
support vector machines (SVMs), Bayesian network learning algorithms, decision tree
learning algorithms, and ensembles of classifiers, including those constructed by boosting
or bagging. On the other hand, detecting or predicting a threat event requires the analysis
of data consisting of many objects — people, location, materials — and the relations among
these objects — communications, purchases, transportation. Such data is inherently
relational and cannot (at least as of this writing) be represented in feature-vector format
without loss of information, change in statistical properties, or explosion in data size.
Rather, such data is naturally represented in a relational database with multiple tables.
Consequently, machine learning algorithms are needed that can directly analyze such
relational data.

Inductive logic programming (ILP) has for over a decade been a leading approach to
learning from relational data. But ILP at the start of this project had major shortcomings
for analyzing threat events. These included long processing times and failure to
incorporate and reason about probabilities. Our specific goals at the start of the program
were to (1) incorporate explicit probabilities into ILP in an elegant manner (measurable
objective: publication in a leading conference on probabilistic approaches), (2) reduce
ILP processing times without reducing accuracy (measurable objective: cut processing
time in half, not counting gains made because of the development of faster hardware),
and (3) improve active learning methods (measurable objective: reduce training examples
required for a given degree of accuracy). All three goals were met — see Sections 2.1, 2.3
and 2.4, respectively. A fourth goal was added, to implement a leading ILP algorithm
completely in database operations; this goal was met with the system FOIL-D, now
available in both MySQL and Oracle implementations.

Overall, the accomplishments of our project have substantially increased processing
speed for ILP algorithms and have incorporated explicit probabilities in a natural way,
yielding leading approaches within the new area of statistical relational learning (SRL).
The resulting algorithms have been applied to all of the EAGLE evaluation databases; the
application to prediction of aliases yielded the Best Technical Paper in the 2005
International Conference on Intelligence Analysis. In addition, these algorithms have
been applied successfully to other relational databases of importance to society, including
the prediction of malignancies among abnormalities on mammograms, the prediction of
protein function from biological data, and automated information extraction from text.

Section 2: Technical Summary

This section presents the technical accomplishments of our project. Each
accomplishment substantially extends capabilities in the state-of-the-art of relational
learning. Each accomplishment has been tested on the EAGLE databases and/or other
large real-world relational databases. For evaluation of our accomplishments, our group
participated in every TIE except the first (which intentionally omitted pattern learning
components). Our work on the last TIE led to the 2005 International Conference on
Intelligence Analysis Best Technical Paper, already mentioned. In addition to the TIEs,
we also participated in the Cyc/21* Century Mini-TIE evaluating performance on real-
world data (al Qaida). We focused on the tasks of predicting when two people were
acquainted, and more generally when two people were “linked” (friends, acquaintances,
relatives). Each accomplishment described below also is discussed in full detail in one or
more associated, cited papers.

2.1. CLP(BN): Incorporating Explicit Probabilities into ILP

Datalog provides a standard theoretical underpinning for relational databases. Non-
recursive Datalog with negation-as-failure is a restriction of first-order logic that is
equivalent to relational algebra. In Datalog, missing values are represented by Skolem
constants. More generally, in first-order logic missing values, or existentially-quantified
variables, are represented by terms built from Skolem functors. In an analogy to
probabilistic relational models (PRMs), we wish to represent the joint probability
distribution over missing values in a database or logic program using a Bayesian network.
We provide an extension of logic programs that makes it possible to specify a joint
probability distribution over terms built from Skolem functors in the program. Our
extension is based on constraint logic programming (CLP), where the constraints are
Bayesian networks, so we call the extended language CLP(BN). We show that CLP(BN)
subsumes PRMs; because CLP(BN) programs are logic programs, though, they can be
learned by ILP algorithms with very simple modifications. CLP(BN) is publicly available
as part of YAP Prolog at http://www.cos.ufrj.br/~vitor/Yap/clpbn. Details about
CLP(BN) are available in the proceedings of UAI’03 [Santos Costa et al., 2003].

2.2. View Learning for Statistical Relational Learning

Statistical relational learning (SRL) constructs probabilistic models from
relational databases. A key capability of SRL is the learning of arcs (in the Bayes net
sense) connecting entries in different rows of a relational table, or in different tables.
Nevertheless, SRL approaches as of 2004 were constrained to use the existing database
schema. For many database applications, users find it profitable to define alternative
"views" of the database, in effect defining new fields or tables. Such new fields or tables
can also be highly useful in learning. We provided SRL with the capability of learning
such new views. The view learning approach is based on ILP to learn the definitions of
new fields in a database. View learning was shown to significantly improve performance
of SRL on the task of predicting whether abnormalities in a mammogram are malignant

http://www.cos.ufrj.br/%7Evitor/Yap/clpbn

or benign. Details about our view learning approach are available in an IJCAI’05 paper
[Davis et al., 2005].

2.3. Stochastic Search in Inductive Logic Programming

Recent statistical performance studies of search algorithms in difficult combinatorial
problems have demonstrated the benefits of randomising and restarting the search
procedure. Specifically, it has been found that if the search cost distribution of the non-
restarted randomised search exhibits a slower-than-exponential decay (that is, a “heavy
tail””), restarts can reduce the search cost expectation. We report on an empirical study of
randomized restarted search in ILP. Our experiments conducted on a high-performance
distributed computing platform provide an extensive statistical performance sample of
five search algorithms operating on two principally different classes of ILP problems, one
represented by an artificially generated graph problem and the other by three traditional
classification benchmarks (mutagenicity, carcinogenicity, finite element mesh design).
The sample allows us to (1) estimate the conditional expected value of the search cost
(measured by the total number of clauses explored) given the minimum clause score
required and a “cutoff” value (the number of clauses examined before the search is
restarted), (2) estimate the conditional expected clause score given the cutoff value and
the invested search cost, and (3) compare the performance of randomised restarted search
strategies to a deterministic non-restarted search. Our findings indicate striking
similarities across the five search algorithms and the four domains, in terms of the basic
trends of both the statistics (1) and (2). Also, we observe that the cutoff value is critical
for the performance of the search algorithm, and using its optimal value in a randomised
restarted search may decrease the mean search cost (by several orders of magnitude) or
increase the mean achieved score significantly with respect to that obtained with a
deterministic non-restarted search. Further details are available in a Machine Learning
Journal paper as well as two ILP papers [Zelezny et al., 2003, 2004, 2006].

2.4. The DECORATE Algorithm for Enhancing Diversity in Ensembles and for
Active Learning

We developed a new meta-learner, DECORATE (Diverse Ensemble Creation by
Oppositional Relabeling of Artificial Training Examples), for building diverse ensembles
of classifiers by using specially constructed artificial training examples [Melville et al.,
2003]. Experiments demonstrate that our method performs consistently better than
bagging and Random Forests. It also obtains higher accuracy than boosting on small
training sets, and achieves comparable performance on larger training sets. We also
demonstrated the resilience of DECORATE to three types of imperfections in data:
missing features, classification noise and feature noise. DECORATE is now publicly
available as part of the standard WEKA data mining software package.

Based on DECORATE, we developed a new method for active learning to
significantly reduce the amount of supervised data required for effective learning. Our
approach uses DECORATE ensembles to select the most useful examples to be labeled
for training. Experimental results show that our approach produces accurate classifiers
with fewer training examples than other Query by Committee approaches to active
learning. In applications such as fraud detection, credit ranking, and direct marketing it is

also critical to have good class probability estimates. For such applications, we have
shown that Jensen-Shannon divergence (a similarity measure for probability
distributions) can be used to improve active learning for probability estimation [Melville
et al., 2004].

2.5. ILP in Database Operations: FOIL-D

Multi-relational rule mining is important for knowledge discovery in relational
databases as it allows for discovery of patterns involving multiple relational tables. ILP
techniques have had considerable success on a variety of multi-relational rule mining
tasks. Nevertheless, because ILP implementations operate in RAM, most ILP systems do
not scale to very large relational databases. We performed two major extensions to one of
the most popular ILP systems, FOIL, to improve its scalability. First, we showed how to
implement FOIL entirely in database operations, rather than in RAM, and constructed
both Oracle and MySQL implementations. The resulting system we called FOIL in
Databases, or FOIL-D. FOIL-D enables the FOIL algorithm to run on data sets that
previously had been out of its scope. Second, we developed estimation methods, based on
histograms as used widely in database management systems, that significantly decrease
the computational cost of learning a set of rules. The full paper [Bockhorst & Ong, 2004]
presents detailed experimental results that indicate that on a set of standard ILP datasets,
the rule sets learned using our extensions are equivalent to those learned with standard
FOIL but at considerably less cost.

2.6. Varying Precision-Recall Tradeoff Among ILP-Induced Rules: GLEANER

Many relational domains, including those in EAGLE, involve highly unbalanced data.
Most people or actions in a database are not threats; most names are not aliases; most
possible attacks are never made. Another task involving unbalanced data is Information
Extraction (IE), a task that typically involves many more negative examples than positive
examples. IE is the process of finding facts in unstructured text, such as biomedical
journals, and putting those facts in an organized system. In particular, we have focused
on learning to recognize instances of the protein-localization relationship in Medline
abstracts. A common way to measure performance in these domains is to use precision
and recall instead of simply using accuracy. We developed Gleaner, a randomized search
method which collects good clauses from a broad spectrum of points along the recall
dimension in recall-precision curves and employs an “at least N of these M clauses™
thresholding method to combine the selected clauses. We compared Gleaner to ensembles
of standard Aleph theories on the IE task and observed that Gleaner produces comparable
testset results in a fraction of the training time needed for ensembles [Goadrich et al.,
2004]. We also applied Gleaner to the challenge task for the Learning Language in Logic
Workshop with success [Goadrich et al., 2005].

Section 3: List of Publications

The details of the technical accomplishments discussed in the previous section appear
in the following publications in major computer science venues. All these venues are
rigorously refereed, and the papers gratefully acknowledge the EAGLE/Air Force grant
F30602-01-2-0571.

1. P. Melville and R. Mooney (2003). Constructing Diverse Classifier
Ensembles Using Artificial Training Examples. Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-
03), pp. 505-510.

2. L. Tang, R. Mooney and P. Melville (2003). Scaling Up ILP to Large
Examples: Results on Link Discovery for Counter-Terrorism. KDD-03
Workshop on Multi-Relational Data Mining, Washington DC.

3. Santos Costa, V., Page, D., Qazi, M. and Cussens, J. CLP(BN): Constraint
Logic Programming for Probabilistic Knowledge. Proceedings of the
Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI'03). U.
Kjaerulff and C. Meek (Ed.s) San Francisco: Morgan Kaufmann Publishers,
pp. 517-524, 2003.

4. Dutra, I, Page, D., Santos Costa, V. and Shavlik, J. An Empirical Evaluation
of Bagging in Inductive Logic Programming. Proceedings of the Twelfth
International Conference on Inductive Logic Programming (ILP'02),
published as Lecture Notes in Computer Science 2583, Springer 2003, S.
Matwin and C. Sammut (Ed.s), pp. 48-65, 2003.

5. Zelezny, F., Srinivasan, A. and Page, D. Lattice-Search Runtime Distributions
May be Heavy-Tailed. Proceedings of the Twelfth International Conference
on Inductive Logic Programming (ILP'02), published as Lecture Notes in
Computer Science 2583, Springer 2003, S. Matwin and C. Sammut (Ed.s), pp.
333-345, 2003.

6. Mooney, R., Melville, P., Tang, L., Shavlik, J., Dutra, I. and Page, D.
Relational Data Mining with Inductive Logic Programming for Link
Discovery. In H. Kargupta and A. Joshi (Ed.s), Data Mining: Next Generation
Challenges and Future Directions. Cambridge, MA: MIT/AAAI Press. 2003.

7. Page, D. and Srinivasan, A. ILP: A Short Look Back and a Longer Look
Forward. Journal of Machine Learning Research, 4, pp. 415-430, 2003.

8. J. Bockhorst and I. Ong. FOIL-D: Efficiently Scaling FOIL for Multi-
relational Data Mining of Large Datasets. Proceedings of the Fourteenth
International Conference on Inductive Logic Programming, Porto, Portugal,
2004.

9.

10.

11.

12.

13.

14.

15.

16.

J. Davis, V. Santos Costa, I. Ong, D. Page, and I. Dutra. Using Bayesian
Classifiers to Combine Rules. KDD Workshop on Multi-relational Data
Mining, 2004.

F. DiMaio and J. Shavlik. Learning an Approximation to Inductive Logic
Programming Clause Evaluation. Proceedings of the Fourteenth International
Conference on Inductive Logic Programming, Porto, Portugal, 2004.

M. Goadrich, L. Oliphant and J. Shavlik. Learning Ensembles of First-Order
Clauses for Recall-Precision Curves: A Case Study in Biomedical Information
Extraction. Proceedings of the Fourteenth International Conference on
Inductive Logic Programming, Porto, Portugal, 2004. Winner of Best
Student Paper Award. Longer version to appear in special issue of
Machine Learning Journal, on ILP, 2006.

F. Zelezny, A. Srinivasan and D. Page. A Monte Carlo Study of Randomized
Restarted Search. Longer version of ILP’04 paper, To appear in special
issue of Machine Learning Journal, on ILP, 2006

J. Davis, . Dutra, D. Page and V. Santos Costa. Establishing Identity
Equivalence in Multi-Relational Domains. To appear in the Proceedings of
the International Conference on Intelligence Analysis (ICIA’05). Winner of
ICIA’05 Best Technical Paper Award.

J. Davis, E. Burnside, I. Dutra, D. Page, R. Ramakrishnan, V. Santos Costa
and J. Shavlik. View Learning for Statistical Relational Learning: With an
Application to Mammography . Proceedings of the International Joint
Conference on Artificial Intelligence, 2005.

H. Corrada Bravo, D. Page, R. Ramakrishnan, J. Shavlik and V. Santos Costa.
A Framework for Set-Oriented Computation in Inductive Logic Programming
and its Application in Generalizing Inverse Entailment. Fifteenth
International Conference on Inductive Logic Programming (ILP’05), 2005.

M. Goadrich, L. Oliphant and J. Shavlik. Learning to Extract Genic
Interactions using Gleaner. Proceedings of the Fourth International Workshop
on Learning Language in Logic, Bonn, Germany, 2005.

Section 4: Appendix -- Published Papers

This section includes in their entirety each of our papers published under this project,
as surveyed in the Technical Summary (Section 2) and listed in Section 3. These papers
include the detailed Accuracies, Precision-Recall curves, ROC curves and run-times
discussed in Section 2 as showing that we met and exceeded the quantitative objectives of
our project. Some papers cover additional data sets on which we evaluated our
algorithms as well, included the prediction of which abnormalities on a mammogram are
malignant, the analysis of synthetic graph data, and information extraction from text.

1

One of the major advances in inductive learning in the pas

Proceedi ngs of the IJCAI-2003, pp.505-510,

Acapul co, Mexico, August 2003

Constructing Diverse Classifier Ensembles using Artificial Training Examples

Prem Melville and Raymond J. Mooney
Department of Computer Sciences
University of Texas
1 University Station, C0500
Austin, TX 78712
melville@cs.utexas.edu, mooney@cs.utexas.edu

Abstract

Ensemble methods like bagging and boosting that
combine the decisions of multiple hypotheses are
some of the strongest existing machine learning
methods. The diversity of the members of an
ensemble is known to be an important factor in
determining its generalization error. This paper
presents a new method for generating ensembles
that directly constructs diverse hypotheses using
additional artificially-constructed training exam-
ples. The technique is a simple, general meta-
learner that can use any strong learner as a base
classifier to build diverse committees. Experimen-
tal results using decision-tree induction as a base
learner demonstrate that this approach consistently
achieves higher predictive accuracy than both the
base classifier and bagging (whereas boosting can
occasionally decrease accuracy), and also obtains
higher accuracy than boosting early in the learning
curve when training data is limited.

Introduction

decade was the developmentaisembleor committeeap-

proaches that learn and retain multiple hypotheses and co

bine their decisions during classificatibDietterich, 2000,
For examplepoosting[Freund and Schapire, 199@&n en-
semble method that learns a series of “weak” classifiers eadn an ensemble, the combination of the output of several
one focusing on correcting the errors made by the previouslassifiers is only useful if they disagree on some inputs
one, has been found to be one of the currently best gener[&Krogh and Vedelsby, 1995 We refer to the measure of

inductive classification methodlslastieet al., 2001.

We present a new meta-learnerd@oRATE, Diverse En-
semble Creation by Oppositional Relabeling of Artificial
Training Examples) that uses an existing “strong” learner
(one that provides high accuracy on the training data) to build
an effective diverse committee in a fairly simple, straightfor-
ward manner. This is accomplished by adding different ran-
domly constructed examples to the training set when building
new committee members. These artificially constructed ex-
amples are given category labels téagreewith the cur-
rent decision of the committee, thereby easily and directly
increasing diversity when a new classifier is trained on the
augmented data and added to the committee.

Boosting and bagging provide diversity by sub-sampling
or re-weighting the existing training examples. If the train-
ing set is small, this limits the amount of ensemble diversity
that these methods can obtainE@ORATE ensures diversity
on an arbitrarily large set of additional artificial examples.
Therefore, one hypothesis is that it will result in higher gen-
eralization accuracy when the training set is small. This pa-
per presents experimental results on a wide range of UCI data
sets comparing boosting, bagging, andd®RATE, all using
J48 decision-tree induction (a Java implementation of C4.5
[Quinlan, 1993introduced ifWitten and Frank, 1999as a
pase learner. Cross-validated learning curves support the hy-
pothesis that “ECORATEI trees” generally result in greater

n(;[assification accuracy for small training sets.

2 Ensembles and Diversity

disagreement as th&versity of the ensemble. There have

Constructing aliversecommittee in which each hypothesis been several methods proposed to measure ensemble diver-

is as different as possible (decorrelated with other membersity [Kuncheva and Whitaker, 2002— usually dependent

of the ensemble) while still maintaining consistency with theon the measure of accuracy. For regression, where the mean
training data is known to be a theoretically important propertysquared error is commonly used to measure accuracy, vari-
of a good committe¢Krogh and Vedelsby, 1995Although
all successful ensemble methods encourage diversity to sonsity of the i** classifier on example: can be defined as
extent, few have focused directly on the goal of maximizingd;(z) = [Ci(z) — C*(z)]?, whereC;(z) and C*(z) are
diversity. Existing methods that focus on achieving diversitythe predictions of thé*” classifier and the ensemble respec-
[Opitz and Shavlik, 1996; Rosen, 199%re fairly complex
and are not generaheta-learnerdike bagging[Breiman,
1994 and boosting that can be applied to any base learneE = E — D, whereE andD are the mean error and diversity
to produce an effective committ@evitten and Frank, 1999

ance can be used as a measure of diversity. So the diver-

tively. For this setting Krogh et d.995 show that the gen-
eralization error,E/, of the ensemble can be expressed as

of the ensemble respectively.

For classification problems, where the 0/1 loss function isnon-zero probability of occurrence. In constructing artificial
most commonly used to measure accuracy, the diversity afata points, we make the simplifying assumption that the at-

theit" classifier can be defined as: tributes are independent. It is possible to more accurately es-
0: if Ci(z) = C*(2) timate the joint probability distribution of the attributes; but
di(z) = { 1) othelrwiseT (1) this would be time consuming and require a lot of data.

In each iteration, the artificially generated examples are la-
However, in this case the above simple linear relationshijpeled based on the current ensemble. Given an example, we
does not hold betweeR, E andD. But there is still strong first find the class membership probabilities predicted by the
reason to believe that increasing diversity should decrease eAnsemble, replacing zero probabilities with a small non-zero
semble errofZenobi and Cunningham, 20D1The underly- value. Labels are then selected, such that the probability of
ing principle of our approach is to build ensembles of classi-selection is inversely proportional to the current ensemble’s
fiers that are consistent with the training data and maximizéredictions.
diversity as defined in (1).

Algorithm 1 The DECORATE algorithm

3 DECORATE Algorithm Definition

In DECORATE (see Algorithm 1), an ensemble is generated
iteratively, learning a classifier at each iteration and adding it T - set ofm training examples (z1, 1) (@my Um) >
to the current ensemble. We initialize the ensemble to contain with labelsy; € Y Ly T)y e Wmo Jm
the classifier trained on the given training data. The classifiers Coi - desir]ed ensemble size
in each successive iteration are trained on the original training I e maximum number of iterations to build an ensemble
data and also on some artificial data. In each iteration artifi- Rm"” - factor that determines number of artificial examples
cial training examples are generated from the data distribu- tosézénerate
tion; where the number of examples to be generated is spec-
ified as a fractionR,;,., of the training set size. The labels l.:=1
for these artificially generated training examples are chosen o tnigls = 1
so as to differ maximally from the current ensemble’s predic-
tions. The construction of the artificial data is explained in 3+ Ci = BaseLearn(T)
greater detail in the following section. We refer to the labeled 4. Initialize ensemble* = {C;}
5
6
7

Input:
BaseLearn - base learning algorithm

artificially generated training set as tdéversity data We

train a new classifier on the union of the original training data
and the diversity data. If adding this new classifier to the cur-
rent ensemble increases the ensemble training error, then we
reject this classifier, else we add it to the current ensemble.
This process is repeated until we reach the desired committee

szET:C*(mj)#yj 1
m

. Compute ensemble errer=
. While: < Cy;,. andtrials < Iyaz

Generatd,;,. x |T'| training examples, R,
based on distribution of training data

size or exceed the maximum number of iterations. 8. Label examplesin R with probability of class labels
To classify an unlabeled example, we employ the fol- inversely proportional t@'*’s predictions
lowing method. Each base classifi€r;, in the ensemble 9. T=TUR

C* provides probabilities for the class membershipcoflf ,
P, ,(z) is the probability of example belonging to class 10. C' = BaseLearn(T)
y according to the classifief’;, then we compute the class 11. C* = C*J{C'}

membership probabilities for the entire ensemble as: 12. T =T — R, remove the artificial data
_ Yoec Poiy(@) 13. Compute training erroe/, of C* as in step 5
Py(x) - C*
|| 14. Ifeé <e
where P, (z) is the probability ofz belonging to clasy. 15. t=1+1
We then select the most probable class as the label fer. 16. e—=¢

¢"(x) = argmaz,ey P, (z) 17. otherwise

3.1 Construction of Artificial Data 18. C*=C*—{C"}

We generate artificial training data by randomly picking data 19
points from an approximation of the training-data distribu- '
tion. For a numeric attribute, we compute the mean and stan-

dard deviation from the training set and generate values frod Experimental Evaluation
the Gaussian distribution defined by these. For a nomina
attribute, we compute the probability of occurrence of each -1 Methodology

distinct value in its domain and generate values based on thiEo evaluate the performance ofEDORATE we ran experi-
distribution. We use Laplace smoothing so that nominal atments on 15 representative data sets from the UCI repository
tribute values not represented in the training set still have #Blake and Merz, 199&ised in similar studieBNVebb, 2000;

trials = trials + 1

Quinlan, 1996 We compared the performance oEBo- DEecoRrATEalso outperforms Bagging on the geometric mean
RATE to that of Adaboost, Bagging and J48, using J48 as theatio. This suggests that even in cases where Bagging beats
base learner for the ensemble methods and using the Welke CORATE the improvement is less thanEBORATES im-
implementations of these methdd¥itten and Frank, 1999 provement on Bagging on the rest of the cases.
For the ensemble methods, we set the ensemble size to 15.DECORATE outperforms AdaBoost early on the learning
Note that in the case of ECORATE, we only specify a max- curve both on significant wins/draw/loss record and geomet-
imum ensemble size, the algorithm terminates if the numberic mean ratio; however, the trend is reversed when given 75%
of iterations exceeds the maximum limit even if the desiredor more of the data. Note that even with large amounts of
ensemble size is not reached. For our experiments, we s@fining data, ECORATES performance is quite competitive
the maximum number of iterations inHGORATEt0 50. We with Adaboost - given 100% of the dat&EDRORATEproduces
ran experiments varying the amount of artificially generatechigher accuracies on 6 out of 15 data sets.
data, Rs;..; and found that the results do not vary much for |t has been observed in previous studi¥¥ebb, 2000;
the range 0.5 to 1. HoweveR,;.. values lower than 0.5 do Bauer and Kohavi, 199%hat while AdaBoost usually sig-
adversely affect BCORATE, because there is insufficient ar- nificantly reduces the error of the base learner, it occasionally
tificial data to give rise to high diversity. The results we reportincreases it, often to a large extente @oRATEdoes not have
are forR;.. setto 1, i.e. the number of artificially generated this problem as is clear from Table 1.
examples is equal to the training set size. On many data sets, E-ORATEachieves the same or higher
The performance of each learning algorithm was evaluategiccuracy as Bagging and AdaBoost with many fewer training
using 10 complete 10-fold cross-validations. In each 10-foldexamples. Figure 1 show learning curves that clearly demon-
cross-validation each data set is randomly split into 10 equaktrate this point. Hence, in domains where little data is avail-
size segments and results are averaged over 10 trials. For eagifle or acquiring labels is expensives @oRATE has an ad-
trial, one segment is set aside for testing, while the remainingantage over other ensemble methods.
data is available for training. To test performance on vary- we performed additional experiments to analyze the role
ing amounts of training data, learning curves were generategat diversity plays in error reduction. We rare€oRATE at
by testing the system after training on increasing subsets ofg different settings of,;.. ranging from 0.1 to 1.0, thus
the OVera.” training data. Since we WOUld I|ke to SummariZQ/arying the diversity Of ensemb'es produced_ We then com-
results over several data sets of different sizes, we select diared the diversity of ensembles with the reduction in gener-
ferentpercentagesf the total training-set size as the points gjization error. Diversity of an ensemble is computed as the
on the learning curve. mean diversity of the ensemble members (as given by Eq. 1).
To compare two learning algorithms across all domainsyie compared ensemble diversity with #esemble error re-
we employ the statistics used flvebb, 2000, namely the duction i.e. the difference between the average error of the
win/draw/loss record and the geometric mean error ratio. Thensemble members and the error of the entire ensemble (asin
win/draw/loss record presents three values, the number ¢€unningham and Carney, 20900We found that the correla-
data sets for which algorithrd obtained better, equal, or tjon coefficient between diversity and ensemble error reduc-
worse performance than algorithB with respect to classi- tjon is 0.6225 f* <« 10~5°), which is fairly strong. Further-
fication accuracy. We also report tgatistically significant more, we compared diversity with thmse error reduction
win/draw/loss record; where a win or loss is only counted ifj e the difference between the error of the base classifier and
the difference in values is determined to be significant at th@ne ensemble error. The base error reduction gives a better in-
0.05 level by a paired-test. The geometric mean error ratio dication of the improvement in performance of an ensemble
is defined asy/[]_, Z4, whereE, andEp are the mean over the base classifier. The correlation of diversity versus

i=1 Eg"’ L 50
. . _ the base error reduction is 0.1552€ 10™°"). We note that
errors of algorithmA andB on the same domain. If the ge even though this correlation is weak, it is stilstatistically

ometric mean error ratio is less than one it implies that algo-_. ificantoositi lai Th its reinf
rithm A performs better thaf, and vice versa. We compute S'glﬂ'f'cﬁ‘” posIlive correla 'OT)'I d_ese results rew:jorce ourh
error ratios so as to capture the degree to which algorithm |edt at mcreasw;g ensemble diversity Is a good approac
out-perform each other in win or loss outcomes. O reducing genera Ization error.
To determine how the performance oEDORATEChanges
4.2 Results with ensemble size, we ran e>_<p_eriments with incre_asing sizes.
))] We compared results for training on 20% of available data,
Our results are summarized in Tables 1-3. Each cell in thgince the advantage ofHZORATEIS most noticeable low on
tables presents the accuracy a@DRATEVersus anotheral- the learning curve. Due to lack of space, we do not include
gorithm. If the difference is statistically significant, then the the results for all 15 datasets, but present five representative
larger of the two is shown in bold. We varied the training datasets (see Figure 2). The performance on other datasets is
set sizes from 1-100% of the total available data, with MOorgsimilar. We note, in generaL that the accuracy GfdDRATE
points lower on the learning curve since this is where Weincreases with ensemble size; though on most datasets, the
expect to see the most difference between algorithms. Thgerformance levels out with an ensemble size of 10 to 25.
bottom of the tables provide summary statistics, as discussed
above, for each of the points on the learning curve. Thep-value is the probability of getting a correlation as large as
DECORATE has moresignificantwins to losses over Bag- the observed value by random chance, when the true correlation is
ging for all points along the learning curve (see Table 2).zero.

10

Percent correct

Percent correct

Percent correct

100 T T T T T T

AdaBoost —+—
Decorate ---x---

o ‘ ‘ ‘ ‘ ‘ Bagging -
0 100 200 300 400 500 600 700
Number of Training Examples
BREASTW

90 - - - - - - —

80

75

70

65

55 L i/

AdaBoost —+—
Decorate ---x---

50 1 1 1 1 1 1 1 1 ABagglng AV”*V”
0 5 10 15 20 25 30 35 40 45 50 55
Number of Training Examples
LABOR

100 T T T T T T

Percent correct

AdaBoost —+—
Decorate ---%---
Bagping Koo

30 ! ! ! ! !
0 20 40 60 80 100 120 140

Number of Training Examples

IRIS

Percent correct

AdaBoost —+—
Decorate ---x---

Bagging ---*---
45 L L L L !
0 50 100 150 200 250 300
Number of Training Examples
HEART-C

Figure 1: DEcoRATEcompared to AdaBoost and Bagging

100 T T T T T T T

75 F labor --->---
! colic ------
! iris &
! credit-a ——m—
70 S 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

Ensemble Size

Figure 2: DEcORATEat different ensemble sizes

11

5 Related Work

There have been some other attempts at building ensembles
that focus on the issue of diversity. Liu e{4099 and Rosen
[1994 simultaneously train neural networks in an ensemble
using a correlation penalty term in their error functions. Opitz
and Shavlik[1994 use a genetic algorithm to search for a
good ensemble of networks. To guide the search they use
an objective function that incorporates both an accuracy and
diversity term. Zenobi et d2001] build ensembles based
on different feature subsets; where feature selection is done
using a hill-climbing strategy based on classifier error and
diversity. A classifier is rejected if the improvement of one of
the metrics lead to a “substantial” deterioration of the other;
where “substantial” is defined by a pre-set threshold.

In all these approaches, ensembles are built attempting to
simultaneously optimize the accuracy and diversity of indi-
vidual ensemble members. However, iE@DRATE, our goal
is to minimizeensemble erroby increasing diversity. At no
point does the training accuracy of the ensemble go below

Table 1: DECORATEVS J48

Dataset [1% 2% 5% 10% 20% 30% 40% 50% 75% 100%
anneal 75.2972.49 78.1475.31 85.2482.08 92.2689.28 96.4895.57 97.3696.47 97.7397.3 98.1697.93 98.39/98.35 98.71/98.55
audio 16.66/16.66 ~ 23.73/23.07 41.72/41.1755.4251.67 64.0960.59 67.6264.84 70.4668.11 72.8270.77 77.975.15 82.177.22
autos 24.33/24.33 29.6/29.01 36.7334.37 42.89/41.22 52.2/50.53 59.8653.92 64.7759.68 68.665.24 78/73.15 83.6481.72
breast-w 92.3874.73 94.1287.34 95.0889.42 95.6492.21 95.5993.09 95.9193.36 96.293.85 96.0194.24 96.2894.65 96.3195.01
credit-a 71.78/69.54 74.83/7.46 80.61/81.57 83.09/82.35 84.38/84.29 84.68/84.585.2284.41 85.5784.78 85.61/85.43 85.93/85.57
Glass 31.69/31.69 35.8632.96 44.538.34 55.446.62 61.7754.16 66.0160.63 68.0761.38 68.8963.69 72.7367.53 72.7767.77
heart-c 58.6649.57 65.1158.03 73.5867.71 75.0570.15 77.6673.44 78.3474.61 79.0974.78 79.4875.62 78.7476.7 78.4877.17
hepatitis 52.33/52.33 71.9965.93 76.5972.75 78.85/78.25 80.28/78.61 81.1478.63 81.5379.35 81.6879.57 82.3779.04 82.4379.22
colic 59.8552.85 68.1965.31 74.91/74.37 78.45/79.94 81.81/82.71 82.47/83.41 82.74/83.55 8486/ 83.9385.18 85.24/85.16
iris 33.33/33.33 50.8733.33 80.6759.33 91.2784.33 93.0791.33 94.492.73 95.0793 94.07/93.33 94.67/94.07 94.93/94.73
labor 54.27/54.27 54.27/54.27 67.7158.93 71.4764.77 78.670.07 81.6773.7 85.6775.17 84.275.8 87.5377.4 89.578.8
lymph 48.39/48.39 53.4946.64 65.7360.39 72.7968.21 74.5770.79 78.8473.58 78.3774.53 78.3173.34 78.0675.63 78.7476.06
segment 67.9452.43 80.7973.26 89.5285.41 92.8789.34 94.9992.22 95.8293.37 96.5494.34 96.9394.77 97.5695.94 98.0296.79
soybean 19.3713.69 32.1222.32 55.5542.94 73.5159.04 84.6374.49 88.5281.59 90.3784.78 91.3586.89 92.8989.44 93.8191.76
splice 63.4859.92 67.56#8.69 77.34/77.49 82.62/82.58 88.287.98 90.46/90.44 91.82/91.77 92.5/92.4 93.41/93.47 992
Win/Draw/Loss 15/0/0 13/0/2 13/0/2 14/0/1 14/0/1 14/0/1 14/0/1 14/0/1 13/0/2 14/0/1
Sig. W/D/L 7/8/0 10/3/2 11/4/0 10/5/0 11/4/0 12/3/0 13/2/0 12/2/1 10/4/1 10/4/1
GM error ratio 0.858 0.8649 0.8116 0.8098 0.8269 0.8103 0.7983 0.8305 0.8317 0.8293

Table 2: DECORATEVS Bagging

Dataset [1% 2% 5% 10% 20% 30% 40% 50% 75% 100%
anneal 75.29/74.57 78.1476.42 85.2482.88 92.2689.87 96.4895.67 97.3696.89 97.7397.34 98.1697.78 98.39/98.53 98.71/98.83
audio 16.6612.98 23.73/23.68 41.7238.55 55.4251.34 64.0961.76 67.62/66.9 70.46/70.29 72.82/73.07 77.8/77.3282.180.71
autos 24.3322.16 29.6/28 36.73/35.88 42.89/44.65 52.2/54.32 59.86/59.67 64.77/65.6 68.6/69.88 78/77.97 83.64/83.12
breast-w 92.3876.74 94.1288.07 95.0890.88 95.6493.41 95.5594.42 95.9194.95 96.294.95 96.0195.55 96.28/96.07 96.31/96.3
credit-a 71.78/69.54 74.837.99 80.6182.58 83.09/83.9 84.385.13 84.6885.78 85.22/85.59 85.57/85.64 85.86.12 85.93/85.96
Glass 31.6924.85 35.8631.47 44.540.87 55.449.6 61.7758.9 66.0164.35 68.07/66.3 68.85/68.44 72.73/72 7208787
heart-c 58.6650.56 65.1155.67 73.5968.77 75.0973.17 77.6676.12 78.34/77.9 79.09/78.44 79.46/79.11 78.74/79.05 78.48/78.68
hepatitis 52.33/52.33 72.1463.18 76.8/75.2 79.48/78.64 80.7/80.42 81.81/81.07 81.65/81.88.1981.06 82.9980.87 82.62/81.34
colic 58.3753.14 66.5863.83 75.85/76.44 79.54/80.06 818304 82.4783.58 83.0283.98 83.1B4.47 84.0285.4 84.69/85.34

iris 33.33/33.33 50.2733.33 80.6760.47 91.5381.4 93.290.67 94.292.33 94.7392.87 94.493.6 94.53/94.47 94.67/94.73
labor 54.27/54.27 54.27/54.27 67.6356.27 70.2365.9 79.7774.97 83/75.67 84.1776.27 83.4378.6 89.7380.83 89.7385.87
lymph 48.39/48.39 53.6247.11 65.0660.12 71.2/69.68 76.7473.6 78.8476.58 78.17/77.68 78.9976.98 79.1476.8 79.08/77.97
segment 67.0355.88 81.1676.36 89.6187.42 92.8391.01 94.8893.4 95.9494.65 96.4795.26 96.9395.82 97.5896.78 98.0397.41
soybean 19.5714.56 32.424.58 55.3647.46 73.0865.45 85.1479.29 88.2785.05 90.2287.89 91.489.22 92.7591.56 93.8992.71
splice 62.77/62.52 67.82.36 77.3780.5 82.5585.44 88.2489.5 90.4791.44 91.8402.4 92.41P93.07 93.44P4.06 93.9204.53
Win/Draw/Loss 15/0/0 13/0/2 12/0/3 11/0/4 11/0/4 12/0/3 11/0/4 10/0/5 10/0/5 8/0/7
Sig. W/D/L 8/7/0 10/3/2 10/3/2 9/5/1 10/2/3 8/4/3 6/712 8/5/2 5/7/3 4/9/2

GM error ratio 0.8727 0.8785 0.8552 0.8655 0.8995 0.9036 0.8979 0.9214 0.9312 0.9570

that of the base classifier; however, this is a possibility with6 Future Work and Conclusion
previous methods. Furthermore, none of the previous stud-
ies compared their methods with the standard ensemble aff OUr current approach, we are encouraging diversity using

; ; rtificial training examples. However, in many domains, a
prosches such as Boostng and Baggiapz and Shavik, L8 [SII0D BATRES, Moveyer [e ot o

])) exploit these unlabeled examples and label them as diversity
Compared to boosting, which requires a *weak” basejata. This would allow BCORATEto act as a form oéemi-
learner that does not completely fit the training data (boostingypervised learninghat exploits both labeled and unlabeled
terminates once it constructs a hypothesis with zero trainingata[Nigamet al., 200d.
error), DECORATErequires a strong learner, otherwise the ar- oyr current study has used J48 as a base learner; how-
tificial diversity training data may prevent it from adequately ever, we would expect similarly good results with other base
fitting the real data. When applying boosting to strong basgearners. Decision-tree induction has been the most com-
learners, they must first be appropriately weakened in ordefonly used base learner in other ensemble studies, but there
to benefit from boosting. Therefore, HOORATE may be & a5 peen some work using neural networks and naive Bayes
preferable ensemble meta-learner for strong learners. [Bauer and Kohavi, 1999: Opitz and Maclin, 199&xper-
To our knowledge, the only other ensemble approach to utiiments on “DECORATING” other learners is another area for
lize artificial training data is the active learning method intro-future work.
duced in[Cohnet al., 1994. The goal of the committee here By manipulating artificial training examples,ERORATE
is to select good new training examples rather than to improves able to use a strong base learner to produce an effective,
accuracy using the existing training data. Also, the labels ofliverse ensemble. Experimental results demonstrate that the
the artificial examples are selected to produce hypotheses thapproach is particularly effective at producing highly accurate
more faithfully represent the entire version space rather thaansembles when training data is limited, outperforming both
to produce diversity. Cohn’s approach labels artificial data eibagging and boosting low on the learning curve. The empir-
ther all positive or all negative to encourage, respectively, thécal success of BCORATE raises the issue of developing a
learning of more general or more specific hypotheses. sound theoretical understanding of its effectiveness. In gen-

12

Table 3: DECORATEVS AdaBoost

Dataset [1% 2% 5% 10% 20% 30% 40% 50% 75% 100%
anneal 75.2973.02 78.14/77.12 85.287/.51 92.26P4.16 96.4897.13 97.3687.95 97.7308.54 98.1688.8 98.3909.23 98.7189.68
audio 16.66/16.66 ~ 23.73/23.41 41.7240.24 55.4252.7 64.09/64.15 67.62/68.91 70.48/07 72.82I5.92 77.881.74 82.184.52
autos 24.33/24.33 29.6/29.71 36.73/34.2 42.89/43.28 58.28 59.8662.2 64.7769.14 68.6/712.03 78/80.28 83.6485.28
breast-w 92.3874.73 94.1287.84 95.0891.15 95.6493.75 95.5594.85 95.91/95.72 96.2/95.84 96.01/95.87 96.28/96.3 96.31/96.47
credit-a 71.7868.8 74.83/75.3 80.61/79.68 83.0981.14 84.3883.04 84.68/84.22 85.2284.13 85.5784.58 85.61/84.93 85.93/85.42
Glass 31.69/31.69 35.8632.93 44.540.71 55.449.78 61.7758.03 66.01/64.33 68.07/66.93 68.85/68.69 7Z4F9 72.776.06
heart-c 58.6649.57 65.1158.65 73.5870.71 75.0572.5 77.66/76.65 78.34/78.26 79.09/78.96 79.46/79.55 78.74/79.06 78.48/79.22
hepatitis 52.33/52.33 72.1465.93 76.8973.01 79.4876.95 80.7/79.44 81.8179.22 81.65/81.27 83.19/82.63 82.99/83.24 82.62/82.71
colic 58.3752.85 66.58/67.18 75.8972.85 79.5477.17 81.3379.36 82.4779.24 83.0279.51 83.180.22 84.0280.59 84.6981.93

iris 33.33/33.33 50.2733.33 80.6766.2 91.5384.53 93.290.73 94.293 94.7393.33 94.493.53 94.53/94.2 94.67/94.2
labor 54.27/54.27 54.27/54.27 67.6358.93 70.2365.1 79.7773.2 83/76.9 84.1779.57 83.4380.1 89.7384.07 89.7386.37
lymph 48.39/48.39 53.6246.64 65.0660.54 71.2/69.57 76.7474.16 78.84/78.62 78.190.35 78.99/79.88 79.180.96 79.0881.75
segment 67.0360.22 81.1877.38 89.6188.5 92.83/92.71 94.88/95.01 95.94/96.03 9®EH 96.9307.23 97.5808 98.0398.34
soybean 19.5714.26 32.423.36 55.3649.37 73.0669.49 85.14/85.01 88.27/88.37 90.22/90.04 91.4/90.89 92.75/92.98.8992.88
splice 62.7765.11 67.8/73.9 77.3782.22 82.5586.13 88.24/88.27 90.47/89.82 91.8490.8 92.4190.78 93.4492.63 93.92/93.59
Win/Draw/Loss 14/0/1 11/0/4 13/0/2 12/0/3 10/0/5 10/0/5 10/0/5 9/0/6 6/0/9 6/0/9
Sig. W/D/L 71711 8/6/1 11/2/2 10/3/2 71612 4/9/2 5/5/5 5/6/4 3/6/6 3/6/6

GM error ratio 0.8812 0.8937 0.8829 0.9104 0.9407 0.9598 0.9908 0.9957 1.0377 1.0964

eral, the idea of using artificial or unlabeled examples to aidKrogh and Vedelsby, 1995A. Krogh and J. Vedelsby. Neu-
the construction of effective ensembles seems to be a promis- ral network ensembles, cross validation and active learn-

ing approach worthy of further study. ing. In Advances in Neural Information Processing Sys-
tems 71995.

Acknowledgments [Kuncheva and Whitaker, 2002.. Kuncheva and

This work was supported by DARPA EELD Grant F30602- C. Whitaker. Measures of diversity in classifier ensem-

01-2-0571. bles and their relationship with the ensemble accuracy.
submitted 2002.

References [Liu and Yao, 1999 Y. Liu and X. Yao. Ensemble learning

via negative correlatiorNeural Networks12, 1999.

Bauer and Kohavi, 1999E. Bauer and R. Kohavi. An . .
[Bau vi, 199 . V! [Nigamet al,, 200J K. Nigam, A. K. McCallum, S. Thrun,

empirical comparison of voting classification algorithms:

Bagging, boosting and variantMachine Learning 36, and T. Mitchell. Text _classification from Iab_eled and unla-
1988 g g g beled documents using EMMachine Learning39:103—
' 134, 2000.

[Blake and Merz, 1998C. L. Blake and C. J. Merz.
UCI repository of machine learning databases.
http://www.ics.uci.edu/"mlearn/MLRepository.html,

1998.

[Opitz and Maclin, 199P David Opitz and Richard Maclin.
Popular ensemble methods: An empirical studgurnal
of Artificial Intelligence Researghi1:169-198, 1999.

[Opitz and Shavlik, 1996D. Opitz and J. Shavlik. Actively

[Breiman, 1996 Leo Breiman. Bagging predictorslachine searching for an effective neural-network ensemblen-
Learning 24(2):123-140, 1996. nection Sgciencee, 1996.

[Cohnetal, 1994 D. Cohn, L. Atlas, and R. Ladner. Im- [Quinlan, 1993 J. Ross Quinlan.C4.5: Programs for Ma-
proving generalization with active learning.Machine chine LearningMorgan Kaufmann, San Mateo,CA, 1993.

Lea.rnlng 15(2):201-221, 1994. _ [Quinlan, 199 J. Ross Quinlan. Bagging, boosting, and
[Cunningham and Carney, 200@. Cunningham and J. Car- C4.5. InProceedings of the 13th National Conference on
ney. Diversity versus quality in classification ensembles Artificial Intelligence August 1996.

based on feature selection. 1ath European Conference [rosen, 1995 B. Rosen. Ensemble learning using decorre-

on Machine Leamingpages 109-116, 2000. [lated neugl networksConnection Scienceg, 1998.
[Dietterich, 2000 T. Dietterich. Ensemble methods in ma- [webb, 2000 G. Webb. Multiboosting: A technique for

chine learning. In J. Kittler and F. Roli, editofSrst Inter- combining boosting and waggingylachine Learning40,

national Workshop on Multiple Classifier Systems, Lecture 2gg(.

Notes in Computer Sciengeages 1-15. Springer-Verlag, [Witten and Frank, 1999lan H. Witten and Eibe Frank.

2000. . Data Mining: Practical Machine Learning Tools and
[Freund and Schapire, 199&0av Freund and Robert E. Techniques with Java Implementationdlorgan Kauf-
Schapire. Experiments with a new boosting algorithm. In. mann, San Francisco, 1999.

Proceedings of the 13th International Conference on Ma‘[Zenobi and Cunningham, 20DG. Zenobi and P. Cunning-
chine LearningJuly 1996. ham. Using diversity in preparing ensembles of classifiers

[Hastieet al., 200] Trevor Hastie, Robert Tibshirani, and based on different feature subsets to minimize generaliza-
Jerome FriedmanThe Elements of Statistical Learning tion error. InProceedings of the European Conference on
Springer Verlag, New York, August 2001. Machine Learning2001.

13

Proceedi ngs of the KDD-2003 Workshop on Milti-Rel ational Data M ning
(MRDM 2003), pp. 107-121, Washi ngton DC, August, 2003

Scaling Up ILP to Large Examples: Results on
Link Discovery for Counter-Terrorism

Lappoon R. Tang, Raymond J. Mooney, and Prem Melville

Department of Computer Sciences,
University of Texas at Austin,
Austin, TX 78712, U.S.A.
{rupert, mooney, melville}@cs.utexas.edu
http://www.cs.utexas.edu/users/ml/

Abstract. Inductive Logic Programming (ILP) has been shown to be a
viable approach to many problems in multi-relational data mining (e.g.
bioinformatics). Link discovery (LD) is an important task in data min-
ing for counter-terrorism and is the focus of DARPA’s program on Ev-
idence Extraction and Link Discovery (EELD). Learning patterns for
LD is a novel problem in relational data mining that is characterized
by having an unprecedented number of background facts. As a result
of the explosion in background facts, the efficiency of existing ILP al-
gorithms becomes a serious limitation. This paper presents a new ILP
algorithm that integrates top-down and bottom-up search in order to
reduce search when processing large examples. Experimental results on
EELD data confirm that it significantly improves efficiency over existing
ILP methods.

1 Introduction

The terrible events of September 11, 2001 have sparked increased development
of information technology that can aid intelligence agencies in detecting and
preventing terrorism. The Evidence Extraction and Link Discovery (EELD)
program of the Defense Advanced Research Projects Agency (DARPA) is one
attempt to develop new computational methods for addressing this problem.
More precisely, Link Discovery (LD) is the task of identifying known, complex,
multi-relational patterns that indicate potentially threatening activities in large
amounts of relational data. Some of the input data for LD comes from FEui-
dence Eztraction (EE), which is the task of obtaining structured evidence data
from unstructured, natural-language documents (e.g. news reports), other input
data comes from existing relational databases (e.g. financial and other transac-
tion data). Finally, Pattern Learning (PL) concerns the automated discovery of
new relational patterns for detecting potentially threatening activities in large
amounts of multi-relational data.

Scaling to large datasets in data mining typically refers to increasing the
number of training examples that can be processed. Another measure of com-
plexity that is particularly relevant in multi-relational data mining is the size of

14

examples, by which we mean the number of ground facts used to describe the
examples. To our knowledge, the challenge problems developed for the EELD
program are the largest ILP problems attempted to date in terms of the number
of ground facts in the background knowledge. Relational data mining in bioinfor-
matics [5] was probably the previously largest ILP problem in this sense. Table 1
shows a comparison between link discovery and, to our knowledge, the largest
problem in bioinformatics.

Domain # Bg. preds.|Avg. Arity|# Bg. facts
Link Discovery 52 2 568k
Bioinformatics 36 4.9 24k

~

~
~
~

Table 1. Link Discovery versus Bioinformatics (e.g. carcinogenesis). # Bg. preds. is
the number of different predicate names in the background knowledge, Avg. Arity is
the average arity of the background predicates, and # Bg facts is the total number of
ground background facts.

Scaling up ILP to efficiently process large examples like those encountered
in EELD is a significant problem. Section 2 discusses the problems existing ILP
algorithms have scaling to large examples and presents our general approach to
controlling the search for multi-relational patterns by integrating top-down and
bottom-up search. Section 3 presents the details of our new algorithm, BETH.
Section 4 presents some theoretical results on our approach. Experimental results
are presented and discussed in Section 5, followed by concluding remarks in
Section 6.

2 Combining Top-down and Bottom-up Approaches in
BETH

The two standard approaches to ILP are bottom-up and top-down [6]. Bottom-up
methods start with a very specific clause generated from an individual positive
example and generalize it as far as possible without covering negative examples.
Top-down methods start with the most general (empty) clause and repeatedly
specialize it until it no longer covers negative examples. Both approaches have
problems scaling to large examples.

The state-of-the-art ILP approach, originated from bottom-up methods, is
based on inverse entailment [2]. The most popular approach to implementing
inverse entailment is a two-stage process: 1) saturation which builds up the
most specific clause (a.k.a. bottom clause) describing a positive example, and
2) truncation which finds solutions that generalize the bottom clause [3]. This
approach is implemented in PROGOL [2] and its successor ALEPH.!

! The Aleph Manual can be accessed via
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html.

15

Given a positive example and background knowledge, the bottom clause can
be infinite, and practically one has to bound it. In PROGOL, it is bounded by
five parameters: i, r, M, 7, and j* (please refer to [2] for more details). Un-
fortunately, the complexity of PROGOL’s bottom clause is exponential w.r.t. the
variable depth ¢, which results in a hypothesis space that is doubly exponential!
(The size of the subsumption lattice is two to the power of the size of the bottom
clause.)

In problems with large examples like EELD, the background knowledge con-
tains many facts using numerous predicates that describe each complex object
or event. Typically, many of these facts are irrelevant to the task. However, PRO-
GOL’s bottom clause includes every piece of background knowledge (within the
recall bound r) in its body. This leads to intractably large bottom-clauses which
generates an exponentially larger hypothesis space when learning a clause. This
leads one to wonder if it is possible to bound the bottom-clause differently so
that it contains only a relevant subset of background facts.

A strength of the top-down approach is that the generation of literals is
inherently directed by the heuristic search process itself: only the set of literals
that make refinements to clauses in the search beam are generated. Clauses with
insufficient heuristic value are discarded, saving the need to generate literals
for them. So, there is a tangible link between the entire set of literals that
could be included in a bottom-clause and the heuristic search for a good clause.
Therefore, perhaps it is possible to employ the heuristic search as a guide to
selecting a relevant subset of background facts for inclusion in an alternative
bottom-clause.

A major weakness of the top-down approach (as far as literal generation
is concerned) is that the enumeration of all possible combination of variables
generates many more literals than necessary; some literals generated by the
algorithm are not even guaranteed to cover one positive example. The complexity
of enumerating all such combinations in FOIL [7] (and mFoOIL [6]) is exponential
w.r.t. the arity of the predicates [8]. 2 A corresponding strength of the bottom-
up approach is that a literal is created using a ground atom describing a known
positive example. The advantages are: 1) specializing using this literal results in
a clause that is guaranteed to cover at least the seed example, and 2) the set of
literals generated are constrained to those that satisfy 1).

Given the strengths and weaknesses of typical top-down and bottom-up ap-
proaches, it seems that one can take advantage of the strength of each approach
by combining them into one coherent approach. More precisely, we no longer
build the bottom clause using a random seed example before we start search-
ing for a good clause. Instead, after a seed example is chosen, one generates
literals in a top-down fashion (i.e. guided by heuristic search) except that the
literals generated are constrained to those that cover the seed example. Based
on this idea, we have developed a new system called Bottom-clause Exploration

2 Enforcing argument type restrictions can help lower the complexity but cannot com-
pletely solve the problem.

16

Through Heuristic-search (BETH) in which the bottom clause is not constructed
in advance but “discovered” during the search for a good clause.?

3 The Algorithm

BETH’s bottom clause is virtual in the sense that the algorithm does not have
to construct it to work, unlike PROGOL/ALEPH; it is, nonetheless, constructed
to facilitate collection of statistics. However, the virtual bottom clause is a real
bound on the subsumption lattice (see Section 4).

Let us begin with some basic definitions. A predicate specification takes the
form PredName/Arity where PredName is the name of the predicate in concern
and Arity its arity. A list of predicate specifications for the background knowl-
edge is given to the ILP system before learning starts. The function predname(P)
returns the predicate name of the predicate specification of the background pred-
icates P and arity(P) returns its arity. Likewise, predname(L) returns the pred-
icate name of the literal L and arity(L) returns its arity.

3.1 Constructing a Clause

The outermost loop of BETH is a simple set covering algorithm like that of any
typical ILP algorithm: 1) find a good clause which covers a non-empty subset of
positive examples, 2) remove the positive examples covered by the clause from
the entire set of positive examples, 3) add the clause found to the set of clauses
being built (a.k.a. theory) which was initially empty, 4) repeat step 1) to step
3) until the entire set of positive examples are covered by the theory, 5) return
the entire set of clauses found.

The way a clause is constructed in BETH is very similar to a traditional top
down ILP algorithm like FOIL; the search for a good clause goes from general to
specific. It starts with the most general clause O which is specialized by adding
a literal to its body. The most general clause O = T' < true where T is a literal
such that predname(T) = predname(e) and arity(T) = arity(e), where e is a
randomly chosen seed example from the set of positive examples. A beam of
potentially good clauses is kept while searching for refinements of each clause in
the beam. The construction of a clause terminates when there is a clause in the
beam which is sufficiently accurate (i.e. its m-estimate is greater than or equal
to a certain threshold).

In addition, we also compute the bottom clause which bounds the search
space. The initial bottom clause is set to the smallest (i.e. e < true which has
an empty set of literals in the body of this initial bottom clause and e is from the
set of positive examples) in which case the search space contains only the most
general clause (a.k.a. the empty clause). The bound is expanded incrementally
during the search for a good clause. The bound is fixed when a sufficiently good

¥ PrRoGOL and ALEPH are really, more precisely, “Subsumption lattice exploration
through heuristic-search”. Here, we explore the bottom clause and the subsumption
lattice simultaneously.

17

clause is found, at which point both the clause and the bound are returned as
solutions to the search. The algorithm which constructs a clause is outlined in
Figure 1.

1. Given a set of predicate specifications P of the background predicates, a beam width b, a
bound on the clause length n, variable depth bound i, recall bound r, a non-empty set of
positive examples Pzs and a set (possibly empty) of negative examples Nzs.

Randomly choose a seed example e € Pzs.

1o:=e + true.

Qo .‘:{ D}.

Q:=Qo.

J_.':J_g.

REPEAT

generate_refinements(Q, P, b, n, i, r, Pzs, Nzs,Q', L, L"),

Q:=Q',

L:=1"'

UNTIL

there is a clause C' € Q which is sufficiently accurate. Q' and L' are output variables and the
rest in generate_refinements are input variables.

8. Return C and L.

NG e N

Fig. 1. The construction of a clause in BETH

3.2 Generating Refinements for a Clause

To find all the refinements of a given clause Cj, first find a substitution 6, which
satisfies the body of the clause (a “successful proof” of the clause, given the
background facts); then construct a literal (with dummy variables) R; for a
predicate specification in P, and find a substitution 3 that makes R;3 a ground
atom such that C;0 and R;3 satisfy the following conditions we call refinement
constraints: 1) the link constraint: one of the arguments of R;3 has to appear
in C;0 (this is to make sure that the resulting clause is still a linked clause), 2)
the unique-literal constraint: R;3 ¢ C;0 (to avoid making two identical literals).
We try to find pairs of 8 and 3 satisfying the refinement constraints, but at
most r distinct ground atoms R;3 will be used. For example, suppose C;8 =
f(a,b) < g(a,c),h(c,d),g(b,e) and R;jB1 = g(e, f) and R;B> = g(a,c), then
only R;f: satisfies all the refinement constraints, as R;(3» fails the unique-literal
constraint. So, only R;3; will be used to make literals for the clause Cj.

To avoid repeatedly finding a successful proof of a given clause by theorem
proving, we make a set of “cached proofs” for each clause in the beam (similar
to the way variable bindings are stored in extensional FoOIL) by starting with
the initial proof e < true, where e is a randomly chosen seed example, and we
incrementally update the cache of proofs of each clause by adding to the end of
each proof a ground atom satisfying all the refinement constraints. A bound is
also given to the cache size. When finding a satisfying substitution 6 for a clause
C; in the beam, we will simply unify C; with a proof in its cache. If there is no
R;(satisfying the refinement constraints, which can happen if the first chosen
example e was a “bad” one, a new example ¢/ # e will be randomly chosen

18

from the remaining set of positive examples to be covered. The clause C; will be
replaced (in the beam) by the most general clause such that its cache of proofs
will contain only e’ < true. The idea is that if a clause cannot be refined, then
we will just restart with a different seed example.

One can also take advantage of type declarations (if available) to further
restrict the number of predicate specifications needed to be considered for a
given clause — one needs only to consider those which contain at least one
argument type which is the same as at least one of the types of all the variables
in the current clause (so that a linked clause that satisfies the type constraints
is possible).

One can also make use of mode declarations (if available) by substituting
arguments with “input” mode for constants which appear in the clause, provided
that the argument type and the constant type are the same (similar to the way
the bottom clause is built in PROGOL). One needs to find satisfying substitutions
for R;, for each unique way of substituting arguments with input mode for
constants in the clause. The algorithm for generating refinements to a clause is
outlined in Figure 2.

1. Given a set of predicate specifications P of the background predicates, a beam width b, a
bound on the clause length n, variable depth bound i, recall bound r, a non-empty set of
positive examples Pzs and a set (possibly empty) of negative examples Nzs, the current bottom
clause L (i.e. the current bound on the search space).

2. For each clause C; € Q and for each P; € P, make a literal R; with dummy variables such that
predname(R;) = predname(P;) and arity(R;) = arity(Pj).

3. Find substitutions 6, 8 such that 1) 6 satisfies C;, 2) 3 satisfies R;, and 3) C;6 and R;[3 satisfy
all the refinement constraints.

4. Collect at most r such ground atoms R;[3 for different # and 3.

For each pair of C(;0 and R;0B satisfying all the refinement constraints,

make_literals(C;6, R; 3, Lits) and add R;3 to the body of L.

For each L € Lits, add L to the body of C; to make C; and let the set of all C}’s be Q;.

Evaluate each clause in U

o

c.co C; by a heuristic (e.g. m-estimate) given Pzs and Nus.
i

Put only the best b clauses into Q'.

Let L' be the resulting bottom clause after adding all the ground atoms R;3’s to the body of
L for each C; and R; (such that there exists 6 and § satisfying all the refinement constraints).
10. Return Q' and L'.

©® N

Fig. 2. Generate Refinements

3.3 Making Literals

To make literals given a clause C, a satisfying substitution 6 of C, and a ground
atom R;3, we replace arguments of R;3 by variables in C' instantiated, in 8, to
these arguments in R;3, only if R;(3 is not in C# and the resulted literal observes
the variable depth bound. 8! replaces all occurrences of a term by the same
variable. For example, consider a clause C : f(A, B) < g(B,D),h(A, E),l(D, E),
6 ={A/a,B/b,D/b,E/e} (thus, 6! = {a/A,b/B,b/D,e/E}) and two ground
atoms a; = p(b,e) and az = p(e, f). We can make two literals using ai: 1)
p(B, E) (since b/B,e/E € 6~1), and 2) p(D, E) (since b/D,e/E € §~1). We can

19

make one literal using a»: p(E, F) (since e/E € 671, but the constant f is not
bound to any variable in #~!). However, if the variable depth bound is one, then
the literal p(E, F') will be rejected because the depth of F' is two. The variable
depth d(V) of variable V is defined in LINUS [6]. The algorithm for making
literals is outlined in Figure 3.

1. Given a clause C0 of the form e < a1,...,a, (where C is the current clause being refined,
i.e. specialized, and @ is a substitution that satisfies C' and e € Pzs and background knowledge
BK = a; for each ground atom a; in the body of C#) and a ground atom a,4+1 such that
BK ': An41-

2. Make a set of literals Lits such that each literal L € Lits satisfies: 1) predname(L) =
predname(an+1), 2) arity(L) = arity(an+1), 3) suppose the constant c; is the ith argument
of an+1 and the variable V; is the ith argument of L. If ¢; appears in C6, then ¢;/V; € 0_1;
otherwise, V; is a new variable not appearing in C, 4) there is no variable V in L such that
d(V') > i where i is the variable depth bound.

3. Return Lits.

Fig. 3. Make Literals

3.4 A Concrete Example

We can see how the algorithm works through a simple example from the family-
relation domain. Suppose we want to learn the concept uncle(X,Y), which is
true iff X is an uncle of Y (blood uncle).

Suppose we have the following set of background facts (Figure 4):

1. male(Bob), male(Tom), male(Tim)
2. female(Ann), female(Mary), female(Susan), female(Betty), female(Joyce)
3. parent(Tom, Mary), parent(Tom, Betty), parent(Tom, Bob),
parent(Mary, Ann),parent(Joyce, Susan),parent(Tom,Tim)
4. friend(Mary, Susan), friend(Susan, Mary), friend(Joyce, Betty),
friend(Betty, Joyce)

and P = {male/1, female/1, friend/2, parent/2} (exactly in this order from
left to right) is our set of predicate specifications. We will use '+’ to denote the
output mode and '—' the input mode here. The following is the set of mode
specifications for each predicate specification:
male(—), female(—), parent(+, —), parent(—, +), friend(+, —), friend(—, +)
and the following is the set of type specifications for each predicate specification:
male(person), female(person), parent(person, person), friend(person, person)

Suppose we have this set of training examples:

1. Positive: uncle(Bob, Ann)

2. Negative:
uncle(Bob, Susan), uncle(Betty, Ann), uncle(Tim, Susan), uncle(Tom, Betty)
uncle(Susan, Betty), uncle(Joyce, Ann), uncle(Tim, Joyce), uncle(Tom, Mary)

20

Tom Joyce

Fig. 4. A simple family relation domain

We present a trace of how our algorithm discovers a good clause, given a
beam size and a recall bound of one, and a clause length of four. It starts by
choosing a random seed example from the set of positive examples. This has to
be uncle(Bob, Ann) since there is only one positive example. When generating
refinements to a clause, it considers each predicate specification in P (from left
to right). We will show the specialized clause before its set of cached proofs.
The literal added to the clause currently being built is generated from the new

ground atom added to the body of the cached proof of the current clause.
The algorithm starts with:

1. The most general clause which covers every pair of people: uncle(X,Y) :- true
2. The set of cached proofs for this clause: {uncle(bob,ann) :- true}
3. The empty bottom clause: uncle(bob,ann) :- true

It considers male/1 and generates the following:

1. The specialized clause: uncle(X,Y) :- male(X)

(m-est = 0.153)
2. The set of cached proofs for this clause: {uncle(bob,ann) :- male(bob)}
3. The updated bottom clause: uncle(bob,ann) :- male(bob)

Next, the algorithm considers female/1, and the literal female(Y) is gener-
ated (in the same way as male/1), the new ground atom female(ann) is added
to the current bottom clause. The specialized clause uncle(X,Y) :- female(Y)
has an m-estimate of 0.111. Next, it considers parent/2 (using parent(+, —)) and
generates the following:

1. The specialized clause: uncle(X,Y) :- parent(Z,X)
(m-est = 0.136)

21

2. The set of cached proof of this clause: {uncle(bob,ann) :- parent(tom,bob)}
3. The updated bottom clause:
uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob)

Similarily parent/2 (using parent(+,—)) is used to generate another special-
ized clause uncle (X,Y) :- parent (W,Y) (m-estimate = 0.122) using the ground
atom parent (mary,ann).

The predicate specification friend/2 was considered but no ground atom
was found to satisfy all the refinement constraints; the link constraint could
not be satisfied, because neither Bob nor Ann has a friend. There are totally
four different refinements to the most general clause. The clause with the best
m-estimate is:

uncle(X,Y) < male(X)

Since the beam size is just one, only this clause is retained in the beam. This
clause is still covering negative examples: uncle(Bob, Susan), uncle(Tom, Betty),
uncle(Tim, Susan), uncle(Tim, Joyce), and uncle(Tom, Mary). So, it still needs to
be refined. Next, male/1 is considered but no ground atom is found to satisfy
all the refinement constraints; the unique-literal constraint could not be satisfied
(male(Bob) is already in the cached proof of the clause). The current bottom
clause is uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob).

Next, it considers female/1 and generates the following;:

1. The specialized clause: uncle(X,Y) :- male(X),female(Y)
(m-est = 0.153)

2. The set of cached proof of this clause:
{uncle(bob,ann) :- male(bob),female(ann)}

3. The updated bottom clause:
uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob),
parent (mary,ann)

Next, it considers parent/2 (using parent(+, —)) and generates the following:

1. The specialized clause: uncle(X,Y) :- male(X),parent(Z,X)
(m-est = 0.204)

2. The set of cached proof of this clause:
{uncle(bob,ann) :- male(bob),parent(tom,bob)}

3. The updated bottom clause:
uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob),
parent (mary,ann)

parent/2 (using parent(+, —)) can be used to generate another specialized clause
uncle(X,Y) :- male(X),parent(W,Y) (m-estimate = 0.175) using the ground
atom parent (mary,ann).

The predicate specification friend/2 was considered but no ground atom
was found to satisfy all the refinement constraints (the link constraint cannot
be satisfied). There are totally three different refinements to uncle(X,Y) «
male(X). The clause with the best m-estimate is:

uncle(X,Y) « male(X), parent(Z, X)

22

This clause still covers a non-empty set of negative examples:

uncle(Bob, Susan), uncle(Tim, Susan), uncle(Tim, Joyce).

The algorithm continues in exactly the same manner for the last two steps
(omitted to save space). The clause uncle(X,Y) < male(X), parent(Z,X) has
four different refinements. The clause with the best m-estimate is:

uncle(X,Y) <+ male(X), parent(Z, X), parent(W,Y)

which is still covering a non-empty set of negative examples: uncle(Bob, Susan)
and uncle(Tim, Susan).
There are totally eight different refinements to

uncle(X,Y) < male(X), parent(Z, X), parent(W,Y).
The clause with the best m-estimate is:
uncle(X,Y) < male(X), parent(Z, X), parent(W,Y), parent(Z, W)

which covers all the positive examples and no negative examples. At this point,
the algorithm has found the target concept. Both the bottom clause discovered
and the consistent clause found are returned. Notice that the bottom clause
found by BETH is:

uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob),parent(mary,ann),
male (tom) ,female (mary) ,parent (tom,mary) ,friend(mary,susan),
friend(susan,mary)

whereas, PROGOL’s bottom clause is:

uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob),parent(mary,ann),
male(tom) ,female (mary) ,parent (tom,mary) ,friend(mary,susan),
friend(susan,mary) ,female(susan)

which is bigger than BETH’s bottom clause.

4 Analysis

Let L(b,n,P,r,i) be the bottom clause constructed by BETH (Section 3) given
the parameters b, n, P, r, and ¢ which are the beam width, the maximum clause
length, the set of predicate specifications, the recall bound, and the variable
depth bound respectively.

Theorem 1. Suppose B is a beam of clauses produced by BETH, for any
clause C € B, C < L(b,n,P,r,i).
Proof. Suppose C; is a clause in B such that C; = H < Li,..., L, where
m < n. Each Lj is produced from a ground atom a; and H from a partic-
ular seed example e. Obviously, e € L(b,n,P,r,i). For any k : 1 < k < m,
ar € L(b,n,P,r,1), since each ground atom satisfying all the refinement con-
straints is added to the current bottom clause and only ground atoms satis-
fying all the refinement constraints are used to make literals for any clause.

23

Thus, there’s a substitution § which satisfies C; s.t. C;0 = e < ai,...,ap.
So, C;6 C L(b,n,P,r,i). And, we have C; < L(b,n,P,r,i). Hence we have
C < L(b,n,P,r,i) for any clause C € B. O

Theorem 2. The worst case length of L(b,n,P,r, i) is O(bn|P|r).
Proof. The maximum number of ground atoms that 1) satisfy the refinement
constraints and 2) make literals observing the variable depth bound ¢ for any
clause in the search beam at the point the clause is being refined are |P|r. There-
fore, the maximum number of ground atoms satisfying the refinement constraints
after adding n literals to the body of the most general clause are n|P|r. Since
there are at most b clauses in the search beam at any time, the maximum num-
ber of ground atoms satisfying the refinement constraints are bn|P|r. Thus, the
worst case complexity of the bottom clause L(b,n,P,r, i) is O(bn|P|r). O

The length of PROGOL’s bottom clause is O((r|M|j+j=)4"); where |M|
is the number of mode declarations, and j+/~ are bounds on the number of
(+/-) types in a mode declaration [2] — which makes a hypothesis space doubly
exponential w.r.t. i. Whereas the length of BETH’s bottom clause is only linear
w.r.t. n (which gives rise to a much smaller hypothesis space).

5 Experimental Evaluation

We compared our system, BETH, with two other leading ILP systems — ALEPH
and mFoIL.

5.1 Domain

After the events of 9/11, the EELD project has been working on several Chal-
lenge Problems that are related to counter-terrorism. The problem that we
choose to tackle is the detection of Murder-For-Hires (contract killings) in the
domain of Russian Organized Crime. The data used in all EELD Challenge Prob-
lems include representations of people, organizations, objects, and actions and
many types of relations between them. One can picture this data as a large graph
of entities connected by a variety of relations. For our purposes, we represent
these relational databases as facts in Prolog.

For the ease of generating large quantities of data, and to avoid violating pri-
vacy, the program currently only uses synthetic data generated by a simulator.
The data for the Murder-For-Hire problem was generated using a Task-Based
(TB) simulator developed by Information Extraction and Transport Incorpo-
rated (IET). The TB simulator outputs case files, which contain complete and
unadulterated descriptions of murder cases. These case files are then filtered for
observability, so that facts that would not be accessible to an investigator are
eliminated. To make the task more realistic, this data is also corrupted, e.g.,
by misidentifying role players or incorrectly reporting group memberships. This
filtered and corrupted data form the evidence files. In the evidence files, facts
about each event are represented as ground facts, such as:

murder (Murder714)

24

perpetrator(Murder714, Killer186)
crimeVictim(Murder714, MurderVictim996)
deviceTypeUsed (Murder714, PistolCzech)

The synthetic dataset that we used consists of 632 murder events. Each mur-
der event has been labeled as either a positive or negative example of a murder-
for-hire. There are 133 positive and 499 negative examples in the dataset. Our
task was to learn a theory to correctly classify an unlabeled event as either
a positive or negative instance of murder-for-hire. The amount of background
knowledge for this dataset is extremely large; consisting of 52 distinct predicate
names, and 681,039 background facts in all.

5.2 Results

The performance of each of the ILP systems was evaluated using 6-fold cross-
validation. The total number of Prolog atoms in the data is so large that running
more than six folds is not feasible.* The data for each fold was generated by sep-
arate runs of the TB simulator. The facts produced by one run of the simulator,
only pertain to the entities and relations generated in that run; hence the facts
of each fold are unrelated to the others. For each trial, one fold is set aside for
testing, while the remaining data is combined for training. To test performance
on varying amounts of training data, learning curves were generated by test-
ing the system after training on increasing subsets of the overall training data.
Note that, for different points on the learning curve, the background knowledge
remains the same; only the number of positive and negative training examples
given to the system varies.

We compared the three systems with respect to accuracy and training time.
Accuracy is defined as the number of correctly classified test cases divided by
the total number of test cases. The training time is measured as the CPU time
consumed during the training phase. All the experiments were performed on a
1.1 GHz Pentinum with dual processors and 2 GB of RAM. BETH and mFoIL
were implemented in Sicstus Prolog version 3.8.5 and ALEPH was implemented in
Yap version 4.3.22. Although different Prolog compilers were used, the Yap Pro-
log compiler has been demonstrated to outperform the Sicstus Prolog compiler,
particularly in ILP applications [4].

In our experiments, we used a beam width of 4 for BETH and mFoIL; and
limited the number of search nodes in ALEPH to 5000. We used m-estimate
(m = 2) as a search heuristic for all ILP algorithms. The clause length was
limited to 10 and the variable depth bound to 5 for all systems. The recall bound
was limited to 1 for BETH and ALEPH (except for some mode declarations it was
set to '*’). We modified mFOIL to be constrained by the maximum clause length
and the variable depth bound, to ensure that it terminates. We refer to this
version of mFoIL as Bounded mFoIL. All the systems were given 1 second of
CPU time to compute the set of examples covered by a clause. If a specialized

* The maximum number of atoms that the Sicstus Prolog compiler can handle is
approximately a quarter million.

25

98 40000

35000 A

30000 BETH —+—— e
ALEPH ---»-- /
BOUNDED mFOIL -

25000 g

20000 4

Accuracy
Cpu Time (in secs)

15000 | g
10000 | >(i

5000 | ¥ B

o ‘ ‘ ‘ ‘ o g
o 20 40 60 80 100 o 20 40 60 80 100
% of Training Examples % of Training Examples

Fig. 5. Performance of the systems versus the percentage of training examples given

System Accuracy CPU Time (mins) |# of Clauses|Bottom Clause Size
BETH |94.80% (+/- 2.3%)| 23.39 (+/- 4.26) 4483 34
ALEPH|96.91% (+/- 2.8%)[598.92 (+/- 250.00) 63334 4061
mFoIL|91.23% (+/- 4.8%)| 45.28 (+/- 5.40) 112904 n/a

Table 2. Results on classifying murder-for-hire events given all the training data. #
of Clauses is the total number of clauses tested; and Bottom Clause Size is the average
number of literals in the bottom clause constructed for each clause in the learned
theory. The 90% confidence intervals are given for test Accuracy and CPU time.

clause took more time than allotted, the clause was ignored; although the time
it took to create the clause is still recorded.

The results of our experiments are summarized in Figure 5. A snapshot of
the performance of the three ILP systems given 100% of the training examples
is shown in Table 2. The following is a sample rule learned by BETH:

murder_for_hire(A):- murder(A), eventOccursAt(A,H),
geographicalSubRegions (I,H), perpetrator(A,B),
recipient0finfo(C,B), sender0finfo(C,D), socialParticipants(F,D),
socialParticipants(F,G), payer(E,G), toPossessor(E,D).

This rule covered 9 positive examples and 3 negative examples. The rule can be
interpreted as: A is a murder-for-hire, if A is a murder event, which occurs in a
city in a subregion of Russia, and in which B is the perpetrator, who received
information from D, who had a meeting with and received some money from G.

26

5.3 Discussion of Results

On the full training set, BETH trains 25 times faster than ALEPH while losing
only 2 percentage points in accuracy and it trains twice as fast as mFoOIL while
gaining 3 percentage points in accuracy. Therefore, we believe that its integration
of top-down and bottom-up search is an effective approach to dealing with the
problem of scaling ILP to large examples. The learning curves further illustrate
that the training time of BETH grows slightly slower than that of mFoIL, and
considerably slower than that of ALEPH.

The large speedup over ALEPH is explained by the theoretical analysis on
the complexity of the bounds on the search space, i.e. the different sizes of the
bottom clauses they construct. The size of the bottom clause for BETH is only
linear w.r.t. n compared to that of ALEPH which is exponential w.r.t. toi (i < n)
even for small 7. As a result, ALEPH’s search space is much larger than BETH’s.
ALEPH’s bottom clause was on average 119x larger than BETH’s and the total
number of clauses it constructed was 14x larger, although a theory of similar
accuracy was learned.

Systems like BETH and ALEPH construct literals based on actual ground
atoms in the background knowledge, guaranteeing that the specialized clause
covers at least the seed example. On the other hand, mFOIL generates more
literals than necessary by enumerating all possible combination of variables.
Some such combinations make useless literals; adding any of them to the body
of the current clause makes specialized clauses that do not cover any positive
examples. Thus, mFoIL wastes CPU time constructing and testing these literals.
Since the average predicate arity in the EELD data was small (2), the speedup
over mFOIL was not as great, although much larger gains would be expected for
data that contains predicates with higher arity.

Nevertheless, searching a smaller space comes at the cost of spending more
time generating each literal for refining a clause. In ALEPH, all the necessary
ground literals are generated before the search starts, while BETH must spend
time computing a set of ground atoms satisfying the refinement constraints on
literal generation, resulting in fewer clauses tested per unit time compared to
both ALEPH and mFoOIL.

From the experimental results obtained, we can conclude that 1) an approach
like BETH, which emphasizes searching a much smaller space over testing hy-
potheses at a higher rate, can outperform (in terms of efficiency) an approach
like PROGOL/ALEPH, which trades off the two factors the other way around, and
2) using ground atoms directly avoids testing useless literals, improving training
time over a purely top-down approach like mFoIL.

6 Conclusions

An important under-studied aspect of scaling to large databases in multi-relational
data mining concerns the size of examples rather than their number. For ILP
methods, this issue involves scaling to large numbers of connected background

27

facts associated with each example or set of examples. We have developed a
new ILP algorithm that integrates top-down and bottom-up search in order to
more efficiently learn in the presence of large sets of background facts. Challenge
problems constructed for DARPA’s program on Evidence Extraction and Link
Discovery concern identifying potential threatening activities in large amounts of
heterogeneous, multi-relational data. These problems contain relatively modest
numbers of examples but involve very large sets of background facts. Experi-
mental results on these problems demonstrate that our new hybrid approach
substantially decreases training time compared to existing ILP methods.

7 Acknowledgments

This research is sponsored by DARPA and managed by Rome Laboratory under
contract F30602-01-2-0571. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as necessarily repre-
senting the official policies, either expressed or implied of the Defense Advanced
Research Projects Agency, Rome Laboratory, or the United States Government.

References

1. R. J. Mooney, P. Melville, L. R. Tang, J. Shavlik, I. de Castro Dutra, D. Page,
and V. S. Costa. Relational data mining with inductive logic programming for link
discovery. In Proceedings of the National Science Foundation Workshop on Next
Generation Data Mining, 2002.

2. S. Muggleton. Inverse entailment and Progol. New Generation Computing Journal,
13:245-286, 1995.

3. C. Rouveirol. Extensions of inversion of resolution applied to theory completion. In
S. Muggleton, editor, Inductive Logic Programming, pages 63-92. Academic Press,
London, 1992.

4. V. Santos Costa. Optimising bytecode emulation for Prolog. In LNCS 1702, Pro-
ceedings of PPDP’99, pages 261-267. Springer-Verlag, September 1999.

5. F. Zelezny, A. Srinivasan, and D. Page. Lattice-search runtime distributions may
be heavy-tailed. In Proceedings of the 12th International Conference on Inductive
Logic Programmaing, 2002.

6. N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood, Chichester, 1994.

7. R. J. Quinlan. Learning Logical Definitions from Relations. Machine Learning,
5(3):239-266, 1990.

8. M. J. Pazzani and D. F. Kibler. The Utility of Background Knowledge in Inductive
Learning. Machine Learning, 9:57-94, 1992.

28

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge

Vitor Santos Costa
COPPE/Sistemas
UFRJ, Brasil

David Page and Maleeha Qazi
Department of Biostatistics
and Medical Informatics

James Cussens
Department of Computer Science
University of York, UK

University of Wisconsin-Madison, USA

Abstract

In Datalog, missing values are represented by
Skolem constants. More generally, in logic
programming missing values, or existentially-
quantified variables, are represented by terms
built from Skolem functors. In an analogy to
probabilistic relational models (PRMs), we wish
to represent the joint probability distribution over
missing values in a database or logic program us-
ing a Bayesian network. This paper presents an
extension of logic programs that makes it pos-
sible to specify a joint probability distribution
over terms built from Skolem functors in the pro-
gram. Our extension is based on constraint logic
programming (CLP), so we call the extended
language CLP(BN). We show that CLP(BN)
subsumes PRMs; this greater expressivity car-
ries both advantages and disadvantages for
CLP(BN). We also show that algorithms from
inductive logic programming (ILP) can be used
with only minor modification to learn CLP(BN)
programs. An implementation of CLP(BN)
is publicly available as part of YAP Prolog at
http://www.cos.ufrj.br/"vitor/Yap/clpbn.

1 Introduction

A probabilistic relational model (PRM) [4] uses a Bayesian
network to represent the joint probability distribution over
fields in a relational database. The Bayes net can be used
to make inferences about missing values in the database.
In Datalog, missing values are represented by Skolem con-
stants; more generally, in logic programming missing val-
ues, or existentially-quantified variables, are represented by
terms built from Skolem functors. In analogy to PRMs, can
a Bayesian network be used to represent the joint proba-
bility distribution over terms constructed from the Skolem
functors in a logic program? We extend the language of
logic programs to make this possible. Our extension is

29

based on constraint logic programming (CLP), so we call
the extended language CLP(BN). We show that any PRM
can be represented as a CLP(BN) program.

Our work in CLP(BN) has been motivated by our interest
in multi-relational data mining, and more specifically in in-
ductive logic programming (ILP). Because CLP(BN/) pro-
grams are a kind of logic program, we can use existing ILP
systems to learn them, with only simple modifications to
the ILP systems. Induction of clauses can be seen as model
generation, and parameter fitting can be seen as generat-
ing the CPTs for the constraint of a clause. We show that
the ILP system ALEPH [11] is able to learn CLP(BN) pro-
grams.

This paper is organised as follows. First, we describe
the design of CLP(BN) through examples. Next, we dis-
cuss the foundations of CLP(BA), including detailed syn-
tax, proof theory (or operational semantics) and model-
theoretic semantics. We then relate CLP(BN) with PRM.
Finally, we present the results of experiments in learning
CLP(BN) programs using ILP.

2 CLP(BN) by Example

We shall use the school database scheme originally used
to explain Probabilistic Relational Models [4] (PRMs) to
guide us through CLP(BN). We chose this example be-
cause it stems from a familiar background and because it il-
lustrates how CLP(BN) relates to PRMs. Figure 1 presents
the database scheme and the connection between random
variables. There are four relations, describing professors,
students, courses, and registrations. Field names in italics
correspond to random variables.

Random variables may depend on other random variables,
inducing the dependencies shown in Figure 1. In a nutshell,
a professor’s ability, a course’s difficulty, and a student’s in-
telligence do not depend on any other factors explicitly rep-
resented in the database. A professor’s popularity depends
only on his/her ability. A registration’s grade depends on
the course’s difficulty, and on the student’s intelligence. A

[| Professor

Teaching-Ability

N

Student

Intelligence

\

Popularity
Ranking

|

Course \ Registration
I nstruct or \ Course
\ —
Rating g \S(udem
g '§§
e
Difficulty. \:Sntmfm,tmn

@
Figure 1: The School Database

student’s ranking depends on all the grades he/she had, and
a course’s rating depends on the satisfaction of every stu-
dent who attended the course.

One possible representation would be to use Skolem
functions to represent random attributes. In the
simplest case, professor ability, we would write:
ability(jim, skA(jim)), where skA(jim) is a Skolem
function of jim. Unfortunately, our assertion is not very
illuminating. We would also like to represent the probabil-
ities for the different cases of ability, that is, we would like
to write:

ability(jim, skA(jim)) A
P(skA(jim) =h) = 0.7A P(skA(jim) =1) =

We would further like to use special inference rules for
probabilities. Logic programming systems have used con-
straints to address similar problems. Logical variables are
said to be constrained if they are bound to one or more con-
straints. Constraints are kept in a separate store and can be
updated as execution proceeds (ie, if we receive new evi-
dence on a variable). Unifying a term with a constrained
variable invokes a specialised solver. The solver is also
activated before presenting the answer to a query. In con-
straint notation, we could say:

3X, ability(jim, X) A
{X = skA(jim) A P(X =h) = 0.7A P(X =1) = 0.3}
The curly brackets surround the constraint store: they say
that X must take the value of the function sk A(jim), and
that it has two possible values with complementary proba-
bilities. CLP(BA) programs manipulate such constraints.

We use the following syntax:
{Abi = a(im) with p([h,1],[0-7,0.3],[DD}

CLP(BN) Programs A CLP(BN) is a constraint logic
program that can encode Bayesian constraints. CLP(BN)
programs thus consist of clauses. Our first example of
a clause defines a student’s intelligence in the school
database:

30

intelligence(S,Int) :-
{Int = i(S) with p([h,1]7,[0.7,0.3].[D}-

In this example we have the same information on every stu-
dent’s intelligence. Often, we may have different probabil-
ity distributions for different students:

intelligence(S,Int) :-
int_table(S, Dist),
{Int = i(S) with p([h,1],Dist,[1}-

int_table(bob, [0.3, 0.9]) :-
int_table(mike, [0.8, 0.2]) :-
int_table(_, [0.7,0.3]).

Probability distributions are first class objects in our lan-
guage: they can be specified at compile-time or computed
from arbitrary logic programs.

Conditional Probabilities Let us next consider an exam-
ple of a conditional probability distribution (CPT). In Fig-
ure 1 one can observe that a registration’s grade depends
on the course’s difficulty and on the student’s intelligence.
This is encoded by the following clause:

grade(Reg, Grade) :-
reg(Reg,Course,Student),
difficulty(Course,Dif),
intelligence(Student, Int),
{Grade = grade(Reg) with p(
[a,b,c],[0-4,0.9,0.4,0. 0
,0.4,0.1,

4,
2, .2,0] [Dif, Int])}.

0.4,0.1,0
0.2,0.0,0
To keep the actual CPT small, we assume that Di f and Int
each can take only two values. Note that in general, CPTs
can be obtained from arbitrary logic programs which com-
pute a number from any (structured_term,constant) pair.

Execution The evaluation of a CLP(BN) program re-
sults in a network of constraints. In the previous example,
the evaluation of

?- grade(r2, Gade).

will set up a constraint network with grade(r2) depend-
ing on dif(course) and int(student). CLP(BN) will
output the marginal probability distribution on grade(r2).

One major application of Bayesian systems is conditioning
on evidence. For example, if a student had a good grade
we may want to find out whether he or she is likely to be
intelligent:

?- grade(r2,a), intelligence(bob,l).

The user introduces evidence for r2’s grade through bind-
ing the argument in the corresponding goal. In practice, the
system preprocesses the clause and adds evidence as an ex-
tra constraint on the argument. The system then executes
as a standard constraint logic program, building a Bayes

net with two variables. The network is evaluated through
variable elimination, or another standard technique.

CLP(BN) provides syntactic sugar to insert evidence in the
program:

grade(r2, a) :- {}.

declares that we have evidence that the value of gr ade for
registration r 2 is a. Compile time evidence is processed at
run-time as a query extension.

3 Foundations

We next present the basic ideas of CLP(BN) more for-
mally. For brevity, this section necessarily assumes prior
knowledge of first-order logic, model theory, and resolu-
tion.

First, we remark that CLP(BN) programs are logic pro-
grams, and thus inherit the well-known properties of logic
programs. We further interpret a CLP(BA) program as
defining a set of probability distributions over the models
of the underlying logic program. Any Skolem function sk
of variables X1, ..., X,,, has an associated CPT specifying
a probability distribution over the possible denotations of
sk(Xy,...,X,) given the values, or bindings, of Xq, ...,
X,,. The CPTs associated with a clause may be thought
of as a Bayes net, where each node is labeled by either a
variable or a term build from a Skolem function. Figure 2
illustrates this view using a clause that relates a registra-
tion’s grade to the course’s difficulty and to the student’s
intelligence. At times we will denote a CLP(BN) clause
by C/B, where C'is the logical portion and B is the prob-
abilistic portion. For a CLP(BN) program P, the logical
portion of P is simply the conjunction of the logical por-
tions of all the clauses in P.

grade(Reg, grade(Reg)):—
reg(Reg, Course, Student),
difficulty(Course, Dif),
intelligence(Student, Int).

grade(Reg)

Figure 2: Pictorial representation of a grade clause.

3.1 Detailed Syntax

The alphabet of CLP(BN) is the alphabet of logic pro-
grams. We shall take a set of functors and call these func-
tors Skolem functors; Skolem constants are simply Skolem
functors of arity 0. A Skolem term is a term whose primary
functor is a Skolem functor. We assume that Skolem terms
have been introduced into the program during a Skolemiza-
tion process to replace the existentially-quantified variables
in the program. It follows from the Skolemization process

31

that any Skolem functor sk appears in only one Skolem
term, which appears in only one clause, though that Skolem
term may have multiple occurrences in that one clause.
Where the Skolem functor sk has arity n, its Skolem term
has the form sk(Wi, ..., W,,), where Wy, ..., W, are dis-
tinct variables that also appear outside of any Skolem term
in the same clause.

A CLP(BN) program in canonical form is a set of clauses
of the form H < A/B. We call H the head of the clause.
H isaliteral and A is a (possibly empty) conjunction of lit-
erals. Together they form the logical portion of the clause,
C'. The probabilistic portion, B, is a (possibly empty) con-
junction of atoms of the form: {V = Sk with CPT}.
We shall name these atoms constraints. Within a constraint,
we refer to Sk as the Skolem term and C'PT as the condi-
tional probability table. We focus on discrete variables in
this paper. In this case, C PT may be an unbound variable
or a term or the form p(D, T, P). We refer to D as the
domain, T as the table, and P as the parent nodes.

A CLP(BN) constraint B; is well-formed if and only if:

1. all variables in B; appear in C;
2. Sk's functor is unique in the program; and,

3. there is at least one substitution ¢ such that C PTo =
p(Do,To, Po), and (a) Do is a ground list, all mem-
bers of the list are different, and no subterm of a term
in the list is a Skolem term; (b) Po is a ground list, all
members of the list are different, and all members of
the list are Skolem terms; and (c) T'o is a ground list,
all members of T'o- are numbers psuch that0 < p < 1,
and the size of T'o is a multiple of the size of Do.

If the probabilistic portion of a clause is empty, we also call
the clause a Prolog clause. According to this definition,
every Prolog program is a CLP(BN/) program.

3.2 Operational Semantics

A query for CLP(BN) is an ordinary Prolog query, which
is a conjunction of positive literals. In logic programming,
a query is answered by one or more proofs constructed
through resolution. At each resolution step, terms from two
different clauses may be unified. If both of the terms being
unified also participate in CPTs, or Bayes net constraints,
then the corresponding nodes in the Bayes net constraints
must be unified as illustrated in Figure 3. In this way we
construct a large Bayes net consisting of all the smaller
Bayes nets that have been unified during resolution.

A cycle may arise in the Bayes Net if we set a constraint
such that Y is a parent of X, and X is already an ancestor
of Y. In this case, when unifying Y to an argument of the
CPT constraint for X, X would be a sub-term of the CPT

constraint for Y: we thus can use the occur-check test to
guarantee the net is acyclic.

grade(Reg, grade(Reg)):~
reg(Reg, Course, Student),
difficulty(Course, Dif),
intelligence(Student, Int)

satisfaction(Reg’, sat(Reg")):~ . N
course(Reg’, Course’), Abi Grade’
professor(Course’, Prof’),

Resolve grade(Reg, grade(Reg))
from first clause with
grade(Reg’, Grade’) from second
clause. Note that the * symbol

is simply to rename all variables
when standardizing apart.

ability(Prof’, Abi),

grade(Reg’, Grade). satisfaction(Reg’)

satisfaction(Reg’, sat(Reg’)):~
course(Reg’, Course’),
professor(Course’, Prof’),
ability(Prof’, Abi%),
reg(Reg’, Course, Student),
difficulty(Course, Dif),
intelligence(Student, Int)

grade(Reg)
satisfaction(Reg’)

Figure 3: Resolution.

To be rigorous in our definition of the distribution defined
by a Bayes net constraint, let C;/B;, 1 < i < n, be the
clauses participating in the proof, where C; is the ordinary
logical portion of the clause and B; is the attached Bayes
net, in which each node is labeled by a term. Let 8 be the
answer substitution, that is, the composition of the most
general unifiers used in the proof. Note that during resolu-
tion a clause may be used more than once but its variables
always are renamed, or standardised apart from variables
used earlier. We take each such renamed clause used in the
proof to be a distinct member of {C;/B;|1 < i < n}. We
define the application of a substitution 8 to a Bayes net as
follows. For each node in the Bayes net, we apply 6 to the
label of that node to get a new label. If some possible val-
ues for that node (according to its CPT) are not instances
of that new label, then we marginalise away those values
from the CPT.

3.3 Model-theoretic Semantics

A CLP(BN) program denotes a probability distribution
over models. We begin by defining the probability distribu-
tion over ground Skolem terms that is specified by the prob-
abilistic portion of a CLP(BA) program. We then spec-
ify the probability distribution over models, consistent with
this probability distribution over ground Skolem terms, that
the full CLP(BN) program denotes.

A CLP(BN) program P defines a unique joint probability
distribution over ground Skolem terms as follows. Con-
sider each ground Skolem term to be a random variable
whose domain is a finite set of non-Skolem constants.* We
now specify a Bayes net BN whose variables are these
ground Skolem terms. Each ground Skolem term s is
an instance of exactly one Skolem term ¢ in the program
P. To see this recall that, from the definition of Skolem-

1This can be extended to a fi nite subset of the set of ground
terms not containing Skolem symbols (functors or constants). We
restrict ourselves to constants here merely to simplify the presen-
tation.

32

ization, any Skolem functor appears in only one term in
the program P, and this one term appears in only one
clause of P, though it my appear multiple times in that
clause. Also from the definition of Skolemization, ¢ has the
form sk(W1,...,W,), where sk is a Skolem functor and
Wi, ..., W, are distinct variables. Because s is a ground
instance of ¢, s = to for some substitution ¢ that grounds
t. Because t = sk(W1, ..., W,,) appears in only one clause,
t has exactly one associated (generalized) CPT, T', con-
ditional on W1y, ...,W,,. Let the parents of s in BN be
Wio, ..., W,o, and let the CPT be T'o. Note that for any
node in BA its parents are subterms of that node. It fol-
lows that the graph structure is acyclic and hence that BA
is a properly defined Bayes net, though possibly infinite.
Therefore BN uniquely defines a joint distribution over
ground Skolem terms; we take this to be the distribution
over ground Skolem terms defined by the program P.

The meaning of an ordinary logic program typically is
taken to be its least Herbrand model. Recall that the indi-
viduals in a Herbrand model are themselves ground terms,
and every ground term denotes itself. Because we wish to
consider cases where ground Skolem terms denote (non-
Skolem) constants, we instead consider Herbrand quotient
models [8]. In a Herbrand quotient model, the individuals
are equivalence classes of ground terms, and any ground
term denotes the equivalence class to which it belongs.
Then two ground terms are equal according to the model if
and only if they are in the same equivalence class. We take
the set of minimal Herbrand quotient models for P to be
those derived as follows.? Take the least Herbrand model of
the logical portion of P, and for each non-Skolem constant,
merge zero or more ground Skolem terms into an equiva-
lence class with that constant. This equivalence class is a
new individual, replacing the merged ground terms, and it
participates in exactly the relations that at least one of its
members participated in, in the same manner. It follows
that each resulting model also is a model of P. The set
of models that can be constructed in this way is the set S
of minimal Herbrand quotient models of P. Let D be any
probability distribution over S that is consistent with the
distribution over ground Skolem terms defined by P. By
consistent, we mean that for any ground Skolem term ¢ and
any constant ¢, the probability that ¢ = ¢ according to the
distribution defined by P is exactly the sum of the proba-
bilities according to D of the models in which ¢ = ¢. At
least one such distribution D exists, since S contains one
model for each possible combination of equivalences. We
take such (D, S) pairs to be the models of P.

2For brevity, we simply defi ne these minimal Herbrand quo-
tient models directly. In the full paper we show that it is suffi cient
to consider only Herbrand quotient models, rather than all logical
models. We then defi ne an ordering based on homomorphisms
between models and prove that what we are calling the minimal
models are indeed minimal with respect to this ordering.

3.4 Agreement Between Operational and
Model-theoretic Semantics

Following ordinary logic programming terminology, the
negation of a query is called the “goal,” and is a clause in
which every literal is negated. Given a program and a goal,
the CLP(BN) operational semantics will yield a derivation
of the empty clause if and only if every model (D, S) of
the CLP(BN) program falsifies the goal and hence sat-
isfies the query for some substitution to the variables in
the query. This follows from the soundness and complete-
ness of SLD-resolution. But in contrast to ordinary Pro-
log, the proof will be accompanied by a Bayes net whose
nodes are labeled by Skolem terms appearing in the query
or proof. The following theorem states that the answer to
any query of this attached Bayes net will agree with the
answer that would be obtained from the distribution D, or
in other words, from the distribution over ground Skolem
terms defined by the program P. Therefore the operational
and model-theoretic semantics of CLP(BN/) agree in a pre-
cise manner.

Theorem 1 For any CLP(BN) program P, any derivation
from that program, any grounding of the attached Bayes
net, and any query to this ground Bayes net, the answer to
the query is the same as if it were asked of the joint distri-
bution over ground Skolem terms defined by P.

Proof: Assume there exists some program P, some deriva-
tion from P and associated ground Bayes net B, and some
query Pr(q|E) such that the answer from B is not the same
as the answer from the full Bayes net BA/ defined by P.
For every node in B the parents and CPTs are the same as
for that same node in BA/. Therefore there must be some
path through which evidence flows to g in BN, such that
evidence cannot flow through that path to ¢ in B. But by
Lemma 2, below, this is not possible.

Lemma 2 Let B be any grounding of any Bayes net re-
turned with any derivation from a CLP(BN) program P.
For every query to B, the paths through which evidence
can flow are the same in B and in the full Bayes net B\
defined by P.

Proof: Suppose there exists a path through which evidence
can flow in BN but not in B. Consider the shortest such
path; call the query node ¢ and call the evidence node e.
The path must reach ¢ through either a parent of ¢ or a
child of ¢ in BA/. Consider both cases. Case 1: the path
goes through a parent p of ¢ in BA. Note that p is a parent
of ¢ in B as well. Whether evidence flows through p in a
linear or diverging connection in BA/, p cannot itself have

3For simplicity of presentation, we assume queries of the form
Pr(q|E) whereq isonevariablein the Bayes net and the evidence
E specifi esthe values of zero or more other variablesin the Bayes
net.

33

evidence—otherwise, evidence could not flow through p in
BN. Then the path from e to p is a shorter path through
which evidence flows in BN but not B, contradicting our
assumption of the shortest path. Case 2: the path from e to
q flows through some child ¢ of ¢ in BA/. Evidence must
flow through ¢ in either a linear or converging connection.
If a linear connection, then ¢ must not have evidence; oth-
erwise, evidence could not flow through ¢ to ¢ in a linear
connection. Then the path from e to ¢ is a shorter path
through which evidence flows in BA but not B, again con-
tradicting our assumption of the shortest path. Therefore,
evidence must flow through ¢ in a converging connection in
BN Hence either ¢ or one of its descendants in BA must
have evidence; call this additional evidence node n. Since
n has evidence in the query, it must appear in B. Therefore
its parents appear in B, and their parents, up to ¢q. Because
evidence can reach ¢ from e in B (otherwise, we contradict
our shortest path assumption again), and a descendent of
¢ in B (possibly c itself) has evidence, evidence can flow
through c to ¢ in B.

4 Non-determinism and Aggregates

CLP(BN) can deal with aggregates with no extra machin-
ery. As an example, in Fig 1 the rating of a course depends
on the satisfaction of all students who registered. Assum-
ing, for simplicity, that the rating is a deterministic function
of the average satisfaction, we must average the satisfaction
Sat for all students who have a registration Rin course C.
The next clause shows the corresponding program:

rating(C, Rat) :-
setof(S,R™(registration(R,C),
satisfaction(R,S)), Sats),
average(Sats, CPT),
{Rat = rating(C) with CPT}.

The call to set of obtains the satisfactions of all students
registered in the course. The Prolog procedure aver age
computes the conditional probability distribution of the
course’s rating as a function of student satisfaction. In
our implementation, if the number students of small, the
CPT will have manageable size. If the number of students
grows large, using a single CPT is impractical. In this case
aver age splits the CPT into a set of binary CPTs, which
are merged together in a binary tree. The process, usually
known as divorcing, is thus implemented automatically by
the program.

5 Recursion

Recursion provides an elegant framework for encoding se-
quences of events. We next show a simple example of how
to encode Hidden Markov Models.

The Brukian and Arinian have lived in a state of conflict for

many years. The Brukian want to send their best spy, James
Bound, to spy on the Arinian headquarters. The Arinian

watch commander is one of two men: Manissian is careful,
but Lufy is a bit lax. The Brukian only know that if one of
them was on watch today, it is likely they will be on watch
tomorrow. The next program represents the information:

caught(0,Caught) :- I,

{Caught = c(0) with p([t.f],[0.0,1.01,[D}.

caught(l,Caught) :-
11 is I-1, caught(ll, CaughtO),
watch(l, Police),
caught(l,CaughtO, Police, Caught).

watch(0, P) - I,
{P = p(0) with p([m,1],[0.5,0.5],[1}-
watch(l, P) :-
11 is I-1, watch(ll, PO),
{P = p(l) with
p([m,1],[0.8,0.2,0.8,0.2,0.8],[POD)}-

caught(l, Co, P, CO) :-
{C = c(l) with
p([t,f],[1.0,1.0,0.05,0.001,
0.0,0.0,0.95,0.099],[CO,PD}-

The variables c(1) give the probability James Bound was
caught at or beforetime | ,and p(1) gives the probabilities
for who is watching at time | .

6 Relationship to PRMs

Clearly from the examples in Section 2, the CLP(BN) rep-
resentation owes an intellectual debt to PRMs. As the
reader might suspect at this point, any PRM can be rep-
resented as a CLP(BN) program. To show this, we next
present an algorithm to convert any PRM into a CLP(BN)
program. Because of space limits, we necessarily as-
sume the reader already is familiar with the terminology
of PRMs.

We begin by representing the skeleton of the PRM, i.e., the
database itself with (possibly) missing values. For each re-
lational table R of n fields, one field of which is the key,
we define n — 1 binary predicates rs, ..., 7,. Without loss
of generality, we assume the first field is the key. For each
tuple or record (t1, ..., t,,} our CLP(BN") program will con-
tain the fact r;(¢1,;) forall 2 < i < n. If ¢; is a missing
value in the database, then the corresponding fact in the
CLP(BN) program is r;(t1, sk;), where sk; is a unique
constant that appears nowhere else in the CLP(BN) pro-
gram; in other words, sk; is a Skolem constant. It remains
to represent the Bayes net structure over this skeleton and
the CPTs for this structure.

For each field in the database, we construct a clause that
represents the parents and the CPT for that field within the
PRM. The head (consequent) of the clause has the form
r;(Key, Field), where the field is the i*” field of relational
table R, and Key and F'ield are variables. The body of
the clause is constructed in three stages, discussed in the
following three paragraphs: the relational stage, the aggre-

34

gation stage, and the CPT stage.

The relational stage involves generating a translation into
logic of each slot-chain leading to a parent of the given
field within the PRM. Recall that each step in a slot chain
takes us from the key field of a relational table R to another
field, 4, in that table, or vice-versa. Each such step is trans-
lated simply to the literal 7;(X,Y"), where X is a variable
that represents the key of R and Y is a variable that repre-
sents field ¢ of R, regardless of directionality. If the next
step in the slot chain uses field 7 of table R, then we re-use
the variable Y’; if the next step instead uses the key of ta-
ble R then we instead re-use variable X. Suppose field i is
the foreign key of another table .S, and the slot chain next
takes us to field 5 of S. Then the slot chain is translated
asr;(X,Y),s;(Y, Z). We can use the same translation to
move from field j of S to the key of R, although we would
re-order the literals for efficiency. For example, suppose
we are given a student key StudentKey and want to follow
the slot chain through registration and course to find the
teaching abilities of the student’s professor(s). Assuming
that the course key is the second field in the registration
table and the student key is the third field, while the profes-
sor key is the second field of the course table, and ability
is the second field of the professor table, the translation is
as below. Note that we use the first literal to take us from
StudentKey to RegKey, while we use the second literal to
take us from RegKey to CourseKey.

registration, (RegKey, StudentKey),
registration, (RegKey, CourseKey),
coursex (CourseKey, ProfKey),
professor, (ProfKey, Ability)

In the preceding example, the variable Ability may take sev-
eral different bindings. If this variable is a parent of a field,
then the PRM will specify an aggregation function over this
variable, such as mean. Any such aggregation function can
be encoded in a CLP(BN) program by a predicate defini-
tion, as in ordinary logic programming, i.e. in Prolog. We
can collect all bindings for Ability into a list using the Pro-
log built-in function findall or bagof, and then aggregate
this list using the appropriate aggregation function such as
mean. For the preceding example, we would use the fol-
lowing pair of literals to bind the variable X to the mean of
the abilities of the student’s professors.

findall(Ability, (registration,(RegKey, CourseKey),
course,(CourseKey, ProfKey),
professor, (ProfKey, Ability), L),
mean(L, X)

At this point, we have constructed a clause body that will
compute binding for all the variables that correspond to
parents of the field in question. It remains only to add a
literal that encodes the CPT for this field given these par-
ents.

The close link between PRMs and CLP(BN) raises the
natural question, “given that we already have PRMs, of
what utility is the CLP(BN/) representation?” First, while
there has been much work on incorporating probabilities
into first-order logic, these representations have been far
removed from the approach taken in PRMs. Hence while
there is great interest in the relationship between PRMs and
these various probabilistic logics, this relationship is diffi-
cult to characterise. Because CLP(BN)s are closely related
to PRMs, they may help us better understand the relation-
ship between PRMs and various probabilistic logics. Sec-
ond, because CLP(BN) programs are an extension of logic
programs, they permit recursion, non-determinism (a pred-
icate may be defined by multiple clauses), and the use of
function symbols, e.g., to construct data structures such as
lists or trees. This expressivity may be useful for a variety
of probabilistic applications. Of course we must note that
the uses of recursion and recursive data structures are not
unlimited. CLP(BN)s disallow resolution steps that intro-
duce a cycle into a Bayes net constraint. Third, and most
importantly from the authors’ viewpoint, the following sec-
tion of the paper demonstrates that the CLP(BN) represen-
tation is amenable to learning using techniques from induc-
tive logic programming (ILP). Hence CLP(BA/)s provides
a way of studying the incorporation of probabilistic meth-
ods into ILP, and they may give insight into novel learning
algorithms for PRMs. The methods of learning in PRMs
[4] are based upon Bayes net structure learning algorithms
and hence are very different from ILP algorithms. The
CLP(BN) representation provides a bridge through which
useful ideas from ILP might be transferred to PRMs.

7 Learningin CLP(BN) usingILP

This section describes the results of learning CLP(BN) pro-
grams using the ILP system ALEPH [11]. Other ILP sys-
tems could be applied in a similar manner.

7.1 The School Database

We have so far used the school database as a way to explain
some hasic concepts in CLP(BN), relating them to PRMs.
The school database also provides a good example of how
to learn CLP(BN) programs.

First, we use an interpreter to to generate a sample from
the CLP(BN) program. The smallest database has 16 pro-
fessors, 32 courses, 256 students and 882 registrations;
the numbers roughly double in each successively larger
database. We have no missing data. Can we, given this
sample, relearn the original CLP(BA/) program?

From the ILP point of view, this is an instance of multi-
predicate learning. To simplify the problem we assume
each predicate would be defined by a single clause. We use
the Bayesian Information Criterion (BIC) score to compare

35

alternative clauses for the same predicate. Because ALEPH
learns clauses independently, cycles may appear in the re-
sulting CLP(BN) program. We therefore augment ALEPH
with a post-processing algorithm that simplifies clauses un-
til no cycles remain; the algorithm is greedy, choosing at
each step the simplification that will least affect the BIC
score of the entire program.

The following is one of the learned CLP(BN) clauses; to
conserve space, we simply write “CPT” instead of showing
the large table.

registration_grade(A,B) :-
registration(A,C,D), course(C,E),
course_difficulty(C,F), student_intelligence(D,G),
{F = registration_grade(A) with p([a,b,c,d],CPT,[F,G]}.

Figure 4 illustrates, as a PRM-style graph, the full set of
clauses learned for the largest of the databases before sim-
plification; this would be the best network according to
BIC, if not for the cycles. Figure 5 plots various natural
measures of the match between the learned program after
cycles have been removed and the original program, as the
size of the database increases. By the time we get to the
largest of the databases, the only measures of match that
do not have a perfect score are those that deal with the di-
rections of arcs.

Professor

Teaching-Ability, Student

Popularity

Intelligence

b N
Ralxking

Regstralon
Student ‘
isfaction

Srade

Course

Instructor

Rating

|

Figure 4: Pictorial representation of the CLP(BA) clauses
learned from the largest schools database, before removal
of cycles.

7.2 Metabolic Activity

Our second application is based on data provided for the
2001 KDD Cup. We use the KDDO01 Task 2 training data,
consisting of 4346 entries on the activities of 862 genes [3].
We chose to study this problem because it is a real-world
relational problem with much missing data. We concen-
trate on the two-class problem of predicting whether a gene
codes for metabolism, because it illustrates a strength of
learning a CLP(BA/) program rather than an ordinary logic
program.

0.95 |

09 P

Fraction of Arcs/Links/Markov Relations

0.65

15 20 25 30 35 40 45 50 55 60 65
size of data-base

fraction of orig arcs recovered ——

fraction of learnt arcs right --------

fraction of orig links recovered -
fraction of learnt links right =
-
°

fraction of orig MR recovered --a--
fraction of learnt MR right ---e---

Figure 5: Graph of results of CLP(BN)-learning on the
three sizes of schools databases. Links are arcs with direc-
tion ignored. A Markov relation (MR) holds between two
nodes if one is in the Markov blanket of the other.

1

08
0.6
0.4
0.2 ("

True Positive Rate

0
0 02 04 06 08 1
False Positive Rate

Figure 6: ROC Curve for Metabolism Application

A theory predicts metabolism if we have at least a proof
saying that the probability for metabolism is above a cer-
tain value T™, and no proof saying that the probability
for metabolism is below a certain T,,,. We allow T to
range from 0.3 to 0.9. Because we obtain probabilities, it
is straightforward to generate an ROC curve showing how
we can gain a higher true positive prediction rate if we
are willing to live with a higher false positive prediction
rate. This is an advantage of learning a CLP(BN/) program
rather than an ordinary logic program. The ROC curve is
shown in Figure 6. The performance of the ordinary logic
program learned by ALEPH is a single point, lying slightly
(not significantly) below the curve shown.

8 Conclusion

This paper has defined CLP(BN), an extension of logic
programming that defines a joint probability distribu-
tion over the denotations of ground Skolem terms. Be-
cause such terms are used in logic programming in place
of existentially-quantified variables, or missing values,
CLP(BN) is most closely related to PRMs. The full pa-
per also gives a detailed discussion of the relationship of
CLP(BN) to other probabilistic logics, including the work
of Breese [2], Haddawy and Ngo [5], Sato [10], Poole [9],
Koller and Pfeffer [7], Angelopolous [1], and Kersting and

36

DeRaedt [6]. To summarise that discussion in a sentence,
CLP(BN) does not replicate any of these approaches be-
cause they define probability distributions over sets of ob-
jects other than the set of ground Skolem terms.

CLP(BN) is a natural extension of logic programming that
subsumes PRMs. While this does not imply that CLP(BN)
is preferable to PRMs, its distinctions from PRMs follow
from properties of logic programming. These distinctions
include the combination of function symbols and recursion,
non-determinism (a predicate may be defined by multiple
clauses), and the applicability of ILP techniques for learn-
ing CLP(BN) programs. Our primary direction for further
work is in developing improved ILP algorithms for learning
CLP(BN) programs.

References

[1] N. Angelopoulos. Probabilistic Finite Domains. PhD
thesis, Dept of CS, City University, London, 2001.

[2] J. S. Breese. Construction of belief and decision net-
works. Computational Intelligence, 8(4):624-647,
1992.

[3] J. Cheng, C. Hatzis, H. Hayashi, M.-A. Krogel,
S. Morishita, D. Page, and J. Sese. KDD Cup 2001
report. SIGKDD Explorations, 3(2):47-64, 2002.

[4] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer.
Learning probabilistic relational models. In S. Dze-
roski and N. Lavrac, editors, Relational Data Mining,
chapter 13, pages 307-335. Springer, Berlin, 2001.

[5] P. Haddawy. An overview of some recent develop-
ments in Bayesian problem solving techniques. Al
Magazine, Spring 1999.

[6] K. Kersting and L. De Raedt. Bayesian logic pro-
grams. Technical Report 151, Institute for Com-
puter Science, University of Freiburg, Germany, April
2001.

[7] D. Koller and A. Pfeffer. Learning probabilities for
noisy first-order rules. In 1JCAI-97, Nagoya, Japan,
August 1997.

[8] C. D. Page. Anti-unification in constraint logics. PhD
thesis, University of Illinois at Urbana-Champaign,
1993. UIUCDCS-R-93-1820.

[9] D. Poole. Probabilistic Horn abduction and Bayesian
networks. Artificial Intelligence, 64(1):81-129, 1993.

[10] T. Sato and Y. Kameya. Parameter learning of logic
programs for symbolic-statistical modeling. Journal
of Artificial Intelligence Research, 15:391-454, 2001.

[11] A. Srinivasan. The Aleph Manual, 2001.

Appears in the Proc. of the Intl. Conf. on Inductive Logic Programming, July 2002, Sydney, Australia.

An Empirical Evaluation of Bagging in Inductive
Logic Programming

Inés de Castro Dutra, David Page, Vitor Santos Costa and Jude Shavlik

Department of Biostatistics and Medical Informatics and
Department of Computer Sciences,
University of Wisconsin-Madison, USA

Abstract. Ensembles have proven useful for a variety of applications,
with a variety of machine learning approaches. While Quinlan has ap-
plied boosting to FOIL, the widely-used approach of bagging has never
been employed in ILP. Bagging has the advantage over boosting that the
different members of the ensemble can be learned and used in parallel.
This advantage is especially important for ILP where run-times often
are high. We evaluate bagging on three different application domains us-
ing the complete-search ILP system, Aleph. We contrast bagging with
an approach where we take advantage of the non-determinism in ILP
search, by simply allowing Aleph to run multiple times, each time choos-
ing “seed” examples at random.

1 Introduction

Inductive Logic Programming (ILP) systems have been quite successful in ex-
tracting comprehensible models of relational data. Indeed, for over a decade,
ILP systems have been used to construct predictive models for data drawn from
diverse domains. These include the sciences [16], engineering [10], language pro-
cessing [33], environment monitoring [11], and software analysis [5]. In a nutshell,
ILP systems repeatedly examine candidate clauses (the “search space”) to find
good rules. Ideally, the search will stop when the rules cover nearly all positive
examples with only a few negative examples being covered.

Unfortunately, the search space can grow very quickly in ILP applications.
Several techniques have therefore been proposed to improve search efficiency.
Such techniques include improving computation times at individual nodes [4,
26], better representations of the search [3], sampling the search space [27,28,
32], and parallelism [8,13,19]. Parallelism can be obtained from very different
alternative approaches, such as dividing the search tree, dividing the examples,
or even through performing cross-validation in parallel [31].

An intriguing alternative approach that can lead to better accuracy whilst
taking advantage of parallelism is the use of ensembles. Ensembles are classifiers

37

that combine the predictions of multiple classifiers to produce a single predic-
tion [9]. To some extent, an induced theory is an ensemble of clauses. We would
like to go one step further and combine different theories to form a single en-
semble. The main advantage is that the ensemble is often more accurate than
its individual components. Moreover, we can use parallelism both in generating
and in actually evaluating the ensemble.

Several methods have been presented for ensemble generation. In this work,
we concentrate on a popular method that is known to generally create a more
accurate ensemble than individual components, bagging [6]. Bagging works by
training each classifier on a random sample from the training set. In contrast
to other well-known techniques for ensemble generation, such as boosting [12],
bagging has the important advantage that it is effective on “unstable learning
algorithms” [7], where small variations in parameters can cause huge variations
in the learned theories. This is the case with ILP. A second advantage is that it
can be implemented in parallel trivially.

We contrast bagging with a method we name different seeds, where we try to
take advantage of the non-determinism in seed-based search by simply combin-
ing different theories obtained from experimenting with different seed examples,
while always using the original training set. This method is also easily parallelis-
able.

Several researchers have been interested in the use of ensemble-based tech-
niques for Inductive Logic Programming. To our knowledge, the original work
in this area is Quinlan’s work on the use of boosting in FOIL [25]. His results
suggested that boosting could be beneficial for first-order induction. More re-
cently, Hoche proposed confidence-rated boosting for ILP with good results [15].
Zemke recently proposed bagging as a method for combining ILP classifiers with
other classifiers [34]. The contributions of our paper are to experimentally eval-
uate bagging on three particularly challenging ILP applications, and to compare
bagging with the approach of different seeds.

The paper is organised as follows. First, we present in more detail ensemble
techniques, focusing on bagging. Next, we discuss our experimental setup and
the applications used in our study. We then discuss how ensembles perform on
our benchmarks. Last, we offer our conclusions and suggest future work.

2 Ensembles

Ensembles aim at improving accuracy through combining the predictions of mul-
tiple classifiers in order to obtain a single classifier. Experience has shown that
ensemble-based techniques such as bagging and boosting can be very effective
for decision trees and neural networks [24,21]. On the other hand, there has been
less empirical testing with classifiers as logic programs.

Figure 1 shows the structure of an ensemble of logic programs. This structure
can also be used for classifiers other than logic programs. In the figure, each pro-
gram Py, Ps, ..., Py is trained using a set of training instances. At classification
time each program receives the same input and executes on it independently.

38

The outputs of each program are then combined and an output classification
reached. Figure 1 illustrates that in order to obtain good classifiers one must
address three different problems:

T Combined Classifier

Combine Individual

Classifiers

m—— -

T Input

Fig. 1. An Ensemble of Classifiers.

— how to generate the individual programs;
— how many individual programs to generate;
— how to combine their outputs.

Regarding the first problem, research has demonstrated that a good ensem-
ble is one where the individual classifiers are accurate and make their errors in
different parts of the instance space [17,22]. Obviously, the output of several
classifiers is useful only if there is disagreement between them. Hansen and Sala-
mon [14] proved that if the average error rate is below 50% and if the component
classifiers are independent, the combined error rate can be reduced to 0 as the
number of classifiers goes to infinity.

Methods for creating the individual classifiers therefore focus on producing
classifiers with some degree of diversity. In the present work, we follow two ap-
proaches to producing such classifiers, described in the two following paragraphs.

One interesting aspect of Inductive Logic Programming is that the same
learning algorithm may lead to quite different theories. More specifically, theories
generated by seed-based ILP algorithms may heavily depend on the choice of the
seed example. A natural approach to generate ensembles is to take advantage
of this property of ILP systems, and combine the rather different theories that
were generated just by choosing different sequences of seed examples. We call
this approach different seeds.

We contrast the random choice of seeds with bagging. Bagging classifiers are
obtained by training each classifier on a random sample of the training set. Each
classifier’s training set is generated by randomly, uniformly drawing K examples
with replacement, where K is the size of the original training set. Thus, many
of the original examples may be repeated in the classifier’s training set.

39

Table 1. Example of Bagging Training Sets.

[Training Sets| Examples Included ||

1 6 2 6 3 2 5
2 1 4 6 5 1 6
3 1 3 3 5 2 3
4 6 4 1 4 3 2
5 6 4 2 3 2 3
6 5 5 2 1 5 4

Table 1 shows six training sets randomly generated from a set with examples
numbered from 1 to 6. We can notice that each bagging training set tends to
focus on different examples. The first training set will have two instances of the
second and sixth examples, while having no instances of the second and fourth
example. The second example will have instead two occurrences of the first and
sixth example, while missing the second and third example. In general, accuracy
for each individual bagging classifier is likely to be lower than for a classifier
trained on the original data. However, when combined, bagging classifiers can
produce accuracies higher than that of a single classifier, because the diversity
among these classifiers generally compensates for the increase in error rate of
any individual classifier.

Therefore, the promise of bagging, and of ensembles in general, is that when
classifiers are combined the accuracy will be higher than the accuracy for the
original classifier. In our case, one particularly interesting result for bagging
is that it is effective on “unstable” learning algorithms, that is, on algorithms
where a small change in the training set may lead to large changes in prediction.
We focus on bagging in this work because it is considered to be less vulnerable
to noise than boosting algorithms [12] and it can take advantage of parallel
execution.

The second issue we had to address was the choice of how many individual
classifiers to combine. Previous research has shown that most of the reduction in
error for ensemble methods occurs with the first few additional classifiers [14].
Larger ensemble sizes have been proposed for decision trees, where gains have
been seen up to 25 classifiers. In our experiments we decided to extend our
analysis up to 100 classifiers.

The last problem concerns the combination algorithm. An effective combining
scheme is often to simply average the predictions of the network [1,7,17,18]. An
alternate approach relies on a pre-defined voting threshold. If the number of
theories that cover an example is above or equal to the threshold, we say that
the example is positive, otherwise the example is negative. Thresholds may range
from 1 to the ensemble size. A voting threshold of 1 corresponds to a classifier
that is the disjunction of all theories. A voting threshold equal to the ensemble
size corresponds to a classifier that is the conjunction of all theories.

40

3 Methodology

We use the ILP system Aleph [29] in our study. Aleph assumes (a) background
knowledge B in the form of a Prolog program; (b) some language specification
L describing the hypotheses; (c) an optional set of constraints I on acceptable
hypotheses; and (d) a finite set of examples E. E is the union of a nonempty set
of “positive” examples ET, such that none of the Et are derivable from B, and
a set of “negative”examples E~.

Aleph tries to find one hypothesis H in £, such that: (1) H respects the
constraints I; (2) The E* are derivable from B, H, and (3) The E~ are not
derivable from B, H. By default, Aleph uses a simple greedy set cover procedure
that constructs such a hypothesis one clause at a time. In the search for any
single clause, Aleph selects the first uncovered positive example as the seed
example, saturates this example, and performs an admissible search over the
space of clauses that subsume this saturation, subject to a user-specified clause
length bound.

We have elected to perform a detailed study on three datasets, corresponding
to three non-trivial ILP applications. For each application we ran Aleph with
random re-ordering of the positive examples and hence of seeds. We call this ex-
periment different seeds. Next, we created bagged training sets from the original
set, and called Aleph once for each training set. We call this experiment bagging.
The number of runs of different seeds is the same as the number of bags.

Aleph allows the user to set a number of parameters. We always set the
following parameters as follows:

— search strategy: search. We set it to be breadth-first search, bf. This enu-
merates shorter clauses before longer ones. At a given clauselength, clauses
are re-ordered based on their evaluation. This is the Aleph default strategy
that favours shorter clauses to avoid the complexity of refining larger clauses.

— evaluation function: evalfn. We set this to be coverage. Clause utility is
measured as P— N, with P and N being the number of positive and negative
examples covered by the clause, respectively.

— chaining of variables: i. This Aleph parameter controls variable chaining
during saturation: chaining depth of a variable that appears for the first
time in a literal £;, is 1 plus the maximum chaining depth of all variables
that appear in previous literals £;,j < ¢. We used a value of 5 instead of the
default value of 2 in order to obtain more complex relations between literals
in a clause.

— max number of nodes allowed: maxnodes. This corresponds to the number
of clauses in the search space. We set this to be 100,000.

— maximum number of literals in a clause: maxclauselength. This was chosen
to be the largest clause length that produced run times smaller than 1 hour
on Intel 700 MHz machines, running Linux Red Hat 6.2. For our applications
this value was either 4 or 5.

For each application, we ran experiments with different lower bounds on the
minimum accuracy of an acceptable clause (minacc). We chose the values of 0.7,

41

0.9 and 1.0. In order to keep running times feasible, we first ran our datasets
at least 5 times with the three different minaccs, and also with clause length
varying from 4 to 10. We then chose the parameters that allowed Aleph to run
at most for one hour (on Intel 700 MHz machines). It happened that for all
minaccs, the clause length that produced runtimes less than or equal to one
hour was the same, though it varied from one application to another. For each
application we thus will vary our minacc settings among 0.7, 0.9 and 1.0, and
we use the appropriate maxclauselength.

Next, we organise our discussion of methodology into (a) experimentation
and (b) evaluation.

Experimentation. Our experimental methodology employs five-fold cross-va-
lidation. For each fold, we consider ensembles with size varying from 1 to 100.
The minacc parameter used to generate the component theories in an ensemble,
and the voting threshold used for the ensembles, are tunable parameters. These
parameters are tuned within each fold, using only the training data for that
fold. Moreover, rather than holding out a single tuning set from the training
data for a fold, we perform 4-fold tuning within the training set. The parameter
combination that yields the highest accuracy during this “inner” 4-fold cross-
validation on the training set is then used on the entire training set for that fold.
The resulting theory is then tested on the test set for that fold. The process is
repeated for each of the five folds, and the results are merged in the standard
way for cross-validation.

Next, we present the details of the experimental setup, starting with tun-
ing. As explained, our goal in the tuning phase is to estimate what is the best
parameter setting (minacc, voting threshold) for the ensembles, in order to use
them later during the training/test phase. Tuning proceeds in two steps. First,
we repeatedly call Aleph to generate all the theories we need to construct the
different ensembles. Because the ILP runs are time-consuming, we do not repeat
the ILP runs themselves to learn entirely new theories for each different ensem-
ble size. Rather, for each tuning fold and minacc parameter, we initially learn
100 theories using different seeds methodology and 100 theories using bagging.
Then, for either ensemble approach, and for each ensemble size s between 1 and
99 we randomly select s different theories from the 100. We next use these theo-
ries to generate ensembles, and evaluate the results. Because our results may be
distorted by a particularly poor or good choice of these theories, we repeat this
selection process 30 times and average the results.

Tuning thus requires 12,000 theories per application: one theory for bagging
plus one theory for different seeds, times 5 test set folds, times 4 tuning folds,
times 3 minacc values, times the 100 different theories we create for producing
ensembles.

Once the 12,000 theories are generated, two tables are produced. The first
one, minaccs_for_rocs, is used to calculate the ROC curves and contains the best
minacc for each ensemble size and for each voting threshold. The second one,
best_thresholds is used to obtain the accuracies and contains the best combination

42

of minacc and voting threshold for each ensemble size. This second table is a
subset of minaccs_for_rocs.

We next move to the 5-fold cross-validation by doing a training/test per fold,
per each minacc. First, we produce 600 theories per fold: one for bagging plus
one for different seeds, times 3 minaccs, times the 100 different theories used to
create ensembles. We are now ready to evaluate the ensembles.

Evaluation. For the evaluation phase (b), we used two techniques to evaluate
the quality of the ensembles. First, we studied how average accuracy varies with
ensemble size. We present accuracy as the average between accuracy on the
positive examples and accuracy on the negative examples.

Distribution without Disease - l
Distribution with Disease -------

Criterion Value

‘TN A TRy

Probability Density For Test Result

SFN PP

Test Result

Fig. 2. Example of Probability Density Functions for Two Populations: with Disease,
without Disease.

Second, we studied Receiver Operating Characteristic (ROC) curves for the
ensembles. Provost and Fawcett [23] have shown how ROC curve analysis [20, 35]
can be used to assess classifier quality. When we consider the results of a partic-
ular test in two populations, say positive and negative examples, we will rarely
observe a perfect separation between the two groups. Indeed, the distribution
of the test results can overlap, as shown in Figure 2. For every possible cut-off
point or criterion value we select to discriminate between two populations, there
will be some cases with the classifier correctly reporting positive examples to
be positive (TP = True Positive fraction), but some cases incorrectly reported
negative (FFN = False Negative fraction). On the other hand, some negative
examples will be correctly classified as negative (I'N = True Negative fraction),
but some negative examples will be classified as positive (F'P = False Positive
fraction).

In an ROC curve the true positive rate (sensitivity, or TPT_L%) is plotted
against the false positive rate (100-specificity, or zpry) for different cut-off
points. Each point on the ROC plot represents a sensitivity/specificity pair cor-
responding to a particular decision threshold. A test with perfect discrimination
(no overlap in the two distributions) has a ROC plot that passes through the

43

upper left corner (100% sensitivity, 100% specificity). Therefore the closer the
ROC plot is to the upper left corner, the higher the overall accuracy of the
test [35].

When we have many ROC curves to be analysed, we can look instead to
the area under those curves. The value for the area under the ROC curve can
be interpreted as follows: an area of 0.84, for example, means that a randomly
selected individual from the positive group has a test value larger than that for
a randomly chosen individual from the negative group 84% of the time. When
the variable under study cannot distinguish between the two groups, i.e. where
there is no difference between the two distributions, the area will be equal to 0.5
(as is the case when the ROC curve coincides with the diagonal). When there is
a perfect separation of the values of the two groups, i.e. there is no overlapping
of the distributions, the area under the ROC curve equals 1 (the ROC curve will
reach the upper left corner of the plot).

We wish to test the effectiveness of different sizes of ensembles, from 1 to 99.
Again, we do not repeat the ILP runs themselves to learn entirely new theories for
each different ensemble size. Rather, we use the theories from the previous step.
Because our results may be distorted by a particularly poor or good choice of
these theories, we repeat this selection process 30 times and average the results.

Accuracies across the folds are obtained by averaging the sum of all positives
and negatives for every fold. Areas across the folds are obtained by simply av-
eraging areas computed for each ensemble size. ROC curves across the folds are
obtained by averaging the rates of positives and negatives of each fold.

All experiments were performed using Condor, a tool for managing heteroge-
neous resources developed by the Condor Team at the UW-Madison [2]. Without
the utilisation of such a tool, our experiments would have taken years to be con-
cluded. Our jobs occupied about 53,380 hours of CPU, with an average peak of
400 jobs running simultaneously on Intel/Linux and Sun4u/Solaris machines.

3.1 Benchmark Datasets

Our benchmark set is composed of three datasets that correspond to three non-
trivial ILP applications. We next describe the characteristics of each dataset
with its associated ILP application, and present a dataset summary table.

Carcinogenesis. Our first application concerns the prediction of carcinogenic-
ity test outcomes on rodents [30]. This application has a number of attractive
features: it is an important practical problem; the background knowledge consists
of large numbers of non-determinate predicate definitions; experience suggests
that a fairly large search space needs to be examined to obtain a good clause.

Smuggling. Our second dataset concerns data on smuggling of some materials.
The key element of our data is a set of smuggling events. Different events may be
related in a variety of ways. They may share a common location, they may involve
the same materials, or the same person may participate. Detailed data on people,

44

locations, organisations, and occupations is available. The actual database has
over 40 relational tables. The number of tuples in a relational table vary from
800 to as little as 2 or 3 elements.

The ILP system had to learn which events were related. We were provided
with a set of related examples that we can use as positive examples. We can
assume all other events are unrelated and therefore compose a set of negative
examples. We assume related is comutative. Therefore we changed Aleph to
assume related(B,A) if related(A,B) was proven, and vice-versa.

The smuggling problem is thus quite challenging in that it is a heavily re-
lational learning problem over a large number of relations, whereas most tradi-
tional ILP applications usually require a small number of relations.

Protein. Our last dataset consists of a database of genes and features of the
genes or of the proteins for which they code, together with information about
which proteins interact with one another and correlations among gene expression
patterns. This dataset is taken from the function prediction task of KDD Cup
2001. While the KDD Cup task involved 14 different protein functions, our
learning task focuses on the challenging function of “metabolism”: predicting
which genes code for proteins involved in metabolism. This is not a trivial task
for our ILP system.

Table 2. Datasets Characteristics.

I [Dataset Sizes||[Max Clause Length]]

Carcinogenesis|| 182+/148- 4
Smuggling 143+ /517- 5
Protein 172+/690- 5

Table 2 summarises the main characteristics of each application. The second
column corresponds to the size of the full datasets, where P+/N- represents num-
ber of positive examples and number of negative examples. Bags are created by
randomly picking elements, with replacement, from the full dataset. Therefore
the number of positives or negatives of each bag are not the same as of the full
dataset used for different seeds, although the total size is the same. The second
column indicates the clause length used for each dataset. The test sets for each
5-fold cross-validation experiment is obtained by a block distribution of the full
dataset. For example, application Carcinogenesis will have 5 positive test sets of
sizes: 36, 36, 36, 36 and 38. These test sets are not used during the tuning phase.

4 Results

This section presents our results and analyses the performance of each appli-
cation. For each application we show the average accuracy for positives and

45

negatives, and the area under ROC curves built from 1 to 25 ensemble sizes.
The results from 26 to 99 are essentially horizontal lines and are not shown. We
report results for different seeds and bagging. We also show the ROC curve for
an ensemble size of 25.

The accuracies presented in the graphs are averaged across all folds, and
for each ensemble size, a different voting threshold and minacc are used. This
combination of voting threshold and minacc is the one that produced the best
accuracy during the tuning phase. For clarity’s sake, these parameter values are
not shown in the curves.

The areas under the ROC curves were computed by (1) computing an ROC
curve, per fold, for each ensemble size using the theories learned for the best pair

<minace, voting threshold>, (2) computing the area under each ROC curve, and
(3) averaging the areas for each ensemble size across the folds.

Figure 3 shows the average accuracies for the three applications, for different
seeds and bagging, when varying the ensemble sizes. Figure 4 shows the areas
under the ROC curves, averaged across five folds, for the three applications,
when varying the ensemble sizes. Figure 5 shows ROC curves at ensemble size
25 for every application.

The results show that ensembles do provide an improvement both in accura-
cies and in ROC areas. Most of the improvement is obtained for smaller ensemble
sizes, up to 5 or 10 elements. Performance does not seem to benefit much from
using larger sizes.

The best results were obtained in the smuggling application, with bagging and
different seeds obtaining similar performance. The most irregular application is
carcinogenesis. We discuss the individual applications in more detail in the next
sections.

4.1 Carcinogenesis

Single-theory accuracy results for carcinogenesis are not very good. On aver-
age, accuracy for a single theory is around 60% for different seeds and 59% for
bagging. Our results show that ensembles can improve accuracy to around 64%.
Unfortunately, our results also show huge variations, as we discuss next.

Figure 3(a) shows the average among the accuracy curves for the five folds.
At first, the curves show that both bagging and different seeds obtain significant
improvements. As ensemble size grows, different seeds tends to obtain better
results, whereas bagging on average tends to achieve performance closer to the
single-theory case. Both curves show a number of peaks.

The maximum average accuracy for different seeds is 64.5%, which represents
a significant improvement over the single-theory accuracy. Studying different
seeds in more detail, we found the system tends to be pretty reasonable at
classifying positive examples. It achieves a maximum of 78.7% acceptance rate
for different seeds, at ensemble size 31. It does not perform so well at rejecting
negative examples: the best result is a minimum probability of 48.3% of rejecting
a negative example, at ensemble size 12.

46

Average Accuracies

Average Accuracies

100
95
90
85
80
75
70

50

100
95
90
85
80
75
70
65
60
55
50

(a) Carcinogenesis

T T

Ensemble Size

5 10 15 20 25
Ensemble Size
(c) Protein
aptbelytts TETTITERTT
5 10 15 20 25

100
wn
D
-
(5}
[+]
i
=
(5]
[¥)
<«
§n 70
= 65
> 60
<
55
50

(b) Smuggling

5 10 15 20 25
Ensemble Size

different seeds —e—
bagging ----4----

Fig. 3. Average Accuracies for the Three Applications.

47

Average ROC Area

Average ROC Area

1.00

0.90

0.80

0.70

0.60

0.50

(a) Carcinogenesis

add

Xaadled n A 3

0.00 5.00 10.00 15.00 20.00 25.00

1.00

0.90

0.80

0.70

0.60

0.50

Ensemble Size

(c) Protein

o

0.00 5.00 10.00 15.00 20.00 25.00

Ensemble Size

(b) Smuggling

1.00

N W
0.90 ratisedesis

0.80

0.70

0.60

Average ROC Area

0.50
0.00 5.00 10.00 15.00 20.00 25.00

Ensemble Size

different seeds —e—
bagging ----4----

Fig. 4. Areas under the ROC curves for the Three Applications.

48

Prob(CalledPosl|ActuallyPos)

Prob(CalledPoslActuallyPos)

0.8

0.6

0.4

0.2

0.0

(a) Carcinogenesis

00 02 04 06 08 1.0

0.8

0.6

0.4

0.2

0.0

Prob(CalledPos|ActuallyNeg)

(c) Protein

4
/

00 02 04 06 08 1.0

Prob(CalledPoslActuallyNeg)

(b) Smuggling

1.0 T

0.8

0.6

0.4

A

0.2

Prob(CalledPosl|ActuallyPos)

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Prob(CalledPos|ActuallyNeg)

different seeds —e—
bagging ----4----

Fig. 5. ROC curves at N=25 for the Three Applications.

49

Different seeds is particularly interesting in that it shows several spikes, which
are most obvious in the accuracy curve. This effect is caused by our tuning al-
gorithm that has some difficulties with a very unstable application, such as
carcinogenesis. More precisely, study of the data shows that often the tuning
algorithm will choose the same minacc in a row for a series of consecutive en-
semble sizes in a fold, and then all of a sudden select a different minac, and
immediately return to choosing the initial parameter. The points where there is
an abrupt change of parameters are usually the points where we have spikes.

The accuracy curve for bagging has several spikes on smaller ensembles, and
then stabilises rather quickly. Again, most of the variation is caused by the choice
of parameters. Interestingly enough, whereas most spikes in different seeds are
negative, in this case most spikes are improvements. This suggests that accuracy
results may be suffering from a wrong choice, either of thresholds or of Aleph’s
minimal training accuracy parameter.

Next, we look at the areas under the ROC curves as ensemble size varies
from size 1 to 25. The area under a ROC curve gives a good estimate of classifier
quality.

Figure 4(a) compares the ROC areas for different seeds and for bagging.
We can notice that both techniques obtain a significant improvement with the
smaller ensembles. Bagging stabilises very quickly, though, whereas different
seeds obtains improvements up to ensemble size 5. As a result, different seeds
has a somewhat better result than bagging.

ROC curves provide a more detailed picture of the behaviour of this applica-
tion concerning rates of true positives against false positives. We chose to plot
an ROC curve for ensemble size of 25, the largest ensemble size for which we
present other results. Figure 5(a) shows an ROC curve for ensemble size 25, for
the application Carcinogenesis, for different seeds and bagging, when varying the
voting threshold from 1 to 25. The curves show very clearly the spikes caused
by the different minacc chosen for each point.

The curves show large variations for small ensemble sizes. This corresponds
to choosing different minaccs. Both different seeds and bagging can achieve a
very good improvement on positive examples. However, at a cost of increas-
ing the rate of false positives. The best result for positives, for different seeds
is achieved at voting threshold 1, with acceptance rate of 88%. Bagging also
achieves its best performance on positives at threshold 1, but it performs a little
worse than different seeds achieving maximum of 85% of acceptance rate. As the
voting threshold increases, the chance of better classifying a positive or nega-
tive example decreases. Note that the voting threshold increases as we decrease
along the X axis, but not in a consecutive order of points in the ROC curve. For
example, at ensemble size 9, the false positive rate is 0.66, and the true positive
rate is 0.81, while at ensemble size 10, the false positive rate is 0.70 and the true
positive rate is 0.80.

Our main conclusion is that different seeds performs better for small thresh-
olds, that is, it can recognise most positive examples. Bagging tends to perform
better for large thresholds, that is, it is better at recognising negative examples.

50

4.2 Smuggling

The smuggling problem is quite challenging in that it is a heavily relational
learning problem over a large number of relations, whereas most traditional ILP
applications usually require a small number of relations. It was therefore quite
interesting to find that Aleph can achieve quite good accuracy for this problem.
We found average accuracy to be about 82% for different seeds and 83% for
bagging, for a single theory. Single accuracy for negative examples for a single
theory is around 89% for different seeds and 91% for bagging, while accuracy for
positive examples are around 76%, for both different seeds and bagging.

Of course, it would be quite nice to achieve an even better accuracy. Fig-
ure 3(b) shows the variation of accuracy averaged across folds, as we range the
size of the ensembles between 1 and 25. Accuracy for both curves increases
quickly for smaller ensembles and then is largely stable as we increase ensem-
ble size. Different seeds and bagging achieve a maximum average accuracy of
around 87%, with different seeds behaving slightly better than bagging for larger
ensemble sizes. Our results thus correspond to a significant improvement over
the single-theory accuracy. Accuracies stabilise at around 92%, for both different
seeds and bagging, at classifying negative examples, and at around 82% for both
different seeds and bagging, at classifying positive examples.

This application illustrates the benefit of using bagging at smaller ensemble
sizes, and stresses the advantage of using ensemble methods to improve the
accuracy of a single theory.

Figure 4(b) shows the areas under the ROC curves from ensemble size 1 to
25 averaged across the five test set folds. The results on ROC areas are very
impressive. Performance is excellent for both different seeds and bagging, with a
small advantage for different seeds. Both curves show a substantial improvement
up to size 10, and then stabilise. Also notice that bagging and different seeds
achieve very similar results.

Figure 5(b) shows average of ROC points across five folds, for ensemble size
25 varying the threshold from 1 to 25. Both classifiers perform in much the same
way. The combined classifier is very good at classifying negative examples: even
in the worst case, it only misclassifies up to 30% of all negative examples. Results
are also quite good on the positive examples, although some examples are never
covered. Different seeds does have some advantage in this case. Last, notice that
there are much less spikes than for Carcinogenesis: the tuning algorithm seems
to perform quite well here.

4.3 Protein

The Protein application has average single-theory accuracy of around 56% for
both different seeds and bagging. Figure 3(c) shows the average accuracies be-
tween positives and negatives for different seeds and bagging, as we increase the
ensemble size from 1 to 25. Bagging and different seeds have very similar perfor-
mance for this application. The improvement over the single-theory is between 2

51

and 3 percentage points, and does show that the ensemble methods can improve
performance even in this case.

Different seeds achieves maximum average accuracy of 60% at ensemble size
47, while bagging achieves maximum accuracy of 59% at ensemble size 28.

In order to understand better what happens with this application we draw the
ROC curve for ensemble size 25. Figure 5(c) shows the ROC curves for different
seeds and bagging averaged across five folds. The performance of this application
on positives improves as we increase the ensemble size for both different seeds
and bagging. For low thresholds, different seeds does better for positives. The
learned theories seem to have difficulty in generalising: we cannot cover most
examples. This results in bad accuracy for positives, and in good accuracy for
negatives. The results also show that most of the improvement happens for
smaller ensembles.

Our analysis provides more insight when we look at the areas under the ROC
curves, varying our threshold from 1 to 25. Figure 4(c) shows the areas under the
ROC curves. The results essentially confirm what we obtained with accuracy.
Different seeds and bagging have the same performance up to ensemble size 24.
After that different seeds surpasses the performance of bagging.

As with the other applications, both ensemble methods improve performance
over the single-theory.

5 Conclusions and Future Work

This work presents an empirical study of bagging, a well-known ensemble building
mechanism, in the Inductive Logic Programming setting. In our approach, we use
bagging to combine theories built from random variations of the original training
set. We contrast bagging to different seeds, an approach where we always use
the same training set, and randomly select different seeds to build the different
theories in the ensemble. We evaluated bagging and different seeds with three
non-trivial applications of ILP.

Our results show that ensembles built through bagging can indeed achieve
a sizable improvement in performance, both measured through accuracy and
through ROC curves. Most of the gain is achieved with ensembles of size up to
20. Exploiting different seeds can also achieve very good gains. In fact, simply
using different seeds worked as well, or arguably better, than bagging in our
experiments. We believe this is because different seeds learns theories using the
whole set of examples. Our results confirm the advantages of using ensemble
methods in ILP.

We believe that bagging and different seeds can have a substantial impact on
ILP. We can often achieve an interesting improvement in performance, with little
implementation work. Moreover, we found that accuracy may improve, even in
the cases where ILP is obtaining very good results, as is the case of the dataset
Smuggling. On the other hand, resulting theories are more complex and thus
harder to understand.

52

We have thus far used bagging and different seeds with ensembles of theories.
An interesting alternative we are researching is to use ensembles of clauses. As
discussed before, boosting can also be employed to improve accuracy of classifiers
by penalizing examples that are misclassified. One disadvantage of boosting is
that it can not be as easily parallelisable as bagging or different seeds. We have
been investigating a method to perform boosting in parallel. Last, we are inves-
tigating other tuning algorithms to improve the interaction between different
settings (e.g., clause length, minimum clause accuracy) for the ILP search and
the bagging/ different seeds process.

Acknowledgments

This work was supported by DARPA EELD grant number F30602-01-2-0571, the NSF
grant 9987841 and by NLM grant NLM 1 R01 LM07050-01. Vitor Santos Costa and
Inés de Castro Dutra were partially supported by CNPq. We would like to thank
the Biomedical Group support staff for their invaluable help with Condor. We also
would like to thank Ashwin Srinivasan for his help with the Aleph system and the
Carcinogenesis benchmark. Vitor Santos Costa and Inés Dutra are on leave from
COPPE/Sistemas, Federal University of Rio de Janeiro.

53

References

1.

2.

N o

10.

11.

12.

13.

14.

15.

16.

17.

E. Alpaydin. Multiple networks for function learning. In IEEE International
Conference on Neural Networks, pages 9-14, 1993.

J. Basney and M. Livny. Managing network resources in Condor. In Proceed-
ings of the Ninth IEEE Symposium on High Performance Distributed Computing
(HPDC(C9), Pittsburgh, Pennsylvania, pages 298299, Aug 2000.

H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, and H. Vandecasteele.
Executing query packs in ILP. In J. Cussens and A. Frisch, editors, Proceedings of
the 10th International Conference on Inductive Logic Programming, volume 1866
of Lecture Notes in Artificial Intelligence, pages 60-77. Springer-Verlag, 2000.

H. Blockeel, B. Demoen, G. Janssens, H. Vandecasteele, and W. Van Laer. Two ad-
vanced transformations for improving the efficiency of an ILP system. In J. Cussens
and A. Frisch, editors, Proceedings of the Work-in-Progress Track at the 10th In-
ternational Conference on Inductive Logic Programming, pages 43-59, 2000.

I. Bratko and M. Grobelnik. Inductive learning applied to program construction
and verification. In S. Muggleton, editor, Proceedings of the 3rd International
Workshop on Inductive Logic Programming, pages 279-292. J. Stefan Institute,
1993.

L. Breiman. Bagging Predictors. Machine Learning, 24(2):123-140, 1996.

L. Breiman. Stacked Regressions. Machine Learning, 24(1):49-64, 1996.

L. Dehaspe and L. De Raedt. Parallel inductive logic programming. In Proceed-
ings of the MLnet Familiarization Workshop on Statistics, Machine Learning and
Knowledge Discovery in Databases, 1995.

T. Dietterich. Ensemble methods in machine learning. In J. Kittler and F. Roli,
editors, First International Workshop on Multiple Classifier Systems, Lecture Notes
in Computer Science, pages 1-15. Springer-Verlag, 2000.

B. Dolsak and S. Muggleton. The application of ILP to finite element mesh design.
In S. Muggleton, editor, Proceedings of the 1st International Workshop on Inductive
Logic Programming, pages 225-242, 1991.

S. Dzeroski, L. Dehaspe, B. Ruck, and W. Walley. Classification of river wa-
ter quality data using machine learning. In Proceedings of the 5th International
Conference on the Development and Application of Computer Techniques to Envi-
ronmental Studies, 1995.

Y. Freund and R. Shapire. Experiments with a new boosting algorithm. In Pro-
ceedings of the 14th National Conference on Artificial Intelligence, pages 148-156.
Morgan Kaufman, 1996.

J. Graham, D. Page, and A. Wild. Parallel inductive logic programming. In
Proceedings of the Systems, Man, and Cybernetics Conference, 2000.

L. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12(10):993-1001, October 1990.

S. Hoche and S. Wrobel. Relational learning using constrained confidence-rated
boosting. In Céline Rouveirol and Michele Sebag, editors, Proceedings of the 11th
International Conference on Inductive Logic Programming, volume 2157 of Lecture
Notes in Artificial Intelligence, pages 51-64. Springer-Verlag, September 2001.

R. King, S. Muggleton, and M. Sternberg. Predicting protein secondary structure
using inductive logic programming. Protein Engineering, 5:647—657, 1992.

A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active
learning. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural
Information Processing Systems, volume 7, pages 231-238. The MIT Press, 1995.

54

18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

N. Lincoln and J. Skrzypek. Synergy of clustering multiple backpropagation net-
works. In Advances in Neural Information Processing Systems. Morgan Kaufmann,
1989.

T. Matsui, N. Inuzuka, H. Seki, and H. Ito. Parallel induction algorithms for
large samples. In S. Arikawa and H. Motoda, editors, Proceedings of the First
International Conference on Discovery Science, volume 1532 of Lecture Notes in
Artificial Intelligence, pages 397-398. Springer-Verlag, December 1998.

J. Metz. The epidemic in a closed population with all susceptibles equally vul-
nerable; some results for large susceptible populations and small initial infections.
Acta Biotheoretica, 27:75-123, 1978.

D. W. Opitz and R. Maclin. Popular ensemble methods: An empirical study.
Journal of Artificial Intelligence Research, 11:169-198, 1999.

D. W. Opitz and J. W. Shavlik. Actively searching for an effective neural-network
ensemble. Connection Science, 8(3/4):337-353, 1996.

F. J. Provost and T. Fawcett. Robust classification systems for imprecise environ-
ments. In Proceedings of the 16th National Conference on Artificial Intelligence,
pages 706—713, 1998.

J. R. Quinlan. Bagging, boosting, and c4.5. In Proceedings of the 14th National
Conference on Artificial Intelligence, volume 1, pages 725-730, 1996.

J. R. Quinlan. Boosting first-order learning. Algorithmic Learning Theory, Tth
International Workshop, Lecture Notes in Computer Science, 1160:143-155, 1996.
V. Santos Costa, A. Srinivasan, and R. Camacho. A note on two simple transfor-
mations for improving the efficiency of an ILP system. In J. Cussens and A. Frisch,
editors, Proceedings of the 10th International Conference on Inductive Logic Pro-
gramming, volume 1866 of Lecture Notes in Artificial Intelligence, pages 225—242.
Springer-Verlag, 2000.

M. Sebag and C. Rouveirol. Tractable induction and classification in first-order
logic via stochastic matching. In Proceedings of the 15th International Joint Con-
ference on Artificial Intelligence, pages 888-893. Morgan Kaufmann, 1997.

A. Srinivasan. A study of two sampling methods for analysing large datasets with
ILP. Data Mining and Knowledge Discovery, 3(1):95-123, 1999.

A. Srinivasan. The Aleph Manual, 2001.

A. Srinivasan, R. King, S. Muggleton, and M. Sternberg. Carcinogenesis predic-
tions using ILP. In S. Dzeroski and N. Lavrag, editors, Proceedings of the 7th
International Workshop on Inductive Logic Programming, volume 1297 of Lecture
Notes in Artificial Intelligence, pages 273-287. Springer-Verlag, 1997.

J. Struyf and H. Blockeel. Efficient cross-validation in ILP. In Céline Rouveirol
and Michele Sebag, editors, Proceedings of the 11th International Conference on
Inductive Logic Programming, volume 2157 of Lecture Notes in Artificial Intelli-
gence, pages 228-239. Springer-Verlag, September 2001.

F. Zelezny, A. Srinivasan, and D. Page. Lattice-search runtime distributions may
be heavy-tailed. In The Twelfth International Conference on Inductive Logic Pro-
grammang. Springer Verlag, July 2002.

J. Zelle and R. Mooney. Learning semantic grammars with constructive inductive
logic programming. In Proceedings of the 11th National Conference on Artificial
Intelligence, pages 817-822, Washington, D.C., July 1993. AAAT Press/MIT Press.
S. Zemke. Bagging imperfect predictors. In Proceedings of the International Con-
ference on Artificial Neural Networks in Engineering, St. Louis, MI, USA. ASME
Press, 1999.

M. Zweig and G. Campbell. Receiver-operative characteristic. Clinical Chemistry,
39:561-577, 1993.

55

Lattice-Search Runtime Distributions May Be
Heavy-Tailed

Filip Zelezny!, Ashwin Srinivasan?, David Page®

! Dept. of Cybernetics
Faculty of Electrical Engineering
Czech Technical University
Karlovo Nam. 13, 121 35 Prague, Czech Republic
zelezny@fel.cvut.cz
2 Oxford University Computing Laboratory
Wolfson Building, Parks Road
Oxford OX1 3QD, UK
ashwin@comlab.ox.ac.uk
3 Dept. of Biostatistics and Medical Informatics and Dept. of Computer Science
University of Wisconsin
1300 University Ave., Rm 5795 Medical Sciences
Madison, WI 53706, USA
page@biostat.wisc.edu

Abstract. Recent empirical studies show that runtime distributions of
backtrack procedures for solving hard combinatorial problems often have
intriguing properties. Unlike standard distributions (such as the nor-
mal), such distributions decay slower than exponentially and have “heavy
tails”. Procedures characterized by heavy-tailed runtime distributions
exhibit large variability in efficiency, but a very straightforward method
called rapid randomized restarts has been designed to essentially improve
their average performance. We show on two experimental domains that
heavy-tailed phenomena can be observed in ILP, namely in the search for
a clause in the subsumption lattice. We also reformulate the technique
of randomized rapid restarts to make it applicable in ILP and show that
it can reduce the average search-time.

1 Introduction

In the recent paper [4], Gomes et al. observe that procedures for solving
propositional satisfiability problems exhibit a remarkable runtime vari-
ability. The runtimes vary greatly depending on the choice of a particular
heuristic, a given problem instance, or - for stochastic methods - on the
choice of different random seeds (initial truth assignments), or on an-
other source of randomness. Often a satisfiability procedure “hangs” on
a given problem instance, while a different stochastic run solves the same
instance quickly. Even for a deterministic procedure and a given problem

56

instance, small amount of randomization (e.g. in the employed heuristic)
yields again largely varying search-costs, some of which are substantially
lower than that of the deterministic algorithm.

In their empirical study it is shown that distributions of the runtimes
of many search algorithms decay slower than exponentially and asymp-
totically have heavy-tails. Unlike standard probability distributions, such
as the normal distribution, where events that are several standard devi-
ations from the mean are very rare, in heavy-tailed distributions there
is a non-negligible probability that an event with an extremely high cost
occurs. For example, in one of the studied problems, 80% of the runs solve
the problem in 1,000 backtracks or less, however 5% of the runs do not
result in a solution even after 1,000,000 backtracks. Gomes et al. believe
that the heavy-tailedness is a property of many exhaustive backtrack al-
gorithms for solving hard combinatorial problems, and offer a technique
called randomized rapid restarts that exploits this property in order to
reduce the average search-time. The technique was used to find solutions
of previously unsolved instances of hard combinatorial problems.

Although many search problems give rise to a heavy-tailed distri-
bution, others do not [5]. Our aim is to find out whether heavy-tailed
runtime distributions occur in ILP. Namely, we empirically study the
runtimes of the search for a first-order clause with defined desired prop-
erties, in the lattice imposed by the subsumption relation. Furthermore
we reformulate the randomized rapid restarts algorithm to be applica-
ble on the ILP search problem and on two important ILP benchmarks we
evaluate whether it reduces the search-cost with respect to a deterministic
exhaustive search.

The following section defines formally the notion of a heavy-tailed
distribution and describes the method of randomized rapid restarts. Since
the method requires randomization of the exhaustive search, Section 3
describes our way of randomization of the lattice search, based on the
selection of a random starting clause (seed). The core of the study is
Section 4 which will test empirically the hypothesis that heavy-tailed
runtime distributions describe the clause lattice-search using benchmark
ILP problems. In the same section, we shall also apply the technique of
randomized rapid restarts on the same domains, and investigate whether
it improves search efficiency. We summarize our observations in Section

6.

57

2 Heavy-tailed Distributions and Randomized Rapid
Restarts

The cumulative probability distribution Pr(X < z) of a random variable
X is a non-decreasing real function on the real interval —oo < x < co and
will be denoted F(x), i.e. Pr(X > z) = 1 — F(z). Standard probability
distributions have exponentially decreasing tails, e.g. for the standard
normal distribution Fj, it holds that

2

—X
exp ——— 1
— o P (1)

(1= Fu(z)) ~

where g(x) ~ h(z) denotes lim,_,o g(z)/h(z) = 1.

Recently, in the area of algorithms for hard combinatorial problems [4]
but also other areas such as statistical physics, economics etc., different
phenomena have been shown to obey heavy-tailed distributions which
often lead to non-intuitive behaviour. For this class of distribution it
holds that

(1-=F(z))~Caz % z>0 (2)

where 0 < o < 2 and C' > 0 are constants. It is remarkable [4] that such
distributions have finite mean but no finite variance if 1 < a < 2. If < 1,
the distribution has even neither a finite mean nor a finite variance.

To determine whether a distribution estimated by a series of mea-
surement has a heavy-tailed nature, i.e. it does not decay exponentially,
we plot the measured distribution values in a diagram with both axis
logarithmically scaled, because an exponentially decreasing distribution
should show a faster-than-linear decay in the log-log scale. For example,
substituting = with exp(x) in the normal distribution decay (see Eq. 1)
and taking log yields

log{1 — Fy(expla])} ~ - <x T XP@“)

(3)

while the same operation on the heavy-tailed distribution decay (see Eq.
2) yields —aux, i.e. a heavy-tailed distribution should exhibit an approxi-
mately linear decay on the log-log scale as x approaches infinity.

Let us now consider an exhaustive-search algorithm randomized in
such a way, that it starts the search at a randomly chosen point of the
search space (seed). Depending on the particular type of a search problem
and algorithm, the distribution of times required to reach a solution from

58

0,1

1-F(x) (log scale)

1,00 2,72 7,40 20,11 54,66 148,58
x (log scale)

-+ Heavy tail -+ Normal decay

Fig. 1. Example of normal and heavy-tailed distributions on a log-log scale. The normal
distribution decays faster than linearly while the heavy-tailed distribution decay shows
an approximately linear decay.

such seeds may or may not be heavy-tailed.! If a heavy tail is observed, the
runtime variance and mean may be infinite and there is a non-negligible
probability that a chosen seed will start an extremely costly search, al-
though many other seeds may produce a quick path to the solution. A
direct way to reduce the variance and mean in such a case is to run
the exhaustive search up to a certain cutoff point and then restart at
a different seed if a solution is not found. Clearly, this approach called
randomized Tapid restarts avoids the algorithm from getting trapped in a
very costly path and exploits the high chance of obtaining an essentially
shorter path in the next trial. It is shown in [4] that the randomized
rapid restarts technique is superior to deterministic exhaustive searches
in many propositional domains.

! Gomes et al [5] discover the heavy-tailedness of different search problems purely
empirically and report that further studies are needed to determine exactly what
characteristics of combinatorial search problem lead to heavy-tailed behaviour. In
this ILP-focused study we also take an empirical approach.

59

3 Randomizing the Lattice Search

We consider the normal ILP problem [10], namely we assume the sets
of positive (negative) examples ET (E~) and background knowledge B.
We also assume that a search lattice of legal clauses has been defined
by the generality (subsumption) relation, a clause mode language £, and
bounded by the most specific element L (the bottom clause). This is a
usual assumption of ILP systems based on the concept of inverse entail-
ment [9], such as Aleph [6] and Progol [9].

The standard approach of conducting the lattice search is to start with
the most general (most specific, 1) clause and then proceed in a top-down
(bottom-up) manner. However, starting the search with a different clause
from the interior of the lattice may lead to a shorter runtime needed to
reach the desired clause. Our plan is to investigate the distribution of such
runtimes when the starting clauses are selected randomly from the lattice.
If this distribution proves to be heavy-tailed, we will be able to utilize the
technique of randomized rapid restarts to avoid the extreme-cost paths
and improve the average performance.

The randomized search algorithm proceeds as follows. Some number
of times (maxtries), the algorithm will carry out a short search (bounded
by maxtime, Section 4). Each search begins by stochastic selection of
a starting clause. The search is a deterministic best-first search, with
heuristic function h = pos(C) — neg(C'). Here pos(C') is the number of
positive examples deducible from C A B2, and neg(C) is analogous for
negative examples. From a given clause C, the neighbors of C in the
search space are defined by a nontraditional refinement operator p. It
differs from usual refinement operators employed in the top-down search
of the mentioned systems in that it produces the set REFS = p(C) of all
neighbours of C' in the lattice, i.e. also including clauses that subsume C'.
Therefore this kind of search can be seen as radial, rather than top-down
or bottom-up (visualized in Fig. 2). With this refinement operator, all
nodes in the lattice can be reached from any starting node.

We shall now address the problem of choosing the seed, i.e. the initial
stochastic clause selection. The principal difficulty of its implementation
lies in devising a procedure for uniform random sampling of clauses from
the search space. Here, we describe a procedure (from [14]) that does not
require prior generation of all elements of the search space. Recall that
these are definite clauses obtained from subsets of literals drawn from a

2 In the case when C' is constructed as an extension of an existing partial theory H
in a greedy cover search, we assume that H has been added to B.

60

Fig. 2. A schematic visualization of the radial lattice search (left) compared to a top-
down search (right). Nodes are explored starting at the encircled point and then fol-
lowing the dashed line. This view is simplified in that the employed heuristic function
h(C) is assumed to be constant for all C' and descendants of explored nodes are inserted
in the end of the open list, which in the top-down case corresponds to a breadth-first
search.

most specific (definite) clause L. Additional provisos are that each subset
is of cardinality at most ¢ + 1 (where ¢ is a user-specified maximum
number of negative literals) and is in the language L. Let C denote all
such clauses. Further, let the number of clauses in C with exactly [literals
be n; and N denote the subset of natural numbers {1,...,|C|}. Define
a function h : C — N such that h(C) = Zﬁ‘fl n; + j where |C] is
the number of literals in ¢ and 1 < j < nyg. That is, h provides a
sequential enumeration of clauses by length. While many functions fit
this requirement (depending on the enumeration adopted), it is easy to
show that any such A is both 1 —1 and onto. It follows that A is invertible
— that is, given a number in N, it is possible to find a unique clause in
C provided the n; (and ¢) are known. In principle, it is therefore possible
to achieve the selection required by randomly choosing a number n in
N and returning C' = h~!(n). Such an inverse function works as follows.
Given a number n > 0: (a) find the largest number = 0...c such that
j=n-— Zizo n; > 0; (b) generate a sequence of clauses in £ of length
[+1. C is the j*" clause in this sequence. If n is randomly generated, then
the clause generation process does not have to be so, and can be made
more efficient by various devices. Some examples are: (a) take C' to be

61

estimate(L, L,1,s) : Given a most specific clause L and a clause length [> 1, returns
an estimate of the number of definite clauses of length [in £ such that each clause
is a subset of L. The estimate is obtained from a sample of size s.
1. Sample s clauses of length [from L. Each such clause consists of the positive
(“head”) literal in 1 and a random selection, without replacement, of I — 1
literals from the negative (“body”) literals in L.
2. Determine the proportion p; of the s clauses that are in L.
3. return py X (|L|—1) x ... x (|L|—=1+1)

Fig. 3. A procedure for estimating the number of “legal” clauses of length [> 1. The
estimate obtained in Step 3 above is unbiased [18]. The value of the sample size s needs
to be decided. An option is to be guided by statistical estimation theory. This states
that if values of p; are not too close to 0 or 1, then we can be at least 100 x (1 — @)%
confident that the error will be less than a specified amount e when s = 22 2/ (4€?)
[18]. Here z represents the standard normal variable as usual.

the first clause of that length (and in £) that has not been drawn before;
(b) a once-off generation of the appropriate number of clauses in £ at
each length (“appropriate” here means that the proportion of clauses of
length ¢ in the sample is n;/|N]); and (¢) using a dependency graph over
literals in L to ensure that the random clause construction always results
in clauses within the language L.

In practice, without prior generation of the set C, the n; are not known
for i > 1 and we adopt the procedure in Fig. 3% for estimating them.

Having constructed a method for stochastic selection of the starting
clause and its subsequent deterministic refinement, we are in a position
to implement the technique of randomized rapid restarts. An implemen-
tation for the clause lattice search is described in Fig. 4. The underlying
principle that makes the technique applicable to the clause search is that,
unlike in usual ILP approaches, we do not search through a specified
number of nodes, returning the best clause found, but rather we stop
the search once a clause is found meeting a pre-specified condition of
‘goodness’ as follows.

pos(C) > 1 (4)

pos(C)
pos(C) + neg(C)

> Acc (5)

where pos(C) (neg(C)) is the number of positives (negative) examples

3 This method is implemented in the ILP system Aleph [6] and can serve as well for
other methods of randomized local search, such as GSAT or WSAT

62

rrr(Lat, Acc, B, EY, E™, maxtime, maxtries) : Given background knowledge B, pos-
itive and negative examples ET, E~, return a clause from the given subsumption
lattice Lat, that satisfies the conditions in Eqgs. 4 and 5 for the given constant Acc.

tries :=1

Select a random starting clause Cp using the procedure described in Section 3.
searchtime := 0, start timing.

Starting at Cp, perform an exhaustive radial search described in Section 3, until
searchtime > maaxtime or a clause C satisfying Eqs. 4, 5 is found.

If C was found, STOP, return C.

6. If tries < maxtries, tries := tries + 1, Go to 2. Otherwise return “failure”.

=W N

ot

Fig. 4. An implementation of randomized rapid restarts for the clause lattice search.
The maximum time for one exhaustive search is limited by the constant maxtime. The
maximum number of repeated searches is maxtries.

covered by C. The first condition avoids the trivial solution C = e, e € E™
and the second condition is parameterized by a constant Acc.

We set the maximum number of allowed restarts maxtries, which
should theoretically be infinite, to a finite number (maztries = 10)
because we cannot guarantee exclude that a clause satisfying the pre-
specified condition exists in the lattice. In the case of reaching the limit
maztries (“failure” in Fig. 4), the positive example used to construct the
current bottom clause L is returned as the resulting clause. The setting
of maxtime will be discussed in connection with the experimental setting
in Section 4.

Finally, to cover all of the positive examples in the training sets of
the experiments, we use the greedy covering approach as usual in ILP
systems, i.e. the procedure in Fig. 4 is run repeatedly with a bottom
clause constructed using one selected positive, until all positives are cov-
ered, each time adding the newly constructed clause to the background
knowledge and deleting the covered positives from the training set.

4 Experiments

4.1 The Aim

We shall investigate (a) if the heavy-tailed phenomenon manifests itself
when searching the subsumption lattice; and (b) if utilizing RRR will
help improve search efficiency for problems exhibiting the heavy-tailed
phenomenon.

63

4.2 Materials

Our experimental material consists of two sets of pre-classified data,
namely the data on the mutagenic and carcinogenic properties of some
chemicals. These data are publicly available (anonymous ftp to ftp.comlab
.ox.ac.uk in the directories pub/Packages/ILP/Datasets/mutagenesis
/aleph and pub/Packages/ILP/Datasets/carcinogenesis/aleph).
We refer the reader to [16,17] for detailed descriptions of background
knowledge available for the mutagenesis task. The background informa-
tion is encoded in approximately 13,000 facts. The background knowledge
for the carcinogenesis problem is conceptually of a similar nature. The en-
coding requires approximately 24,500 facts — see [15] for more details.

All of our subsequent experiments use an Athlon 1500MHz CPU —
based computer with 512KB of RAM and the ILP program Aleph (Version
3). Aleph is available at: http://www.comlab.ox.ac.uk/oucl/research/
areas/machlearn/Aleph/aleph.pl.

The language £ will be limited to clauses of maximum number of 4
negative literals and maximum variable depth [9] 2.

4.3 Methods and Results

We shall observe the stochastic behaviour of the randomized search-
algorithm described in the previous section, namely the distribution of
search-times required to find a clause C which satisfies the conditions in
Egs. 4,5, where we set Acc = 0.7.

Figure 5 shows the cumulative distribution F'(x) of runtimes for the
mutagenesis task, Figure 6 an analogous distribution for the carcinogene-
sis task. Both of the distributions are collected from about 35,000 searches
starting in random seeds. In the mutagenesis task, for example, almost
20% of runs arrive at a solution in less then 0.1s, however almost 30% of
runs do not find a solution in 20s.

Figures 7 and 8 clearly show that both of the experimentally measured
distributions exhibit a heavy-tail (c.f. Section 2). According to the study
[4], our findings justify the application of the method of randomized rapid
restarts. To use the algorithm described in Section 3, we need to set the
cutoff value maxtime. There is no analytic way of determining the optimal
value maxtime,, of the cutoff value, but it is reported [4] to lie below
the median point of the runtime distribution F'(x), i.e. maxtimeop << ls
for both our experimental domains. As it may be infeasible in the general
case to construct the runtime distributions F'(z) for a given problem prior
to the learning process, we shall disregard the information provided by

64

0,8 1

0,6

F(x)

0,4 1

0,2 1

Fig. 5. The cumulative distribution F(z) of runtimes of the randomized algorithm
searching for a ‘good’ clause in the mutagenesis problem.

0 5 10 15 20 25 30
time [s]

Fig. 6. The cumulative distribution F'(x) of runtimes of the randomized algorithm
searching for a ‘good’ clause in the carcinogenesis problem.

65

0,14 0,79 4,63

1-F(x) (log scale)
o
-

0,01

time [s] (log scale)

Fig. 7. A log-log plot of the distribution decay 1 — F'(x) concerning the same data as
in Figure 5.

1
@
©
o
2]
[=2]
i=)
X
[T
-
0,1
0,01 0,02 0,09 0,32 1,20 4,46 16,57
Time [s] (log scale)

Fig. 8. A log-log plot of the distribution decay 1 — F'(z) concerning the same data as
in Figure 6.

66

the already generated distributions, and we choose a small ad hoc value
maxtime = 1s for both of the domains in the comparative experiments.

Table 1 summarizes the predictive accuracies and learning times of the
randomized rapid restarts technique vs. the standard exhaustive breadth-
first top-down search algorithm. The former method was tested with the
Acc parameter set to the values 0.7 and 0.9. Similarly, the latter method
was tested with two values 0.7 and 0.9 of the minimum accuracy require-
ment on a clause to be accepted for the constructed theory.

The results suggest that by using randomized rapid restarts we achieved
a drastic reduction of the search times for the price of only a small loss
in predictive accuracy.

Algorithm MUT CANC

A (%) T (5)|A (%) T (s)
DTD 0.7 |88.76 1589|57.91 24092
(5.99) (461)| (9.75) (11915)
DTD 0.9 |88.23 1541|56.22 22101
(5.63) (459)| (8.98) (9811)
RRR 0.7 |87.71 9] 54.84 74
762) (@)|®97) (10
RRR 0.9 |86.31 24| 57.57 126
(8.67) (10)] (6.39) (71)

Table 1. Estimated predictive accuracies (A) and theory construction times (T). The
entries are from a 10-fold cross-validation design with time entries rounded up to
the nearest second. The numbers in parentheses are estimates of standard deviation.
These are obtained by a simple binomial formula that ignores the dependencies across
cross-validation runs. Exact calculation of standard deviations for results from cross-
validation designs is confounded by these dependencies but the approximation used here
has been found to be adequate (see [1], pg 307). The algorithms result from two search
techniques employed by Aleph, namely: deterministic top-down (DTD) (with minimum
clause accuracy setting 0.7 and 0.9, respectively) and randomized rapid restarts (with
clause threshold 0.7 and 0.9, respectively). MUT refers to the mutagenesis problem,
CANC to carcinogenesis. The search space is limited by the maximum clause-length of
5 literals and maximum variable depth 2.

5 Related Work

Besides the direct inspiration by the findings due to Gomes et al., this
work is also related to the research of the phase transition effect. Phase
transition has been observed in algorithms for solving difficult computa-

67

tional problems, namely NP-complete ones such as the constraint satis-
faction problem (CSP) [13]. A constraint tightness parameter p €< 0;1 >
can be calculated for any CSP instance. According to empirical studies
[13], the expected time to solve a CSP is small for values of p close to
0 (phase of ‘many solutions available’) or 1 (phase of ‘inspecting a small
search tree’) and grows dramatically for p close to a critical value pe,
(transition between the two phases). In the surrounding of p.,, the costs
of solving CSP instances not only show a high mean, but also a large
variability. Frost el al. [2] approximate the cost distributions of instances
with p close to p.. with various closed-form distributions. They point
out (independently of Gomes el al.) the long tails of these distributions
and report that “problems that are not solved early are likely to take
a long time”. The fundamental bridge between such findings and ILP is
the fact that the first-order subsumption problem can be mapped onto a
CSP [7]. Botta et al. then show [8] that a typical ILP program (FOIL)
tends to “induce hypotheses generating matching problems located inside
the phase transition region”; Giordana and Saitta report a similar obser-
vation [3] in real-world domains, including mutagenesis. Combining the
referred results, the heavy-tailed effect had been expectable before our
study, which can thus be seen as an empirical verification of this implicit
expectation. Unlike the previous studies where statistics were measured
for a collection of the proving (subsumption check) problem instances, we
measured distributions on a collection of complete hypothesis-searching
cycles, each containing a number of subsumption tests.

The way statistical observations are exploited towards efficiency im-
provements also distinguishes our approach from the mentioned related
work. Sebag and Rouveirol [11] apply a stochastic algorithm in order to
accelerate the subsumption-test and Giordana and Saitta [3] develop an
on-line complexity estimator which can potentially be used for the same
purpose. Our approach, on the other hand, allows to adopt the RRR tech-
nique to reduce the complexity of the hypothesis search in its entirety.

As far as the randomized technique of traversing through the sub-
sumption lattice is concerned, to our best knowledge, there is only indi-
rectly related work to our study. Serra et al [12] show that starting the
search for a hypothesis from random seed formulas, instead than top-
down, can be beneficial. Randomized search in an ILP system has been
assessed in [14].4

4 We are also aware of the talk of Stephen Muggleton at the Machine Intelligence
workshop in 2001 about randomization techniques in Progol but as we gather, there
is no written account on that talk.

68

6 Conclusions

Our study has shown that the phenomenon of heavy-tailed runtime dis-
tributions occurs in two important experimental domains of ILP and we
believe that it is typical to many other domains. Testing this hypothesis
is a part of our future work.

This observation lead to the utilization of the technique of random-
ized rapid restarts which we reformulated for sakes of ILP. To apply this
method, the exhaustive lattice search was randomized in such a way that
we selected randomly the clause where the search was started. Random-
ized rapid restarts may then be used to reduce the average time required
to find a clause with desired properties. A natural question is whether
reducing the average runtime of the search procedure randomized in this
way may lead to outperforming the deterministic top-down or bottom-up
search. But clearly, if we do not impose a prior probability distribution
on clauses (or e.g. on clause-lengths), there is no reason to expect that a
search starting from the most general (most specific) element will be sys-
tematically faster than the average search starting in a random element
of the lattice.

Using the technique of randomized rapid restarts, we were able to
significantly reduce the search times in large hypothesis spaces of both of
the tested domains.

7 Acknowledgements

We thank the ILP’02 referees for pointing us to some very relevant ar-
ticles. Also, the ILP’02 audience contributed much to the paper by mo-
tivating us to relate our study to the phase transition research. Filip
Zelezny greatly acknowledges the support from the EU project INCO
977102 ILPnet2 and the Czech Technical University grant CTU 0209013.
David Page was supported by the U.S. National Science Foundation grant
9987841 and a U.S. DARPA EELD grant.

References

1. L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Wadsworth, Belmont, 1984.

2. Daniel Frost, Irina Rish, and Lluis Vila. Summarizing CSP hardness with contin-
uous probability distributions. In AAAI/TAAI pages 327-333, 1997.

3. A. Giordana and L. Saitta. Phase transitions in relational learning. Machine
Learning, 2000.

69

10.

11.

12.

13.

14.

15.

16.

17.

18.

C. P. Gomes, B. Selman, N. Crato, and H. A. Kautz. Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. Journal of Automated Reason-
ing, 24(1/2):67-100, 2000.

. C. P. Gomes, B. Selman, and H. A. Kautz. Boosting combinatorial search through

randomization. In AAAI/TAAI pages 431-437, 1998.
http://web.comlab.ox.ac.uk/oucl /research/areas/machlearn/Aleph/aleph.html.

J. Maloberti and M. Sebag. Theta-subsumption in a constraint satisfaction per-
spective. volume 2157 of Lecture Notes in Artificial Intelligence, pages 164-178.
Springer-Verlag, September 2001.

M.Botta, A.Giordana, L.Saitta, and M.Sebag. Relational learning: hard problems
and phase transitions. In 6th Congress of the Italian Association for Artificial
Intelligence. Springer-Verlag, 1999.

. S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special

issue on Inductive Logic Programming, 13(3-4):245-286, 1995.

S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19/20:629-679, 1994.

Michele Sebag and Celine Rouveirol. Resource-bounded relational reason-
ing: Induction and deduction through stochastic matching. Machine Learning,
38(1/2):41-62, January 2000.

A. Serra, A. Giordana, and L. Saitta. Learning on the phase transition edge. In
Proceedings of the 17th International Joint Conference on Artificial Intelligence,
pages 921-926. Morgan Kaufmann, 2001.

Barbara M. Smith and Martin E. Dyer. Locating the phase transition in binary
constraint satisfaction problems. Artificial Intelligence, 81(1-2):155-181, 1996.

A. Srinivasan. A study of two probabilistic methods for searching large spaces with
ILP. Technical Report PRG-TR-16-00, Oxford University Computing Laboratory,
Oxford, 2000.

A. Srinivasan and R. King. Carcinogenesis predictions using ilp. In S. Dzeroski
and N. Lavrag, editors, Proceedings of the 7th International Workshop on Inductive
Logic Programming, volume 1297 of Lecture Notes in Artificial Intelligence, pages
3—-16. Springer-Verlag, 1997.

A. Srinivasan and R.D. King. Feature construction with Inductive Logic Program-
ming: a study of quantitative predictions of biological activity aided by structural
attributes. Data Mining and Knowledge Discovery, 3(1):37-57, 1999.

A. Srinivasan, S. Muggleton, M.J.E. Sternberg, and R.D. King. Theories for muta-
genicity: A study in first-order and feature-based induction. Artificial Intelligence,
85(1,2), 1996.

R. Walpole and R. Myers. Probability and Statistics for Engineers and Scientists.
Collier Macmillan, New York, 1978.

70

In Data M ning: Next Generation Challenges and Future Directions,
H. Kargupta, A Joshi, K Sivakumar, and Y. Yesha (Eds.), AAAl Press, 2004

Chapter 1

Relational Data Mining with
Inductive Logic Programming
for Link Discovery

Raymond J. MoonéyPrem Melvillg, Lappoon Rupert
Tang, Jude Shavlik Inés de Castro Dutrg David Pagé,
_ Vitor Santos Costa

Department of Computer Sciences
University of Texas
Austin, TX 78712-1188
{mooney,melville,rupet@cs.utexas.edu
iDepartment of Biostatistics and Medical Informatics and
Department of Computer Sciences
University of Wisconsin
Madison, WI 53706-1685
{shavlik,dpagé@cs.wisc.edu{dutra,vitor} @biostat.wisc.edu

Abstract:

Link discovery(LD) is an important task in data mining for counter-tersomiand is

the focus of DARPA's Evidence Extraction and Link DiscovéBFEL D) research pro-
gram. Link discovery concerns the identification of complebational patterns that
indicate potentially threatening activities in large amtsuof relational data. Most
data-mining methods assume data is in the form of a featectow(a single relational
table) and cannot handle multi-relational ddtaductive logic programmings a form

71

f relational data mining that discovers rules in first-order logic from multi-relational
data. This paper discusses the application of ILP to legnpatiterns for link discovery.

Keywords: Relational Data Mining, Inductive Logic Programming, ater-terrorism,
link discovery

1.1 Introduction

Since the events of September 11, 2001, the developmentasfriation technology
that could aid intelligence agencies in their efforts teedetind prevent terrorism has
become an important focus of attention. The Evidence Etxtnaand Link Discovery
(EELD) program of the Defense Advanced Research Projeaséyg(DARPA) is one
research project that attempts to address this issue. Thielisement of the EELD
program for developing advanced software for aiding thect&in of terrorist activity
pre-dates the events of 9/11. The program had its genesipriminary DARPA
planning meeting held at Carnegie Mellon University aftexr bpening of the Center
for Automated Learning and Discovery in June of 1998. Thiting discussed the
possible formation of a new DARPA research program focusedavel knowledge-
discovery and data-mining (KDD) methods appropriate famder-terrorism.

The scope of the new program was subsequently expandeduse éocthree re-
lated sub-tasks in detecting potential terrorist actifriyn numerous large information
sources in multiple formatsEvidence ExtractiofEE) is the task of obtaining struc-
tured evidence data from unstructured, natural-languagardents. EE builds on in-
formation extraction technology developed under DARPAKier MUC (Message Un-
derstanding Conference) programs [Lehnert & Sundheim1©8die & Lehnert1996]
and the current ACE (Automated Content Extraction) progedrthe National Insti-
tute of Standards and Technology (NIST)[NIST2003]ink Discovery(LD) is the
task of identifying known, complex, multi-relational paths that indicate potentially
threatening activities in large amounts of relational datais therefore a form of
pattern-matching that involves matching complex, mudtational “patterns of inter-
est” against large amounts of data. Some of the input datalaromes from EE ap-
plied to news reports and other unstructured documentsr atput data comes from
existing relational databases on financial and other tcdioses. Finally Pattern Learn-
ing (PL) concerns the automated discovery of new relationdepa for potentially
threatening activities. Since determining and authorirpmplete and accurate set
of formal patterns for detecting terrorist activities isifficult task, learning methods
may be useful for automatically acquiring such patternmfsupervised or unsuper-
vised data. Learned patterns can then be employed by an LiBnsye improve its
detection of threatening activities. The current EELD pemg focused on these three
sub-topics started in the summer of 2001. After 9/11, it we®iporated under the
new Information Awareness Office (IAO) at DARPA.

The data and patterns used in EELD include representatfopsaple, organiza-
tions, objects, and actions and many types of relations deivthem. The data is
perhaps best represented as a large graph of entities ¢edca variety of relations.

72

The areas ofink analysisandsocial network analysis sociology, criminology, and

intelligence [Jensen & Goldberg1998, Wasserman & Faugt18parrow1991] study
such networks using graph-theoretic representations mating and pattern learning
for counter terrorism therefore requires handling suchtirnelational, graph-theoretic
data.

Unfortunately, most current data-mining methods assuradalttia is from a sin-
gle relational table and consists of flat tuples of items,namarket-basket analysis.
This type of data is easily handled by machine learning tiegles that assume a
“propositional” (a.k.a “feature vector” or “attribute wad”) representation of examples
[Witten & Frank1999].Relational data miningRDM) [Dzeroski & Lavrat2001b], on
the other hand, concerns mining data from multiple relatitables that are richly con-
nected. Given the style of data needed for link discoveryepalearning for link dis-
covery requireselationaldata mining. The most widely studied methods for inducing
relational patterns are those iimductive logic programminglLP) [Muggleton1992,
Lavrac & Dzeroskil994]. ILP concerns the induction of Hatause rules in first-
order logic (i.e., logic programs) from data in first-ordegic. This paper discusses
our on-going work on applying ILP to pattern learning fordidiscovery as a part of
the EELD project.

1.2 Inductive Logic Programming (ILP)

ILP is the study of learning methods for data and rules thatrapresented in first-
order predicate logic. Predicate logic allows for quardifiariables and relations and
can represent concepts that are not expressible using éesuagscribed as feature
vectors. A relational database can be easily translatedimst-order logic and be used
as a source of data for ILP [Wrobel2001]. As an example, dmnshe following rules,
written in Prolog syntax (where the conclusion appears)fitbat define the uncle
relation:

uncle(X,Y) :- brother(X, 2),parent(ZY).
uncle(X,Y) :- husband(X, 2),sister(Z, W, parent(WY).

The goal ofinductive logic programmingILP) is to infer rules of this sort given a
database of background facts and logical definitions ofratHations [Muggleton1992,
Lavrac & Dzeroskil994]. For example, an ILP system can I¢henabove rules for
uncle (thetarget predicatg given a set of positive and negative examples of uncle
relationships and a set of facts for the relations parenthier, sister, and husband (the
background predicat@$or the members of a given extended family, such as:

uncl e(tom frank), uncl e(bob, john),

not uncl e(tom cindy), not uncl e(bob,tom

par ent (bob, frank), parent(cindy, frank), parent(alice,john),
parent (tomjohn), brother(tomcindy), sister(cindy,tom,
husband(tom al i ce), husband(bob, ci ndy).

73

Alternatively, rules that logically define the brother amster relations could be sup-
plied and these relationships inferred from a more completef facts about only the
“basic” predicatespar ent , spouse, andgender .

If-then rules in first-order logic are formally referred teldorn clauses A more
formal definition of the ILP problem follows:

e Given:

— Background knowledge?, a set of Horn clauses.
— Positive examples?, a set of Horn clauses (typically ground literals).
— Negative examplesy, a set of Horn clauses (typically ground literals).

e Find: A hypothesisH, a set of Horn clauses such that:

— Vp € P: HU B [= p (completeness)
— VYn € N : HU B [~ n (consistency)

Avariety of algorithms for the ILP problem have been develbfDZzeroski & Lavrat2001a]
and applied to a variety of important data-mining probleBiggroski2001, Houstist al2000].
Nevertheless, relational data mining remains an undereafied topic in the larger
KDD community. For example, recent textbooks on data miftitan & Kamber2001,
Witten & Frank1999, Hand, Mannila, & Smyth2001] hardly mentthe topic. An in-
creasing number of applications require handling comméxictured data types, in-
cluding bioinformatics, web and text mining, and enginegriTherefore, we believe
it is an important topic for “next generation” data minings@®ms. In particular, it is
critical for link discovery applications in counter-terigm.

One of the standard criticisms of ILP methods from a dataimgimperspective
is that they do not scale to large amounts of data. Since tpethgsis space of
possible logic programs is extremely large and since jusing individual hypothe-
ses requires potentially complex automated deduction, methods can have diffi-
culty processing large amounts of data. We have developeboa® to help ad-
dress both of these aspects of computational complexitsst,Rve have developed
methods for controlling the number of hypotheses testedeweldping new search
methods that use stochastic search to more efficiently exphe space of hypothe-
ses [Zelezny, Srinivasan, & Page2002] or that combine aspdexisting top-down
and bottom-up methods (see section 1.3.2). Second, we leaedoged methods for
automatically optimizing learned clauses by inserting'cirt the Prolog code so that
deduction is more efficient [Santos Costa, Srinivasan, & &4m2000]. However, as
discussed in section 1.4, scaling ILP to very large dataisedssignificant area for
future research.

1.3 Initial Work on ILP for Link Discovery

We tested several ILP algorithms on various EELD dataséts.clirrent EELD datasets
pertain to two domains that were chosen as “challenge pmedilan link discovery that

In Prolog, cuts (!) are procedural operators that prevetgmiimlly computationally expensive back-
tracking where the programmer determines it is unnecessary

74

have many of the underlying properties of the counter-tesmo problem — Nuclear
Smuggling and Contract Killing. The Contract-Killing domas further divided into
natural (real world) data manually collected and extra@tech news sources and syn-
thetic (artificial) data generated by simulators. Sectidhllpresents our experimental
results on the natural Smuggling and Contract-Killing defaile section 1.3.2 presents
results on the synthetic Contract-Killing data.

1.3.1 Experiments on Natural Data
The Nuclear-Smuggling Data

The Nuclear-Smuggling dataset consists of reports on Russiclear materials smug-
gling [McKay, Woessner, & Roule2001]. The Chronology of Muar and Radioactive
Smuggling Incidents is the basis for the analysis of pasterthe smuggling of Russian
nuclear materials. The information in the Chronology isdobsn open-source report-
ing, primarily World News Connection (WNC) and Lexis-Nex&here are also some
articles obtained from various sources that have beenlatadsfrom Italian, German
and Russian. The research from which the Chronology grewarbeg1994 and the
chronology itself first appeared as an appendix to a paper ibaivs and Woessner
in 1995 [Williams & Woessner1995b, Williams & Woessner18p5The continually
evolving Chronology then was published twice as separgtengan the same journal
as part of the “Recent Events” section [Woessner1995, Wee$997]. As part of the
EELD project, the coverage of the Chronology was extendédexech 2000 and grew
to include 572 incidents.

The data is provided in the form of a relational databases dhtabase contains
Objects (described in rows in tables), each of which hadtaites of differing types
(i.e., columnsin the tables), the values of which are predidly the source information
or the analyst. The Objects are of different types, whichdamoted by prefixes (E
EV_, and LK), and consist of the following:

¢ Entity Objects (E...): these consist of EOCATION, E.MATERIAL, E_OR-
GANIZATION, E_PERSON, ESOURCE, and BNEAPON;

e Event Objects (EV\...): these currently consist of the generic EWENT;

e Link Objects (LK....): used for expressing links between/among Entities and
Events,

The database has over 40 relational tables. The number lektupa relational table
varies from as many as 800 to as little as 2 or 3.

As a representative problem, we used ILP to learn rules foerdening which
events in anincident atimked Such rules could be used to construct larger knowledge
structures that could be recognized as threats. Hence, Fhgyistem is given positive
training examples of known “links” between events. We assath other events are
unrelated and therefore compose a set of negative exampleslso provide back-
ground knowledge that tHanked relation is commutative. Our training set consists of
140 positive examples and 140 distinct negative examptetoraly drawn from a full
set of 8,124 negative pairs of events. The linking problerthenNuclear-Smuggling

75

data is thus quite challenging in that it is a heavily relagéiblearning problem over a
large number of relations, whereas traditional ILP appilices usually require a small
number of relations.

The Natural Contract-Killing Data

The dataset of contract killings was first compiled by O’Hagod Cook [Cook & O’Hayor2000]
in response to research on Russian organized crime thatuetered frequent refer-
ences to contract killings. The dataset was subsequembreled by the authors with
funding from the EELD program through Veridian Systems Bliiwn [Williams2002].
The database consists of a chronology of incidents eachibdedasing information
drawn from one or more news articles. As in the Nuclear-Srtingglataset, informa-
tion in the chronology is based on open-source reportime@ally Foreign Broadcast
Information Service (FBIS) and Joint Publications Reske&@ervice (JPRS) journals,
and subsequently both FBIS on-line and the on-line versiond\News Connection
(WNC). These services and Lexis-Nexis were the main inféionaources.

The data is organized in relational tables in the same foemdhe Nuclear-Smu-
ggling data described in the previous section. The dataset in our experiments has
48 relational tables. The number of tuples in a relationaktaaries from as many as
1,000 to as few as 1. Each killing was categorized accordirane of three possible
motivations: “Rival,” “Obstacle,” or “Threat.” The ILP t&svas to determine whether
the motivation for a killing was categorized as “Rival” ortn@he motivation for this
learning task was to recognize patterns of activity thaicaté an underlying motive,
which in turn contributes to recognizing threats. The nundigositive examples in
this dataset is 38, while the number of negative example4.is 3

ILP Results on the Natural Data

ALEPH We used the ILP systemi&PH [Srinivasan2001] to learn rules for the natu-
ral datasets. By default, l&EPH uses a simple greedy set covering procedure that con-
structs a complete and consistent hypothesis one claugevat.adn the search for any
single clause, AEPH selects the first uncovered positive example as the seedpdxam
saturateghis example, and performs an admissible search over tlve sfhalauses that
subsume this saturation, subject to a user-specified diangth bound. Further details
aboutour use of AEPHIN these experiments are available from [de Castro Detted2002].

Ensembles Ensembleaim atimproving accuracy through combining the prediction

of multiple classifiers in order to obtain a single classifir contrast with previous
approaches [Quinlan1996, Hoche & Wrobel2001], each diesss a logical theory
generated by AEPH. Many methods have been presented for ensemble generation
[Dietterich1998]. We usbagging[Breiman1996a], a popular method that is known to
frequently create a more accurate ensemble. Bagging wgrkaining each classifier

on a random sample from the training set. Bagging has thertaptadvantage that it

is effective on “unstable learning algorithms” [Breima®$®], where small variations

in the input data can cause large variations in the learremtiths. Most ILP algorithms

are unstable in this sense. A second advantage is that tigéngeaggorithm is highly

76

l'inked(A E) :-
| k_event _person(_, Event A PersonC, _, Rel ati onB, Rel ati onB, Descri pti onD),
| k_event _person(_, EventF, PersonC, _, Rel ati onB, Rel ati onB, Descri pti onD),
| k_material |ocation(_,Material G _, EventE, _, , , ,_),
| k_event _material (_, EventF, Material G _, ,_,_).

Figure 1.1: Nuclear-Smuggling Data: Sample Learned Rule

parallel [Dutraet al2003]. Further details about our approach to bagging for dsP
well as our experimental methodology, can be found in [ddrGd3utraet al2002].
Our experimental results are based on a five-fold crosskadddin, where five times we
train on 80% of the examples and then test what was learndteaenaining 20% (in
addition, each example is in one and only one test set).

For the task of identifying linked events in the Nuclear-$gling dataset, AEPH
produces an average testset accuracy of 85%. This is anvampent over the base-
line case (majority class—always guessing two events arkrked), which produces
an average accuracy of 78%. Bagging (with 25 different sktsiles) increases the
accuracy to almost 90%.

An example of a rule with good accuracy found by the systenh@ve in Fig-
ure 1.1. This rule covers 43 of the 140 positive examples andegative examples.
According to this rule, two smuggling evemsandE are related if everd involves
a persorCwho is also involved in another evelit EventF involves some materidb
that appears in eveft In other words, a persddin eventAis involved in a third event
F that uses material from evekt PersonC played the same rolB, with description
D, in eventsA andF. The “_” symbols mean that those arguments were not relevant
for that rule. Figure 1.2 illustrates the connections betwevents, material and peo-
ple involved. Solid lines are direct connections shown by literals in the body of
the clause. The dotted line corresponds to the newly leacardept that describes a
connection between two events.

Inferred

Event A rs Event F ".‘ Event E

e
NG
P
N

Person C Material G
Figure 1.2: Pictorial representation of a learned rule.

The task of identifying the underlying motive in the Contr&dling data set is
much more difficult, with AEPH's accuracy at 59%, compared with the baseline ac-
curacy of 52%. Again, bagging improves the accuracy, thigtio 69%. The rule in
Figure 1.3 shows one logical clause the ILP system foundhisrdataset. The rule
covers 19 of the 38 positive examples and a single negatarapbe. The rule says that

7

rival Killing(EventA) :-
| k_event _event (_, Event B, Event A, Rel ati onC, Event Descri pti onD),
| k_event _event (_, Event B, Event E, Rel ati onC, Event Descri pti onD),
| k_event _event (_, Event E, EventF, _, Event Descri pti onD),
lk_org org(_,_,_,EventF, _, , ,_,).

Figure 1.3: Natural Contract-Killing Data: Sample Learirade

eventAis a killing by a rival if we can follow a chain of events thatrowcts eveni
to eventB, eventB to eventE, and evenE to an evenf that relates two organizations.
EventsA andE have the same kind of relatioRel at i onC, to B. All events in the
chain are subsets of the same incident

1.3.2 Experiments on Synthetic Data

The ease of generating large amounts and data and privasideoations have led the
EELD program to use synthetic data generated by simulatdest, we describe the
results we obtained from simulated data for the CK problerhis Tata was gener-
ated from a run of a Task-Based (TB) simulator developed byrimation Extraction
and Transport Incorporated (IET). The TB simulator outmaise files, which contain
complete and unadulterated descriptions of murder casesselcase files are then fil-
tered for observability, so that facts that would not be asite to an investigator are
eliminated. To make the task more realistic, the simulatdpuwt is corrupted, e.g., by
misidentifying role players or incorrectly reporting gmmemberships. This filtered
and corrupted data form the evidence files. In the evideres, fiicts about each event
are represented as ground facts, such as:

nmur der (Mur der 714)
perpetrator(Mrder714, Killer186)
crimeVictinm Miurder714, MurderVictinD96)
devi ceTypeUsed(Mur der 714, Pi stol Czech)

The synthetic dataset that we used consists of 632 murdetsev&ach murder
event has been labeled as either a positive or negative édgarhp murder-for-hire.
There are 133 positive and 499 negative examples in theetat@sr task was to learn
a theory to correctly classify an unlabeled event as eitlpeisitive or negative instance
of murder-for-hire. The amount of background knowledgeliis dataset is extremely
large; consisting of 52 distinct predicate names, and &®lhackground facts in all.

Scaling to large datasets in data mining typically refermtweasing thexumber
of training examples that can be processed. Another meadwemplexity that is
particularly relevant in relational data mining is teze of individual examples, i.e.
the number of facts used to describe each example. To ourledge, the challenge
problems developed for the EELD program are the largest HoBlpms attempted to
date in terms of the number of facts in the background knogdedn order to more
effectively process such large examples, we have develapesiv ILP method that
reduces the number of clauses that are generated and tested.

78

BETH

The two standard approachesto ILP are bottom-up and tom-flawrac & Dzeroski1994].
Bottom-up methods like BEPH start with a very specific clause (calledbattom
clausg generated from a seed positive example and generalizefétras possible
without covering negative examples. Top-down methodsHike [Quinlan1990] and
mFoIL [Lavrac & Dzeroski1l994] start with the most general (emptiguse and re-
peatedly specialize it until it no longer covers negativaregles. Both approaches
have problems scaling to large examples. When given larguata of background
knowledge, the bottom clause in bottom-up methods becomiextably large and the
increased branching factor in top-down methods greathenes their search.

Since top-down and bottom-up approaches have both stieagthweaknesses, we
developed a hybrid method that helps reduce search whemrgawith large amounts
of background knowledge. It does not build a bottom clausegua seed example
beforesearching for a good clause. Instead, after a random se@apéxé chosen,
it generates literals in a top-down fashion (i.e. guided burfstic search), except
the literals generated are constrained to cover the seedpea Based on this idea,
we have developed a system callBdttom-clauseExploration ThroughHeuristic-
search (ETH) in which the bottom clause is not constructed in advance"dist
covered” during the search for a good clause. Details of therithm are given in
[Tang, Mooney, & Melville2003].

Results and Discussion

The performance of 2EPH, mFoIL, and BETH was evaluated using 6-fold cross-
validation. The data for each fold was generated by separageof the TB simulator.
The facts produced by one run of the simulator, only pertaithé entities and rela-
tions generated in that run; hence the facts of each foldranelated to the others. For
each trial, one fold is set aside for testing, while the remimgj data iscombinedfor
training. The total number of Prolog atoms in the data is sgelahat running more
than six folds is not feasibeTo test performance on varying amounts of training data,
learning curves were generated by testing the system adiairtg on increasing sub-
sets of the overall training data. Note that, for differeainps on the learning curve,
the background knowledge remains the same; only the nunfipesdive and negative
training examples given to the system varies.

We compared the three systems with respect to accuracyanihty time. Accu-
racy is defined as the number of correctly classified tessadis@led by the total num-
ber of test cases. The training time is measured as the CRictimsumed during the
training phase. All the experiments were performed on a Hz Bentinum with dual
processors and 2 GB of RAM.B&H and mFoiL were implemented in Sicstus Prolog
version 3.8.5 and AeEPH was implemented in Yap version 4.3.22. Although different
Prolog compilers were used, the Yap Prolog compiler has desmonstrated to outper-

form the Sicstus Prolog compiler, particularly in ILP ajgplions [Santos Costal1999].
The following is a sample rule learned by BH:

2The maximum number of atoms that the Sicstus Prolog comgaliethandle is approximately a quarter
million.

79

98 T T T T 40000

35000 - A
30000 BETH —+— B
ALEPH - /
MFOIL -
25000 q
z
3
g £ /
K @ 20000 - 4
8 £ /
< =
e
2
o
15000 g
10000 A b
/)(" i
5000 | ¥~ B
£
78 0

. . . . " . .
o 20 40 60 80 100 o 20 40 60 80 100
% of Training Examples % of Training Examples

Figure 1.4: Learning Curves for Accuracy and Training Speed

System Accuracy CPU Time (mins) | # of Clauses| Bottom Clause Size
BETH | 94.80% (+/- 2.3%)| 23.39 (+/- 4.26) 4483 34

ALEPH | 96.91% (+/- 2.8%)| 598.92 (+/- 250.00) 63334 4061

mFoiL | 91.23% (+/- 4.8%)| 45.28 (+/- 5.40) 112904 n/a

Table 1.1: Results on classifyimgurder-for-hireevents given all the training dat#.
of Clausess the total number of clauses tested; &altom Clause Sizs the average
number of literals in the bottom clause constructed for edalise in the learned theory.
The 90% confidence intervals are given for tésturacyandCPU time

nmurder _for_hire(A):- nurder(A), eventCccursAt(A H),
geogr aphi cal SubRegi ons(1, H), perpetrator(A B),
recipientfinfo(C, B), sender(finfo(C D), socialParticipants(F, D),
soci al Partici pants(F, G, payer(E, G, toPossessor(E D).

This rule covered 9 positive examples and 3 negative examglbae rule can be in-
terpreted asA is a murder-for-hire, ifA is a murder event, which occurs in a city in a
subregion of Russia, and in whighis the perpetrator, who received information from
D, who had a meeting with and received some money fGm

The results of our experiments are summarized in Figure A.4napshot of the
performance of the three ILP systems given 100% of the tigiexamples is shown
in Table 1.1. On the full training set,B&H trains 25 times faster thanw&rPH while
losing only 2 percentage points in accuracy and it trainsdvais fast as m&iL while
gaining 3 percentage points in accuracy. Therefore, wewlhat its integration of
top-down and bottom-up search is an effective approachatrdpwith the problem of

80

scaling ILP to large examples. The learning curves for tingitime further illustrate
that although BTH and mFoIL appear to scale linearly with the number of training
examples, AEPH's training-time growth is super-linear.

Systems like BTH and ALEPH construct literals based on actual ground atoms
in the background knowledge, guaranteeing that the sjmmibtlause covers at least
the seed example. On the other hand,anFgenerates more literals than necessary
by enumerating all possible combination of variables. Seawh combinations make
useless literals; adding any of them to the body of the ctilanse makes specialized
clauses that do not cover any positive examples. Thufyimwastes CPU time con-
structing and testing these literals. Since the averagiiqake arity in the EELD data
was small (2), the speedup over miE was not as great, although much larger gains
would be expected for data that contains predicates withdrigrity.

1.4 Current and Future Research

An under-studied issue in relational data mining is scabfgprithms to very large
databases. Most research on ILP and RDM has been condutiedirachine learning
and artificial intelligence communities rather than in tiagadbase and systems commu-
nities. Consequently, there has been insufficient researslystems issues involved in
performing RDM in commercial relational-database systantsscaling algorithms to
extremely large datasets that will not fit in main memoryegrating ideas from sys-
tems work in data mining and deductive databases [Ramaracii@& Harland1994]
would seem to be critical in addressing these issues.

On the issue of scaling, in addition to th& B+ system discussed in section 1.3.2,
we are currently working on efficiently learning complexaténal concepts from large
amounts of data by using stochastic sampling methods. Amshmrtcoming of ILP
is the computational demand that results from the large thgsis spaces searched.
Intelligently sampling these large spaces can providelexteperformance in much
less time [Srinivasan1999, Zelezny, Srinivasan, & Pag2R00

We are also developing algorithms that learn more robushatilistic relational
concepts represented as stochastic logic programs [Miog@@03] and variants. This
will enrich the expressiveness and robustness of learnadepds. As an alterna-
tive to stochastic logic programs, we are working on leagrglauses in a constraint
logic programming language where the constraints are Bayegtworks [Page2000,
Costaet al2003].

One approach that we plan to investigate further is the usgppfoximate prior
knowledge to induce more accurate, comprehensible rakdticoncepts from fewer
training examples [Richards & Mooney1995]. The use of pkimowledge can greatly
reduce the burden on users; they can express the “easy’tasgabe task at hand
and then collect a small number of training examples to redimeé extend this prior
knowledge.

We also plan to use active learning to allow our ILP systensetect more effective
training examples for interactively learning relationahcepts [Muggletoet al.1999].
By intelligently choosing the examples for users to labettdr extraction accuracy can
be obtained from fewer examples, thereby greatly redutiadtirden on the users of

81

our ILP systems.

Another important issue related to data mining for coutgerarism is privacy
preservation. DARPA's counter-terrorism programs haweetied significant public
and media attention due to concerns about potential priviatations (e.g. [Clymer2003]).
Consequently, privacy-preserving data mining [Gehrk@p@&another very significant
“next generation” issue in data mining.

1.5 Related Work

Although it is the most widely studied, ILP is not the only apgch to relational data
mining. In particular, other participants in the EELD pragr are taking alternative
RDM approaches to pattern learning for link discovery. T3gstion briefly reviews
these other approaches.

1.5.1 Graph-based Relational Learning

Some relational data mining methods are based on learmirgstal patterns in graphs.
In particular, SUBDUE [Cook & Holder1994, Cook & Holder2QGflscovers highly
repetitive subgraphs in a labeled graph using the minimusarifgtion length (MDL)
principle. SUBDUE can be used to discover interesting subtitres in graphical data
as well as to classify and cluster graphs. Discovered pato not have to match the
data exactly since SUBDUE can employ an inexact graph-ritajgirocedure based
on graph edit-distance. SUBDUE has been successfullyegppd a number of im-
portant RDM problems in molecular biology, geology, andgwean analysis. It is also
currently being applied to discover patterns for link disexy as a part of the EELD
project (more details dtt t p: / / ai | ab. ut a. edu/ eel d/). Since relational data for
LD is easily represented as labeled graphs, graph-based iR8\tklods like SUBDUE
are a natural approach.

1.5.2 Probabilistic Relational Models

Probabilistic relational model§PRM’s) [Koller & Pfeffer1998] are an extension of
Bayesian networks for handling relational data. Methodddarning Bayesian net-
works have also been extended to produce algorithms focinglPRM'’s from data
[Friedmanet al.1999]. PRM’s have the nice property of integrating some ef dl-
vantages of both logical and probabilistic approaches twkedge representation and
reasoning. They combine some of the representational esipity of first-order logic
with the uncertain reasoning abilities of Bayesian netwoBRM'’s have been applied
to a number of interesting problems in molecular biologyhwpage classification, and
analysis of movie data. They are also currently being agpbepattern learning for
link discovery as a part of the EELD project.

82

1.5.3 Relational Feature Construction

One approach to learning from relational data is to first téiat or “propositional-
ize” the data by constructing features that capture somé®fre¢lational informa-
tion and then applying a standard learning algorithm to #silting feature vectors
[Kramer, Lavrag, & Flach2001]. PROXIMITY [Neville & Jens2000] is a system that
constructs features for categorizing entities based ocdtegjories and other properties
of other entities to which it is related. It then uses an imtéve classification proce-
dure to dynamically update inferences about objects baseudier inferences about
related objects. PROXIMITY has been successfully appleddmpany and movie
data. Itis also currently being applied to pattern learriardink discovery as a part of
the EELD project.

1.6 Conclusions

Link discovery is an important problem in automaticallyet#ing potential threatening
activity from large, heterogeneous data sources. The DAERPAD program is a

U.S. government research project exploring link discowran important problem in
the development of new counter-terrorism technology. hiear new link-discovery

patterns that indicate potentially threatening activétg idifficult data mining problem.
It requires discovering novel relational patterns in laageunts of complex relational
data. In this work we have shown that ILP methods can extrdéetesting and useful
rules from link-discovery data-bases containing up to meds of thousands of items.
To do so, we improved search efficiency and computation tierepde over current
ILP systems.

Most existing data-mining methods assume flat data fromglesirelational table
and are not appropriate for link discovery. Relational daiaing techniques, such as
inductive logic programming, are needed. Many other proislen molecular biology
[Srinivasaret al1996], natural-language understanding [Zelle & Moonel9%eb
page classification [Cravest al2000], information extraction [Califf & Mooney1999,
Freitag1998], and other areas also require mining multicnal data. However, re-
lational data mining requires exploring a much larger spH#geossible patterns and
performing complex inference and pattern matching. As altesurrent RDM meth-
ods are not sufficiently scalable to very large databasessé&tuently, we believe that
relational data mining is one of the major research topitiseérdevelopment of the next
generation of data mining systems, particularly those éndttea of counter-terrorism.

Acknowledgments

This research is sponsored by the Defense Advanced Redeanjetts Agency and
managed by Rome Laboratory under contract F30602-01-2-08% views and con-
clusions contained in this document are those of the autmisshould not be in-
terpreted as necessarily representing the official pali@éher expressed or implied
of the Defense Advanced Research Projects Agency, Romedtalog or the United

States Government.

83

Vitor Santos Costa and Inés de Castro Dutra are on leawe @OPPE/Sistemas,
Federal University of Rio de Janeiro and were partially sufgdl by CNPg. Many
thanks to Hans Chalupksy’s group at ISI, in particular to An®falente, who gave
us support on using the Task-based simulator. We would tikinank the Biomed-
ical Computing Group support staff and the Condor Team aCibmaputer Sciences
Department of the University of Wisconsin, Madison, forithavaluable help with
Condor. We also would like to thank Ashwin Srinivasan for édp with the A EPH
system.

84

Bibliography

[Breiman1996a] Breiman, L. 1996a. Bagging Predictordlachine Learning
24(2):123-140.

[Breiman1996b] Breiman, L. 1996b. Stacked Regressiomdachine Learning
24(1):49-64.

[Califf & Mooney1999] Califf, M. E., and Mooney, R. J. 1999eRtional learning of
pattern-match rules for information extraction.Rroceedings of the 17th National
Conference on Artificial Intelligen¢c828-334.

[Clymer2003] Clymer, A. 2003. Pentagon Surveillance Plamlescribed as Less
Invasive.New York TimeMay(7).

[Cook & Holder1994] Cook, D. J., and Holder, L. B. 1994. Substure discovery
using minimum description length and background knowledgarnal of Artificial
Intelligence Research:231-255.

[Cook & Holder2000] Cook, D. J., and Holder, L. B. 2000. Grapdsed data mining.
IEEE Intelligent SystemE5(2):32—-41.

[Cook & O’Hayon2000] Cook, W., and O’Hayon, G. 2000. Chramp} of Russian
killings. Transnational Organized Crimé(2).

[Costaet al2003] Costa, V. S.; Page, D.; Qazi, M.; and Cussens, J. 200B(EBN):
Constraint logic programming for probabilistic knowledde Proceedings of the
International Conference on Uncertainty in Artificial Ifitgence (UAI-03)

[Cowie & Lehnert1996] Cowie, J., and Lehnert, W. 1996. Infiation extraction.
Communications of the ACBB(1):80-91.

[Cravenet al2000] Craven, M.; DiPasquo, D.; Freitag, D.; McCallum, A.; K.
Mitchell, T.; Nigam, K.; and Slattery, S. 2000. Learning wnstruct knowledge
bases from the World Wide Welrtificial Intelligencel118(1-2):69-113.

[de Castro Dutrat al2002] de Castro Dutra, I.; Page, D.; Costa, V. S.; and Shavlik
J. W. 2002. An empirical evaluation of bagging in inductiegit programming.
In Inductive Logic Programming, 12th International Confezenvolume 2583 of
Lecture Notes in Computer Sciend8—65. Sydney, Australia: Springer Verlag.

85

[Dietterich1998] Dietterich, T. G. 1998. Machine-leamgiresearch: Four current
directions.The Al Magazind 8(4):97-136.

[Dutraet al2003] Dutra, I. C.; Page, D.; Santos Costa, V.; Shavlik, Janwd Waddell,
M. 2003. Towards automatic management of embarassingaflebapplications.
In Proceedings of Europar 20QBecture Notes in Computer Science. Klagenfurt,
Austria: Springer Verlag.

[Dzeroski & Lavrat2001a] Dzeroski, S., and Lavra¢, NDO2a. An introduction to
inductive logic programming. In DZeroski, S., and Laynst eds. Relational Data
Mining. Berlin: Springer Verlag. 48—73.

[Dzeroski & Lavrat2001b] Dzeroski, S., and Lavrac, éds. 2001bRelational Data
Mining. Berlin: Springer Verlag.

[Dzeroski2001] Dzeroski, S. 2001. Relational data ngrapplications: An overview.
In DZeroski, S., and Lavrag, N., ed®elational Data Mining Berlin: Springer
Verlag. 339-364.

[Freitag1998] Freitag, D. 1998. Information extractioarfr HTML: Application of
a general learning approach. Rroceedings of the 16th National Conference on
Artificial Intelligence 517-523. Madison, WI: AAAI Press / The MIT Press.

[Friedmanet al.1999] Friedman, N.; Getoor, L.; Koller, D.; and Pfeffer, A.999.
Learning probabilistic relational models. Rroceedings of the 16th International
Joint Conference on Atrtificial Intelligenc&300-1307.

[Gehrke2002] Gehrke, J. 2002. Data mining for security arvbpy. SIGKDD Ex-
plorations4(2):i. Introduction to special issue on Privacy and Seguri

[Han & Kamber2001] Han, J., and Kamber, M. 200Rata Mining: Concepts and
TechnigquesSan Francisco: Morgan Kauffmann Publishers.

[Hand, Mannila, & Smyth2001] Hand, D. J.; Mannila, H.; andy&m P. 2001.Prin-
ciples of Data Mining Cambridge, MA: MIT Press.

[Hoche & Wrobel2001] Hoche, S., and Wrobel, S. 2001. Retetidearning using
constrained confidence-rated boosting. In Rouveirol, @, $ebag, M., edsBro-
ceedings of the 11th International Conference on Indudtivgic Programming
volume 2157 ot ecture Notes in Artificial Intelligen¢&1—-64. Springer-Verlag.

[Houstiset al2000] Houstis, E. N.; Catlin, A. C.; Rice, J. R.; Verykios 3/; Ramakr-
ishnan, N.; and Houstis, C. E. 2000. PYTHIA-II: a knowledtgbase system for
managing performance data and recommending scientifiwat ACM Transac-
tions on Mathematical Softwa®6(2):227-253.

[Jensen & Goldberg1998] Jensen, D., and Goldberg, H., e888.1AAAI Fall Sym-
posium on Artificial Intelligence for Link Analysislenlo Park, CA: AAAI Press.

86

[Koller & Pfeffer1998] Koller, D., and Pfeffer, A. 1998. Poabilistic frame-based
systems. IProceedings of the 16th National Conference on Atrtificié¢ligence
580-587. Madison, WI: AAAI Press / The MIT Press.

[Kramer, Lavrag, & Flach2001] Kramer, S.; Lavrac, N.; dfdch, P. 2001. Proposi-
tionalization approaches to relational data mining. Irefski, S., and Lavrac, N.,
eds.,Relational Data MiningBerlin: Springer Verlag. 262—-291.

[Lavrac & Dzeroski1l994] Lavrac, N., and Dzeroski, S. 1994ductive Logic Pro-
gramming: Techniques and Applicatiori&lis Horwood.

[Lehnert & Sundheim1991] Lehnert, W., and Sundheim, B. 19&lperformance
evaluation of text-analysis technologied.Magazinel2(3):81-94.

[McKay, Woessner, & Roule2001] McKay, S. J.; Woessner, P.awd Roule, T. J.
2001. Evidence extraction and link discovery (EELD) seegliproject, database
schema description, version 1.0. Technical Report 286l Systems Division.

[Muggletonet al1999] Muggleton, S.; Bryant, C.; Page, C.; and Sternberg] 889.
Combining active learning with inductive logic programmito close the loop in
machine learning. In Colton, S., e®roceedings of the AISB’99 Symposium on Al
and Scientific Creativity (informal proceedings)

[Muggleton1992] Muggleton, S. H., ed. 199fhductive Logic ProgrammingNew
York, NY: Academic Press.

[Muggleton2003] Muggleton, S. 2003. Stochastic logic pamgs. Journal of Logic
Programming To appear.

[Neville & Jensen2000] Neville, J., and Jensen, D. 2000Gattee classification in re-
lational data. IrPapers from the AAAI-00 Workshop on Learning Statisticatide
from Relational Data Austin, TX: AAAI Press / The MIT Press.

[NIST2003] NIST. 2003. ACE - Automatic Content Extraction.
http://www.nist.gov/speech/tests/ace/.

[Page2000] Page, D. 2000. ILP: Just do it! In Lloyd, J.; Dahj,Furbach, U.;
Kerber, M.; Lau, K.-K.; Palamidessi, C.; Pereira, L.; Sayfivand Stuckey, P., eds.,
Proceedings of Computational Logic 2Q@%—40. Springer Verlag.

[Quinlan1990] Quinlan, J. R. 1990. Learning logical deforis from relations Ma-
chine Learnings(3):239-266.

[Quinlan1996] Quinlan, J. R. 1996. Boosting first-orderridag. Algorithmic
Learning Theory, 7th International Workshop, Lecture NateComputer Science
1160:143-155.

[Ramamohanarao & Harland1994] Ramamohanarao, K., anchtird. 1994. An
introduction to deductive database languages and systinBB Journal3:2.

87

[Richards & Mooney1995] Richards, B. L., and Mooney, R. J.93.9 Automated
refinement of first-order Horn-clause domain theordachine Learnindl9(2):95—
131.

[Santos Costa, Srinivasan, & Camacho2000] Santos Cost@&ikivasan, A.; and Ca-
macho, R. 2000. A note on two simple transformations for maprg the efficiency
of an ILP system. In Cussens, J., and Frisch, A., éleceedings of the 10th In-
ternational Conference on Inductive Logic Programmiaglume 1866 ol ecture
Notes in Artificial Intelligence225-242. Springer-Verlag.

[Santos Costal999] Santos Costa, V. 1999. Optimising bygeemulation for Prolog.
In LNCS 1702, Proceedings of PPDP961-267. Springer-Verlag.

[Sparrow1991] Sparrow, M. K. 1991. The application of netwanalysis to criminal
intelligence: An assessment of the prospeSiscial Network4.3:251-274.

[Srinivasanet al.1996] Srinivasan, A.; Muggleton, S. H.; Sternberg, M. Jd &ing,
R. D. 1996. Theories for mutagenicity: A study in first-or@erd feature-based
induction. Artificial Intelligence85:277-300.

[Srinivasan1999] Srinivasan, A. 1999. A study of two samglinethods for analysing
large datasets with ILFData Mining and Knowledge DiscoveB(1):95-123.

[Srinivasan2001] Srinivasan, A. 2001. The Aleph Manual URL:
http://oldwww.comlab.ox.ac.uk/oucl/groups/machléateph/alephtoc.html.

[Tang, Mooney, & Melville2003] Tang, L. R.; Mooney, R. J.;chMelville, P. 2003.
Scaling up ilp to large examples: Results on link discovencbunter-terrorism. In
submitted to the KDD-03 Workshop on Multi-Relational Datiaidg.

[Wasserman & Faust1994] Wasserman, S., and Faust, K. Haszlal Network Anal-
ysis: Methods & ApplicationgCambridge, UK: Cambridge University Press.

[Williams & Woessner1995a] Williams, P., and Woessner, PL8B5a. Nuclear mate-
rial trafficking: An interim assessmentransnational Organized Crim#(2):206—
238.

[Williams & Woessner1995b] Williams, P., and Woessner, P.18995b. Nuclear ma-
terial trafficking: An interim assessment, ridgway viewmsi Technical Report 3,
Ridgway Center, University of Pittsburgh.

[Williams2002] Williams, P. 2002. Patterns, indicatonsdavarnings in link analysis:
The contract killings dataset. Technical Report 2878,dfar Systems Division.

[Witten & Frank1999] Witten, I. H., and Frank, E. 199%ata Mining: Practical
Machine Learning Tools and Techniques with Java Implentiemts San Francisco:
Morgan Kaufmann.

[Woessner1995] Woessner, P. N. 1995. Chronology of nusleaiggling incidents:
July 1991-may 1995Transnational Organized Crim#(2):288-329.

88

[Woessner1997] Woessner, P. N. 1997. Chronology of ratli@aand nuclear ma-

terials smuggling incidents: July 1991-june 199Tansnational Organized Crime
3(1):114-209.

[Wrobel2001] Wrobel, S. 2001. Inductive logic programmfogknowledge discov-
ery in databases. In Dzeroski, S., and Lavrat, N., éRislational Data Mining
Berlin: Springer Verlag. 74-101.

[Zelezny, Srinivasan, & Page2002] Zelezny, F.; Srinivasan and Page, D. 2002.
Lattice-search runtime distributions may be heavy-tailéd Proceedings of the
12th International Conference on Inductive Logic Prograimgn Springer Verlag.

[Zelle & Mooney1996] Zelle, J. M., and Mooney, R. J. 1996. imag to parse

database queries using inductive logic programmingProceedings of the 14th
National Conference on Artificial Intelligenc&050-1055.

89

ILP: A Short Look Back and a Longer Look Forward

David Page PAGE@BIOSTAT.WISC.EDU
Dept. of Biostatistics and Medical Informatics

and Dept. of Computer Sciences

University of Wisconsin

1300 University Ave., Rm 5795 Medical Sciences

Madison, WI 53706, USA

Ashwin Srinivasan ASHWIN@COMLAB.OX.AC.UK
Ozford University Computing Laboratory

Wolfson Building, Parks Road

Ozford OX1 3QD, UK

Editor: James Cussens and Alan M. Frisch

Abstract

Inductive logic programming (ILP) is built on a foundation laid by research in machine
learning and computational logic. Armed with this strong foundation, ILP has been applied
to important and interesting problems in the life sciences, engineering and the arts. This
paper begins by briefly reviewing some example applications, in order to illustrate the
benefits of ILP. In turn, the applications have brought into focus the need for more research
into specific topics. We enumerate and elaborate five of these: (1) novel search methods; (2)
incorporation of explicit probabilities; (3) incorporation of special-purpose reasoners; (4)
parallel execution using commodity components; and (5) enhanced human interaction. It
is our hypothesis that progress in each of these areas can greatly improve the contributions
that can be made with ILP; and that, with assistance from research workers in other areas,
significant progress in each of these areas is possible.

1. Introduction

Inductive logic programming (ILP) has its foundations in computational logic, including
logic programming, knowledge representation and reasoning, and automated theorem prov-
ing. These foundations go beyond the obvious basis in definite clause logic and SLD-
resolution. In addition ILP has utilized such theoretical results from computational logic
as Lee’s Subsumption Theorem (Lee, 1967), Gottlob’s Lemma linking implication and sub-
sumption (Gottlob, 1987), Marcinkowski and Pacholski’s result on the undecidability of
implication between definite clauses (Marcinkowski and Pacholski, 1992), and many oth-
ers. In addition to utilizing such theoretical results, ILP depends crucially on important
advances in logic programming implementations. For example, many of the applications
summarized in the next section were possible only because of fast deductive inference based
on indexing, partial compilation, etc. as embodied in the best current Prolog implemen-
tations. Finally, research in computational logic has yielded numerous important lessons
about knowledge representation in logic that have formed the basis for applications. Just as

90

one example, definite clause grammars are central to several ILP applications within both
natural language processing and bioinformatics.

In his famous address in 1900 to the International Congress of Mathematicians in Paris,
David Hilbert commenced thus (from the English translation in (Hilbert, 1902)):

Who of us would not be glad to lift the veil behind which the future lies hidden;
to cast a glance at the next advances of our science ... We know that every age
has its own problems, which the following age either solves or casts aside as
profitless and replaces by new ones. If we would obtain an idea of the probable
development of mathematical knowledge in the immediate future, we must let
the unsettled questions pass before our minds and look over the problems which
the science of today sets and whose solution we expect from the future.

In a far more humble setting, we present here what we believe to be some pressing issues
that have arisen from the most challenging ILP applications of today. These are:

1. The development of novel search methods;

2. Techniques for incorporating explicit probabilities into ILP;

3. The use of special-purpose reasoners in ILP;

4. Techniques for parallel execution using commodity components; and

5. Enhancing human-computer interaction to make ILP systems true collaborators with
human experts.

It is our belief that adequate solutions to the concomitant problems posed by these issues
will greatly improve the quality and type of assistance that can be rendered by ILP systems.
Further, we fully expect such solutions are obtainable in the future, with the assistance of
research workers from machine learning, algorithm development, computational logic, and
experimental psychology.

The rest of the paper is organised as follows. Section 2 gives a brief review of the some
the application areas that have motivated the research issues enumerated above. Each of
these issues is examined in greater detail in Sections 3—7. Section 8 concludes the paper.

2. Challenging Application Areas for ILP

One of the most important application domains for machine learning in general is bioin-
formatics, broadly interpreted. This domain is particularly attractive for (1) its obvious
importance to society, and (2) the plethora of large and growing data sets. Data sets obvi-
ously include the newly completed and available DNA sequences for C. elegans (nematode),
Drosophila (fruitfly), and (depending on one’s definitions of “completed” and “available”)
man. But other data sets include gene expression data (recording the degree to which var-
ious genes are expressed as protein in a tissue sample), bio-activity data on potential drug
molecules, x-ray crystallography and NMR data on protein structure, and data from novel
techniques in proteomics. Applications within bioinformatics include protein structure pre-
diction (Muggleton et al., 1992, Turcotte et al., 1998), mutagenicity prediction (King et al.,
1996), and pharmacophore discovery (Marchand-Geneste et al., 2002, Finn et al., 1998)

91

Figure 1: ACE inhibitor number 1 with highlighted 4-point pharmacophore.

(discovery of a 3D substructure responsible for drug activity that can be used to guide the
search for new drugs with similar activity). ILP is particularly well-suited for bioinformatics
tasks because of its abilities to take into account background knowledge and work directly
with structured data. For example, the following is a potential pharmacophore for ACE
inhibition (a form of hypertension medication), where the spatial relationships are described
through pairwise distances.

Molecule A is an ACE inhibitor if:

molecule A contains a zinc binding site B, and

molecule A contains a hydrogen acceptor C, and

the distance between B and C is 7.9 +/- .75 Angstroms, and
molecule A contains a hydrogen acceptor D, and

the distance between B and D is 8.5 +/- .75 Angstroms, and
the distance between C and D is 2.1 +/- .75 Angstroms, and
molecule A contains a hydrogen acceptor E, and

the distance between B and E is 4.9 +/- .75 Angstroms, and
the distance between C and E is 3.1 +/- .75 Angstroms, and
the distance between D and E is 3.8 +/- .75 Angstroms.

Figures 1 and 2 show two different ACE inhibitors with the parts of the pharmacophore
highlighted and labeled. The preceding rule was automatically translated directly from
logic. It illustrates another strength of ILP, in that logical rules are easily translated into

1. Hydrogen acceptors are atoms with a weak negative charge. Ordinarily, zinc-binding would be irrelevant;
it is relevant here because ACE is one of several proteins in the body that typically contains an associated
zinc ion. The error tolerance on distances was fixed to 0.75 Angstroms based on the recommendation of
a domain expert; multiple possible error tolerances can be incorporated into the search if that is desired
instead. 1.0 and 0.75 are typical tolerances preferred by chemists.

92

Figure 2: ACE inhibitor number 2 with highlighted 4-point pharmacophore.

English. If the vocabulary for the rules is meaningful to the domain experts, as in this case,
then ILP discoveries are directly comprehensible to humans, at least to domain experts.

Note that the features (acceptors and zinc-binding) are related to one another by dis-
tances, and a typical molecule may have many atoms or groups that potentially could play
the role of a given feature in the rule. Hence just testing whether a molecule satisfies a rule
is itself a constraint-satisfaction problem, where features are variables and distances are
constraints. For this reason, ordinary feature based learners (e.g., decision tree algorithms),
cannot learn rules of this form unless each possible rule is itself encoded as a single feature.
But the problem with that approach is that it leads to millions of features for a typical set
of molecules.

A very different type of domain for machine learning is natural language processing
(NLP). This domain also includes a wide variety of tasks such as part-of-speech tagging,
grammar learning, information retrieval, and information extraction. Arguably, natural
language translation (at least, very rough-cut translation) is now a reality—witness for
example the widespread use of Altavista’s Babelfish (http://babel.altavista.com/). Machine
learning techniques are aiding in the construction of information extraction engines that fill
database entries from document abstracts or web pages (e.g., (Craven and Kumlien, 1999)).
NLP became a major application focus for ILP in particular with the ESPRIT project ILP2.
A strength of ILP for NLP is that grammars can be represented as logic programs, so the
same algorithms used to learn pharmacophores can be applied to learning grammars or
portions of grammars.

A third popular and challenging application area for machine learning is knowledge
discovery from large databases with rich data formats, which might contain for example
satellite images, audio recordings, movie files, etc. While Dzeroski has shown how ILP

93

applies very naturally to knowledge discovery from ordinary relational databases (Dzeroski,
1996), advances are needed to deal with multimedia databases.

ILP has advantages over other machine learning techniques for all of the preceding
application areas. Nevertheless, these applications also highlight the following shortcomings
of present ILP technology:

e Techniques such as bigrams and trigrams, or the more complex hidden Markov models,
Bayes nets and dynamic Bayes nets, can expressly represent the probabilities inherent
in tasks such as part-of-speech tagging, alignment of proteins, robot maneuvering, etc.
Few ILP systems need to have such capabilities.

e ILP systems have higher time and space requirements than other machine learning
systems, making it difficult to apply them to large data sets. Novel search algorithms
and parallel processing need to be explored.

e ILP works well when data and background knowledge are cleanly expressible in first-
order logic. But what can be done when databases contain images, audio, movies,
etc.? ILP needs to learn lessons from constraint logic programming regarding the
incorporation of special-purpose techniques for handling special data formats.

e In scientific knowledge discovery, for example in the domain of bioinformatics, it would
be beneficial if ILP systems could collaborate with scientists rather than merely run-
ning in batch mode. If ILP does not take this step, other forms of collaborative
scientific assistants will be developed, supplanting ILP’s position within these do-
mains.

The directions for further research that are discussed in the following sections address these
shortcomings, in the same order.

3. Improved/Novel Search Methods

Most ILP algorithms search a lattice of clauses ordered by subsumption. They seek a clause
that maximizes some function of the size of the clause and coverage of the clause, i.e. the
numbers of positive and negative examples entailed by the clause together with the back-
ground theory. Depending upon how they search this lattice, these ILP algorithms are
classified as either specific-to-general (based on least general generalization) or general-to-
specific (based on refinement). Algorithms are further classified by whether they perform
a greedy search, beam search, admissible search, etc. But a large space of possible algo-
rithms still remains unexplored—algorithms that are neither top-down nor bottom-up, nor
even necessarily deterministic. For other challenging logic or artificial intelligence tasks out-
side ILP, great progress has been made in the development of novel search stategies. The
best-known case is satisfiability, where GSAT (Selman et al., 1992) made a substantial im-
provement over Davis-Putnam, then WalkSAT (Selman et al., 1994) improved upon GSAT,
and where more recently novel versions of Davis-Putnam with rapid random restarts have
outperformed WalkSAT (Gomes et al., 2000). Consequently, a promising research direction
is to apply novel search strategies such as these to ILP.

ILP algorithms face not one but two difficult search problems. In addition to the search
of the lattice of clauses, already described, simply testing the coverage of a clause involves

94

repeated searches for proofs—*“if I assume this clause is true, does a proof exist for that
example?” Some work on stochastic search in ILP already has been done, and it addressed
this latter search problem. Sebag and Rouveirol (Sebag and Rouveirol, 1997) employed
stochastic matching, or theorem proving, and obtained efficiency improvements over Progol
in the prediction of mutagenicity, without sacrificing predictive accuracy or comprehensibil-
ity. More recently, Botta, Giordana, Saitta, and Sebag have pursued this approach further,
continuing to show the benefits of replacing deterministic matching with stochastic match-
ing (Giordana et al., 2000). But at the center of ILP is the search of the clause lattice.
Genetic algorithms have been employed for searching this lattice, but more work on novel
search strategies is needed. The remainder of this section briefly outlines several directions
for such research.

First, one can easily imagine variants of GSAT and WalkSAT tailored to search a lattice
of clauses instead of truth assignments, trying to maximize consistency with a data set
rather than clauses satisfied in a Boolean CNF formula. A natural ILP variant of GSAT
performs as follows. It first draws a random first-order definite clause, rather than a random
truth assignment. Instead of “flipping” the truth assignments of individual variables, its
moves involve adding or deleting literals in the clause. The ILP variant of WalkSAT is a
very similar algorithm. The difference is that with some probability p the algorithm makes
a random move—it randomly selects an efficacious literal to add or delete. An efficacious
addition is a literal that, when added, will cause the clause not to cover some negative
example; an efficacious deletion is a literal that, when deleted, will permit the clause to
cover a previously-uncovered positive example.

We have conducted preliminary experiments using an implementation of these algo-
rithms within the Aleph system. On an artificial domain consisting of random graphs, we
find that ILP-WSAT outperforms ILP-GSAT. Both algorithms perform better than a rou-
tine greedy search, and find useful clauses in cases where it is intractable to use a complete
search.

These results are promising, but much more more research can be done. First, the
procedures described still search for one clause at a time. To learn multiple clauses, they
employ the standard greedy-covering heuristic. Can stochastic searches be formulated that
search the space of entire theories rather than clauses? Second, in GSAT or WSAT scoring
a given truth assignment is very fast. In contrast, scoring a clause can be much more time
consuming because it involves repeated theorem proving. Therefore, it might be beneficial
to combine the ILP GSAT and WSAT algorithms with the stochastic theorem proving
mentioned earlier. Third, the number of literals that can be built from a language often is
infinite, so we cannot test all possible additions of a literal. Our approach has been to base
any given iteration of the algorithm on a “bottom clause” built from a “seed example,”
based on the manner in which the ILP system Progol (Muggleton, 1995) constrains its
search space. Fourth, other types of stochastic search could be tried, such as simulated
annealing.

We have noted already that Davis-Putnam has been improved substantially through
alternative settings of parameters and rapid random restarts (RRR) (Gomes et al., 2000).
This success suggests that RRR might also be used in ILP to improve refinement-based
searches. A start in this direction has been made very recently, and the results indicate
that refinement-based search with RRR is indeed a promising approach Zelezny et al. (2002).

95

Much more research is needed to determine appropriate parameters for such a search, in-
cluding how rapidly the restarts should occur.

4. Probabilistic Inference: ILP and Bayes Nets

Bayesian networks have largely supplanted traditional rule-based expert systems. Why?
Because in task after task artificial intelligence practitioners have realized that probabili-
ties are central. For example, in medical diagnosis few universally true rules exist and few
entirely accurate laboratory experiments are available. Instead, probabilities are needed to
model the task’s inherent uncertainty. Bayes nets are designed specifically to model proba-
bility distributions and to reason about these distributions accurately and (in some cases)
efficiently. Consequently, in many tasks including medical diagnosis (Heckerman et al.,
1992), Bayes nets have been found to be superior to rule-based systems. Interestingly, in-
ductive inference, or machine learning, has turned out to be a very significant component of
Bayes net reasoning. Inductive inference from data is particularly important for developing
or adjusting the conditional probability tables for various network nodes, but also is used
in some cases even for developing or modifying the structure of the network itself.

In spite of these advantages, a Bayes net is less expressive than first-order logic, on
a par with propositional logic instead. Consequently, while a Bayes net is a graphical
representation, it cannot represent relational structures. The only relationships captured
by the graphs are conditional dependencies among variables. This failure to capture other
relational information is particularly troublesome when using the Bayes net representation
in learning. For a concrete illustration, consider the task of pharmacophore discovery. It
would be desirable to learn probabilistic predictors, e.g., what is the probability that a
given structural change to the molecule fluoxetine (Prozac) will yield an equally effective
anti-depressant (specifically, serotonin reuptake inhibitor)? To build such a probabilistic
predictor, we might choose to learn a Bayes net from data on serotonin reuptake inhibitors.
Unfortunately, while a Bayes net can capture the probabilistic information, it cannot capture
the structural properties of a molecule that are predictive of biological activity.

The inability of Bayes nets to capture relational structure is well known and has led
to the recent extension to probabilistic relational models (PRMs) and the study of learning
algorithms for such models (Getoor et al., 2001). Probabilistic relational models are an
extension of Bayes nets to multiple relational tables, as in a relational database. Because
so many real-world data mining tasks are relational in nature, and hence require multiple
relational tables, the power of PRMs has immediately been widely recognized. It is worth
bearing in mind, nevertheless, that PRMs fall short of the expressivity of first-order logic,
or even of Datalog, and that the learning algorithms are very different from those employed
within ILP. An interesting alternative for ILP researchers to examine is learning clauses
with probabilities attached. It will be important in particular to examine how such repre-
sentations and learning algorithms compare with PRMs and PRM learning algorithms. It
may well be the case that these closely related research directions can benefit greatly from
one another. Several candidate probabilistic logic representations have been proposed and
include probabilistic logic programs, Bayesian logic programs, stochastic logic programs,
and probabilistic constraint logic programs; Cussens provides a nice survey of these repre-
sentations (Cussens, 1999). Study already has begun into algorithms and applications for

96

learning stochastic logic programs (Muggleton, 2000) and Bayesian logic programs (Kersting
and Raedt, 2001), and these are exciting areas for further work. The first-order representa-
tions closest to Bayes nets are the representation of Ngo and Haddawy (Ngo and Haddawy,
1997, 1995) and the logic programs of Kersting and De Raedt (Kersting et al., 2000). The
remainder of this section points to approaches for, and potential benefits of, learning clauses
in the representation of Ngo and Haddawy or a similar representation.

Clauses in the representation of Ngo and Haddawy may contain random variables as well
as ordinary logical variables. A clause may contain at most one random variable in any one
literal, and random variables may appear in body literals only if a random variable appears
in the head. Finally, such a clause also has a Bayes net fragment attached, which may be
thought of as a constraint. This fragment has a very specific form. It is a directed graph
of node depth two (edge depth one), with all the random variables from the clause body
as parents of the random variable from the clause head.? Figure 3 provides an example of
such a clause as might be learned in pharmacophore discovery (conditional probability table
not shown). This clause enables us to specify, through a conditional probability table, how
the probability of a molecule being active depends on the particular values assigned to the
distance variables D1, D2, and D3. In general, the role of the added constraint in the form
of a Bayes net fragment is to define a conditional probability distribution over the random
variable in the head, conditional on the values of the random variables in the body. When
multiple such clauses are chained together during inference, a larger Bayes net is formed
that defines a joint probability distribution over the random variables.

We conjecture that existing ILP algorithms can effectively learn clauses of this form
with the following modification. For each clause constructed by the ILP algorithm, collect
the positive examples covered by the clause. Each positive example provides a value for
the random variable in the head of the clause, and because the example is covered, the
example together with the background knowledge provides values for the random variables
in the body. These values, over all the covered positive examples, can be used as the
data for constructing the conditional probability table (conditional probability table) that
accompanies the attached Bayes net fragment. When all the random variables are discrete,
a simple, standard method exists for constructing conditional probability tables from such
data and is described nicely in (Heckerman, 1995). If some or all of the random variables
are continuous, then under certain assumptions again simple, standard methods exist. For
example, under one set of assumptions linear regression can be used, and under another
naive Bayes can be used. In fact, the work by Srinivasan and Camacho (Srinivasan and
Camacho, 1999) on predicting levels of mutagenicity and the work by Craven and colleagues
(Craven and Slattery, 1998, Craven and Kumlien, 1999) on information extraction can be
seen as special cases of this proposed approach, employing linear regression and naive Bayes,
respectively.

While the approach just outlined appears promising, of course it is not the only possible
approach and may not turn out to be the best. More generally, ILP and Bayes net learning
are largely orthogonal. The former handles relational domains well, while the latter handles
probabilities well. And both Bayes nets and ILP have been applied successfully to a variety

2. This is not exactly the definition provided by Ngo and Haddawy, but it is an equivalent one. Readers
interested in deductive inference with this representation are encouraged to see (Ngo and Haddawy, 1997,
1995).

97

drug(Molecule Activity Level):-

contains_hydrophobe(M ol ecule,Hydrophobe),
contains_basic_nitrogen(Molecule,Nitrogen), LJ
contains_hydrogen_acceptor(Molecule,Acceptor),

distance(M ol ecule,Hydrophobe,Nitrogen,D1),
distance(M ol ecule,Hydrophobe, A cceptor,D2), A ctivity L evel
distance(Molecule,Nitrogen,Acceptor,D3).

Figure 3: A clause with a Bayes net fragment attached (conditional probability table not
included). The random variables are Activity_Level, D1, D2, and D3. Rather
than using a hard range in which the values of D1, D2, and D3 must fall, as the
pharmacophores described earlier, this new representation allows us to describe
a probability distribution over Activity_Level in terms of the values of D1, D2,
and D3. For example, we might assign higher probabilities to high Activity_Level
as D1 gets closer to 3 Angstroms from either above or below. The conditional
probability table itself might be a linear regression model, i.e. a linear function
of D1, D2, and D3 with some fixed variance assumed, or it might be a discretized
model, or other.

of tasks. Therefore, it is reasonable to hypothesize the existence and utility of a represen-
tation and learning algorithms that effectively capture the advantages of both Bayes net
learning and ILP. The space of such representations and algorithms is large, so combining
Bayes net learning and ILP is an area of research that is not only promising but also wide
open for further work.

5. Special-purpose Reasoning Mechanisms

One of the well-documented success stories of computational logic is constraint logic pro-
gramming. And one of the reasons for this success is the ability to integrate logic and special
purpose reasoners or constraint solvers. Many ILP applications could benefit from the in-
corporation of special-purpose reasoning mechanisms. Indeed, the approach advocated in
Section 3.1 to incorporating probabilities in ILP can be thought of as invoking special pur-
pose reasoners to construct constraints in the form of Bayes net fragments. The work by
Srinivasan and Camacho mentioned there uses linear regression to construct a constraint,
while the work by Craven and Slattery uses naive Bayes techniques to construct a con-
straint. The point that is crucial to notice is that ILP requires a “constraint constructor,”
such as linear regression, in addition to the constraint solver required during deduction.
Let’s now turn to consideration of tasks where other types of constraint generators might
be useful.

Consider the general area of knowledge discovery from databases. Suppose we take the
standard logical interpretation of a database, where each relation is a predicate, and each
tuple in the relation is a ground atomic formula built from that predicate. Dzeroski and

98

Lavra¢ show how ILP techniques are very naturally suited to this task, if we have an “or-
dinary” relational database Dzeroski and Lavra¢ (2001). But now suppose the database
contains some form of complex objects, such as images. Simple logical similarities may not
capture the important common features across a set of images. Instead, special-purpose im-
age processing techniques may be required, such as those described by Leung and colleagues
(Leung and Malik, 2001, Leung et al., 1998). In addition to simple images, special-purpose
constraint constructors might be required when applying ILP to movie (e.g. MPEG) or au-
dio (e.g. MP3) data, or other data forms that are becoming ever more commonplace with
the growth of multimedia. For example, a fan of the Bach, Mozart, and Brian Wilson would
love to be able to enter her/his favorite pieces, have ILP with a constraint generator build
rules to describe these favorites, and have the rules suggest other pieces or composers s/he
should access. As multimedia data becomes more commonplace, ILP can remain applicable
only if it is able to incorporate special- purpose constraint generators.

Alan Frisch and David Page have shown that the ordinary subsumption ordering over
formulas scales up quite naturally to incorporate constraints (Frisch and Page, 1995). Nev-
ertheless, that work does not address some of the hardest issues, such as how to ensure the
efficiency of inductive learning systems based on this ordering and how to design the right
types of constraint generators. These questions require much further research involving
real-world applications such as multimedia databases.

One final point about special purpose reasoners in ILP is worth making. Constructing
a constraint may be thought of as inventing a predicate. Predicate invention within ILP
has a long history (Muggleton and Buntine, 1988, Wirth and O’Rorke, 1991, Zelle and
Mooney, 1993, Muggleton, 1994). General techniques for predicate invention encounter
the problem that the space of “inventable” predicates is unconstrained, and hence allowing
predicate invention is roughly equivalent to removing all bias from inductive learning. While
removing bias may sound at first to be a good idea, inductive learning in fact requires bias
(Mitchell, 1980, 1982). Special purpose techniques for constraint construction appear to
make it possible to perform predicate invention in way that is limited enough to be effective
(Srinivasan and Camacho, 1999, Craven and Kumlien, 1999).

6. Parallel Execution

Although ILP has numerous advantages over other types of machine learning, including
advantages mentioned at the start of the previous section, it has two particularly notable
disadvantages—excessive run time and space requirements. Fortunately for ILP, at the
same time that larger applications are highlighting these disadvantages, parallel processing
“on the cheap” is becoming widespread. Most notable is the widespread use of “Beowulf
clusters” (Becker et al., 1995) and of “Condor pools” (Litzkow et al., 1988), arrangements
that connect tens, hundreds, or even thousands of personal computers or workstations to
permit parallel processing. Admittedly, parallel processing cannot change the order of
the time or space complexity of an algorithm. But most ILP systems already use broad
constraints, such as maximum clause size, to hold down exponential terms. Rather, the
need is to beat back the large constants brought in by large real-world applications.

Yu Wang and David Skillicorn recently developed a parallel implementation of Progol
under the Bulk Synchronous Parallel model and claim superlinear speedup from this im-

99

plementation (Skillicorn and Wang, 2001). The remainder of this section describes how
large-scale parallelism can be achieved very simply in a complete general-to-specific search
ILP algorithm. From this discussion, one can imagine more interesting approaches for other
types of general-to-specific such as greedy search.

The ideal in parallel processing is a decrease in processing time that is a linear function,
with a slope near 1, of the number of processors used. (In some rare cases it is possi-
ble to achieve superlinear speed-up.) The barriers to achieving the ideal are (1) overhead
in communication between processes and (2) competition for resources between processes.
Therefore, a good parallel scheme is one where the processes are relatively independent of
one another and hence require little communication or resource sharing. The key obser-
vation in the design of the parallel ILP scheme is that two competing hypotheses can be
tested against the data completely independently of one another. Therefore the approach
advocated here is to distribute the hypothesis space among different processors for testing
against the data. These processors need not communicate with one another during testing,
and they need not write to a shared memory space.

In more detail, for complete search a parallel ILP scheme can employ a master-worker
design, where the master assigns different segments of the hypothesis space to workers
that then test hypotheses against the data. Workers communicate back to the master all
hypotheses achieving a pre-selected minimum valuation score (e.g. 95 % accuracy) on the
data. As workers become free, the master continues to assign new segments of the space until
the entire space has been explored. The only architectural requirements for this approach
are (1) a mechanism for communication between the master and each worker and (2) read
access for each worker to the data. Because data do not change during a run, this scheme can
easily operate under either a shared memory or message passing architecture; in the latter,
we incur a one-time overhead cost of initially communicating the data to each worker. The
only remaining overhead, on either architecture, consists of the time spent by the master
and time for master-worker communication. In “needle in a haystack” domains, which are
the motivation for complete search, one expects very few hypotheses to be communicated
from workers to the master, so overhead for the communication of results will be low. If it
also is possible for the master to rapidly segment the hypothesis space in such a way that
the segments can be communicated to the workers succinctly, then overall overhead will be
low and the ideal of linear speed-up can be realized. One implementation of this approach
has, in fact, already been tested on the pharmacophore discovery task mentioned in the
introduction (Kamal et al., 2001).

Undoubtedly there are a variety of other complete search, or exact, parallel schemes that
can be implemented, and the investigation of such schemes is a key area for further research.
For all such schemes, two crucial questions should be answered. First, under what conditions
is the new parallel scheme faster than existing ones? Second, are the solutions returned by
the parallel complete search significantly better than those returned by a stochastic search?
This second question brings us back to our second research direction, that of stochastic
ILP algorithms. Of course, it is not necessary to choose between stochastic and parallel
algorithms. The stochastic algorithms proposed earlier can themselves be implemented
on a parallel processor, in the simplest case by replacing restarts by independent searches
running at the same time. How will the results of parallel stochastic searches compare with

100

those of parallel complete searches, if both searches are provided with the same number of
processors and the same amount of time?

7. Interaction with Human Experts

To discover new knowledge from data in fields such as telecommunications, molecular biol-
ogy, or pharmaceuticals, it would be beneficial if a machine learning system and a human
expert could act as a team, taking advantage of the computer’s speed and the expert’s
knowledge and skills. ILP systems have three properties that make them natural candi-
dates for collaborators with humans in knowledge discovery:

Declarative Background Knowledge ILP systems can make use of declarative back-
ground knowledge about a domain in order to construct hypotheses. Thus a collab-
oration can begin with a domain expert providing the learning system with general
knowledge that might be useful in the construction of hypotheses. Most ILP systems
also permit the expert to define the hypothesis space using additional background
knowledge, in the form of a declarative bias.

Natural descriptions of structured examples Feature-based learning systems require
the user to begin by creating features to describe the examples. Because many knowl-
edge discovery tasks involve complex structured examples, such as molecules, users
are forced to choose only composite features such as molecular weight—thereby los-
ing information—or to invest substantial effort in building features that can capture
structure (see (Srinivasan et al., 1996) for a discussion in the context of molecules).
ILP systems allow a structured example to be described naturally in terms of the ob-
jects that compose it, together with relations among those objects. The 2-dimensional
structure of a molecule can be represented directly using its atoms as the objects and
bonds as the relations; 3-dimensional structure can be captured by adding distance
relations.

Human-Comprehensible Output ILP systems share with propositional-logic learners
the ability to present a user with declarative, comprehensible rules as output. Some
ILP systems can return rules in English along with visual aids. For example, the
pharmacophore description and corresponding figures in Section 2 were generated
automatically by Progol.

Despite the useful properties just outlined, ILP systems—Ilike other machine learning
systems—have a number of shortcomings as collaborators with humans in knowledge discov-
ery. One shortcoming is that most ILP systems return a single theory based on heuristics,
thus casting away many clauses that might be interesting to a domain expert. But the only
currently existing alternative is the version space approach, which has unpalatable proper-
ties that include inefficiency, poor noise tolerance, and a propensity to overwhelm users with
too large a space of possible hypotheses. Second, ILP systems cannot respond to a human
expert’s questions in the way a human collaborator would. They operate in simple batch
mode, taking a data set as input, and returning a hypothesis on a take-it-or-leave-it basis.
Third, ILP systems do not question the input data in the way a human collaborator would,
spotting surprising (and hence possibly erroneous) data points and raising questions about

101

them. Some ILP systems will flag mutually inconsistent data points but to our knowledge
none goes beyond this. Fourth, while a human expert can provide knowledge-rich forms
of hypothesis justification, for example relating a new hypothesis to existing beliefs, ILP
systems merely provide accuracy estimates as the sole justification.

To build upon ILP’s strengths as a technology for human-computer collaboration in
knowledge discovery, the above shortcomings should be addressed. ILP systems should be
extended to display the following capabilities.

1. Maintain and summarize alternative hypotheses that explain or describe the data,
rather than providing a single answer based on a general-purpose heuristic.

2. Propose to human experts practical sequences of experiments to refine or distinguish
between competing hypotheses.

3. Provide non-numerical justification for hypotheses, such as relating them to prior be-
liefs or illustrative examples (in addition to providing numerical accuracy estimates).

4. Answer an expert’s questions regarding hypotheses.
5. Consult the expert regarding anomalies or surprises in the data.

In fact, the other four directions already discussed in this paper already go a long way
toward capabilities 1 and 3. Both stochastic search and parallel search technologies make
it possible to find a potentially large number of alternative hypotheses more efficiently,
thus helping to provide capability 1. The ability to provide probability distributions over
the bindings for variables in competing hypotheses can potentially provide much more
information about these hypotheses. This additional information can be useful in justifying
one hypothesis over another. As human experts look more closely at hypotheses, and ask
more details about how they fit the data (beyond a simple accuracy number), again these
probability distributions can provide further insight.

Work relevant to capability 2 for ILP has been done recently with a goal very different
from human-computer interaction. Bryant and colleagues have developed a system to auto-
matically propose and ezecute experiments related to yeast metabolism Bryant et al. (2001).
The system contains an ILP system interfaced with a robot to perform experiments. Each
experiment tests whether a particular “knock-out” strain of yeast will grow on a particular
medium. The “knock-outs” are variants of yeast, each with a single gene altered so that
its functionality is lost to the organism. The goal of this work is to automatically induce
a logical model for a portion of yeast metabolism. Although the spirit of this work is vir-
tually the opposite of human-computer interaction, the approach to experiment proposal is
relevant for human-computer interaction.

Addressing human-computer interface issues obviously requires a variety of logical and
artificial intelligence expertise. Thus contributions from other areas of artificial intelligence
and computational logic, such as the study of logical agents, will be vital.

8. Conclusions

ILP has attracted great interest within the machine learning and artificial intelligence com-
munities at large because of its logical foundations, its ability to utilize background knowl-

102

edge and structured data representations, and its comprehensible results. But most of all,
the interest has come from ILP’s application successes. Nevertheless, ILP needs further ad-
vances to maintain this record of success, and these advances require further contributions
from other areas of computational logic. System builders and parallel implementation ex-
perts are needed if the ILP systems of the next decade are to scale up to the next generation
of data sets, such as those being produced by Affymetrix’s gene expression microarrays and
Celera’s shotgun approach to DNA sequencing. Research workers on probability and logic
are required if ILP is to avoid being supplanted by the next generation of extended Bayes
net learning systems. Experts on constraint satisfaction and constraint logic programming
have the skills necessary to bring successful stochastic search techniques to ILP and to al-
low ILP techniques to extend to multimedia databases. Paraphrasing the closing words of
Hilbert in his 1900 address: that ILP may completely fulfil its high mission, may the next
decade bring gifted masters and many zealous and enthusiastic disciples!

Acknowledgements

The first author was supported in part by NSF grant 9987841 and by grants from the
University of Wisconsin Graduate School and Medical School.

References

D. Becker, T. Sterling, D. Savarese, E. Dorband, U. Ranawake, and C. Packer. Beowulf: A
parallel workstation for scientific computation. In Proceedings of the 1995 International
Conference on Parallel Processing (ICPP), pages 11-14, 1995.

C. Bryant, S. Muggleton, S. Oliver, D Kell, P. Reiser, and R. King. Combining induc-
tive logic programming, active learning and robotics to discover the function of genes.
FElectronic Transactions in Artificial Intelligence, 5-B1(012):1-36, 2001.

M. Craven and J. Kumlien. Constructing biological knowledge bases by extracting in-
formation from text sources. In Proceedings of the Seventh International Conference
on Intelligent Systems for Molecular Biology, pages 77-86, Heidelberg, Germany, 1999.
AAAT Press.

M. Craven and S. Slattery. Combining statistical and relational methods for learning in
hypertext domains. In Proceedings of the Eighth International Conference on Inductive
Logic Programming (ILP-98), pages 38-52. Springer Verlag, 1998.

J. Cussens. Loglinear models for first-order probabilistic reasoning. In Proceedings of the
15th Conference on Uncertainty in Artificial Intelligence, pages 126-133. Stockholm, Swe-
den, 1999.

S. Dzeroski and N. Lavra¢. An introduction to inductive logic programming. In S. Dzeroski
and N. Lavrac, editors, Relational Data Mining, pages 48-71. Springer, Berlin, 2001.

S. Dzeroski. Inductive logic programming and knowledge discovery in databases. In
U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in
Knowledge Discovery and Data Mining. 1996.

103

P. Finn, S. Muggleton, D. Page, and A. Srinivasan. Discovery of pharmacophores using
Inductive Logic Programming. Machine Learning, 30:241-270, 1998.

A. M. Frisch and C. D. Page. Building theories into instantiation. In Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95), 1995.

L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic relational models.
In S. Dzeroski and N. Lavrac, editors, Relational Data Mining, chapter 13, pages 307-335.
Springer, Berlin, 2001.

A. Giordana, L. Saitta, M. Sebag, and M. Botta. Analyzing relational learning in the phase
transition framework. In P. Langley, editor, Proceedings of the Seventeenth International
Conference on Machine Learning, pages 311-318, Stanford, 2000. Morgan Kaufmann.

C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in satisfiability
and constraint satisfaction problems. Journal of Automated Reasoning, 24:67-100, 2000.

G. Gottlob. Subsumption and implication. Information Processing Letters, 24(2):109-111,
1987.

D. Heckerman. A tutorial on learning with bayesian networks. Microsoft Technical Report
MSR-TR-95-06, 1995.

D. Heckerman, E. Horvitz, and B. Nathwani. Toward normative expert systems, part I:
The pathfinder project. Methods of Information in Medicine, 31:90-105, 1992.

D. Hilbert. Mathematical problems. Bulletin of the American Mathematical Society, 8:
437-479, 1902. English translation of original German, provided by Mary Winston.

A H. Kamal, J. Graham, and C.D. Page. An approach to parallel data mining for pharma-
cophore discovery. In Proceedings of the Tenth International Conference on Intelligent
Systems, pages 100-103, Washington, D.C., June 2001.

K. Kersting and L. De Raedt. Towards combining inductive logic programming and bayesian
networks. In Proceedings of the Eleventh International Conference on Inductive Logic
Programming, pages 118-137. Berlin: Springer LNAI 2157, 2001.

K. Kersting, L. De Raedt, and S. Kramer. Interpreting bayesian logic programs. In L. Getoor
and D. Jensen, editors, Proceedings of the AAAI-2000 Workshop on Learning Statistical
Models from Relational Data, Austin, Texas, 2000. AAAI Press, Technical Report WS-
00-06.

R. King, S. Muggleton, A. Srinivasan, and M. Sternberg. Structure-activity relationships
derived by machine learning: the use of atoms and their bond connectives to predict
mutagenicity by inductive logic programming. Proceedings of the National Academy of
Sciences, 93:438-442, 1996.

C. Lee. A completeness theorem and a computer program for finding theorems derivable
from given azxioms. PhD thesis, University of California, Berkeley, 1967.

104

T. Leung, M. Burl, and P. Perona. Probabilistic affine invariants for recognition. In Pro-
ceedings IEEE Conference on Computer Vision and Pattern Recognition, 1998.

T. Leung and J. Malik. Representing and recognizing the visual appearance of materials
using three-dimensional textons. International Journal of Computer Vision, 43(1):29-44,
2001.

M. Litzkow, M. Livny, and M. Mutka. Condor—a hunter of idle workstations. In Proceedings
of the International Conference on Distributed Computing Systems, pages 104—111, 1988.

N. Marchand-Geneste, K. Watson, B. Alsberg, and R. King. A new approach to phar-
macophore mapping and gsar analysis using inductive logic programming. application
to thermolysin inhibitors and glycogen phosphorylase b inhibitors. Journal of Medicinal
Chemistry, 45(2):399-409, January 2002.

J. Marcinkowski and L. Pacholski. Undecidability of the horn-clause implication problem. In
Proceedings of the 38rd IEEE Annual Symposium on Foundations of Computer Science,
pages 354-362. IEEE, 1992.

T.M. Mitchell. The need for biases in learning generalizations. Technical Report CBM-TR-
117, Department of Computer Science, Rutgers University, 1980.

T.M. Mitchell. Generalisation as search. Artificial Intelligence, 18:203-226, 1982.

S. Muggleton. Predicate invention and utilization. Journal of Experimental and Theoretical
Artificial Intelligence, 6(1):127-130, 1994.

S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245-286,
1995.

S. Muggleton. Learning stochastic logic programs. In Proceedings of the AAAI2000 Work-
shop on Learning Statistical Models from Relational Data. AAAI, 2000.

S. Muggleton and W. Buntine. Machine invention of first-order predicates by inverting
resolution. In Proceedings of the Fifth International Conference on Machine Learning,
pages 339-352. Kaufmann, 1988.

S. Muggleton, R. King, and M. Sternberg. Protein secondary structure prediction using
logic-based machine learning. Protein Engineering, 5(7):647-657, 1992.

L. Ngo and P. Haddawy. Probabilistic logic programming and bayesian networks. Algo-
rithms, Concurrency, and Knowledge: LNCS 1023, pages 286-300, 1995.

L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic knowledge
bases. Theoretical Computer Science, 171:147-177, 1997.

M. Sebag and C. Rouveirol. Tractable induction and classification in FOL. In Proceedings of
the 15th International Joint Conference on Artificial Intelligence, pages 888-892. Nagoya,
Japan, 1997.

105

B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving local search. In Pro-
ceedings of the Twelfth National Conference on Artificial Intelligence. AAAI Press, 1994.

B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability
problems. In Proceedings of the Tenth National Conference on Artificial Intelligence,
pages 440-446. AAAI Press, 1992.

D. Skillicorn and Y. Wang. Parallel and sequential algorithms for data mining using induc-
tive logic. Knowledge and Information Systems, 3(4):405-421, 2001.

A. Srinivasan and R.C. Camacho. Numerical reasoning with an ILP system capable of lazy
evaluation and customised search. Journal of Logic Programming, 40:185-214, 1999.

A. Srinivasan, S. Muggleton, R. King, and M. Sternberg. Theories for mutagenicity: a
study of first-order and feature based induction. Artificial Intelligence, 85(1,2):277-299,
1996.

M. Turcotte, S. Muggleton, and M. Sternberg. Application of inductive logic program-
ming to discover rules governing the three-dimensional topology of protein structures.
In Proceedings of the Eighth International Conference on Inductive Logic Programming
(ILP-98), pages 53—64. Springer Verlag, 1998.

R. Wirth and P. O’Rorke. Constraints on predicate invention. In Proceedings of the Sth
International Workshop on Machine Learning, pages 457-461. Kaufmann, 1991.

F. Zelezny, A. Srinivasan, and D. Page. Lattice-search runtime distributions may be heavy-
tailed. In S. Matwin, editor, Proceedings of the Twelfth International Conference on
Inductive Logic Programming. Springer-Verlag, 2002.

J. Zelle and R. Mooney. Learning semantic grammars with constructive inductive logic pro-
gramming. In Proceedings of the Eleventh National Conference on Artificial Intelligence,
pages 817-822, San Mateo, CA, 1993. Morgan Kaufmann.

106

FOIL-D: Efficiently Scaling FOIL for
Multi-relational Data Mining of Large Datasets

Joseph Bockhorst® and Irene Ong®

Department of Computer Sciences
University of Wisconsin, Madison WI 53706
joebock@cs.wisc.edu,ong@cs.wisc.edu

Abstract. Multi-relational rule mining is important for knowledge dis-
covery in relational databases as it allows for discovery of patterns in-
volving multiple relational tables. Inductive logic programming (ILP)
techniques have had considerable success on a variety of multi-relational
rule mining tasks, however, most ILP systems do not scale to very large
datasets. In this paper we present two extensions to a popular ILP sys-
tem, FOIL, that improve its scalability. (i) We show how to interface
FOIL directly to a relational database management system. This enables
FOIL to run on data sets that previously had been out of its scope. (ii)
We describe estimation methods, based on histograms, that significantly
decrease the computational cost of learning a set of rules. We present ex-
perimental results that indicate that on a set of standard ILP datasets,
the rule sets learned using our extensions are equivalent to those learned
with standard FOIL but at considerably less cost.

1 Introduction

Traditional data mining techniques aim to extract patterns from data sets that
may be naturally represented in flat files. Conversely, relational databases rep-
resent data as a set of interconnected relational tables. Many useful patterns
involve multiple tables, and since data in this format often cannot naturally
be represented in flat files, traditional propositional data mining methods have
difficulties learning such patterns.

Inductive Logic Programming (ILP) [1] algorithms aim to learn a set of
first-order logical rules from multi-relational data and thus are well suited to
multi-relational data mining tasks. There are however, two practical barriers
that must be overcome before ILP systems may be applied to mining of large
datasets. (i) ILP systems must deal with a limited amount of physical memory.
Most ILP implementations, such as FOIL [2], tacitly assume the whole database
fits into main memory. If it does not fit, these programs either crash or grind
to an effective halt as they rely on the operating system to manage moving
data between physical memory and disk. (ii) ILP systems must be faster. The

9 Both authors contributed equally to this work

107

search space of ILP systems is very large and even heuristic methods are slow.
Moreover, since the time needed to score an operator typically depends on the
database size, direct application of most ILP systems to very large datasets is
impractical.

In this paper, we describe extensions to the ILP algorithm FOIL that address
both of these barriers. To deal with limited physical memory we leverage off
the considerable effort that has been addressed to this issue in the design of
relational database management systems (RDBMSs). We show how to succinctly
express FOIL’s operations in terms of SQL statements that RDBMSs have been
optimized to execute. To deal with time cost we describe probabilistic models
that we use to estimate the gain of FOIL’s operators. We show how to use these
models to significantly speed up learning. We present experimental results that
indicate that with our estimation method we are able to learn the same rules as
standard FOIL on several standard ILP datasets, but in significantly less time.

The interest in scaling up ILP for relational data mining in large datasets has
been growing as Dimaio and Shavlik [3], Tang et. al [4] and Mooney et. al [5] have
recently published research in this direction. Although the idea of incorporating
the ability to learn first order rules from RDBMSs is not new — Stonebraker et.
al [6] added this feature to Postgres and Brockhausen and Morik [7] have directly
implemented an ILP algorithm (RDT) to a RDBMS — the use of probabilistic
models to estimate scores for learning rules has, to the best of our knowledge,
not been done before. Similar estimation ideas have been used in the area of
query-optimization in databases [8,9].

2 FOIL

Quinlan’s first-order inductive learner [2,10] (FOIL) is a popular ILP algorithm
that learns function-free first order rules for a target relation. FOIL requires
as input a set of extensionally defined relations. That is, each input relation is
defined by a listing of its tuples rather than intensionally as set of logical rules.
This parallels closely the organization of data in relational databases where we
can think of the tuples of a table as defining a relation. One of the input relations,
which we refer to as PO.S, is designated as the target relation. Another input
relation, which we refer to as NEG, is of the same arity as POS and contains
tuples that do not belong to the target relation. These two relations define FOIL’s
initial positive and negative tuple set. The other relations Bl,..., BN serve as
background knowledge.
Given its input, FOIL learns rules of the form

POS(Xl, ceey Xm) — L1 A LQ VAN
where each L; is a (possibly negated) literal and X; ... X, are distinct variables.

The goal of FOIL is to discover a set of rules that entails all of the tuples in
POS and none of the tuples in NEG.

108

Table 1. The FOIL algorithm. Given a set of tuples, POS, in the target relation,
a set of tuples, NEG, not in the target relation and sets for tuples Bi, ..., By that
define M background relations, FOIL returns a set of first-order rules for the target
relation. The symbol < indicates variable assignment and the symbol « indicates
logical implication.

[y

11

23

: procedure FOIL(POS, NEG, By, -+, Bn)

learnedRules < {}

POSyne < POS > start with all positive tuples uncovered
repeat > begin FOIL’s outer loop
newRule <= LEARNONERULE()
update POSuync > remove tuples in POSyn. covered by newRule

add newRule to learnedRules
until |[POSunc| == 0
return learnedRules

end procedure

: procedure LEARNONERULE()
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

newRuleBody < {} > start with general rule POS «+ true
POScurr <= POSyne > all positive tuples are covered by newrule
NEG cur <= NEG > all negative tuples are covered by newrule
repeat > begin FOIL’s inner loop
bestLit <= getBestLiteral(candidateLiterals())
conjoin bestLit to newRuleBody > add literal to growing rule
update POScyrr > arity of POSecyurr may increase
update NEG cyrr > arity of NEGcyrr may increase

until [NEGeyrr| == 0
return POS « newRuleBody

end procedure

: procedure GETBESTLITERAL(C) > C' is set of candidate literals
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

maxGain < —oo
for all candLit € C do
p' < |POScyrr| if candLit is added to newrule
n' < |INEGcurr| if candLit is added to newrule
pJr+ <number of tuples in POS¢yrr covered by candLit
gain < GAIN(p',n/,p™™)
if gain > maxGain then
bestLiteral < literal
mazGain < gain
end if
end for
return bestLiteral

end procedure

109

Table 1 presents a high level outline of FOIL. FOIL is a covering algorithm
that on each iteration of its outer loop, which starts at Line 4!, adds a single
clause to its learned rule set that logically entails (covers) some of the previously
uncovered tuples in POS and none of the tuples in NEG. FOIL’s method of
building a single rule, shown in the LEARNONERULE procedure of Table 1, begins
with the general rule POS « true, which covers all positive and negative tuples.
This rule is then specialized by greedily conjoining literals one at a time to the
body until the new rule covers no negative tuples.

One trait of FOIL that distinguishes it from most propositional supervised
learning algorithms is the dynamic nature of the positive and negative example
training sets. When deciding which literal to append to the body of the new
rule, FOIL considers only the current positive and negative tuple sets, POS ¢y
and N EG .y in Table 1. From one iteration to the next, these sets may shrink,
grow, increase in arity or some combination thereof.

At the start of the LEARNONERULE procedure POS., is initialized to the
tuples of POS that are not covered by any rule learned so far, POS,,., and
NEG .y is set to all the tuples in N EG. Following the addition of the chosen lit-
eral (Line 17), FOIL updates POS¢y and N EG ey Let L(Ny, ..., Ng, O1, ..., Op)
be the chosen literal where N; is a new variable that does not appear anywhere
else in the new rule and O; is an old variable that appears either in the head or
a previously introduced literal. If L is unnegated, the arity of tuples in the up-
dated POS.yrr and N EG .y sets increases by a, the number of new variables.
A tuple t in POScyrr (or NEG) gives rise to a (possibly expanded) tuple in
the updated set for each tuple in the relation associated with the chosen literal
that matches ¢ on the arguments indicated by the old variables.

FOIL uses an information theoretic heuristic to determine which literal to
append to the body of a growing rule. On each iteration of its inner loop, which
starts on Line 15, FOIL chooses the literal that has maximum gain where it
defines the gain of literal L; as

/

in(L;) = p** x { log(——) — log(——) | .
gain(L) = x {log() < log(L)

Here p and n are the sizes of POS.y and NEG cyrr, p’ and n’ are the sizes of
the updated POScyrr and N EG oy if L; were added and pt™ is the number of
tuples in POS,y, that are covered by L;.

The main computational cost of FOIL comes from the evaluation of all the
candidate literals every time a new literal is added to a growing clause. If the
input data set cannot fit in main memory, management of the current positive
and negative tuple becomes more complicated. In the next section we show how,
if our data is stored in relational database tables, these tasks can be concisely
expressed by a small number of SQL statements.

! This and all subsequent references to line numbers refer those in Table 1.

110

3 FOIL-D

In this section we present FOIL-D, our implementation of FOIL that interfaces
directly with relational databases. FOIL-D assumes operations that involve ma-
nipulation of the relational data may not fit in main memory and thus provides
database operations, in terms of SQL statements, for them. FOIL-D does how-
ever, assume that other operations, such as generating and storing the candidate
literals, fit in main memory.

One difference between FOIL and our current implementation of FOIL-D is
that for simplicity FOIL-D only considers unnegated literals while FOIL con-
siders both unnegated and negated literals. There is nothing fundamental that
prevents FOIL-D from considering negated literals though, and we plan to add
support for them in the future.

3.1 Database organization and operations

Let the tuples defining the input relations be in database tables named POS,
NEG, B1, ..., BN where the mapping between tables and the relations in Table 1
is the obvious one. If the data is not in such a format, temporary tables can be
constructed. We store the uncovered positive tuples and the current positive
and negative examples in database tables named POS_UNC, POS_CURR and
NEG_CURR respectively. Due to the dynamics of the training sets, the number
of columns of POS_.CURR and NEG_CURR may change during the course of
the algorithm. At any time though there is a one-to-one correspondence between
the columns of POS_.CURR (and NEG_CURR) and the distinct variables that
have been introduced by either the head or a literal in the body of the growing
clause.

The left-hand column of Table 2 lists the line numbers from Table 1 where
FOIL-D issues database queries. The right-hand column gives the SQL state-
ments? for the corresponding line. We now discuss each of these operations in
turn.

Line 3 Here we initialize POS_UNC to all the tuples in POS. SQL statements
of the from CREATE new-table-name LIKE existing-table-name create a new
empty table that has the same column names and types as the existing table
indicated.

Line 6 Here we remove from POS_UNC those tuples covered by the rule just
learned. We first save the tuples of POS_UNC into the temporary table
OLD_POS_UNC and recreate an empty POS_UNC. The INSERT INTO state-
ment fills POS_UNC with those tuples of OLD_POS_UNC that do not have
any matching tuple in POS_CURR, the expanded tuples covered by the new
rule. The semantics of LEFT JOIN is to include at least one tuple from the
“left” table (OLD_POS_UNC in this case) even if none of them are selected

2 These statements are compatible with version 4.1 of MySQL
(http://www.mysql.com)

111

Table 2. SQL statements used by FOIL-D. The left-hand-column indicates line num-
bers from Table 1 where FOIL-D issues database queries. The right-hand-column lists
the corresponding SQL statements.

Line 3

CREATE TABLE POS_UNC LIKE POS
INSERT INTO POS_UNC SELECT * FROM POS

Line 6

ALTER TABLE POS_UNC RENAME OLD_POS_UNC
CREATE TABLE POS_UNC LIKE POS

INSERT INTO POS_UNC SELECT cols FROM OLD_POS_UNC
LEFT JOIN POS_CURR ON cond WHERE cond’

DROP TABLE OLD_POS_UNC

Line 13

CREATE TABLE POS_CURR LIKE POS
INSERT INTO POS_CURR SELECT * FROM POS_UNC

Line 14

CREATE TABLE NEG_CURR LIKE NEG
INSERT INTO NEG_CURR SELECT * FROM NEG

Line 18

ALTER TABLE POS_CURR RENAME OLD_POS_CURR
CREATE TABLE POS_CURR (...)

INSERT INTO POS_CURR SELECT cols FROM OLD _POS_CURR, rel(bestLit) WHERE cond

DROP TABLE OLD_POS_CURR

Line 19

ALTER TABLE NEG_CURR RENAME OLD NEG_CURR
CREATE TABLE NEG_CURR (...)

INSERT INTO NEG_CURR SELECT cols FROM OLD NEG_CURR, rel(bestLit) WHERE cond

DROP TABLE OLD_NEG_CURR

Line 26

SELECT COUNT (*) FROM POS_CURR, rel(candLit) WHERE cond

Line 27

SELECT COUNT (*) FROM NEG_CURR, rel(candLit) WHERE cond

Line 28

SELECT DISTINCT COUNT (*) FROM POS_CURR, rel(candLit) WHERE cond

112

with the condition in the ON clause, provided they pass the condition in the
WHERE clause. These tuples have null values for any columns that come from
the “right” table (POS_CURR). The statement FOIL-D issues selects only
those tuples of OLD_POS_UNC that do not match any in POS_CURR by
setting cond’ to col = null where col is a column in POS_CURR. The condi-
tion cond in the ON clause is a set of equality constraints between columns in
OLD_POS_UNC and columns in POS_CURR that correspond to variables
in the target relation.

Lines 13 and 14 Here we initialize POS_CURR and NEG_CURR, the current
positive and negative example set.

Lines 18 and 19 Here we update POS_CURR and NEG_CURR after we add
the highest scoring literal bestLit to the growing rule. The statements to
update POS_CURR are analogous to those to update NEG_CURR. For sim-
plicity, we only describe those for updating POS_CURR. Before getting the
tuples with the INSERT INTO statement, we save the old tuples in a tem-
porary table OLD_POS_CURR and create a new POS_CURR table that
will hold the updated examples. The new POS_CURR table will have a col-
umn for each column in OLD_POS_CURR and each new variable in best Lit.
The INSERT INTO statement joins OLD_POS_CURR with the relation of
bestLit, rel(bestLit). The condition cond in the WHERE clause is a conjunc-
tion of equalities, one for each old variable in bestLit, between columns in
OLD_POS_CURR and the corresponding columns in rel(bestLit). The pro-
jection cols lists the columns in OLD_POS_CURR along with the columns
in rel(bestLit) that correspond to the new variables in bestLit.

Lines 26-27 Here we compute counts p’ and n’ that, along with p™, we need
to compute the gain of the candidate literal candLit. The conditions cond in
the WHERE clauses are conjunctions of equalities, one for each new variable in
candLit, and are the same for both statements. If candLit becomes best Lit,
cond will also be used in the INSERT INTO SELECT statements issued when
updating POS_.CURR and NEG_CURR on Lines 18 and 19.

Line 28 Here we compute p™ . The DISTINCT keyword assures that tuples in
POS_CURR are counted at most once. The condition cond is the same as
the one used on Line 26 to compute p.

3.2 Computational cost of FOIL-D

The primary computational cost of running FOIL-D on large databases comes
from the database join operations used to execute the six conditional SELECT
statements (Lines 6, 18, 19, 26, 27 and 28). A join operation (r <1 s) between
tables r and s selects a subset of the tuples in the cross product 7 x s that match a
specified set of constraints. The implementation of the join operation is a heavily
studied topic in database research. See, for example, Ramakrishnan’s textbook
[11]. The cost of a join depends on a number of properties of the join such as
the number and types of constraints (eg, >, <, =), the presence of any database
indexes on the join columns, and the number of tables. In FOIL-D all joins
involve only equality constraints (equi-joins) between two tables. FOIL-D does

113

perform joins with & > 1 equality constraints (k-column joins). In this paper, we
are agnostic about the implementation of join but measure the computational
cost by the total number of joins performed to learn a theory.

Inspection of Tables 1 and 2 reveals that the number of joins needed to learn
a rule set of R rules with L total literals where C' total candidates are considered
is

of join operations = R + 2L + 3C'

The number of rules in a learned theory R is typically small, often less than
five, and the number of literals L is also manageable, in the ten’s at most. The
number of candidates C', however, is often much larger and thus C' dominates
the others. The number of candidate literals considered at each step depends
most strongly on the arity of the maximum arity relation and the number of old
variables introduced so far [12]. For example, the number of candidate literals
considered to append to a rule with 5 old variables and max arity of 3 is 136 [12].
FOIL-D uses type constraints on the arguments of the relations (or the columns
in the database) which reduces the total number of candidate literals somewhat
but not so much that it does not dominate in the above expression. Next, we
describe extensions to FOIL-D that reduce the total number of join operations
needed to learn a theory.

4 FOIL-DH

To get the counts p’,n’ and p™ needed to compute the gain of a candidate
literal we only need the number of tuples in the result sets of the SQL statements
listed in Table 2 that we execute on Lines 26-28. Thus, one way to reduce the
total number of joins is to compute p’, n’ and p** by more efficient means. The
approach we consider here is, using histograms, to construct probabilistic models
of the tuples in each table and to use these models to estimate the counts. We
call this system “FOIL-D with histograms” or simply FOIL-DH.

We maintain a histogram for each column of POS_UNC, NEG, B1, ..., BN,
POS_CURR and NEG_CURR. Let h™¢ be the histogram for the column 7.c of
table r. The domain of A" is the same as the domain of the type of column r.c.
The count A™¢(v) for value v is the number of tuples in r for which the value of
column 7.c = v.

4.1 Estimating p’ and n’

Now we show how, given the column histograms and an independence assump-
tion, to quickly estimate the size of any k-column equi-join, such as the ones to
get p’ and n'.

The probability p™¢(v) that a randomly selected tuple in table r has value v
in column c is

p"e(v) = A" (v)/|r|.

114

For an equi-join between columns c of table r and ¢’ of table s the probability
that a randomly selected tuple from the cross product r x s satisfies the equality
constraint, and thus is included in the result set, is

’

p(r.c,s.c’) = Zpr'c(v) x p*¢ (v)

where the sum is over all values in the type of column r.c (and s.c). The number
of tuples in the result set is exactly given by

size(r >y s) = |r||s| x p(r.c, s.c")

where < indicates a 1-column join between 7 and s.

This is an exact calculation because the nature of the cross product guaran-
tees that for a randomly selected tuple in r x s, the value in a column from r is
statistically independent of the value of a column from s. For multi-column joins
the summary statistics in the histograms are not sufficient to exactly compute
the size of the result set. If we assume, however, that the values of all columns
in the join from the same table are statistically independent, we can estimate
the size of a k—column join as

k
size(r g s) = |r||s] Hp(r.i, 5.1) (1)

where here without loss of generality we assume column 7.7 is joined with s.7 for
1<i<k.
Our estimates of p’ and n’ for candidate literal candLit then are

P = size(POS_CURR <, rel(candLit))

and
7' = size(NEG_CURR <, rel(candLit))

where here rel(candLit) is the relation of candLit and b is the number of old
variables in candLit.

4.2 Estimating pt7+

In order to compute the gain of candLit, in addition to p’ and n’, we need p*,
the number of tuples in POS_CURR (pre-update) still covered by the new rule
if we accept candLit. Thus, we need to estimate the number of tuples in r =
POS_CURR that give rise to at least one tuple in r <, s where s is rel(candLit).

To estimate p™™, we first compute ¢, the probability a randomly selected
tuple in r X s matches on join columns 2 through k given the independence
assumptions as

k
q= H p(r.i, s.1)
i=2

115

where again we assume column r.¢ is joined with s for 1 < ¢ < k. If £ =1
we set ¢ to 1.0. If we randomly pick with replacement j tuples from r x s, the
probability that at least one matches on join columns 2 through k is

m(j) = (1.0 = (1.0 - g)?).

A tuple in 7 with value v in the first join column has h*!(v) tuples in the
cross product that match in the first column and this many “chances” to match
on the remaining £ — 1 columns. So, we estimate the probability that the tuple
will have at least one match in the result set as m(h*1(v)). Summing over all
values and multiplying by h™!(v) gives our estimation of p™:

P =" hm(w) xm(ht (v)).

v

Our choice of doing this final sum over values of the first join column is
arbitrary. We could have chosen any i of the k join columns as the one to do
the final sum over where then we calculate ¢ as the probability of a match on
the k£ — 1 columns excluding join column ¢. Due to errors introduced by the
sampling with replacement assumption of m(j), in general the estimate p++ will
be different for each choice of final join column . In practice however, we have
found P to be close for any choice of i.

As with the expression for estimating p’ and n’, our estimation p™+ is exact
for 1-column joins. Thus, we can exactly compute the gain for candidate literals
with exactly 1 old variable given the column histograms.

4.3 Estimating the highest gain literal

We speed up FOIL-D by using estimations of p’, n’ and p™" to estimate the
highest scoring candidate literal in two ways. The first method simply estimates
the gain of every candidate literal directly with p’,7’ and p*+ and chooses the
one with highest estimated gain to append to the growing clause. This method
eliminates the 3C' joins needed to estimate the gain of the C' candidate literals
thereby reducing the number of joins performed to learn a theory with R rules
and L literals to
of join operations = R + 2L.

A problem with this method is that the independence assumption often
causes the estimated gains of the highest-scoring candidate literals with 2 or
more old variables to be less than their true gains. In cases where the candidate
literal with highest gain has multiple old variables, this procedure often erro-
neously estimates the highest scoring literal to be one with only 1 old variable.

We find, however, the relative ranks of the candidate literals with multiple
old variables, especially the highest scoring ones, is relatively stable following
the estimation procedure. This leads to our other use of p’, 7’ and p++.

We also use the estimates of the candidate literal gains as a filter to reduce the
number of candidate literals whose gains are computed exactly. Given filter size

116

F' we pick a candidate literal to conjoin to the growing clause with this method
as follows. First, we compute the estimated gains of the entire candidate set
using our histograms as described above. Next, we rank the candidate literals
with two or more old variables by estimated gain and compute the exact gain for
the top F'. Finally, we choose that the literal with the highest true gain among
these F' and the top scoring candidate literal with a single old variable. We call
this method FOIL-DH(F).
The number of joins performed to learn a theory with FOIL-DH(F) is

of join operations = R + 2L + 3F L

which is still much smaller than R + 2L + 3C for small F'.

4.4 Richer Probabilistic Models

As just described, the current implementation of FOIL-DH estimates the size of
a multi-column join by assuming that, for a randomly selected tuple from either
of the tables in the join, the values for the join columns are independent of one
another. If the join columns are highly correlated, this assumption is likely to
lead to inaccurate gain estimates and could result in poor rules.

One way to address this pitfall is to explicitly represent the dependencies
between columns with a more complex probability model, such as a Bayesian
network®[13], for each table’s tuples. Using Bayesian networks, the product on
right-hand-side of the Equation 1 would be replaced with the probability, as
given by the Bayesian networks for the two tables, that a randomly selected
tuple from the cross-product would match on the join columns.

5 Experimental results

This section describes experiments conducted and results obtained by FOIL-D,
FOIL-DH and FOIL-DH(F) on three learning tasks taken from machine learning
literature, which were used by [2] to illustrate the power of FOIL. Descriptions
of the domains are taken from [2]. The aim of the experiments performed is
to determine whether the cost of obtaining accurate hypotheses, with respect
to FOIL, can be significantly reduced by using probabilistic models (FOIL-DH)
and filtering (FOIL-DH(F)) to estimate the scores of literals.

5.1 Learning connectivity of a network

Our first learning task involved learning the definition of can-reach in the net-
work from [2], shown in Figure 1. Extensional definitions of can-reach(N,N),
not-can-reach(N,N) as well as linked-to(N,N) were given as positive example,

3 The current version of FOIL-DH corresponds to a Bayesian network for each table
that has one vertex for each column and no edges.

117

- /]

Fig. 1. A small network, where «— indicates linked-to, from [2]

Table 3. Rules learned for can-reach

FOIL-D, FOIL-DH(1-6) |can-reach(X0, X1) « linked-to(X0, X1)

can-reach(X0, X1) « linked-to(X0, X2), can-reach(X2, X1)
FOIL-DH(0) can-reach(X0, X1) « linked-to(X0, X2), linked-to(X3, X1),
linked-to(X2, X4), can-reach(X2, X1)
can-reach(X0, X1) « linked-to(X0, X2), linked-to(X3, X1),
linked-to(X2, X4), linked-to(X4, X5), linked-to(X6, X3)

negative example and background knowledge respectively. Variables in this re-
lation consists of one type N (Node). The goal is to learn a general definition
for can-reach. Table 3 shows the rules learned by FOIL-D and FOIL-DH(0-6),
which are using filter sizes set to 0 through 6.

5.2 Learning eastbound trains

The second learning task is from the INDUCE system by [14] and described by
[2]. Trains in Figure 2 have different numbers of cars, with various shapes and
tops, carrying loads of various number and shape. The task is to distinguish
between eastbound and westbound trains. The target relation eastbound(T) is
to be defined in terms of the following relations has_car(T,C), not_has_car(T,C),
in_front(C,C), behind(C,C), long(C), short(C), open_rectangle(C), not_open _rectangle(C),
hexagon(C), not_hexagon(C), bucket(C), not_bucket(C), ellipse(C), not _ellipse(C)
rectangle(C), not_rectangle(C), u_shaped(C), not_ushaped(C), jagged_top(C),
not_jagged_top(C), peaked_top(C), not_peaked_top(C), flat_top(C), not flat top(C),
arc_top(C), not_arc_top(C), open_top(C), closed top(C), contains no_load(C), con-
tains_load(C,LS), one_load(C), two_load(C), three_load(C), two_wheels(C), three_wheels(C),
double(C), and not_double(C).

The variables are of three types: T (train_type), C (car_type) and LS (load shape_type).
Clauses learned by FOIL-D and FOIL-DH(0-6) are shown in Table 4.

5.3 Learning family relationships

The third and final task we consider is that of learning family relationships, de-
scribed by [15]. Figure 3 shows two isomorphic families of twelve members each.

118

TRAINS GOING EAST TRAINS GOING WEST

v Lag [Eoa}SaZ <o 03 s Lo a 10
P g B WA i s s lool o LIh
s [15710 ol T » [Yvvllo [TEyes [

s = o/lolTor N s ooy

Fig. 2. Eastbound and westbound trains from [14] and [2]

Table 4. Rules learned for eastbound

FOIL-D, FOIL-DH(0-6) |eastbound(X0) « has-car(X0, X1), closed-top(X1), short(X1)

There are twelve relationship types to be learned: mother, father, wife, husband,
son, daughter, sister, brother, aunt, uncle, niece and nephew. Each target relation
to be learned are to be defined in terms of the following background relations:
mother(P,P), father(P,P), wife(P,P), husband(P,P), son(P,P), daughter(P,P),
sister(P,P), brother(P,P), aunt(P,P), uncle(P,P), niece(P,P), nephew(P,P), and
their negations. The variables are all of type P (People).

The rules learned by FOIL-DH(1) for this task are identical to those learned
by FOIL-D on all twelve relations. Table 5 and Table 6 show the definitions
learned by FOIL-D and FOIL-DH(0-6) for uncle and mother respectively. Since
in these families, all uncles are married, the second literal in both uncle clauses
serves the purpose of asserting that person X0 is a man. The rules learned by
FOIL-D and FOIL-DH(1-6) for other relations are similar in structure. FOIL-
DH(0) fails to learn any rules*

Table 5. Rules learned for uncle

FOIL-D, FOIL-DH(1-6) luncle(X0, X1) « niece(X1, X0), husband (X0, X2)
uncle(X0, X1) « nephew(X1, X0), husband(X0, X2)
FOIL-DH(0) No rules learned

When learning the relations can-reach and the twelve familial relationships,
FOIL-D as well as FOIL-DH(1-6) constructs accurate, compact rules. However,
for the can-reach relation, FOIL-DH(0) generates long, convoluted clauses that
consist of only literals with one old variable. Furthermore, FOIL-DH(0) does not

4 FOIL-DH(0) learns no rules in cases where the first rule it “learns” covers zero
positive examples and is discarded.

119

Christopher=Tenelope Andrew="Christine

I—I—|l—l—|

Margaret=Arthnr Victoria=Jarnea Jennifer=Charles

l—|—|

Colin Charlotte

Roberto=>Xaria TPlerro—=TFrancesca
Gina=Frnilio Luda=Mareo Angela—Tornaso

Alfonso Sophia

Fig. 3. Two family trees, where = means married-to, from [15] and [2]

Table 6. Rules learned for mother

FOIL-D, FOIL-DH(1-6) |mother(X0, X1) < daughter(X1, X0), husband (X2, X0)
mother(X0, X1) « son(X1, X0), husband(X2, X0)
FOIL-DH(0) No rules learned

Estimated gain versus true gain
14 T

10 |+ B

true gain
(2]
T
1

i+

single old variable literals ~ +
multiplg old varible Iit?rals o

2 =l I I I
-2 0 2 4 6 8 10 12

estimated gain

Fig. 4. Estimated gain versus actual gain calculations for adding the first literal in the
relation uncle. The literal with the highest scoring true gain, niece(X1,X0), has true
gain of near 12 and estimated gain of near 5. This literal is not chosen by FOIL-DH(0),
but since this literal has the highest estimated score of the multiple old variable literals
it is correctly chosen by FOIL-DH(1).

120

generate any rules for any of the twelve family relationships. The reason for this
can be seen in Figure 4. Whenever FOIL-DH(0) makes an estimation of the gain
for literals with multiple old variables, it is always under estimates the actual
gain of the highest scoring literals, whereas it always estimates the exact actual
gain for literals with exactly one old variable. Hence, literals with exactly one old
variable will score higher than literals with multiple old variables, resulting in the
unique property of the rules learned by FOIL-DH(0) for the relation can-reach.
This reasoning also supports the results of FOIL-DH(0) on the relationships of
the family dataset because the definitions of those relations require literals with
two old variables to be added first to the body of the clause.

How then was FOIL-DH(1), with a filter size of just 1, able to learn the cor-
rect definitions for can-reach and the twelve familial relationships? One possible
explanation is that even though the estimations for literals with multiple old
variables are lower, the order of the estimated gain for these literals is main-
tained. This would allow FOIL-DH(1), which specifically considers the highest
estimated literal with multiple old variables, to accurately select the best literal.

Surprisingly, all the different FOIL types in our experiments were able to
learn the exact rule for eastbound trains as shown in Table 4. It is interesting to
note that FOIL-DH(0) was able to learn the exact rule for eastbound trains, in
accordance with our reasoning above, because the rule is comprised of literals
with exactly one old variable.

Figure 5 shows the total number of JOINs performed for the different FOIL
types. FOIL-DH(0) to FOIL-DH(6) grows linearly in the number of JOINSs per-
formed and they still provide significantly more savings than FOIL-D.

6 Conclusion

We have presented preliminary methods towards enabling the ILP system FOIL
to be applied to multi-relational data mining tasks on large data sets. Our meth-
ods address both the space and time hurdles that prohibit standard ILP imple-
mentations from being applied to these problems.

To deal with insufficient physical memory we build off of relational database
management systems. We have described FOIL-D, a system that mimics the
operation of FOIL but that performs the memory intensive FOIL operations
using SQL queries to a relational database.

To deal with the slowness of FOIL on very large datasets we have described
FOIL-DH, an extension of FOIL-D that uses histograms to quickly estimate the
gains of candidate literals without performing expensive database join opera-
tions. We also showed how we use the estimation procedure as a filter to select
a small number of candidate literals whose gain we compute exactly.

Our experimental results show that while FOIL-DH dramatically reduces
the numbers of joins it sometimes fails to learn the correct theories on a set of
standard ILP problems because of erroneous estimates. If, however, we use the
estimates as a filter we are able to learn the same correct theories as FOIL-D on
the datasets we looked at while performing significantly fewer joins.

121

Number of JOINs performed for each FOIL type
T T T

1200 T

1000

800

600 -

400 -

Number of JOINs performed

200 -

o e smnon s Wl WL WL W

FOIL-D FOIL-DH(0) FOIL-DH(1) FOIL-DH(2) FOIL-DH(3) FOIL-DH(4) FOIL-DH(5) FOIL-DH(6)
FOIL type used

Fig. 5. Total number of JOINs performed for the different FOIL types when learning
the following relations (in order from left to right in the histogram): can-reach, east-
bound, mother, father, wife, husband, son, daughter, sister, brother, aunt, uncle, niece,
nephew

122

The experiments we present in this paper all involve small datasets on stan-
dard but contrived problems. Our plans for the future involve evaluating FOIL-D
and FOIL-DH in terms of accuracy and efficiency on a number of large real-world
datasets. In addition, we plan on investigating more complex probability models,
based on Bayesian networks.

In closing we note that although this paper has dealt exclusively with ex-
tending FOIL, some of the concepts developed here are applicable to other ILP
systems. For example, systems that score whole clauses (as opposed to FOIL’s
scoring of literals) as a function of the number of positive and negative examples
covered may benefit from similar estimation methods.

7 Acknowledgments

We gratefully acknowledge support for this research from U.S. Air Force grant
F30602-01-2-0571 and NIH grant T15-LM07359-01. Thanks to David Page, Vitor
Santos Costa and Inés Dutra who helped and encouraged us to present the ideas
in this paper. Thanks also to Rich Maclin for help with graph formatting.

References

1. Lavrac, N., Dzeroski, S.: Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood (1994)

2. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5
(1990) 2392666

3. Dimaio, F., Shavlik, J.: Speeding up relational data mining by learning to es-
timate candidate hypothesis scores. In: Proceedings of the ICDM Workshop on
Foundations and New Directions of Data Mining. (2003)

4. Tang, L.R., Mooney, R.J., Melville, P.: Scaling up ilp to large examples: Results on
link discovery for counter-terrorism. In: Proceedings of the KDD-2003 Workshop
on Multi-Relational Data Mining, Washington, DC (2003) 107-121

5. Mooney, R.J., Melville, P., Tang, L.R., Shavlik, J., Dutra, 1., Page, D., Santos
Costa, V.: Relational data mining with inductive logic programming for link dis-
covery. In Kargupta, H., Joshi, A., Sivakumar, K., Yesha, Y., eds.: Data Mining:
Next Generation Challenges and Future Directions. Volume To appear. AAAI
Press (2004)

6. Stonebraker, M., Kemnitz, G.: The postgres next-generation database management
system. Communications of the ACM 34 (1991) 78-92

7. Brockhausen, P., Morik, K.: Directaccess of an ilp algorithm to a database man-
agement system. In: Proceedings of the MLnet Familiarization Workshop. (1996)
95-110

8. Toannidis, Y.E., Poosala, V.: Histogram-based solutions to diverse database esti-
mation problems. IEEE Data Eng. Bull. 18 (1995) 10-18

9. loannidis, Y.E., Poosala, V.: Balancing histogram optimality and practicality for
query result size estimation. In: SIGMOD Conference. (1995) 233-244

10. Quinlan, J.R., Cameron-Jones, R.M.: FOIL: A midterm report. In: Proceedings
of the European Conference on Machine Learning, Vienna, Austria (1993) 3-20

123

11.

12.

13.

14.

15.

Ramakrishnan, R.: Database Management Systems. McGraw-Hill, New York
(1998)

Pazzani, M., Kibler, D.: The utility of knowledge in inductive learning. Machine
Learning 9 (1992) 57-94

Pearl, J.: Probabalistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA (1988)

Michalski, R.S., Mozetic, 1., Hong, J., Lavra¢, N.: The multipurpose incremental
learning system AQ15 and its testing application to three medical domains. In:
Proceedings of the Fifth National Conference on Artificial Intelligence, Philadel-
phia, PA, Morgan Kaufmann (1986) 1041-1045

Hinton, G.E.: Learning distributed representations of concepts. In: Proceedings
of the Eighth Annual Conference of the Fifth International Joint Conference on
Artificial Intelligence, Amherst, MA, Lawrence Erlbaum (1986) 356362

124

Using Bayesian Classifiers to Combine Rules

Jesse Davis, Vitor Santos Costa, Irene M. Ong,
David Page and Inés Dutra

Department of Biostatistics and Medical Informatics
University of Madison-Wisconsin
{jdavis, vitor, ong, page, dutra}@biostat.wisc.edu

Abstract. One of the most popular techniques for multi-relational data
mining is Inductive Logic Programming (ILP). Given a set of positive and
negative examples, an ILP system ideally finds a logical description of the
underlying data model that discriminates the positive examples from the
negative examples. However, in multi-relational data mining, one often
has to deal with erroneous and missing information. ILP systems can
still be useful by generating rules that captures the main relationships in
the system. An important question is how to combine these rules to form
an accurate classifier. An interesting approach to this problem is to use
Bayes Net based classifiers. We compare Naive Bayes, Tree Augmented
Naive Bayes (TAN) and the Sparse Candidate algorithm to a voting
classifier. We also show that a full classifier can be implemented as a
CLP(BN) program [14], giving some insight on how to pursue further
improvements.

1 Introduction

The last few years have seen a surge of interest in multi-relational data mining,
with applications in areas as diverse as bioinformatics and link discovery. One
of the most popular techniques for multi-relational data mining is Inductive
Logic Programming (ILP). Given a set of positive and negative examples, an
ILP system ideally finds a logical description of the underlying data model that
differentiates between the positive and negative examples. ILP systems confer
the advantages of a solid mathematical foundation and the ability to generate
understandable explanations.

As ILP systems are being applied to tasks of increasing difficulty, issues such
as large search spaces and erroneous or missing data have become more relevant.
Ultimately, ILP systems can only expect to search a relatively modest number of
clauses, usually on the order of millions. Evaluating increasingly complex clauses
may not be the solution. As clauses grow larger, they become more vulnerable
to the following errors: a query will fail because of missing data, a query will
encounter an erroneous database item, and a clause will give correct answers
simply by chance.

Our work relates to a sizeable application in the field of link discovery. More
precisely, our concern involves finding aliases in a relational domain [15] where

125

the data is subject to high levels of corruption. As a result, we cannot hope that
the learned rules will generally model the entire dataset. In these cases, ILP
can at best generate rules that describe fragments of the underlying model. Our
hope is that such rules will allow us to observe the central relationships within
the data.

An important question is how to combine the partial rules to obtain a useful
classifier. We have two major constraints in our domain. First, we expect the
number of positives to grow linearly with the number of individuals in the do-
main. In contrast, the number of negatives increases with the number of pairs,
and therefore grows quadratically. Consequently, any approach should be robust
to false positives. Furthermore, flexibility is also an important consideration as
we ultimately want to be able to weigh precision versus recall through some mea-
sure of confidence, ideally in the form of a probability. Secondly, we expect to use
the system for different datasets: our method should not be prone to overfitting
and it should be easy to parameterize for datasets with different observabilities
and error rates.

The previous discussion suggests probabilistic-based classifiers as a good ap-
proach to our problem. We explore three different Bayes net based approaches
to this problem. Each ILP learned rule is represented as a random variable in
the network. The simplicity and robustness of the Naive Bayes classifier make
it a good candidate for combining the learned rules [12]. Unfortunately, Naive
Bayes assumes independence between features and our rules may be quite inter-
dependent and perhaps even share literals. A natural extension is to use TAN [6]
classifiers as they offer an efficient way to capture dependencies between rules.
Additionally, we explore using the Sparse Candidate algorithm [7] for learning
the structure of a full Bayes net. An alternative approach we consider is to group
our rules as an ensemble [3] and use voting, which has had excellent results in
practice. We will evaluate the relative merits of these approaches.

The paper is organized as follows. We first discuss the problem in more detail.
Then, we explain the voting and Bayesian based approaches to rule combination.
Next, we present the main applications and discuss our results. We follow this
by demonstrating how we can represent Bayesian classifiers as a logic program
with probabilities, using CLP(BN). Finally, we end with related work and our
conclusions.

2 Using ILP

From a logic perspective, the ILP problem can be defined as follows. Let E+ be
the set of positive examples, E~ be the set of negative examples, E = ET A E—,
and B be the background knowledge. In general, B and E can be arbitrary logic
programs. The aim of an ILP system is to find a set of hypotheses (also referred
to as a theory) H, in the form of a logic program, such that all positive examples
and none of the negative examples are covered by the program.

In practice, learning processes generate relatively simple clauses which only
cover a limited subset of E*. Moreover, such clauses often cover some examples

126

in E~. One possible reason for the presence of these errors is that these examples
may have been misclassified. A second reason is that approximated theories can
never be as strict as the ground truth: if our clause is only a subclause of the
actual explanation, it is possible that the clause will cover a few other incorrect
examples. We also have to address implementational difficulties: for most cases
we can only search effectively for relatively simple explanations (clauses). There-
fore, we assume that clauses represent fragments of the ground-truth and that
the learning process can capture different “features” of the ground truth. Clauses
have some distribution, which is likely to be non-uniform, over the interesting
aspects of the ground-truth theory. Even if we do not capture all features of the
ground truth, we can still learn interesting and relevant clauses.

Given a set H of clauses learned in an incomplete world we can combine them
to obtain a better classifier. One possible approach to combine clauses would be
to assume that each clause is an explanation, and form a disjunction over the
clauses. Although this approach has the merit of simplicity, and should work
well for cases where we are close to the ground truth, it does have two serious
issues we need to consider:

— We are interested in applications where the number of false instances dom-
inates. Unfortunately, the disjunction of clauses maximizes the number of
false positives.

— We expect the classifier to make mistakes, so ideally we would like to know
the degree of confidence we have in a classification.

Our problem is not novel, and several approaches come to mind. We shall
focus on two such approaches here. The idea of exploiting different aspects of
an underlying classifier suggests ensemble-based techniques. Previous work on
applying ensemble methods to ILP [4] suggests that exploring the variability in
the seed is sufficient for generating diverse classifiers. We thus decided to use a
simple approach where we use the ILP engine to generate clauses and then use
voting to group them together. A second alternative is to consider each clause as
a feature of an underlying classifier. We want to know which features are most
important. Several possibilities exist and we focus on Bayesian networks, as they
provide us with an estimated probability for each different outcome.

3 Combining Rules

3.1 Voting

It is well known that ILP systems that learn clauses using seeds are exploiting
different areas of the search space, in a manner analogous to ensemble meth-
ods. In this vein, recent ILP work has exploited several techniques for ensemble
generation, such as bagging or bootstrapping [4] and different forms of boost-
ing [5,13,9,10]. Bagging is a popular ensemble method that consists of generating
different training sets where each set contains a sample, with replacement, of
the original dataset. Hypotheses are learned from each dataset, and combined

127

through a voting method. Alternatively, in boosting each classifier is built de-
pending on the errors made by previous classifiers. Each new rule thus depends
on the performance of the previous one.

Previous work on applying bagging to ILP [4] suggests that exploring vari-
ability from using different seed examples can be sufficient for generating diverse
classifiers. We shall follow a similar approach: we use hypotheses generated from
different runs of the ILP system, and combine them through unweighted voting.
With this method, we consider an example to be positive depending on the num-
ber of clauses that are satisfied for that example. The number of clauses we need
to satisfy to classify the example as positive is a variable threshold parameter.
One major advantage of using a voting method is that we can obtain different
values of precision and recall by varying the voting threshold. Thus, although a
voting method does not give an estimate of the probability for each classification,
it does provide an excellent baseline to compare with Bayesian-based methods.

3.2 Bayesian Networks

Rule 1 Rule 2 Rule 3 Rule n-2 Rule n-1 Rule n

Fig.1. A Naive Bayes Net.

We expect every learned clause to be related to a clause in the “true” theory.
Hence, we would also expect that the way each learned clause classifies an ex-
ample is somehow dependent on the example’s true classification. This suggests
a simple approach where we represent the outcome for each clause as a random
variable, whose value depends on the example’s classification. The Naive Bayes
approach is shown in Figure 1 [12]. Advantages of this approach are that it is
straightforward to understand as well as easy and fast to train.

The major drawback with Naive Bayes is that it makes the assumption that
the clauses are independent given the class value. Often, we expect clauses to
be strongly related. Learning a full Bayes Net is an NP-complete problem, so
in this work, we experimented with Tree Augmented Naive Bayes (TAN) [6]
networks. Figure 2 shows an example of a TAN network. TAN models allow for
more complex network structures than Naive Bayes. The model was proposed
by Geiger in 1992 [8] and it extends work done by Chow and Liu [2]. Friedman,

128

Rule n-2 Rule n-1

Rule 1 Rule 2 Rule 3

Fig. 2. A TAN Bayes Net.

Geiger and Goldszmidt [6] evaluated the algorithm on its viability for classifica-
tion tasks. The TAN model, while retaining the basic structure of Naive Bayes,
also permits each attribute to have at most one other parent, allowing the model
to capture dependencies between attributes. To decide which arcs to include in
the ’augmented’ network, the algorithm makes a complete graph between all the
non-class attributes, where the weight of each edge is given as the conditional
mutual information between those two attributes. A maximum weight spanning
tree is constructed over this graph, and the edges that appear in the spanning
tree are added to the network. Geiger proved that the TAN model can be con-
structed in polynomial time with a guarantee that the model maximizes the Log
Likelihood of the network structure given the dataset.

The problem arises of whether different Bayes networks could do better. We
report on some preliminary work using the Sparse Candidate Algorithm [7]. The
Sparse Candidate algorithm tries to speed up learning a full Bayesian Network
by limiting the search space of possible networks. The central premise is that
time is wasted in the search process by evaluating edges between attributes that
are not highly related. The algorithm retains standard search techniques, such
as greedy hill climbing, but uses mutual information to limit the number of
possible parents for each attribute to small ’candidate’ set. The algorithm works
in two phases. In the first phase, the candidate set of parents is picked for each
attribute. The candidate set must include all current parents of a node. The
second step involves performing the actual search. These two steps are repeated
either for a set number of times or until the score of the network converges.

4 Results

This section presents our results and analysis of the performance of several appli-
cations. For each application we show precision versus recall curves for the four
methods: Naive Bayes, TAN, Sparse Candidate and voting. All our experiments
were performed using Srinivasan’s Aleph ILP system [16] running on the Yap

129

Prolog system. We used our own software for Naive Bayes and TAN. For the
Sparse Candidate Algorithm we used the LearnBayes program provided by Nir
Friedman and Gal Elidan. For this algorithm we set the number of candidate
parents to be five and we used the Bayesian Information Criterion as the scoring
function. All results are obtained using five fold cross-validation.

Our main experiment was performed on synthetic datasets developed by
Information Extraction & Transport, Inc. within the EAGLE Project [15,11].
The datasets are generated by simulating an artificial world with large numbers
of relationships between agents. The data focuses on individuals which may have
capabilities, belong to groups, and participate in a wide range of events. In our
case, given that some individuals may be known through different identifiers
(e.g., through two different phone numbers), we were interested in recognizing
whether two identifiers refer to the same individual.

All datasets were generated by the same simulator, but with different pa-
rameters for observability (how much information is available as evidence), cor-
ruption, and clutter (irrelevant information that is similar to the information
being sought). Five datasets were provided for training, and six for evaluation.
All the datasets include detailed data on a few individuals, including aliases for
some individuals. Depending on the dataset, the data may or may not have been
corrupted.

Our methodology was as follows. First, we used the five training datasets to
generate rules, using the ILP system Aleph. Using the rules learned from the
training set, we selected the ones with best accuracy and combined them with
domain expert knowledge to provide new feedback to the training phase. Using
the final set of learned rules, we converted each of the evaluation datasets into a
set of propositional feature vectors, such that each rule appeared as an attribute
in the feature vector. Each rule served as a boolean attribute, which received a
value of one if the rule matched the example and zero otherwise. For each of the
six test datasets, we performed five fold cross validation. The network structure
and parameters were learned on four of the folds, while the accuracy was tested
on the remaining fold. For each dataset, we fixed the ratio of negative examples
to positive examples at seventy to one. This is an arbitrary ratio since the full
datasets are exceedingly large, and the ground truth files were only recently
released.

The precision/recall (P/R) curves for the different datasets are seen in Fig-
ures 3 through 8. On each curve, we included 95% confidence intervals on the
precision score for select levels of recall. The curves were obtained by averaging
the precision and recall values for fixed thresholds. The precision recall curve for
the TAN algorithm dominates the curves for Naive Bayes and voting on all six
of the datasets. For each dataset, there are several places where TAN yields at
least a 20 percentage point increase in precision, for the same level of recall, over
both Naive Bayes and voting. On two of the six datasets, Naive Bayes beats vot-
ing, while on the remaining four they have comparable performance. One reason
for TAN’s dominance compared to Naive Bayes is the presence of rules which
are simply refinements of other rules. The TAN model is able to capture some

130

Pr eci si on

Pr eci si on

Fig. 4. P/R for Dataset 2

131

Preci sion/ Recall Curves for Dataset 1
, ' ' ' Votiné —
TAN ——
AT A Nai ve Bayes 1
J\% %‘ ; Spar se Candi date
]\ AN, % :
[S 1
“\ *;
\% :
\@\X@‘@- i\\g |
0 0.2 0.4 0.6 0.8 1
Recal
Fig. 3. P/R for Dataset 1
Preci si on/ Recall Curves for Dataset 2
' ' ' Votiné —
TAN ——
Nai ve Bayes 1
Spar se Candi dat e
0 0.2 0.4 0.6 0.8 1
Recal

Pr eci si on

Pr eci si on

Preci si on/ Recall Curves for Dataset 3

TAN
Nai ve Bayes
Spar se Candi dat e

Votiné —

14

.

.2 0.4 0.6 0.8

Recal

Fig. 5. P/R for Dataset 3

Preci si on/ Recall Curves for Dataset 4

M

E TAN
: Nai ve Bayes

ﬁ Spar se Candi dat e

Votiné —

0.

2 0.4 0.6 0.8
Recal

Fig. 6. P/R for Dataset 4

132

Pr eci si on

Pr eci si on

Pr eci si on/ Recal |

Curve for Dataset 5

Pr eci si on/ Recal |

Fig.7. P/R for Dataset 5

Curves for Dataset 6

1 T T T N T
Voting ——
| TAN ——
8t Lo Nai ve Bayes -~ 1
b ' Sparse Candidate
R 1 e
67 [Nl 1
¢ \x
4t FEN |
L2 r 1
x4
0 I ?("""""""" “”!
0 0.2 0.4 0.6 0.8 1
Recal |

1 pe=— —=
?\\%\

N

F

Vot i né —
TAN

' Naive Bayes
§garse Candi dat e

0 0.

2

0.4
Recal |

Fig. 8. P/R for Dataset 6

133

o b

of these interdependencies, whereas Naive Bayes explicitly assumes that these
dependencies do not exist. Naive Bayes’ independence assumption accounts for
the similar performance compared to voting on several of the datasets. TAN and
the Sparse Candidate algorithm had similar precision recall curves. The package
we used for the Sparse Candidate algorithm only allows for building generative
models. TAN is a discriminative model, so it emphasizes differentiating between
positive and negative examples. An important follow-up experiment would be to
adapt the Sparse Candidate algorithm to use discriminative scoring functions.

In situations with imprecise rules and a preponderance of negative exam-
ples, such as these link discovery domains, Bayesian models and especially TAN
provide an advantage. One area where both TAN and Naive Bayes excel is in
handling imprecise rules. The Bayes nets effectively weight the precision of each
rule either individually or based on the outcome of another rule in the case of
TAN. The Bayesian nets further combine these probabilities to make a predic-
tion of the final classification, allowing them to discount the influence of spurious
rules in the classification process. Ensemble voting does not have this flexibility
and consequently lacks robustness to imprecise rules. Another area where TAN
provides an advantage is when multiple imprecise rules provide significant over-
lapping coverage on positive examples and a low level of overlapping coverage
on negative examples. The TAN network can model this scenario and weed out
the false positives. One potential disadvantage to the Bayesian approach is that
it could be overly cautious about classifying something as a positive. The high
number of negative examples relative to the number of positive examples, and
the corresponding concern of a high false positive rate, helps mitigate this po-
tential problem. In fact, at similar levels of recall, TAN has a lower false positive
rate than voting.

5 The CLP(BN') Representation

Using Bayesian classifiers to join the rules means that we will have two distinct
classifiers using very different technology: a logic program (a set of rules), and
a Bayes net. Some further insight may be obtained by using formalisms that
combine logic and probabilities, such as CLP(BN).

CLP(BAN) is based on the observation that in Datalog, missing values are
represented by Skolem constants; more generally, in logic programming missing
values, or existentially-quantified variables, are represented by terms built from
Skolem functors. CLP(BN) represents such terms with unknown values as con-
straints. Constraints are kept in a separate store and can be updated as execution
proceeds (ie, if we receive new evidence on a variable). Unifying a term with a
constrained variable invokes a specialized solver. The solver is also activated be-
fore presenting the answer to a query. Syntactically, constraints are represented
as terms of the form {C' = Skolem with CPT}, where C is the logical variable,
Skolem identifies the skolem function, and C'PT gives the parameters for the
probability distribution.

134

First, we show how the Naive Bayes net classifier can be built using CLP(BN).
The value taken by the classifier is a random variable that may take the value t
or £ with some prior probability:

classifier(C) :-
{ C = classifier with p([f,t],[0.25,0.75]) }.

Each rule I'’s score V' is known to depend on the classifier only:

rule(I,V) :-
classifier(C),
rule_cpt(I,P1,P2,P3,P4),
{V = rule(I) with p([f,t],[P1,P2,P3,P4],[C]) }.

Rule I’s score is V, which is either £ or t. The value of V depends on
the value of the classifier, C, according to the conditional probability table
[P1,P2,P3,P4]. Our implementation stores the tables for each rule in a database:

rule_cpt(1,0.91,0.66,0.09,0.34).
rule_cpt(2,0.98,0.87,0.02,0.13)

rule_cpt(3,0.99,0.79,0.01,0.21).
rule_cpt(4,0.99,0.87,0.01,0.13).

This fully describes the Bayes net. To actually evaluate a rule we just need
to introduce the evidence given by the different rules:

nbayes(A,B,C) :-
all_evidence(0,39,A,B),
classifier(C).

all_evidence(N,N,_,_).
all_evidence(IO,N,A,B) :-
10 < N, I is I0+1,
rule_evidence(I,A,B),
all_evidence(I,N,A,B).

rule_evidence(I,A,B) :- equals(I,A,B), !, rule(I,t).
rule_evidence(I,A,B) :- rule(I,f).

The predicate nbayes/3 receives a pair of individuals A and B, adds evidence
from all rules, and then asks for the new probability distribution on the clas-
sifier,C. The predicate all_evidence recursively considers evidence from every
rule. The predicate rule_evidence/3 calls rule I on the pair A and B. If the rule
succeeds, evidence from rule I is t, otherwise it adds evidence f.

A TAN network only differs in that a rule node may have two parents, the
classifier C and some other node J. This is described in the following clause:

135

rule(I,V) :-
rule_cpt(I,J,P1,P2,P3,P4,P5,P6,P7,P8),
classifier(C),
rule(J,V1),
{ V = rule(I) with p([£f,t],[P1,P2,P3,P4,P5,P6,P7,P8],[C,V1]) }.

More complex networks can be described in a similar fashion.

CLP(BN) offers two main advantages. First, we can offer interactive access
to the full classifier. Second, we gain some insight since our task now involves
learning a single CLP(BN) program, where each newly induced rule will result
in recomputing the probability parameters currently in the database.

6 Relationship to Other Work

Our present work fits into the popular category of using ILP for feature construc-
tion. Such work treats ILP-constructed rules as Boolean features, re-represents
each example as a feature vector, and then uses a feature-vector learner to pro-
duce a final classifier. To our knowledge, the work closest to ours is by Kononenko
and Pompe [12], who were the fist to apply Naive Bayes to combine clauses. Other
work in this category was by Srinivasan and King [17], for the task of predict-
ing biological activities of molecules from their atom-and-bond structures. Some
other research, especially on propositionalization of First Order Logic (FOL) [1],
have been developed that convert the training sets to propositions and then ap-
ply feature vector techniques to the learning phase. This is similar to what we
do; however, we first learn from FOL and then learn the network structure and
parameters using the feature vectors obtained with the FOL training, resulting
in much smaller feature vectors than in propositionalization.

Our paper contributes three novel points to this category of work. First,
it highlights the relationship between this category of work and ensembles in
ILP, because when the feature-vector learner is Naive Bayes the learned model
can be considered a weighted vote of the rules. Second, it shows that when the
features are ILP-learned rules, the independence assumption in Naive Bayes may
be violated badly enough to yield a high false positive rate. This false positive
rate can be brought down by permitting strong dependencies to be explicitly
noted, through learning a tree-augmented Naive Bayes net (TAN). Third, the
present paper provides some early experimental evidence suggesting that a more
computationally expensive full Bayes net learning algorithm may not provide
added benefit in performance.

7 Conclusions

One often has to deal with erroneous and missing information in multi-relational
data mining. We compare how four different approaches for combining rules
learned by an ILP system perform for an application where data is subject
to corruption and unobservability. We were particularly interested in Bayesian

136

methods because they associate a probability with each prediction, which can
be thought of as the classifier’s confidence in the final classification.

In our application, we obtained the best precision/recall results using a TAN
network to combine rules. Precision was a major concern to us due to the high
ratio of negative examples to positive examples. TAN had better precision than
Naive Bayes because it is more robust at handling high redundancy between
clauses. TAN also outperformed voting in this application. Initial results for the
sparse candidate algorithm show a significant increase in computation time, but
no significant improvements in precision /recall.

In future work we plan to experiment with different applications and with
full Bayesian networks trained using a discriminative scoring function. We also
plan to further continue work based on the observation that we learn a single
CLP(BN) network: this suggests that the two learning phases could be better
integrated.

8 Acknowledgments

Support for this research was partially provided by U.S. Air Force grant F30602-
01-2-0571. We would also like to thank the referees for their insightful comments.

References

1. E. Alphonse and C. Rouveirol. Lazy propositionalisation for relational learning.
In H. W., editor, 14th European Conference on Artificial Intelligence, (ECAI’00)
Berlin, Allemagne, pages 256—260. IOS Press, 2000.

2. C. K. Chow and C. N. Liu. Approximating discrete probability distributions with
dependece trees. IEEE Transactions on Information Theory, 14:462-467, 1968.

3. T. Dietterich. Ensemble methods in machine learning. In J. Kittler and F. Rolj,
editors, First International Workshop on Multiple Classifier Systems, Lecture Notes
in Computer Science, pages 1-15. Springer-Verlag, 2000.

4. I. Dutra, D. Page, V. Santos Costa, and J. Shavlik. An empirical evaluation of bag-
ging in inductive logic programming. In S. Matwin and C. Sammut, editors, Pro-
ceedings of the 12th International Conference on Inductive Logic Programming, vol-
ume 2583 of Lecture Notes in Artificial Intelligence, pages 48-65. Springer-Verlag,
2003.

5. Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In
Proceedings of the 14th National Conference on Artificial Intelligence, pages 148—
156. Morgan Kaufman, 1996.

6. N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian networks classifiers. Ma-
chine Learning, 29:131-163, 1997.

7. N. Friedman, I. Nachman, and D. Pe’er. Learning bayesian network structure
from massive datasets: The “sparse candidate” algorithm. In Proceedings of the
15th Annual Conference on Uncertainty in Artificial Intelligence (UAI-99), pages
206-215, San Francisco, CA, 1999. Morgan Kaufmann Publishers.

8. D. Geiger. An entropy-based learning algorithm of bayesian conditional trees. In
Uncertainty in Artificial Intelligence: Proceedings of the FEighth Conference (UAI-
1992), pages 92-97, San Mateo, CA, 1992. Morgan Kaufmann Publishers.

137

10.

11.

12.

13.

14.

15.

16.
17.

S. Hoche and S. Wrobel. Relational learning using constrained confidence-rated
boosting. In C. Rouveirol and M. Sebag, editors, Proceedings of the 11th Interna-
tional Conference on Inductive Logic Programming, volume 2157 of Lecture Notes
in Artificial Intelligence, pages 51-64. Springer-Verlag, September 2001.

S. Hoche and S. Wrobel. A comparative evaluation of feature set evolution strate-
gies for multirelational boosting. In T. Horvdth and A. Yamamoto, editors, Pro-
ceedings of the 13th International Conference on Inductive Logic Programming,
volume 2835 of Lecture Notes in Artificial Intelligence, pages 180-196. Springer-
Verlag, 2003.

J. M. Kubica, A. Moore, and J. Schneider. Tractable group detection on large link
data sets. In The Third IEEE International Conference on Data Mining, pages
573-576. IEEE Computer Society, November 2003.

U. Pompe and I. Kononenko. Naive Bayesian classifier within ILP-R. In
L. De Raedt, editor, Proceedings of the 5th International Workshop on Inductive
Logic Programming, pages 417-436. Department of Computer Science, Katholieke
Universiteit Leuven, 1995.

J. R. Quinlan. Boosting first-order learning. Algorithmic Learning Theory, Tth
International Workshop, Lecture Notes in Computer Science, 1160:143-155, 1996.
V. Santos Costa, D. Page, M. Qazi, and J. Cussens. CLP(BN): Constraint Logic
Programming for Probabilistic Knowledge. In Proceedings of the 19th Conference
on Uncertainty in Artificial Intelligence (UAIO3), pages 517-524, Acapulco, Mex-
ico, August 2003.

R. C. Schrag. EAGLE Y2.5 Performance Evaluation Laboratory (PE Lab) Docu-
mentation Version 1.5. Internal report, Information Extraction & Transport Inc.,
April 2004.

A. Srinivasan. The Aleph Manual, 2001.

A. Srinivasan and R. King. Feature construction with inductive logic program-
ming: A study of quantitative predictions of biological activity aided by structural
attributes. In S. Muggleton, editor, Proceedings of the Sizth Inductive Logic Pro-
gramming Workshop, LNAI 1314, pages 89-104, Berlin, 1997. Springer-Verlag.

138

Appearsin the Proceedings of the 14th International Conference on Inductive Logic Programming (2004)

L earning an Approximation to Inductive L ogic
Programming Clause Evaluation

Frank DiMaio and Jude Shavlik

Computer Sciences Department, University of Wisconsin - Madison,
1210 W. Dayton St., Madison, WI 53706
{dimaio,shavlik} @wisc.edu

Abstract. One challenge faced by many Inductive Logic Programming (ILP)
systems is poor scalability to problems with large search spaces and many
examples. Randomized search methods such as stochastic clause selection
(SC9) ad rapid random restarts (RRR) have proven somewhat successful at
addressing this weakness. However, on datasets where hypothesis evaluation is
computationally expensive, even these algorithms may take unreasonably long
to discover a good solution. We attempt to improve the performance of these
algorithms on datasets by learning an approximation to ILP hypothesis
evauation. We generate a small set of hypotheses, uniformly sampled from
the space of candidate hypotheses, and evaluate this set on actual data. These
hypotheses and their corresponding eval uation scores serve as training data for
learning an approximate hypothesis evaluator. We ouitline three techniques that
make use of the trained eval uation-function approximator in order to reduce the
computation required during an ILP hypothesis search. We test our
approximate clause evaluation algorithm using the popular ILP system Aleph.
Empirical results are provided on severa benchmark datasets. We show that
the clause evaluation function can be accurately approximated.

1 Introduction

Inductive Logic Programming (ILP) systems [1] have been widely used in
classification, data mining, and information extraction tasks. Ther natural treatment
of reationa data, harnessing the expressive power of first-order logic, makes them
useful for working with databases containing multiple relational tables. ILP systems
combine background domain knowledge and categorized training datain constructing
aset of rulesin the form of first-order logic clauses. Formally, given atraining set of
positive examples E*, negative examples E’, and background knowledge B, all as sets
of clauses in first-order logic, ILP's goa is to find a hypothesis (a set of clausesin
first-order logic) h, such that

BOh= E* BOh= E- (2)

That is, given the background knowledge and the hypothesis, one can deduce al of
the positive exampl es, and none of the negative examples. In rea world applications,
these constraints are typically relaxed, allowing h to explain most positive examples

139

and few negative examples. ILP systems have been successfully employed in a
number of varied domains including molecular biology [2,3], engineering design [4],
natura language processing [5], and software analysis [6].

One challenge many ILP systems face is scaahility to large datasets with large
hypothesis spaces. We define a general framework for learning a function that
estimates the goodness of a hypothesis without looking at actua data. We suggest a
number of ways in which such an approximation may be employed. One possible
application diminates poor hypotheses without wasting time evaluating them.
Another uses the approximate hypothesis evaluator to guide the generation of
promising new candidate hypotheses. Yet ancother application mines the estimator
function itself for rules that can be used to invent useful predicates.

The remainder of the paper is structured as follows. Section 2 provides a
background and related work on scading up ILP. Section 3 describes construction of
the hypothesis evaluation estimator. Section 4 describes in detail possible uses of
such an estimator function. Section 5 shows some results of estimator learning on
benchmark datasets, and Section 6 presents future research directions.

2 ILP Background and Related Work

The algorithm underlying most ILP systems is basicaly the same — it treats
hypothesis generation as a local search in the subsumption lattice [7]. The
subsumption lattice is constructed based on the idea of specificity of clauses.
Specificity here refers to implication; a clause C is more specific than a clause S if
S= C. Ingenerd, it is undecidable whether or not one clause in first-order logic
implies another [8], so ILP systems use the wesker notion of Plotkin's &-subsumption.
Subsumption of candidate clauses puts a partial ordering on all clauses in hypothesis
space. With this partial ordering, alattice of clauses can be built, asin Fgure 1. ILP
implementations perform some type of loca search over this|attice when considering
candidate hypotheses.

The major distinction separating various ILP implementations is the strategy used
in exploring the subsumption lattice. Algorithms fall into two main categories (with

true = pos(X)
h(X)j? pos(X) f(X,Y) = pos(X) a(x,y) :>“npos(X)
h(X) C f(X Y) = pos(X) f(X,Y) C g(X Z) = pos(X)

Figure 1. This illustrates an example of the subsumption lattice over which many ILP
implementations search. The lattice is bounded above by true, and below by the bottom
clause. Many ILP systemstreat clause discovery as loca search, moving along lattice edges.

140

some exceptions): genera-to-specific ("top-down") [9] and specific-to-genera
("bottom-up") exploration of the subsumption lattice [10]. Within these two
frameworks, a variety of common local search strategies have been employed,
including breadth-first search [11], depth-first search, heuristic-guided hill-climbing
variants [10,11], uniform random sampling [12], rapid random restarts [13], and
genetic algorithms [14]. Our work provides a genera framework for increasing the
speed of any ILP agorithm, regardless of the order candidate clauses are eval uated.

One chdlenge ILP systems face is that they scale poorly to large datasets.
Srinivasan [12] investigated the performance of various ILP agorithms, and found
that the running-time depends on two factors: (1) the size of the subsumption lattice
and (2) the time required for clause eva uation, which in turns depends on the number
of examples in the background corpus.

The first factor — the size of the subsumption lattice — mainly depends on the
number of terms in a specific example's saturation. Saturation is used to put a lower
bound on the subsumption lattice. The process is performed on a single positive
example. Using the background knowledge, saturation constructs the most specific,
fully-ground clause that entails the chosen example. It is constructed by applying all
possible substitutions for variablesin the background knowledge B with ground terms
in B. Thisclauseis called the chosen example's bottom clause, and it serves as the
bottom element (00) in the subsumption lattice (Figure 1) over which ILP searches.
That is, al clauses considered by ILP (in the subsumption lattice) subsume .

As a simple example, suppose we are given background knowledge (using Prolog
notation where ground atoms are denoted with an initial |owercase |etter and variables
are denoted with an initial uppercase |etter):

f(e, b) g(b, c)
OX, Y, Z f(XY) O0g(Y,2) = h(Y)

We are also given the current positive example, e.
Wefirst begin saturation by letting all ground atomsin H imply e

f(e,b) Og(b,c) = positive(e)

Then we apply dl possible consistent substitutions, i.e, if we make the
substitutions {e/ X, b/ Y, ¢/ Z} (using the notation { atom/Variable} to indicate ‘atom’
is being substituted for 'Variabl€), we can apply the rule given in the third line of our
background knowledge, that is:

f(e,b) Og(b,c) = h(b)
Finally, combining gives us the saturation of e
f(e,b) Og(b,c) Oh(b) = positive(e)

Clearly, the size of the subsumption latticeis directly related to thesize of 0. If we
ignore multiple variablizations of asingle ground literal and consider only hypotheses
that contain less than c terms, then the size of the subsumption lattice — given a
bottom clause O - is a most O(FC)[H]' Taking into account multiple
variablizations introduces an additional factor, exponentia in the number of constants
in the bottom clause.

141

The second factor — the evaluation time of a clause — is more complicated to
andyze. Srinivasan smplifies the analysis by assuming that every clause can be
evauated on an example in congtant time S, thus, the evaluation of a clause against
the entire training set occurs in time B|E|=O(E|) where E is the set of training
examples. An exhaustive search of the subsumption lattice for asingle clause, then,
tekes worst-case running time O(|C|°| E|) -

However, for most datasets clause evaluation is even worse than O(|E|).
Srinivasan's work assumed that deducing each candidate hypothesis takes constant
time. However, even with just one recursive rule and one background fact, deduction
can be undecidable [15]. Restricting ourselves to the simpler case where function
symbols are not considered (i.e., Datalog) and not alowing recursive clauses,
evaluating a candidate clause against a set of ground background facts is NP-complete
[16]. Most ILP datasets fal into this simpler, function-free category, where
evauation time is exponentiad (unless P=NP) in the number of variables, which
relates to the length of the expression. In other words, a long hypothesis will take
significantly longer to test against the examples in the background knowledge than
will a shorter hypothesis. For many large datasets, it is precisely these long
hypotheses that are most interesting. As aresult, approaches to scaling up ILP[9,10]
have focused upon one of these two factors: reducing the number of clauses
considered, or decreasing the time spent on clause eval uations.

In reducing the number of clauses considered, the simplest techniques employ
genera Al search strategies, such as A*, iterative deepening, or beam search, to
reduce the number of clauses in the subsumption lattice considered. For example,
using a beam reduces the worst-case running time to OQ E\) However, for
extremely large datasets where || may be in the thousands and |E| in the hundred
thousands, even this may take prohibitively long.

A novel approach a reducing the number of clauses in the subsumption lattice
considered has been successfully employed by Srinivasan. It uses arandom sampling
strategy that considers sampling n clauses from the subsumption lattice, where the
value of n chosen is independent of the size of the subsumption lattice. This gives
worst-case running time of O(|E]) for finding a single clause. However, Srinivasan's
idea only works for domains where there are a sizable number of "sufficiently good"
solutions. Recent work by Zelezny et al. [13] has coupled random clause generation
method with heuristic search using the idea of rapid random restarts (RRR) to
explore the subsumption lattice. They repeatedly generates random clauses followed
by a short local search. Rickert and Kramer [17] have aso had success using
stochastic search for bottom-up rule learning, outperforming GSAT and WakSAT.

Other ILP optimizations focus instead on decreasing the time spent on clause
evauations. the |E| term in ILP's running time. Severa improvements to Prolog's
clause evauation function have been developed. Blocked et al. [18] consider
reordering candidate clauses to reduce the number of redundant queries. Santos Costa
et al. [19] developed severa techniques for intelligently reordering terms within
clauses to reduce backtracking. Srinivasan [20] developed a set of techniques for
working with a large number of examples that only considers using a fraction of al
available examplesin the learning process. Sebag and Rouveirol [21] use stochastic

142

matching to perform approximate inference in polynomia (as opposed to exponentid)
time. Maloberti and Sebag [22] provide an aternative to Prolog's SLD resolution for
Gsubsumption. They instead treat 8-subsumption as a constraint satisfaction problem
(CSP), then use a combination of CSP heuristics to quickly perform & subsumption.

Our work is digtinct from dl of these techniques. We describe a method for
learning a function that estimates the clause eval uation function, which can be used in
several different ways. It can reduce the evaluation time of a clause by quickly
approximeating the goodness of a clause, in an amount of time independent of the
number of training examples. We can couple it with Zelezny et al.'s rapid random
restart method in order to bias restarts toward better regions in the search space. We
can useit in amanner similar to Boyan and Moore's STAGE al gorithm [23] to escape
local maximain a heuristic search. Finally, we can extract hypotheses and perform
predicate invention using the estimator itself.

3 Learning the Clause Evaluation Function

Heuristic approaches to exploring the subsumption lattice all make use of a scoring
function to represent the goodness of a hypothesis a explaining the training data
Given a hypothesis (a candidate clause in first-order logic) h, a set of categorized
training examples E ={E*,E‘}, nS . Maps clause h to h's score on training set E
under scoring metric evalfn:

nglalfn ‘h-0O (2)

We use a multilayer, feed-forward neural network described in Section 3.1 to learn
an approxi mate scoring function z%,,. Some preliminary testing revealed that other
machine learning agorithms (e.g. naive Bayes, linear regression, C4.5) were
significantly less accurate a approximating the clause evauation function.
Furthermore, a neural network with a single hidden layer is capable of approximating
any bounded continuous function with arbitrarily small error [24]. We use an online

training algorithm detailed in the Section 3.2 to train the neural network.

3.1 Neural Network T opology

Before constructing our clause evauation function approximator, we need a
method for encoding clauses as neural network inputs. Our encoding is based on the
top-down lattice exploration used by a number of popular ILP implementations. In
such implementations, a positive example is chosen at random from the training set.
The chosen example is then saturated, building a bottom clause (). Recall that this
bottom clause consists of only fully ground literals. An ILP system constructs
candidate hypotheses by choosing a subset of these fully-ground literals and
"variablizing," replacing ground atoms with variables in a manner that replaces
multiple instances of a single ground atom with a single variable (our approach does

143

not consider multiple — or split - variablizations of a single set of fully-ground
literals). Approachesdiffer in how they select ground literals from the bottom clause.

Our neura-network inputs are comprised of a set of features derived from the
candidate clause both before and after variablization. When saturating an example,
each literal in that example's bottom clause is associated with an input in the neural
network. Thisinput is set to 1 if the corresponding literal in the bottom clause was
used in congtructing the clause, and set to O otherwise. Notice tha there may be
multiple sets of literals from the bottom clause that, when variablized, yield the same
clause. This means there may be many different input representations for a single
clause. However, we only use the input representation corresponding to the specific
literals that were actually chosen when constructing the candidate clause.

Formally, let candidate clause C be chosen by selecting some subset of literals
from the most-specific bottom clause [J; for current example . We treat this clause
asavedor X ={x,...,x; } in |0} | -dimensional space, with:

©)

Xy

1 if groundliteral k chosenin constructing C
0 otherwise

This vector X is a subset of the inputs to our neural network. One important
aspect of the input vector isthat every possible candidate dlause - that is, every clause
in the subsumption lattice — has a unique input vector representation. However, the
mapping does not work in the other direction: not every possible bit vector
corresponds to alega clause. In many cases, the mgjority of bit vectors correspond to
illegal clauses, which contain unbound input variables. (Algorithms using the neura
network to search the space of bit vectors, asin Section 4.2, need to be aware of this).

Additionally, we give each predicate a specific input in the network, as well. Here,
we consider a vector y, in which each dimension corresponds to a predicate
appearing in 0. Construction of y is based upon the number of times a particular
predicate is used in a candidate clause, that is:

y; =# of ground literalsin C of predicate] 4

Finaly, athird set of inputs to the neural network comes from features extracted
from the variablized clause C'. These featuresinclude

e length - number of literalsin C'.

* nvars - number of distinct variablesin C'.

* nshared_vars - number of distinct variables appearing more than oncein C'.

» avg var_freq - average number of times each variable appearsin C'.

* max_var_chain -longest variable chain appearing in C', i.e., the clause
f(A:-g(A B), h(B, C) hasmax chain 3 (A—>B—C).

The neurd network consists of one (fully-connected) hidden layer and a two output
units. The output units correspond to P and N, the predicted positive and negative
coverage of a clause (that is, the number of examples from E* and E’, respectively,
deduced from the hypothesis). Given these predicted values and a scoring function,
computation of the predicted output %, istrivia. For example, commonly used
evaluation functionsinclude coverage (P-N) and accuracy (P/P+N). Thus, we can

144

pos(a) :- f(a, b) pos(X) :-

;Egb; fEajc), o(0) f(Xv),

,¢), g(a), .:{> = (Y, 2),

g(c). f(b, c) 9(2).
Bottom Selected Lits. Clause

1> @b
0=>C (2o

T

4=>Cien >
3=>Cvars >

Figure 2. An overview showing the neural network's topology, and an example of input
vector construction. Notice that the vector X is constructed by the literals chosen from the
fully-ground bottom clause, not the candidate clause. It is quite possible for severa different
sets of selected literals to correspond to the same candidate clause; we only consider the set that
was actually chosen in the clause's construction.

X< 12C0eo> D s
redicte
0=>C(a > (& D= % ros
coverage
1=> a0 D D
° Predicted
: % NEG
coverage

evaluate a clause on the neural network by converting it to the vector notation
specified in Equations (3) and (4), forward-propagating it on a trained neural network
toestimate P and N, and calculating #5,,, from P and N. Figure 2 presentsthis
network topology graphicaly.

3.2 OnlineTraining

The neura network's initial training makes use of Srinivasan's random uniform
sampling [12]. The user specifies a burn-in length b, and the algorithm uniformly
randomly selects b clauses from the space of legal dauses (up to a given maximum
clause length). We evaluate these clauses on the training data, thereby creating
input/output pairs for training. Using uniform sampling to generate I/O pairs ensures
that the neural network approximation is reasonably accurate over the entire search
space. Using other local search methods tends to bias the neural network's
approximation toward some local region in the search space. Table la contains an
overview of the algorithm used to initialy train the neural network.

The methods we present in the Section 4 — that use our approximation to explore
the subsumption lattice — continue to evaluate clauses (on actua data) once the

145

relatively short burn-in period is concluded. It seems wasteful to just throw this
potential training data for the network approximation away. Our agorithm uses an
onlinelearning algorithm to make use of these clause evaluations — that occur as part
of ILP's regular search — to improve the accuracy of the approximation. This alows
us to generate a virtually unlimited number of 1/O pairs for our network by simply
scoring clauses on actua data.

Our onlinetraining agorithmis shown in Table 1b. When aclause is eval uated by
ILP, generating an I/O pair for training our neural network, our online learning
algorithm adds the pair to a cache of recently evaluated clauses. The cache typically
stores 1000 to 10000 recently eval uated clauses, and, once full, elementsin the cache
are randomly removed to make room for incoming elements. At regular intervals
(typicdly every 50-100 insertions) the neura network is updated by backpropagation,
using the entire cache for a fixed number of epochs (typically 10). The continually
changing training set, relatively short training intervals, and small number of hidden
units (typically 5-10) prevent overtraning.

While the goa of our approximation is to learn an approximation of the clause
evaluation function over the entire subsumption lattice, we are especially concerned
with high accuracy of this approximation in high-scoring regions of the subsumption
lattice. To ensure this accuracy, we also maintain a cache of the best clauses seen so

Table 1: The Neural Network burn-in training and online training algorithms. (a) The
burr-in training algorithm. Given bottom clause [J;, a set of training examples E, and the size
of the training set trainset_size, train a neural network to learn the clause evaluation function
ng,a,fn . We use early stopping to avoid overtraining, returning the learned network. (b) The
online training algorithm, called for each /O pair <C,{pos,neg}> that ILP generates. The
algorithm keeps a cache of recent and best-scoring clauses. At some regular interval (every
arrivals_between_updates arrivals), the algorithm updates trained network NN for a preset
number of epochs (epochs per_update). When a new arrival overflows the cache, it removes
old items at random.

@ (b)
BurninTraining (0, E, burnin) OnlineTrainingArrival(NN, <C,{pos,neg}>)
IOPairs « O if full(recent_cache)
NN < new NeuralNetwork delete_random(recent_cache)
minError « +inf insert <C,{pos,neg}> into recent_cache
for i =1 to burnin if score(pos,neg) > min(best_cache)
C « rand. clause built from OJ; insert <C {pos,neg}> sorted into best_cache
{pos,neg} < evaluate(evalfn, C, E)))
add <C,{pos,neg}> to IOPairs num_arrivals «<— num_arrivals + 1
if (num_arrivals = arrivals_between_updates)
Split IOPairs into TrainSet and TuneSet num_arrivals «< 0
for j=1to MAX_EPOCHS for j = 1 to epochs_per_arrival
foreach <ex,{pos,neg}> in TrainSet foreach <ex,{p,n}> in recent_cache
run backprop on NN using <ex,{pos,neg}> run backprop on NN using <ex,{p,n}>
error < SSE of NN on TuneSet foreach <ex,{p,n}> in best_cache
if (error < minError) run backprop on NN using <ex.,{p,n}>
minError < error
bestNN « NN return NN
return bestNN

146

far. This cacheistypically 10% of the size of the recent-clauses cache, and when this
cache is full, the lowest-scoring element is always removed to make room for
incoming, higher-scoring clauses. When the neural network is updated, dausesin the
best-scoring cache are aso added to the training set and used to update the neura
network as well.

4 Usingthe Clause Evaluation Approximation

This section describes three methods for using our clause gpproxi mator to scale ILP to
larger datasets, and speed discovery of high-scoring hypotheses. These methods are:

(1) approximately evaluating clauses during the search of the subsumption lattice

(2) using the evalfn surface defined by the neural network to escape loca maxima
and to bias random restarts

(3) extracting hypotheses and performing predicate invention using the
approximator function

4.1 Rapidly Exploring the Subsumption L attice Using the Clause Appr oxi mator

This first method allows us to piggyback on just about any other loca search method
(though not stochastic methods). We perform our search in the usual manner;
however, when we expand a node, instead of evaluating successor clauses on the
complete set of examples, we use the neural network to compute the approximate
clause evauation score @5,,. We then choose the next node to expand depending
on our search strategy and the approximate scores. If this next node was
approxi mately scored on the network, we then scoreit on actual data (and cacheit for
future training). We expand this new node and repest the process. Recall that
approxi mate eval uation takes O(1) running time, not the O(E|) running time required
to perform the actual eva uation on the training data

Interestingly enough, the behavior of this technique varies quite a bit depending on
the search strategy employed. For a branch-and-bound search, this method serves to
optimize the order in which clauses are evaluated — coupled with pruning, this could
significantly reduce the total number of O(E|) real evaluations required. With A*
search, this instead lets one "throw away" clauses that don't seem promising without
wasting time eva uating them on actual data. Clauses that the neural network predicts
to score poorly will never reach the font of the open list and will never be evaluated
on the actual data (Note that this does break the guaranteed optimality of A*).

Nix and Weigend have devel oped a technique for using aneura network to predict
not only aregression vaue, but also to place an error bar on its prediction [25]. Using
their technique, we can instead approxi mately score clauses, storing them in the open
list with a 95% confidence bound instead of simply their predicted score. This tends
to favor evauaion of clauses that the neurad network cannot accurately predict —
areas that should probably be thoroughly explored (but still seem promising!).

147

4.2 Biasing Random Restarts towards Favor able Regions of Search Space

Additionally, we can use the surface defined by the trained neura network to guide
our search. The function encoded by a neural network with fixed weights defines a
smooth surface in the space of network inputs. We can employ this neural-network
designed surface in a stochastic search. For example, we can use this surface to
perform "biased” rapid random restarts (hereafter referred to as biased-RRR): instead
of randomly selecting literals, we perform stochastic gradient ascent on the neural -
network defined surface. That is, starting from a random clause, we perform
stochastic gradient ascent on this surface. The endpoint is our "random restart”: the
point from which we begin evaluating clauses on the actual training examples. These
"guided" restarts bias search toward better regions of the search space.

Oneissuethat arisesisthat the neural network contains two separate output units —
one that predicts positive coverage and one that predicts negative coverage — and we
want to perform gradient ascent over the surface of some scoring function that is a
(possibly nonlinear) combination of the two. Fortunatdy, for al of the common
scoring functions we can derive a simple expression relating the derivative of the
scoring function to the derivative of the two output units. The derivatives of each
output unit with respect to the input — dP/0x; and dN/0x; — are easily computed with
a backpropagation variant (backprop computes OErr, /ow; and 0Err /ow;). Table
2 summari zes these expressions for commonly used scoring functions.

An interesting variant of this approach uses the network-defined surface to escape
local maxima while performing a standard ILP best-first search. We can think of this
as equivaent to the biased rapid random restart above; however, instead of some

Table 2. This table expresses the gradient of several common scoring functions Ty, in
terms of the gradients of the two network output units — predicted positive and predicted
negative coverage. Stochastic gradient ascent uses one of these equations to compute the
network-surface gradient under some scoring function. In the equations below, P denotes
positive coverage, N denotes negative coverage, and L denotes clause length.

Scoring]]
Function Gradient Ascent Equation

) P_N on _0P ON
compression - =
0% 0% 0x
PoN-L+1 o7nn _0oP ON
coverage -N-L+ = =
0% 0% 0%

P om_ 1 P__ON
accuracy o 07X,_(P+N)2[N[g; pd;;}

P+1 o _ 1 P_ N
Laplace BINT2 &—7(P+N+2)2[(N+1)% (p+1)[f$;}

P P Y N N am_ 1 P_oN N P
entropy _P+NloQ[P+N,]_P+N|OQ[P+NJ &_(mN)?EENBg? P%}EélnN+P lnN+Pj
GINI 29L[1—L] L”:z(P‘N)[gp[fﬂ_Ng’Ew

P+N P+N ox, (P+N)3 . ox, 0)(,,_

148

-~
Score
under

evalfn

Actual Scoring
Function 7T,

\ Neural Network
1 N\ Approx. Tm
\

A 4

Space of Candidate Clauses

Figure 3. This graphic illustrates our algorithm using stochastic gradient ascent on the
surface defined by the neural network to escaping a local minimain ILP's sandard best-
first search. The search alternates between periods of ILP's best-first search (1 and 3), and
stochastic gradient ascent on the network-defined surface (2). The only difference between this
variant and our biased-RRR search is the starting point of the stochastic gradient ascent.
Biased-RRR begins each period of stochastic gradient ascent at arandom point in search space.

random point, the starting point for our network-guided gradient ascent is the ending
point from the previous period of ILP's standard search (on real datd). That is, in this
variation we rapidly alternate between brief periods of ILP's standard (best-first)
search and stochastic gradient ascent on the neura-network-defined surface. This
variaion isillustrated in Figure 3.

This idea of intelligent rapid random restarts to escape local maxima is not a new
one. Though nat in the domain of ILP, Boyan and Moore's STAGE algorithm [23]
use quadratic regression to approximate search "trgectories.” That is, they learn a
function mapping points in festure space to the endpoint of alocal search starting at
that point. They use this approximation to escape local maximain a heuristic search.
Their agorithm ran in less time, and reported better test-set accuracy than solutions
discovered using local search aone.

4.3 Extracting Concepts from the Function Approximation

Finally, we can extract concepts from the neural network itself. Craven and Shavlik
[26] have devel oped a method to extract a decision tree from atrained neural network.
Running their algorithm on the (thresholded) trained clause-eval uation approxi mator
would produce atheory — a set of clauses — that we could variablize and score on the
actual data set.

The neura network, in fitting a nonlinear surface to the scoring function, will
hopefully find pairs and triplets of termsthat — while individually not helpful —lead to
a highly accurate rule when combined. Two terms that share one or more variables
and are connected to the same single hidden unit via a highly-weighted edge that
possibly have an impact on the accuracy of the rule when taken together. Such apair
of termsis alikely candidate for terms of an invented predicate. The neural network
approximation could be used to find such predicates using only one or a few seeds;
then the invented predicates could be added to the background knowledge for the
search over the remaining seeds' subsumption | attices.

149

5 Resultsand Discussion

This section presents our results on several benchmark datasets. We first show that
the neural network is indeed capable of learning an approximation to the clause
evaluation function. We then use the network in arapid-random-restart search to bias
restarts towards more promising regions of search space, as described in Section 4.2.

5.1 Benchmark Dataset Overview

We tested clause evauation function approximation on four standard ILP
benchmark datasets. The tasks included predicting mutagenic activity [27] and
carcinogenic activity [28] in compounds, predicting the smuggling of nuclear and
redioactive materials, and predicting metabolic activity of proteins. A brief
description of the four datasets follows.

Mutagenesis. This task is concerned with predicting the mutagenicity of certain
compounds. The ILP learner is provided background knowledge consisting of the
chemical properties of 188 compounds, as well as generd chemical knowledge in the
form of first-order logic relations. The dataset is apopular benchmark, and explores a
reasonably large search space.

Carcinogenesis. Similar to the mutagenesis task, but an inherently more difficult
problem, thistask's main concern is predicting carcinogenic activity compounds from
potential carcinogenic compounds. The database for this problem consists of 332
|abel ed examples, of which about half are carcinogenic.

Nuclear Smuggling. This dataset, based on reports of Russian nuclear materials
smuggling, isinteresting in its highly-relational nature, with over 40 relationa tables.
The task is concerned with predicting when two smuggling events are linked. The
dataset we use is a subset of the complete dataset, 192 examples split evenly into
positive and negative examples.

Protein Metabolism. Thistask is taken from the gene-function prediction task of
the 2001 KDD Cup challenge (www.cs.wisc.edu/~dpage/kddcup2001/). While the
chalenge involves learning 14 different protein functions, our sub-task is only
concerned with predicting which proteins are responsible for metabolism. Here we
also use a subset of the complete dataset, 230 examples split evenly between positives
and negatives.

5.2 Learning the Clause Evaluation Function

This section details empirical evaluation of the neural network learning task. Our
god is to ascertain whether a neural network can learn the ILP clause evauation
function. To simplifying the task, in our experiments we only consider a batch
learning process, not the online learning process outlined in Section 3.2.

We use the ILP system Aleph (web.comlab.ox.ac.uk/oucl/research/areas/
machlearn/Aleph/aeph_toc.html) to generate 10 sets of 1000 randomly sampled
clauses for each of the four datasets, corresponding to 10 different positive examples

150

that were used in construction of the bottom clause. These 10 "seed examples" were
chosen randomly. We considered a maximum clauselength c=6 for al but the
Nuclear Smuggling task; we considered a larger value of c=10 for this task. Clauses
were scored using a standard scoring metric, a variant of Aleph’s compression
heurigtic; that is, a clause's scoreis given by

(pos. exs. covered) + (neg. exs. covered) - (clauselength) + 1

score =
(total pos.exs)

(6)

Unlike Aleph's compression (which does not include the term in the denominator), we
convert scores into a good range for neura networks by dividing by the total number
of positive examples. This also alows comparison of scores across datasets.

For each dataset, these clauses and their corresponding scores were used to train
the neural network. Using the machine learning package WEKA [29], we generated
learning curves using 10-fold cross-validation. For all datasets, the neura network
was constructed with 10 hidden units. The learning rate was fixed at 0.2. We added
early stopping to WEKA to avoid overtraining. For each cross-validation fold, we set
aside 33% of each training set as a tuning set. Then, after 200 epochs, we kept the
neural network that performed best on the tuning set. WEKA'S numeric feature
normalization was enabled for all numeric features.

The learning curves for each of the four datasets appear in Figure 4. The “All
Daad’ curves show the mean root-mean-squared (RMS) error over the 10 different
sets of examples. (Section 3.4 explains the other two curvesin each of these graphs.)

For al four datasets, the hypothesis evaluation function wf,,,was learned with
reasonable accuracy. In al four datasets, as more datais added to the training set, the
neural network more accurately learns the evaluation function. It is interesting to
note, however, that the number of examples required to accurately learn the
approxi mator, and the accuracy of thefinal classifier varies amongst the datasets.

The absolute accuracy of the approximator varies across the datasets as well. For
protein metabolism, the fully-trained network averages 0.005 RMS error; for
mutagenesis, the results are an order of magnitude worse, a 0.05. Still, it seems
promising that the worst performing approximator saw an RM S error of just 0.05.

So far, we have assumed no transfer of knowledge between seed examples, i.e,, we
learn a new neural network from scratch for each saturated example. However,
several of the features we employ are independent of the example selected for
saturation. In particular, every feature except the ground literals selected (the vector
X described in Section 3) is instance-independent (or at least has an instance
independent representation). These features can be shared when generating different
rules from different seed examples, and, for al rules after the first, this alows us to
bootstrap an initia classifier based on knowledge garnered from previous rules.

Consequently, we looked at the contribution of each subset of features on each of
the four datasets. In particular, we wanted to see how instance-independent features
contributed to the learning task. As before, we used WEKA to construct two learning
curvesfor each dataset. These two learning curves correspond to training the network
on (1) only instance-independent features, and (2) only instance-dependent features.

As Figure 4 illustrates, with the exception of protein metabolism, training on the
instance-independent features alone did not produce as accurate a classifier as training

151

on the instance-dependent features done, or on the complete set of features.
Furthermore, on all four datasets, using the compl ete set of features did not produce a
significantly more accurate network approximator than using the instance-dependent
features alone did. This suggests that the instance-independent features are unlikely
to help transfer learning for one seed example to the next seed example, and that
better approaches need to be devel oped.

Although these graphs illustrate that we are capable of learning the clause
evaluation function, they do not show the degree to which the function is learned.
Figure 5 compares the RMS error of the network approximation to the RMS error
obtained by using a random sampling of training examples to approximately score
clauses. This provides an aternate method for computation reduction against which
we compare our method. It also allows us to determine the number of evaluations the
neura network is "worth." This number varies significantly across the four datasets,
ranging from between 25% and 50% sampling to well beyond 90% sampling. As
these are dl fairly small benchmark datasets, it remains an open question how our
method will compare to sampling the training examplesin larger problems (with both
larger hypothesis spaces as well as datasets). Thisincludes large problems that often
ariseinthe biologica sciences and text extraction [30].

Mutagenesis Protein Metabolism
0.4 0.030
—%— Al Data °
o —-B—- Instance-independent only 0.024 >§
5 03T ---@-- - Instance-dependent only | | 5
& . b)
o Beg.__ o 0.018 1
° > :
2 @99\‘“ 2 0012 :
« \ T
g K]
@ 01 & !\\
0.006 =

m ‘D.

T T T T 0.000 T
0 200 400 600 800 1000 0 200 400 600 800 1000
Training Set Size Training Set Size

0.0

Nuclear Smuggling Carcinogenesis
0.020 0.08

o

=3

>
in}

Relative RMS Error

o o
o o
N &~
p B

g

p

9

F

F

¢

o

0.015

Relative RMS Error
o
o
=
o

o
o
S
a

T T T T 0.00 T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Training Set Size Training Set Size

0.000

Figure 4. Learning curves showing test-set accuracy over four domains comparing the
roles of instance-dependent versus instance-independent features. Learning curves were
generated only using a subset of the complete set of features, and the results were compared to
the casewhere all featureswere used to train the network.

152

0.12

O 10% sampling
0.10 - 25% sampling
] gggjo samp:ing
. , 6 sampling
o 0.08 m Neural Netw ork
L
o 0-06
=
@ 0.04 -
0.02
0.00 -
Protein Carcinogenesis Mutagenesis Nuclear
Metabolism Smuggling

Figure 5. Comparing the RMS error of the neural-network approximation with that
obtained by using a random sampling of training examples to approximate clauses. The
error of the neural-network approximation varies widely, but in al cases does better than a
25% sampling of examples, and for two of the four datasets, does better than a 90% sampling.

5.3 Using the Evaluation Function Approximator to Guide Random Sear ch

This section detail s the use of trained neural network to bias the random restarts in a
rgpid random restart search. Our goa here is to find the best-scoring clause in the
subsumption lattice using as few clause evaluations as possible. Thus, resultsin this
section are only concerned with maximizing some evaluation function over the
training data. Assuming a well-designed evaluation function, this corresponds with
good test-set performance.

We implemented the previous-described online learning agorithm in Aleph. To
enable biased random restarts, we aso implemented a stochastic gradient ascent
algorithm. Our gradient ascent i mplementation, at each step, only considered flipping
an input bit on or off, and did not alow flipping a bit on if the clause length was
aready at its maximum. The probability of abit flip of input x is given by:

_ 07T i, _
Pliox)= Sog & 275 o

In this formula, 0% determines the "softness” of the gradient ascent. For our results, it
was set such that we were 100 times more likely to flip the "best" literd than the
"worst." The (-1)*term simply flips the sign of the gradient when we consider
flipping abit off (sincethisis a move in the negative direction).

In order to test the performance of our algorithm, we atempt to find the dause that
maximizes the coverage scoring function, defined as the number of positive examples
covered minus the number of negative examples covered. We used stochastic
gradient ascent to bias RRR search towards with 1000 restarts and 10 steps per restart,
and compare the biased-RRR versus normal RRR with the same parameters. For the
biased-RRR, the "burn-in period" consisted of a single random restart and the local
moves following. We report results on three of the four datasets from the previous

153

Carcinogenesis Protein Metabolism

40

2]
a

30 — e
© —_— & 30 =
2 25 2 -
Il Il
g pas 5 =
g 20 3 /
- o 20

‘;.,’ 15 // biased-RRR Py //
g g
5 10 — — RRR —]
L | 2

0 0

0 500 1000 1500 2000 0 100 200 300 400

Clause Evaluations Clause Evaluations

Figure 6. Performance of the biased-
RRR search versus a traditional RRR
50 search. The x-axis shows the number of
20 e e em = — 7 T 7 clauses evaluated, and the y-axis displays

% L | the average coverage of the best clause

found at that x value. For carcinogenesis

Nuclear Smuggling

Average Coverage

o and protein metabolism, the biased-RRR
10 performs better, but for nuclear
0 smuggling it is clearly outperformed.

0 2000 4000 6000 8000 10000

Clause Evaluations

section, omitting mutagenesis as it too quickly converges: over 80% of seeds found
their best clause in the very first restart. For each dataset we explored the
subsumption lattices of 100 different seed examples. Our neural network consisted of
10 hidden units. Finaly, each rapid random restart began at the endpoint of the
previous local search and finished after a fixed number of random steps. Aleph search
parameters are left at default whenever possible.

Figure 6 shows the results for each of the three datasets. In each of the three
graphs, the x-axis shows the number of clauses evaluated, and the y-axis shows the
average coverage over al seeds of the best example found thus far. As the plots
show, for two of the datasets — carcinogenesis and protein metabolism — biased-RRR
found a better clause quicker than did traditional RRR. However, in the third task,
nuclear smuggling, biased-RRR did worse than the default implementation. The
reasons for this are unclear, as the neura network was clearly able to learn the
evaluation function approxi mator in this domain.

6 Conclusion and Future Work

We demonstrated that the use of a neurd network for clause evaluation is a useful
tool for improving runtime efficiency when handling large search spacesin ILP. As
ILP is confronted with increasingly larger problems, the need for methods like the
ones we present grows. So far, we have trested the network learning and evaluation
tasks as computationally "free" operations, which is not entirely true. However, it is
true that the running time of neural network evaluation (and training) is independent

154

of the number of ILP examples in the daaset. This means that given enough
examples in the ILP training set, neural-network evaluation can be made virtually
free. Thisstrategy can be used to decrease the runtime of ILP systems on large tasks.

The most pressing work that remains is implementing and evaluating the other
strategies for taking advantage of the clause-evaluation approximator outlined in
Sections 4.1 and 4.3. Clearly accuracy is lost in approximating the clause-evaluation
function, but it is difficult to determine how it affects solutions generated by using it
to quickly evaluate dlausesin atypical ILP search. Another open question iswhether
useful information can be extracted from the trained neural network itself [26].

Also, Botta et al. [31] have characterized hypothesis space, discovering a critica
region they have named the phase transition. In thiscritical region, the computational
complexity of inference increases, and clauses generated in this region tend to have
poor generalization to unseen test examples. This phase transition is a difficult region
for ILP & gorithms; our a gorithm's performance here specifically needs exploration.

Finally, we have discussed learning the evaluation approximation in a least-
squared-error sense. However, what may be more important for ILP is the relative
ranking of candidate clauses. Thus, an approach like Caruana and Baluja's Rankprop
algorithm [32] — an alternative to backprop concerned with correctly predicting the
ranking of the output variables — may be more natural .

7 Acknowledgements

This work was supported by National Library of Medicine (NLM) grant 1T15 LM007359-
01, DARPA Grant F30602-01-2-0571, United States Air Force Grant F30602-01-2-0571, and
NLM grant 1R01 LM07050-01. The authors would also like to thank the UW Condor Team
and the anonymous reviewers.

References

=

N. Lavrac & S. Dzeroski (1994). Inductive Logic Programming. Ellis Horwood.

R. King, S. Muggleton & M. Sternberg (1992). Predicting protein secondary structure

using inductive logic programming. Protein Engineering, 5:647-657.

3. A. Srinivasan, R. King, S. Muggleton & M. Sternberg (1997). The predictive toxicology
evauation challenge. Proc. 15th Intl. Joint Conf. on Artificial Intelligence, 1-6.

4. B. Dolssk & S. Muggleton (1991). The application of ILP to finite element mesh design.
Proc. 1t Intl. Workshop on ILP, 225-242.

5. J. Zelle & R. Mooney (1993). Learning semantic grammars with constructive inductive
logic programming. Proc. 11th Natl. Conf. on Artificial Intelligence, 817-822.

6. |. Bratko & M. Grobelnik (1993). Inductive learning applied to program construction and
verification. Proc. 3rd Intl. Workshop on I nductive Logic Programming, 169-182.

7. S. Nienhuys-Cheng & R. de Wolf (1997). Foundations of Inductive Logic Programming.
Springer-V erlag.

8. M. Schmidt-Schauss (1988). Implication of clauses is undecidable. Theoretical Computer

cience, 59:287-296.

N

155

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

3L

32.

J. Quinlan (1990). Learning logica definitions from relations. Machine Learning, 239-
266.

S. Muggleton & C. Feng (1990). Efficient induction of logic programs. Proc. 1st Conf. on
Algorithmic Learning Theory, 368-381.

S. Muggleton (1995). Inverse Entailment and Progol. New Generation Computing,
13:245-286.

A. Srinivasan (2000). A study of two probabilistic methods for searching large spaces with
ILP. Tech. Report PRG-TR-16-00. Oxford Univ. Computing Lab.

F. Zelezny, A. Sinivasan & D. Page (2002). Lattice-search runtime distributions may be
heavy-tailed. Proc. 12th Intl. Conf. on Inductive Logic Programming, 333-345.

A. Giordana, L. Saitta& F. Zini (1994). Learning disjunctive concepts by means of genetic
agorithms. Proc. 11th Intl. Conf. on Machine Learning, 96-104.

P. Hanschke & J. Wurtz (1993). Satisfiability of the smallest binary program. Info. Proc.
Letters, 496:237-241.

E. Dantsin, T. Eiter, G. Gottlob & A. Voronkov (2001). Complexity and expressive power
of logic programming. ACM Computing Surveys, 33:374-425.

U. Rickert & S. Kramer (2003). Stochastic local search in k-term DNF learning. Proc.
20th Intl. Conf. on Machine Learning, 648-655.

H. Blockeel, L. Dehasp, B. Demoen, G. Janssens, J. Ramon & H. Vandecasteele (2002).
Improving the efficiency of inductive logic programming through the use of query packs.
J. Al Research, 16:135-166.

V. Santos Costa, A. Srinivasan, R. Camacho, H. Blockeel, B. Demoen, G. Janssens, J.
Struyf, H. Vandecasteele & W. Van Laer (2003). Query transformations for improving the
efficiency of ILP systems, J. Machine Learning Research, 4:465-491.

A. Srinivasan (1999). A study of two sampling methods for analysing large datasets with
ILP. Data Mining and Knowi edge Discovery, 3:95-123.

M. Sebag & C. Rouveirol (2000). Resource-bounded relational reasoning: induction and
deduction through stochastic matching. Machine Learning, 38:41-62.

J. Maloberti & M. Sebag (2001). Theta-subsumption in a constraint satisfaction perspective.
Proc. 11th Intl. Conf. on Inductive Logic Programming, 164-178.

J. Boyan & A. Moore (2000). Learning evaluation functions to improve optimization by
local search. J. Machine Learning Research, 1:77-112.

K. Hornik, M. Stinchcombe & H. White (1989). Multilayer feedforward networks are
universal approximators. Neural Networks, 2:359-366.

D. Nix & A. Weigend (1995). Learning local error bars for nonlinear regression. Advances
in Neural Information Processing Systems. MIT Press.

M. Craven & J. Shavlik (1995). Extracting tree-structured representations of trained
networks. Advancesin Neural Information Processing Syssems. MIT Press.

R. King, S. Muggleton, A. Srinivasan & M. Sternberg (1996). Structure-activity
relationships derived by machine learning. PNAS, 93:438-442.

A. Srinivasan, R. King, S. Muggleton & M. Sternberg (1997). Carcinogenesis predictions
using ILP. Proc. 7th Intl. Workshop on Inductive Logic Programming, 273-287.

I. Witten & E. Frank (1999). Data Mining. Morgan Kaufmann Publishers.

M. Goadrich, L. Oliphant & J. Shavlik (2004). Learning ensembles of first-order clausesfor
recall-precision curves: a case study in biomedical information extraction. Proc. 14th Intl.
Conf. on Inductive Logic Programming.

M. Botta, A. Giordana, L. Saitta & M. Sebag (2003). Relational learning as search in a
critical region. J. Machine Learning Resear ch, 4:431-463.

R. Carvana & S. Baluja (1996). Using the future to 'sort out' the present. Advances in
Neural Information Processing Sysems. MIT Press.

156

Appears in Proceedings of the 14th International Conference on Inductive Logic Programming (ILP). Porto, Portugal.
September, 2004.

Learning Ensembles of First-Order Clauses

for Recall-Precision Curves:
A Case Study in
Biomedical Information Extraction

Mark Goadrich, Louis Oliphant and Jude Shavlik

Department of Biostatistics and Medical Informatics and
Department of Computer Sciences,
University of Wisconsin-Madison, USA

Abstract. Many domains in the field of Inductive Logic Programming
(ILP) involve highly unbalanced data. Our research has focused on In-
formation Extraction (IE), a task that typically involves many more
negative examples than positive examples. IE is the process of finding
facts in unstructured text, such as biomedical journals, and putting those
facts in an organized system. In particular, we have focused on learning
to recognize instances of the protein-localization relationship in Medline
abstracts. We view the problem as a machine-learning task: given posi-
tive and negative extractions from a training corpus of abstracts, learn a
logical theory that performs well on a held-aside testing set. A common
way to measure performance in these domains is to use precision and
recall instead of simply using accuracy. We propose Gleaner, a random-
ized search method which collects good clauses from a broad spectrum of
points along the recall dimension in recall-precision curves and employs
an “at least N of these M clauses” thresholding method to combine the
selected clauses. We compare Gleaner to ensembles of standard Aleph
theories and find that Gleaner produces comparable testset results in a
fraction of the training time needed for ensembles.

1 Introduction

Domains suitable for Inductive Logic Programming (ILP) can be roughly divided
into two main groups. In one group, there are tasks in which each example
has some inherent relational structure. One classic example of this domain is
the trains dataset [20], where the goal is to discriminate between two types of
trains, and the trains themselves are relational objects, having varying length and
types of objects carried by each car. A more realistic example is the mutagenesis
dataset [29], where the goal is to classify a chemical compound as mutagenic or
not using the relational nature of the atomic structure of each chemical. ILP
has proven successful in these domains by bringing the inherently relational
attributes into the hypothesis space.

The other group contains tasks where examples, in addition to having a
relational structure, have relations to other examples. One such domain is the

157

learning of friendship in social networks [2], where instead of classifying people,
we try to determine the structural relationships of people based on a combination
of their personal attributes and the attributes of their known friends. Another
domain of this type is learning to suggest citations for scientific publications [21],
where a correct citation can be a combination of data in this particular paper
as well as the currently listed citations. The overall goal in these domains is to
classify links between objects instead of the objects themselves.

Our research has focused on Information extraction (IE), the process of find-
ing facts from unstructured text such as biomedical journals and putting those
facts in an organized system. In particular, we have focused on learning multi-
slot protein localization from Medline' abstracts, where the task is to identify
links between phrases which correspond to a protein and the location of that
particular protein in a cell. When seen as a relational data task, multi-slot TE
clearly falls into the link-learning category described above.

Link-learning tasks present a number of problems to an ILP system. First,
these domains tend to have a large number of objects and relations, causing
a large explosion in the search space of clauses. A first approach is to sample
these objects and bring the space down to a reasonable size. However, even a
moderate number of objects brings about the second problem, a large skew of
the data toward negative examples. Suppose in the social network domain we
have 500 people, each of whom have 10 friends amongst these 500 people. This
gives us 5000 positive examples, assuming that the friendship relationship is not
necessarily symmetric. Our negative examples must include all other possible
friendships, for 500 x 500 — 5000 = 245, 000 negative examples, a skew of 1:49.

Information extraction is a domain that typically has unbalanced data; for
example, only a very small number of phrases are protein names. Learning the
relation between two entities, such as protein and location, only increases this
imbalance, as the number of positive examples is now a subset of the cross-
product of the entities, and the negative examples are every other pairing in the
dataset.

These issues lead us away from using the standard performance measure
of accuracy. Letting TP stand for true positives, F'P for false positives, TN
for true negatives and FN for false negatives, accuracy can be defined as
%. With the positive class so small relative to the negative class,
it is trivial to achieve high accuracy by labeling all test examples negative. To
concentrate on the positive examples, more appropriate performance measures
are precision, defined as TIL%, and recall, defined as TPZ%. Precision can be
seen as a measure of how accurate we are at predicting the positive class, while
recall is a measure of how many of the total positives we are able to identify.

We chose to pursue IE from a machine-learning perspective. Given a set of
journal abstracts manually tagged with protein-localization relationships, our
goal is to learn a theory that extracts only these relations from a set of abstracts
and performs well on unseen abstracts. We use five-fold cross validation, with
approximately 250 positive and 120,000 negative examples in each fold. Our

! http://www.ncbi.nlm.nih.gov/pubmed

158

division of examples is not uniform because we chose to split our data into folds
at the journal-abstract level (so that all the sentences in a given abstract are in
the same fold), and the number of examples per abstract is variable.

We believe that ILP can be applied successfully for Information Extraction
in biomedical domains as well as other link-learning tasks. ILP offers us the ad-
vantages of a straight-forward way to incorporate domain knowledge and expert
advice and will produce logical clauses suitable for analysis and revision by hu-
mans to improve performance. We use Aleph [27], a mature ILP system, to learn
first-order clauses.

The standard approach to ILP is to learn clauses sequentially until almost
all of the positive examples are covered by at least one clause, thus creating a
theory. By itself, an individual theory will produce one value for precision and
recall, at least if one uses the standard logical approach of disjunction to combine
the clauses in a theory. A more useful evaluation would be to create a recall-
precision curve, which illustrates the trade-off between these two measurements.
One way to create a recall-precision curve from a theory containing M clauses is
to require that at least N of the clauses are satisfied. By varying N from 1 to M,
one can obtain a variety of points in the recall-precision curve [10]. However, ILP
systems have not traditionally been designed to produce recall-precision curves,
and it is likely that specially designed algorithms will do better than simply
counting the number of clauses that are satisfied by a given example.

To address the goal of efficiently producing good recall-precision curves with
ILP, we propose the Gleaner algorithm. Gleaner is a randomized search method
that collects good clauses from a broad spectrum of points along the recall dimen-
sion in recall-precision curves and employs an “at least IV of these M clauses”
thresholding method to combine the selected clauses. We compare Gleaner to
ensembles of standard Aleph theories [11]. We find that Gleaner produces compa-
rable results in a fraction of the training time needed for Aleph ensembles. These
smaller theories will also reduce classification time, an important consideration
when working with large domains.

2 Biomedical Information Extraction

Information Extraction (IE) is the process of scanning plain text files for objects
of interest and facts about these objects. As a learning task, IE is defined as:
given information in unstructured text documents, extract the relevant objects
and relationships between them. There are two main IE tasks, Named Entity
Recognition (NER) and Multi-Slot Extractions. NER can be seen as identifying
a single type of object, for example the name of an individual, corporation, gene,
or weapon. Successful rule-based approaches for named-entity IE include Rapier
[8], a system which learns clauses with the format prefiz, extraction, postfiz, and
Boosted Wrapper Induction (BWI) [14], a method for boosting weak rule-based
classifiers of extraction boundaries into a powerful extraction method. BWI has
been further examined by Kauchak et al. [17] showing results with high recall
and high precision on a wide variety of tasks.

159

PEP-dependent protein import, possibly at the step of protein translocation.”

protein_location(SMF1, mitochondrial)
protein_location(SMF2, mitochondrial)

“We suggest that SMF1 and SMF2 are mitochondrial membrane proteins that influence

Fig. 1. Sample Sentence with its Correct Extractions

Multi-slot extraction builds upon the objects found in NER, and looks for
a relationship between these items in the text, some examples being a parent-
child relationship between individuals, the CEO of a particular company, or
the interaction of two proteins in a cell. Multi-slot extraction is typically much
harder; not only must the objects of the relation be identified, but also the
semantic relationship between these two objects.

Recently, biomedical journal articles have been a major source of interest in
the IE community for a number of reasons: the amount of data available is enor-
mous, the objects, proteins and genes, do not have standard naming conventions,
and there is a definite interest from biomedical practitioners to quickly find rele-
vant information [3,26]. Biomedical journals also contain highly domain-specific
language, as seen in Figure 1.

Previous machine-learning work in the biomedical multi-slot domain includes
a number of different approaches. Ray and Craven [23] use a Hidden Markov
Model (HMM) modified to include part of speech tagging, and analyze their
method on protein localization, genetic disorder and protein-protein interaction
tasks. For the same datasets, Eliassi-Rad and Shavlik [13] implemented a neural
network for IE primed with domain-specific prior knowledge. Aitken [1] uses
FOIL to perform ILP, working with a closed ontology of entities, while Brunescu
et al. [7] propose the use of ELCS, a bottom up approach to finding protein
interactions with rule templates for sentences. Brunescu et al. have also extended
Rapier and BWI to handle multi-slot extractions.

2.1 Data Labeling

In this paper, we focus on one particular dataset, learning the location of yeast
proteins in a cell as illustrated in Figure 1. Our testbed comes from Ray and
Craven [23]. The data consist of 7,245 sentences from 871 abstracts found in
the Medline database, and contains 1,200 relations. In the original dataset, the
labeling was performed semi-automatically, in order to avoid the laborious task of
labeling by a human. Protein localizations were gathered from the Yeast Protein
Database (YPD), and sentences which contained instances of both a protein and
location pair were marked as positive by a computer program.

In our early exploration of the dataset, we found that there were a signifi-
cant number of false positives that looked like true positives but were apparently
missed by the automated labeling algorithm. Also, some of the labelings were

160

ambiguous at best, finding both parts of a positive protein localization, whereas
the human-judged semantics of the sentence did not involve localization. In ad-
dition, by using this labeling scheme, we did not have data on all yeast proteins
in the corpus, only those listed in YPD. Because of these issues, we decided to
relabel the dataset by hand. We were assisted in this effort by Soumya Ray.

To label the positive examples, we manually performed both protein and
location named-entity labeling and relational labeling. Our labeling standards
differ from those used by other groups [16], as our task is to extract the locations
of yeast proteins. If there was any disagreement among the labelers, we did not
tag the protein or location, to make sure our training set was as precise as
possible at the expense of some recall.

For the protein labeling, we strove to be specific rather than general, and
only labeled those words that directly refered to a protein or gene molecule.
This included gene names such as “SMF1”, protein names like “fet3p” and full
chemical names of enzymes, such as “qh2-cytochome c¢ reductase”. Therefore,
while we would label SEC53 from “SEC53 mutant”, we did not label “isp4delta”
or “rrpl-1” as these gene products are defective and would not give rise to a
functioning protein molecule. We did not label protein families such as “hsp70”
unless it was an adjective to a protein, as in “hsp70 dnaK”. Fusion proteins, such
as when a gene is combined with a fluorescent tag, were labeled as proteins.
Protein complexes, antibodies and open reading frames were never labeled as
positive protein examples. Also, only proteins that are known to exist in yeast
were labeled, not those which were found in other species, since our dataset dealt
with the localization of yeast proteins.

Labeling the location words was much more direct. We used a list of known
cellular locations listed in an introductory cellular biology text book, includ-
ing locations and abbreviations such as “cytoskeleton”, “membrane”, “lumen”,
“ER”, “npc”, “bud”, etc. Also labeled were location adjectives, such as “nucle-
oporin” and “ribosomal”.

To determine if there was a relationship between any tagged pro-
teins and tagged locations, we used three classifications: clear, ambigu-
ous, or co-occurrence. Relationships directly implied by the text, as in
protein_location(YRB1lp, cytosol) from the sentence “YRBI1p is located in
the cytosol,” were classified as clear, while those relationships where the pro-
tein location was implied rather than stated, such as protein location(LIP5,
mitochondrial) from the sentence “LIP5 mutants undergo a high frequency of
mitochondrial DNA deletions,” were labeled as ambiguous. The correct classifi-
cation was agreed upon by all three labelers. For our experiments, we used the
clear category as positive examples, and all other phrase pairings as negative
examples. A future goal is to improve our manual-labeling interface.

2.2 Background Knowledge

Instead of the standard feature-vector machine learning setup, ILP uses logical
relations to describe the data. Algorithms attempt to construct logical clauses
based on this background structure that will separate positive and negative

161

Sentence Fragment

Phrase Type NP VP NP VP PP NP
— ! D L ‘
Part Of Speech N V v N v P N
Text ... we haved named YFHI, localizes to mitochondria ...

Fig. 2. Sample Sentence Parse from Sundance Sentence Analyzer (N=noun, V=verb,
P=preposition or phrase)

examples. For our information extraction task, we construct background knowl-
edge from sentence structure, statistical word frequency, lexical properties, and
biomedical dictionaries.

Our first set of relations comes from the sentence structure. We use the Sun-
dance sentence parser [24] to automatically derive a parse tree for all sentences
in our dataset and the part-of-speech for all words and phrases of the tree. This
tree is then flattened to some degree, so that there are no nested phrases; all
phrases have the sentence as the root, and therefore all words are only members
of one phrase. Figure 2 shows an example sentence parse.

Each word, phrase, and sentence is given a unique identifier based on its
ordering within the given abstract. This allows us to create relations between
sentences, phrases and words not based on the actual text of the document
but on its structure, such as sentence_child, phrase _previous and word. next
about the tree structure and sequence of words, and relations like nounPhrase,
article, and verb to describe the sentence structure. To include the actual text
of the sentence in our background knowledge, the predicate word ID_to_string
maps these identifiers to the words. In addition, the words of the sentence are
stemmed using the Porter stemmer [22], and currently we only use the stemmed
version of words.

Another group of background relations comes from looking at the frequency
of words appearing in the target phrases in the training set. This is done on a per-
fold basis to prevent learning from the test set. For example, the words “body”,
“npc”, and “membrane” are at least 10 times more likely to appear in location
phrases than in phrases in general in training set 1. We created predicates for
several gradations from 2 times to 10 times the general word frequency across
all abstracts in a given training set. These gradations are calculated for both
arguments—protein and location—as well as for words that appear more frequently
in between the two arguments or before or after them. We create semantic classes,
consisting of these high frequency words. These semantic classes are then used
to mark up all occurrences of these words in a given training and testing set.

A third source of background knowledge is derived from the lexical properties
of each word. Alphanumeric words contain both numbers and alphabetic charac-
ters, whereas alphabetic words have only alphabetic characters. Other lexical
and morphological features include singleChar, hyphenated and capitalized.
Also, words are classified as novelWord if they do not appear in the standard
/usr/dict/words dictionary in UNIX.

162

Sentence Structure Predicates
phrase_after(Phrasel,Phrase2)
phrase_contains_specific.-word (Phrase, Word, WordString)

Statistical Word Frequency Predicates
phrase_contains_2x_word (Phrase, Argument)
phrase_contains_no_between_halfX_word (Phrase,Argument,PartOfSpeech)

Lexical Properties Predicates
alphabetic(Word)
few_wordPOS_in_sentence(Sentence,PartOfSpeech)

Biomedical Dictionaries Predicates
phrase_contains_mesh_term(Phrase, Term,StemmedTerm)
phrase_contains_go_term(Phrase, Term,Stemmed Term)

Fig. 3. Sample Predicates used in our Information Extraction Task

Finally, we incorporate semantic knowledge about biology and medicine into
our background relations, such as the Medical Subject Headings (MeSH)?, the
Gene Ontology (GO)3, and the Online Medical Dictionary?. As in sentence
structure, we have simplified these hierarchies to only be one level. We have
picked three categories from MeSH (protein, peptide and cellular structure), the
cellular-localization category from GO, and the cellular-biology category from
the Online Medical Dictionary, and have labeled phrases with these predicates
if any of the words in the given phrase match any words in the category.

Sentence structure predicates like word_before and phrase_after are added
allowing navigation around the parse tree. Phrases are also tagged as being the
first or last phrase in the sentence, likewise for words. The length of phrases is
calculated and explicitly turned into a predicate, as well as the length (by words
and phrases) of sentences. Also, phrases are classified as short, medium or long.
An additional piece of useful information is the predicate different phrases,
which is true when its arguments are distinct phrases.

Lexical predicates are augmented to make them more applicable to the phrase
level. If a phrase contains an alphabetic word, the phrase is given the pred-
icate phrase_contains_alphabetic word(A). Similarly phrases with specific
words are marked with phrase_contains specific word(A, ‘‘lumen’’).This
is the equivalent of adding both phrase child(A,B), word ID to_string(B,
‘‘lumen’’) at once. These predicates are also created for pairs and triplets of
words, so we can assert that a phrase has the word “golgi” labeled as a noun all
in one search step.

2 http://www.nlm.nih.gov/mesh /meshhome.html

% http://www.geneontology.org/
4 http://cancerweb.ncl.ac.uk /omd/

163

Finally, predicates are added to denote the ordering between the phrases.
Target_argl before_target_arg?2 asserts that the protein phrase occurs before
the location phrase, similarly for target_arg2 before_target_argl. Also cre-
ated are adjacent_target_args (which is true when the protein and location
phrases are adjacent to each other in the sentence), and identical target_args
(which says the same noun phrase contains both the protein and its location), as
well as the count of phrases before and after the target arguments. A list of our
predicate categories and some sample predicates are found in Figure 3. Overall,
we have defined 251 predicates for use in describing the training examples.

2.3 Unbalanced Data Filtering

As previously mentioned, one of the difficulties we face with this domain is the
large number of possible examples we must consider. Within each sentence, we
need to examine each pair of phrases. With only a few positive examples, our
positive:negative ratio is 1:600, leading to severely unbalanced data.

For this domain, we use prior knowledge to help reduce the number of false
positive examples. We observe that 95% of our positive relations contain only
noun phrases, while the overall ratio is 26%, and use this to limit the size of
our training data to only those candidate extractions where both arguments are
noun phrases. This reduces the positive:negative ratio in our data to 1:158. We
must necessarily keep track of all missed positive in the testing set, those that
have at most one non-noun phrase, and record them as false negatives in our
recall-precision results.

To further reduce the positive:negative ratio we randomly under-sample the
negatives, retaining only a fourth during training. This allows for faster clause
learning. Future work includes selecting the “close” negative examples to use
during training rather than randomly selecting them.

3 Aleph

Aleph [27], is a top-down ILP covering algorithm developed at Oxford University,
UK. It is written completely in Prolog and is open source. As input, Aleph takes
background information in the form of predicates, a list of modes declaring how
these predicates can be chained together, and a designation of one predicate
as the “head” predicate to be learned. Also required are lists of positive and
negative examples of the head predicate.

As a high-level overview, Aleph generates clauses for the positive examples
by picking a random example to be a seed. This example is saturated to create
the bottom clause, i.e. every relation in the background knowledge that can be
reached from this example. The bottom clause becomes the possible search space
for clauses. Aleph heuristically searches through the space of possible clauses
until the “best” clause is found or time runs out. The standard way to use
Aleph is to combine these learned clauses into a theory when enough clauses are
learned to cover almost all positive training examples.

164

Aleph is a very flexible ILP system with a wide variety of learning parameters
available for modification. Some of the parameters we utilized were:

minimum accuracy. We can place a lower bound on the accuracy of all clauses
learned by our system. This is only the accuracy of the clause on the examples
covered by it, in other words, precision.

minimum positives. To prevent Aleph from learning narrow clauses, ones
which only cover a few examples, we can specify that each acceptable clause
must cover at least a certain number of positives.

clause length. The size of a particular clause can be constrained using clause
length. By limiting the length, we can explore a wider breadth of clauses
and prevent clauses from becoming too specific.

search strategy. As Aleph uses search to find good clauses, the type of search
is a parameter. These include the standard search methods of breadth-first
search, depth-first search, iterative beam search, iterative deepening, as well
as heuristic methods requiring an evaluation function.

evaluation function. There are many ways to calculate the value of a node for
further exploration. The most common heuristic used in ILP is coverage. This
is defined as the number of positives covered by the clause minus the number
of negatives (TP — F'P). A very similar heuristic is compression, which is
coverage minus the length of the clause (TP — FP—L). Since we are working
within domains to generate precision/recall curves, we also explored as our
heuristic-search’s evaluation function (a) precision x recall, and (b) the F1

measure, which is (%ﬁgf&ﬁh. To improve clause quality and correct

accuracy estimates for clauses that cover a small number of examples, one

can also use the Laplace estimate, (%).

coverage in tune set. To encourage our clauses to be more general, we added
a parameter to Aleph requiring each recorded clause to have some small
positive coverage in the tuneset. We believe this will help our clauses on the
unseen examples in the test set.

4 Gleaner

Since our biomedical IE task is a link-learning task, we need to evaluate the
success of our methods using precision and recall. In order to rapidly produce
good recall-precision curves, we have developed Gleaner, a two-stage algorithm
to (1) learn a broad spectrum of clauses and (2) then combine them into a
thresholded disjunctive clause aimed at maximizing precision for a particular
choice of recall. Our algorithm is summarized in Figure 4.

Our first stage of Gleaner learns a wide spectrum of clauses. We have Aleph
search for clauses using K seed examples. We diversify the search by first
uniformly dividing the recall dimension into B equal sized bins, for example,
[0,0.05],[0.05,0.10],...,[0.95,1]. For each seed, we consider up to N possible
clauses using a random local-search method. As these clauses are generated, we
compute the recall of each clause and determine into which bin the clause falls.

165

Create B recall bins, uniformly dividing the range [0,1]
Fori=1to K
Pick a seed example to generate bottom clause
Use Random Local Search to find clauses
After each generation of a new clause r
Find the recall bin b for r
If the Precision x Recall of r is best yet
Store 7 in by,
For each bin b
Find Ly € [1, K] on trainset such that
recall of “At least L of K clauses match examples” & recall for this bin
Find precision and recall of testset using each bin’s “at least L of K” decision process

Fig. 4. Gleaner Algorithm

Each bin keep tracks of the highest precision clause learned in that bin so far
and will be replaced when a more precise clause is found (actually, rather than
finding the highest precision clause within each bin, we save the clause whose
product of precision and recall is highest among those clauses falling into this
recall bin). At the end of this search process, there will be B clauses collected
for each seed and K seed examples for a total of B x K clauses (assuming a
clause is found that falls into each bin for each seed).

To perform random local search, we considered four search methods, Rapid
Random Restart (RRR), Stochastic Clause Selection (SCS), GSAT, and Walk-
SAT. SCS randomly picks clauses which are subsets of the bottom clause ac-
cording to the distribution of clauses based on length. SCS has a hard time
finding high quality clauses and is biased to select long clauses due to the heavy-
tailed distribution of clause lengths. GSAT selects an initial clause at random
and then chooses to either add or remove a randomly selected literal if the new
clause is “better” according to the evaluation function; WalkSAT modifies GSAT
by allowing a certain percent of “bad” moves. RRR works similarly to GSAT
and WalkSAT in the initial clause selection, but only refines clauses by adding
predicates (using best first search), restarting with a new clause after a speci-
fied number of evaluations. GSAT and WalkSAT occasionally make “downhill”
moves in the search space, while RRR does not, and due to the interal workings
of Aleph, adding predicates to a clause is much more efficient than removing
them. We found that RRR both takes less time and produces higher quality
clauses than the other methods, and we use it as Gleaner’s search method in the
remainder of this article.

The second stage takes place once we have gathered our clauses using ran-
dom search. We need a way to combine these clauses into a single precision/recall
point for each bin. We could choose the best clause collected from each bin, how-
ever this is likely to have poor generalization to the test set, especially for the
low-recall bins. If we classify an example as positive only if it matches all K
clauses collected for a bin, we obtain high precision, but our recall will be dras-

166

tically reduced. Alternatively, if we classify an example as positive if it matches
any of our K clauses, we will probably have a theory with high recall but low
precision. Instead, we need to find a balance between these two extremes, and
classify examples to be positive if they are covered by a large enough subset of
clauses. Qur hypothesis is that this method will produce a theory with about the
same recall as the bin (by construction), but higher precision than any one clause,
since we require that an example satisfy multiple clauses (assuming L > 1).

Gleaner combines the clauses in each bin to create one large thresholded
disjunctive clause, of the form “At least L of these K clauses must cover an
example in order to classify it as a positive.” We want this clause to have about
the same recall as as that of the clauses in the bin (so that we cover the full
range of possible recalls), thus we need to find the best threshold L for each bin.
We can find this L on the training set for each bin by starting with L = K and
incrementally lowering the threshold to increase recall. We stop when any lower
L would increase the distance between the recall of the best L of K clause and
our desired recall. With this L, we now evaluate our disjunctive clause on the
testset and record the precision and recall. We will end up with B precision/recall
points, one for each bin, that span the recall-precision curve.

5 Ensembles in ILP

Bagging [6] is a popular ensemble approach to machine learning where multiple
classifiers are trained using different subsamples of the training data. These
classifiers then vote on the classification of testset examples, usually with the
majority class being selected as the output classification. How they vote is user-
dependent, with some common schemes being equal voting or weighted according
to the tuneset accuracy of each voter. The main idea of bagging is that it will
produce diverse classifiers that make their mistakes in different regions of the
input space; when their votes are combined, prediction errors will be reduced.

The use of bagging for ILP has been previously investigated by Dutra et al.
[11] where they demonstrate bagging to be helpful for modest improvements in
accuracy as well as a straight-forward way to calculate the confidence of a par-
ticular example. We use their “random seeds” approach for creating ensembles.
This approach, which Dutra et al. showed to have essentially equivalent predic-
tive accuracy as bagging, produces diversity in its learned models by starting
each run of its underlying ILP system with a different “seed” example.

We compare our Gleaner approach to that of using “random seeds” in Aleph.
In this experimental control, we call Aleph NV times and have it create N theories
(i.e., sets of clauses that cover most of the positive training examples and few
of the negative ones). To create a recall-precision curve from these N theories,
we simply classify an example as positive if at least K of the theories classify it
as positive; varying L from 1 to IV produces a family of ensembles, and each of
these ensembles produces a point on a recall-precision curve.

Aleph involves a large number of parameters, and we use the train and test
sets to choose a good set (since this is the experimental control against which we

167

0.50

0.40

Testset AURPC

0.20

0.10

0 50 100 150 200 250 300
Number of Clauses Used Per Theory

Fig. 5. Area Under the Recall-Precision Curve for 100 Aleph Ensembles With Varying
Number of Clauses

compare our Gleaner system, it is “fair” to use the testset to tune parameters).
We compare several different evaluation functions for judging clauses: Laplace
(which essentially measures accuracy, but corrects for small coverage), coverage
(the number of positive examples covered minus the number of negatives cov-
ered), precision X recall, and F1 (the harmonic mean of precision and recall;
F1 is the most commonly used performance measure in information extraction).
We consider two settings for minimum accuracy for learned clauses: 0.75 and
0.90. We require all clauses to at least cover seven positive examples and to
be no longer than ten terms (the same settings we use for random sampling of
the hypothesis space in our Gleaner approach). We limit the number of clauses
considered to 100 thousand and we also limit the number of reductions to 100
million (using the call_counting predicate available in YAP Prolog®).

We obtained our best area under the recall-precision curve using Laplace as
the evaluation function and a minimum clause accuracy of 0.75. (Under this
setting, the average number of clauses considered per constructed theory is ap-
proximately 35,000.)

One new finding we encountered that was not reported by Dutra et al. is that
it is better to limit the size of theories. Figure 5 plots the area under the recall-
precision curve (AURPC) as a function of the maximum number of clauses we
allow in the learned theories. Running Aleph to its normal completion given the
above parameters leads to theories containing 271 clauses on average. However,
if we limit this to the first C clauses, the AURPC can be drastically better.
The likely reason for this is that larger theories have less diversity amongst
themselves than do smaller ones, and diversity is the key to ensembles [12]. A
nice side-effect of limiting theory size is that the runtime of individual Aleph
executions is substantially reduced.

In the next section, where we evaluate our Gleaner algorithm, we limit theory
size in our “ensemble of Aleph theories” approach to 50 clauses, since as seen
in Figure 5, testset AURPC has essentially peaked by then. In that section’s

5 http://www.ncc.up.pt/ vsc/Yap/yap.html

168

experiments we do vary the size of the ensemble (i.e., number of theories) and
the number of clauses in each theory, in order to see the impact on AURPC as
a function of the amount of time spent training.

While we are from having considered all possible parameters settings and
algorithm designs with which one could use Aleph to create an ensemble of the-
ories, we have evaluated a substantial number of variants and feel that our chosen
settings provide a satisfactory experiment control against which to compare our
new algorithm, Gleaner.

6 Results

For our experiments, we divided the protein localization data into five folds,
equally divided at the journal-abstract level. Each training set consisted of three
folds, with one fold held aside for tuning and another for testing. For our current
experiments we only use the tuning set minimally, requiring each clause learned
on the training set to cover at least two positive examples in the tuning set.

To evaluate the performance of our algorithms, we use recall-precision curves
[19], or more precisely, we use the Area Under the Recall-Precision Curve (AU-
RPC) to gather a single score for each algorithm. AUC has traditionally been
used to analyze ROC curves [5], which plot the true positive rate versus the false
positive rate. To calculate the AURPC, we first standardize our recall-precision
curves to always cover the full range of recall values and then interpolate be-
tween the threshold points. From the first threshold point, which we designate
(Ryirst, Prirst), the curve is extended horizontally to the point (0, Pyirst), since
we could randomly discard a fraction, f, of the extracted relations and expect
the same precision on the remaining examples; the setting of f would determine
the recall. An ending point of (1, ﬁg;) can always be found by calling everything
a positive example. This will give us a closed curve extending from 0 to 1 along
the recall dimension.

For any two points A and B in a recall-precision curve, we must inter-
polate between their true positive (T'P) and false positive (F'P) counts in
order to calculate the area. To do this, we create new points for each of
TPs+1,TPs+2,..,TPg — 1, increasing the false positives for each new point
by %. Interpolation for the recall-precision curve is different than for
an ROC curve; whereas the ROC interpolation would be a linear connection
between the two points, in recall-precision space the connection can be curved,
depending the actual number of positive and negative examples covered by each
point. The curve is especially pronounced when two points are far away in recall
and precision. Consider a curve constructed from a single point of (0.02, 1), and
extended to the endpoints of (0,1) and (1,0.008) as described above (for this
example, our dataset contains 433 positives and 56,164 negatives). Interpolating
as we have described, would produce an AURPC of 0.031; a linear connection
would overestimate with an AURPC of 0.50 (Figure 8 shows this graphically).

A sample clause found by Gleaner is shown in Figure 6. We can see for
our dataset that it is important to require the protein phrase to contain

169

protein_location(P,L,S) :-
first_word_in_phrase(L,A),
phrase_after(L,-),
target_argl_before_target_arg2(P,L,S),
after_both_target_phrases(S,B),
phrase_contains_some_marked_up location(L,-),
few_POS_in_phrase(P,alphanumeric),
few_wordPOS_in_sentence(S,alphanumeric),
phrase_contains_no_between_halfX _word (B,between_argl_and_arg2,verb),
phrase_contains_some_art(L,A).

where P is the protein phrase, L is the location phrase, S is the sentence,
and ‘_’ indicates variables that only appear once in the clause.

Positive Extraction

“NPL3 encodes a nuclear protein with an RNA recognition motif and similarities to
a family of proteins involved in RNA metabolism.”

protein_location(‘NPL3’, ‘a nuclear protein’)

Negative Extraction (i.e., a false positive)

“Subcellular fractionation studies further demonstrate that the 1455 amino acid
Vpslbp is peripherally associated with the cytoplasmic face of a late Golgi

or vesicle compartment.”

protein_location(‘the 1455 amino acid Vpsib5p’, ‘the cytoplasmic face’)

Fig. 6. Sample Clause with 29% Recall and 34% Precision on Testset 1

alphanumeric words. Also important for this clause is the sentence structure,
requiring that the protein phrase comes before the location phrase, and that the
location phrase is not the last phrase in the sentence.

Our Aleph-based method for producing ensembles has two parameters that
we vary: N, the number of theories (i.e., the size of the ensemble), and C, the
number of clauses per ensemble. To produce ensemble points in Figure 7, we
choose N from {10, 25, 50, 75, 100} and C from {1, 5, 10, 15, 20, 25, 50},
producing 20 combinations for each fold.

For the parameters of Gleaner, we used 20 recall bins and 100 seed exam-
ples to collect 2,000 clauses total. We told RRR to construct 1,000 clauses be-
fore restarting with a new random clause. We generate AURPC data points for
Gleaner by choosing the number of seed examples from {25, 50, 75, 100}, and
using the intervals of {1K, 10K, 25K, 50K, 100K, 250K, 500K} for the number
of candidate clauses generated per seed.

The results of our comparison are found in Figure 7; the points are averaged
over all five folds. Note this graph has a logarithmic scale in the number of
clauses generated. We see that Gleaner can find comparable AURPC numbers
using two orders of magnitude fewer clauses. It is interesting to note that the

170

o
o
S

1
~
o

e 9o
[N
[=]

o
)
@

Testset AURPC
o
@
3

/

o
o
S

0.15
0.10 ~~Gleaner -8 Aleph Ensembles
0.05
0.00 T T T
10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Clauses Generated (Logarithmic Scale)

Fig. 7. Comparison of AURPC from Gleaner and Aleph Ensembles by Varying Number
of Clauses Generated

B Linear Interpolation —— One Rule = Corrected Interpolation

Precision
)
o

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Fig. 8. A Sample Gleaner Recall-Precision Curve From Fold 5

Gleaner curve is very consistent across the number of clauses allowed, while the
ensemble method increases when more clauses are considered. It is a topic of
future work to devise a new version of Gleaner that is able to better utilize
additional candidate clauses.

In Figure 8, we show one of the better recall-precision curve produced by
Gleaner using 10,000 candidate clauses per seed and 100 seed examples (on fold
5). For comparison, we also show the one-point interpolation curve mentioned
above. Gleaner’s “L of K” clauses theoretically should produce higher precision
than individual rules with the same recall, as long as coverage of positives is
greater than coverage of negatives. In practice, our clauses are not as independent
as we would like, especially in the high-recall bins, with many of the learned
clauses being identical. This overlap degrades the performance.

171

7 Conclusions and Future Work

Multi-Slot Information Extraction is a an appealing challenge task for ILP, due
to its large amount of examples and background knowledge, as well as the sub-
stantial skew of examples. We have developed a method called Gleaner, which
gathers a wide spectrum of clauses and combines them within bins based on
recall using an “at least N of these M clauses” thresholding method.

We find that Aleph ensembles can perform well when using early stopping
(i.e., only learning a dozen or two rules); however, Aleph ensembles suffer when
allotted a limited amount of time to create multiple theories. Our method of
Gleaner results in similar curves to Aleph ensembles, and outperforms ensembles
when both are only allowed to evaluate a limited number of clauses. There are not
many large, heavily skewed datasets available for ILP research, and we believe
this information-extraction task will provide a useful testbed for further ILP
research. To aid in ILP research this dataset is being made available at our
website (see Acknowledgements).

There are a number of approaches relating to the combination of learned
clauses to produce a confidence measure, as opposed to combining multiple the-
ories as in bagging or Gleaner. Propositionalization of the feature space has been
examined by Lavrac et al. [18], which allows for any propositional learner that
generates confidence measures to be used. Similarly, Srinivasan [28] investigated
using ILP as a feature construction tool for propositional learners, namely linear
regression. Craven and Slatterly [10] use a logical setup combined with Naive
Bayes classifiers for IE and generate recall-precision curves with their result-
ing theories. We plan to compare these within-theory ensemble methods to the
multiple theory ensemble methods and to Gleaner.

In this same vein, we see the use of boosting in ILP [15] as another alterna-
tive method to searching for clauses and learning how to combine them in one
single step. Recent work has shown that a RankBoost, a variant of boosting,
directly optimizes the area under the ROC curve [9]. We believe that a similar
optimization of the area under the recall-precision curve can be achieved, and
plan to implement this algorithm in Aleph for comparison to Gleaner.

We noticed that many of our learned clauses are focused on learning the
individual entities of the relation, in our case, creating logical clauses for protein
and location, and little of the clause is relevant to the relation between these two
entities. We believe that using a named-entity classifier to identify promising
pieces of our relation first could both reduce the number of examples as well as
produce high quality clauses due to their direct focus on the relation. Blaschke et
al. [4, 3] and Rindflesh et al. [25] have found success in biomedical information
extraction using domain expert rules, and Temkin and Gilder [31] use hand-
crafted context-free grammars to similar ends. Another step in this direction is
taking these clauses from a domain expert and learning to revise their advice,
similar to work by Eliassi-Rad and Shavlik [13].

Finally, there are many more datasets in Information Extraction where we
are planning to test our method for comparison, namely the genetic disorder and
protein interaction from Ray and Craven [23] and a protein interaction dataset

172

from Brunescu et al. [7]. Other datasets outside of IE where we believe Gleaner
will be useful include the nuclear smuggling dataset from Tang et al. [30], the
social network dataset from Taskar et al. [2], and the CiteSeer citation dataset
from Popescul et al. [21]

8 Acknowledgements

Our dataset can be found at ftp://ftp.cs.wisc.edu/machine-learning/shavlik-
group/datasets/IE-protein-location

This work was supported by National Library of Medicine (NLM) Grant 5T15
LMO007359-02, NLM Grant 1R01 LM07050-01, DARPA EELD Grant F30602-01-
2-0571, and United States Air Force Grant F30602-01-2-0571. We would like to
thank Ines Dutra and Vitor Santos Costa for their help with Yap, the UW
Condor Group for Condor assistance, Soumya Ray and Marios Skounakis for
their help with labeling the data, and David Page for his help with Aleph, as
well as the anonymous reviewers for their informative comments.

References

1. S. Aitken. Learning Information Extraction Rules: An Inductive Logic Program-
ming Approach. In F. van Harmelen, editor, Proceedings of the 15th FEuropean
Conference on Artificial Intelligence, Amsterdam, 2002.

2. M.-F. W. Ben Taskar, Pieter Abbeel and D. Koller. Label and Link Prediction in
Relational Data. In IJCAI Workshop on Learning Statistical Models from Rela-
tional Data, 2003.

3. C. Blaschke, L. Hirschman, and A. Valencia. Information Extraction in Molecular
Biology. Briefings in Bioinformatics, 3(2):154-165, 2002.

4. C. Blaschke and A. Valencia. Can Bibliographic Pointers for Known Biological
Data be Found Automatically? Protein Interactions as a Case Study. Comparative
and Functional Genomics, 2:196-206, 2001.

5. A. Bradley. The Use of the Area Under the ROC Curve in the Evaluation of
Machine Learning Algorithms. Pattern Recognition, 30(7):1145-1159, 1997.

6. L. Breiman. Bagging Predictors. Machine Learning, 24(2):123-140, 1996.

7. R. Bunescu, R. Ge, R. Kate, E. Marcotte, R. Mooney, A. Ramani, and Y. Wong.
Comparative Experiments on Learning Information Extractors for Proteins and
their Interactions. Journal of Artificial Intelligence in Medicine, 2004.

8. M. Califf and R. Mooney. Relational Learning of Pattern-Match Rules for Infor-
mation Extraction. In Working Notes of AAAI Spring Symposium on Applying
Machine Learning to Discourse Processing, pages 6—11, Menlo Park, CA, 1998.
AAAT Press.

9. C. Cortes and M. Mohri. AUC Optimization vs. Error Rate Minimization. In
Neural Information Processing Systems NIPS2003, 2003.

10. M. Craven and S. Slattery. Relational Learning with Statistical Predicate Inven-
tion: Better Models for Hypertext. Machine Learning, 43(1/2):97-119, 2001.

11. I. de Castro Dutra, D. Page, V. S. Costa, and J. Shavlik. An Empirical Evaluation
of Bagging in Inductive Logic Programming. In Twelfth International Conference
on Inductive Logic Programming, pages 48-65, Sydney, Australia, 2002.

173

12.

13.

14.

15.

16.
17.

18.

19.
20.

21.

22.
. S. Ray and M. Craven. Representing Sentence Structure in Hidden Markov Models

24.

25.

26.
27.

28.

29.

30.

31.

T. Dietterich. Machine-Learning Research: Four Current Directions. The AI Mag-
azine, 18(4):97-136, 1998.

T. Eliassi-Rad and J. Shavlik. A Theory-Refinement Approach to Information Ex-
traction. In Proceedings of the 18th International Conference on Machine Learning,
2001.

D. Freitag and N. Kushmerick. Boosted Wrapper Induction. In AAAI/IAAI pages
577-583, 2000.

S. Hoche and S. Wrobel. Relational Learning Using Constrained Confidence-Rated
Boosting. In 11th International Conference on Inductive Logic Programming, Stras-
bourg, France, 2001.

Z. Hu. Guidelines for Protein Name Tagging. Technical report, Georgetown Uni-
versity, 2003.

D. Kauchak, J. Smarr, and C. Elkan. Sources of Success for Boosted Wrapper
Induction. Journal of Machine Learning Research, 5:499-527, May 2004.

N. Lavrac, F. Zelezny, and P. Flach. RSD: Relational Subgroup Discovery through
First-order Feature Construction. In Proceedings of the 12th International Confer-
ence on Inductive Logic Programming (ILP’02), Sydney, Australia, 2002.

C. Manning and H. Schutze. Foundations of Statistical Natural Language Process-
ing. MIT Press, 1999.

R. Michalski and J. Larson. Inductive Inference of VL Decision Rules. In Proceed-
ings of the Workshop in Pattern-Directed Inference Systems, May 1977.

A. Popescul, L. Ungar, S. Lawrence, and D. Pennock. Statistical Relational Learn-
ing for Document Mining. In IEEFE International Conference on Data Mining,
ICDM-2003, 2003.

M. Porter. An Algorithm for Suffix Stripping. Program, 14(3):130-137, 1980.

for Information Extraction. In Proceedings of the 17th International Joint Confer-
ence on Artificial Intelligence (IJCAI-2001), 2001.

E. Riloff. The Sundance Sentence Analyzer. hittp://www.cs.utah.edu/projects/nlp/,
1998.

T. Rindflesch, T. Tanabe, L.. Weinstein, and J. Hunter. Edgar: Extraction of drugs,
genes and relations from the biomedical literature. In Proceedings of the Pacific
Symposium on Biocomputing., 2000.

H. Shatkay and R. Feldman. Mining the Biomedical Literature in the Genomic
Era: An Overview. Journal of Computational Biology, 10(6):821-55, 2003.

A. Srinivasan. The Aleph Manual Version 4.
http://web.comlab.oz. ac.uk/oucl/research/areas/machlearn/Aleph/, 2003.

A. Srinivasan and R. King. Feature Construction with Inductive Logic Program-
ming: A Study of Quantitative Predictions of Biological Activity Aided by Struc-
tural Attributes. In S. Muggleton, editor, Proceedings of the 6th International
Workshop on Inductive Logic Programming, pages 352-367. Stockholm University,
Royal Institute of Technology, 1996.

A. Srinivasan, S. Muggleton, M. Sternberg, and R. King. Theories for Mutagenicity:
A Study in First-Order and Feature-Based Induction. Artificial Intelligence, 85(1-
2):277-299, 1996.

L. Tang, R. Mooney, and P. Melville. Scaling up ILP to Large Examples: Results
on Link Discovery for Counter-Terrorism. In KDD Workshop on Multi-Relational
Data Mining, 2003.

J. Temkin and M. Gilder. Extraction of Protein Interaction Information From
Unstructured Text Using a Context-Free Grammar. Bioinformatics, 19(16):2046—
2053, 2003.

174

A Monte Carlo Study of Randomised Restarted
Search in ILP

Filip Zelezny', Ashwin Srinivasan?, David Page?

! Dept. of Cybernetics
School of Electrical Engineering
Czech Institute of Technology (CVUT) in Prague
Karlovo Nam. 13, 121 35 Prague, Czech Republic
zelezny@fel.cvut.cz
2 IBM India Research Laboratory
Block 1, Indian Institute of Technology
New Delhi 110 016, India
ashwin.srinivasan@in.ibm.com
3 Dept. of Biostatistics and Medical Informatics and Dept. of Computer Science
University of Wisconsin
1300 University Ave., Rm 5795 Medical Sciences
Madison, WI 53706, USA
page@biostat.wisc.edu

Abstract. Recent statistical performance surveys of search algorithms
in difficult combinatorial problems have demonstrated the benefits of ran-
domising and restarting the search procedure. Specifically, it has been
found that if the search cost distribution (SCD) of the non-restarted
randomised search exhibits a slower-than-exponential decay (that is, a
“heavy tail”), restarts can reduce the search cost expectation. Recently,
this heavy tail phenomenon was observed in the SCD’s of benchmark
ILP problems. Following on this work, we report on an empirical study
of randomised restarted search in ILP. Our experiments, conducted over
a cluster of a few hundred computers, provide an extensive statistical per-
formance sample of five search algorithms operating on two principally
different ILP problems (artificially generated graph data and the well-
known “mutagenesis” problem). The sample allows us to (1) estimate
the conditional expected value of the search cost (measured by the total
number of clauses explored) given the minimum clause score required
and a “cutoff” value (the number of clauses examined before the search
is restarted); and (2) compare the performance of randomised restarted
search strategies to a deterministic non-restarted search. Our findings
indicate that the cutoff value is significantly more important than the
choice of (a) the specific refinement strategy; (b) the starting element of
the search; and (c¢) the specific data domain. We find that the optimal
value for the cutoff parameter remains roughly stable across variations
of these three factors and that the mean search cost using this value in
a randomised restarted search is up to three orders of magnitude (i.e.
1000 times) lower than that obtained with a deterministic non-restarted
search.

175

1 Introduction

Computer programs now collectively termed “predictive Inductive Logic Pro-
gramming” (predictive ILP) systems use domain-specific background informa-
tion and pre-classified sample data to construct a set of first-order rules for
predicting the classification labels of new data. Despite considerable diversity
in the applications of ILP, (see [3] for an overview) successful implementations
have been relatively uniform, namely, engines that repeatedly examine sets of
candidate rules to find the “best” ones. Any one step of this sequence is an enu-
merative search—usually some approximation to the optimal branch-and-bound
algorithm—through a space of possible rules. This choice of search method can
critically affect the performance of an ILP system on non-trivial problems. Enu-
merative search methods, despite their attractive simplicity, are not robust in
the sense of achieving a balance between efficiency and efficacy across different
problems [4]. For many practical problems that engender very large spaces of
discrete elements, enumerative search, however clever, becomes intractable and
we are forced to take seriously Trefethen’s Maxim No. 30 [1]: “If the state space
is huge, the only reasonable way to explore it is at random.”

Recently, research into the development of efficient automatic model-checkers
has led to the development of novel randomised search methods that abandon
optimality in favour of “good” solutions. Prominent examples are the GSAT
and WalkSat methods checking the satisfiability of propositional formulae [9], as
randomised alternatives to the (enumerative) Davis-Putnam solver. In conjunc-
tion with this, there is now a vigorous line of research that investigates prop-
erties of large search spaces corresponding to difficult combinatorial problems
[5]. Some intriguing properties have been identified, such as the high irregularity
of the search spaces and “heavy-tailedness” of the cost distributions of search
algorithms used. Such properties manifest themselves in a large collection of
real-world problems and have been the inspiration for the design of randomised
restarted search procedures. The basic idea of these procedures is simple: if each
search trial has a small, but fixed probability of finding a good clause, then the
probability of finding a good clause in a sequence of such trials can be made quite
high very rapidly. Put differently, the SCD from the sequence has an exponential
decay.

Previously, the heavy-tailed character of search cost distributions was re-
ported in the context of the first-order rule search conducted in ILP [11]. There,
a simple adaptation of a method known as Randomised Rapid Restarts [6] was
shown to result in a considerable reduction of clause search cost. Here, we extend
that investigation as follows:

1. We adapt a family of randomised restarted search strategies into an ILP
system and present all of them as instantiations of a general algorithm.

2. We design and conduct an extensive Monte Carlo study that allows us to
model the statistical relationships between the search cost, the score of the
best clause and the number of clauses explored in each restart (called the
“cutoff” value in the search algorithm).

176

Our experiments are conducted with data drawn from two domains: artifi-
cially generated, noise-free, graph problems, in which “target” theories can be
modelled by a single, long clause (up to 10 literals in the body of the clause); and
the well-known mutagenesis problem, which is typically modelled by multiple,
relatively short clauses (typically up to 5 body literals). Although the natures
of the problems are quite different to each other, the main statistical findings
relate equally to both the domains.

The paper is organised as follows. In the next section we describe the clause
search strategies considered and the performance metric used to evaluate the
strategies. Details of the Monte Carlo study of these strategies and the depen-
dence of their performance on some important parameters is in Section 3, where
we also discuss our results and formulate questions requiring further investiga-
tion. Section 4 concludes the paper.

2 Search

We are principally concerned with performing a search in the clause subsumption
lattice bounded at one end by a finite most specific (“bottom”) clause derived
using definitions in the background knowledge, a depth-bounded mode language,
and a single positive example (the “saturant”: see [8] for more details on the
construction of this clause). For simplicity, we will assume the specification of
the depth-bounded mode language to be part of the background knowledge.

2.1 Strategies

The five search strategies that we investigate in this paper are: (1) A determinis-
tic general-to-specific search (DTD); (2) A randomised general-to-specific search
(RTD); (3) A rapid random restart search (RRR); (4) A randomised search using
the GSAT algorithm (GSAT); and (5) A randomised search using the WalkSAT
algorithm (WSAT). All five strategies can be viewed as variations of a general
search procedure shown in Fig. 1. Differences between the individual strategies
arise from the implementation of the commands in bold-face (summarised in
Table 1). All strategies include restarts (if 7y is a finite value). Restarting DTD
clearly results in simply repeating the search.
As further clarification of the entries in Table 1, we note the following:

Saturant selection. A deterministic implementation (‘D’) of the first Select
command (Step 3 in Fig. 1) results in the first positive example in the pre-
sented example sequence is chosen as the saturant. A randomised implemen-
tation (‘R’) results all examples having a uniform probability of selection.

Start clause selection. A deterministic implementation (’D’) of the second
Select command (Step 4), results in the search commencing with the the
most general definite clause allowable. A randomised implementation (‘R’)
results in a clause selected with uniform probability from the set of allowable
clauses (see [11] for more details on how this is achieved).

177

search(B,H,E,ssuf,c“”,'y) : Given background knowledge B; a set of clauses H; a
training sequence £ = E* E~ (i.e. positive and negative examples); a sufficient
clause score s°*f (—oo < 55 < 00); the maximum number of clauses the algorithm
can evaluate ¢!, (0 < ¢*! < 00); and the maximum number of clauses evaluated
on any single retart or the ‘cutoff’ value v (0 < v < 00), returns a clause D such
that B U H U {D} entails at least one element e of E*. If fewer than ¢* clauses
are evaluated in the search, then the score of D is at least s°%7.

S:=—00;C:=0; N:=0
repeat
Select ¢! from E*
Select Dy such that Do =4 L (e, B)
Active = 0; Ref = {Do}
repeat
S* = maxp,cref evaly (D;); D™ := argmaxp,ecref evalp y(D;)
if S* > S then S :=S*; D := D~*
N := N + |Ref|
Active := UpdateActiveList(Active, Ref)
Prune := Prune(Active, S™)
12. Active := Active \ Prune
13. Select D" from Active; Active := Active \ D"
14. R@f = ReﬁneB,Hy(W_N)(Dc"”')
15. until $ > 5% or C+ N > ¢ or N =
16. C:=C+N;N:=0
17. until S > s°* or O > ¥
18. if S = —oco then return e*** else return D*.

© XN oW

— =
— O

Fig.1. A general skeleton of a search procedure—possibly randomised and/or
restarted—in the clause subsumption lattice bounded by the clause | (e***, B). This
clause is derived using the saturant e*** and the background knowledge B. In Step
4, =9 denotes Plotkin’s (theta) subsumption between a pair of Horn clauses. Individ-
ual strategies considered in this paper are obtained by different implementations of
the bold-typed commands. Clauses are scored by a finite evaluation function eval. Al-
though in the formal notation in Step 7 the function appears twice, it is assumed that
the ‘max’ and ‘arg max’ operators are computed simultaneously. In Step 11 Prune re-
turns all elements of Active that cannot possibly be refined to have a better score than
S*. If the number of refinements of the current clause is greater than (7 — V), Refine
returns only the first (v — N) computed refinements, to guarantee that no more than
~ clauses are evaluated between restarts. The search is terminated when score s**f is
reached or ¢* clauses have been evaluated, and restarted (from Step 3) when v clauses
have been evaluated since the last restart. If all Select commands are deterministic
then restarting (setting v < ¢®') results in mere repetitions of the identical search.

178

Strategy — DTD|RTD|RRR|GSAT|WSAT
| Step

Saturant selection (Select in Step 3)

Start clause selection (Select in Step 4)

Update active list (UpdateActiveList in Step 10)
Next clause selection (Select in Step 13)

Pruning (Prune in Step 11)

Refinement (Refine in Step 14)

a<xtbauouo
axmaQuouw
wzZoaQm=
WZ0Qm=3
WzZzxmxmH

Table 1. Implementation differences amongst the different search strategies. The en-
tries are as follows: ‘D’ stands for ‘deterministic’, ‘R’ for ‘randomised’, ‘G’ for greedy,
‘C’ for complete, ‘Y’ to denote that pruning occurs, ‘N’ that pruning does not occur,
‘U’ for uni-directional refinement (specialisation only) and ‘B’ for to bi-directional re-
finement (specialisation and generalisation). See text for more details on these entries.

Update active list. A greedy implemention (‘G’) of the UpdateActiveList
function (Step 10) results in the active list containing only the newly explored
nodes (elements of the Ref). A complete implementation (‘C’) results in
Active containing all elements (including elements of Ref).

Next clause selection. A deterministic implementation (‘D’) of the last Se-
lect command (Step 13) results in the clause with the highest score being
chosen from the Active list (with ties being decided by the appearance order
of clauses). A randomised implementation (‘R’) results in a random choice
governed by the following prescription:

— With probability 0.5, select the clause with the highest score in the
Active list.

— Otherwise, select a random clause in the Active list with probability
proportional to its score.

Pruning. Y’ denotes that pruning is performed, which results in a possibly
non-empty set being returned by the Prune command (Step 11). A ‘N’
implementation means that an empty set is returned.

Refinement. The ‘U’ implementation of Refine command (Step 14) results
in refinements that are guaranteed to be specialisations of the clause being
refined. The ‘B’ implementation produces the (most general) specializations
and (most specific) generalizations of the refined clause.

2.2 Evaluation

Informally, given some clause evaluation function, for each search strategy we
ask:

How many clauses must be searched to achieve a desired clause score?

Here, we treat the number of clauses searched as representative of the ‘search
cost’ and quantify this cost-score trade-off by the the expected value of the

179

smallest cost needed to achieve or exceed a desired score s5*f 1, given an upper

bound ~ on the clauses searched on any single restart. Thus, for each strategy
we wish to estimate:

cost(s*) = E[C|s*% 4] (1)

The following points are evident, but worth restating:

1. Let us assume that strategy St; is found to achieve, on average, a desired
score 5%/ significantly faster than strategy Sto. Strictly speaking, even if
the clauses added successively to a constructed theory do not reference each
other, we cannot conclude that a set-covering algorithm employing St; will
be more efficient than that using Sts. This is because in the cover algo-
rithm, the individual clause search procedures are not statistically indepen-
dent events (since one influences the following by removing a subset of the
positive examples).?

2. We are only concerned here with the search cost in finding a clause with a
given score on the training set. This does not, of course, translate to any
statement about the performance of the clause found on new (test) data. It
is certainly interesting and feasible to also investigate whether and how the
generalization rate is statistically dependent on the procedure used to arrive
at an acceptable clause, given a required score. This is, however, outside the
scope of this study.

3. A search cost of immediate interest is the processor time occupied by a strat-
egy. By adopting instead to measure the number of clauses searched, we are
unable to quantify precisely the exact time taken by each strategy. Besides
the obvious hardware dependence, research elsewhere [2] has shown that the
cost of evaluating a clause can vary significantly depending on the nature
of the problem addressed and formulation of the background knowledge. In
this study we are concerned with obtaining some domain-independent insight
into the five strategies.

4. Our evaluation of the strategies may have well been based on a different
question, namely:

What clause score is achieved given an allocated search cost?

Here we would consider the expected score given an allocated cost ¢!, that
is score(c®) = E[S|c*, ~]. Although the sample resulting from the Monte
Carlo study can be used to evaluate the strategies in this way, space require-
ments confine this study to the former question, which we believe is of more
immediate interest to practitioners of ILP.

1 At any stage of the search, the score value maintains the highest clause evaluation
so far obtained in the search. In other words, within a particular search execution,
the score value is a non-decreasing function of the cost (i.e. the number of clauses
searched).

2 The conclusion would however be correct for many other ruleset induction algorithms
where the events are independent, such as CN2-like unordered rulesets, various other
voting rulesets etc.

180

3 Empirical Evaluation

3.1 Materials

Data Experiments were conducted using two ILP benchmarks. The first data
set describes a set of 5,000 directed graphs (containing in total 16,000 edges). Ev-
ery node in a graph is coloured to red or black. Each graph is labelled positive
if and only if it contains a specific (coloured) subgraph which can be repre-
sented by a predefined clause of 10 body literals. Although this clause can be
viewed as the target theory, there exist other clauses (subgraphs) in the search
lattice that precisely separate the positive examples from the negatives. The
second problem — mutagenesis prediction — has been discussed extensively in
ILP literature and we use here one of the datasets described in our previous
publication, namely the data pertaining to 188 “regression-friendly” compounds
[10]. Table 2 describes the principal differences between the two data sets. The
graph data set is available on request to the first author and the software for
its generation can be obtained from the third author. The mutagenesis dataset
can be obtained via anonymous ftp to ftp.comlab.ox.ac.uk in the directories
pub/Packages/ILP/Datasets/mutagenesis/aleph.

| Property | Graphs | Mutagenesis
Origin Artificially generated Real-life
Noise No Yes
‘Target’ theory Yes No
‘Good’ theory |One long clause (10 lits)|Several short clauses (up to 5 body lits)
pos/neg examples 20/20 125/63

Table 2. Differences between the experimental data sets.

Algorithm and Machines All experiments use the ILP program Aleph. Aleph
is available at: http://www.comlab.ox.ac.uk/oucl/research/areas/machlea
rn/Aleph/aleph.pl. Additional code implemented to Aleph for purposes of the
empirical data collection can be obtained from the first author. The computation
was distributed over the Condor computer cluster at the University of Wisconsin,
Madison. All subsequent statistical analysis of the collected data was done by
means of the R statistical package. The R procedures developed for this purpose
can be obtained from the first author.

3.2 Method

Recall that we are interested in estimating the conditional expected cost value
E[C|s%%f,~] for each of the five strategies in Section 2.1. A straightforward way

181

to collect the required statistical sample needed to estimate the expected value
for a given search strategy would thus be to run a number of instances of the
algorithm in Fig. 1, each with a different setting of the sufficient score parameter
55/ and the restart cutoff parameter v, each time recording the resulting value
of C'. This approach would however perform a lot of redundant computation.
Instead we adopt the following method:

For each problem (5,000 graphs and 188 mutagenic chemicals)
For each randomized strategy (RTD, RRR, GSAT, WSAT)
1. v = o0, Ml =¢, (some large value: see notes below), sl =g 0

(the maximum possible clause score: see notes below)

2. for i =1 to #Runs

(a) Call search(B,0, E,s*“f ¢ ~) (see Fig. 1).

(b) Record the ‘performance’ vector ¢; = [¢;(0),. .., ¢;(Smas,)] Where
¢i(s) is the number of clauses evaluated before achieving (or ex-
ceeding) score s for the first time and Sy, is the maximum
score achieved on run 1.

3. Compute the expected cost from the performance vectors recorded.

The following details are relevant:

1. The method assumes a finite, integer-valued scoring function. In the exper-
iments we evaluate the score of a clause D as P(D) — N(D) where P(D)
and N(D) are the numbers of positive and negative examples ‘covered’ by
D. That is, given positive and negative examples E*, E~ let E, C ET s.t.
BU{D} = E, and E,, C E~ st. foralle, € E,, BU{D} U {e,} = O.
Then P(D) = |E,| and N(D) = |E,|. Rejecting all clauses for which
P(D) < N(D), the range of the score is 0...P where P = |E*|. Thus
in Step 1 s;pax = P.

2. In these experiments c¢,,., was set to 200,000 and # Runs was set to 6,000.
Thus, the empirical sample after execution of Step 2 consists of 6,000 per-
formance vectors. Each performance vector has at most P = |E™| elements
(fewer elements are possible if score P was not achieved on a run).

3. Step 3 requires the computation of expected cost (i.e. the number of evalu-
ated clauses) for any value of v and s°*/. In Appendix A we describe how
the sample of 6,000 performance vectors can be used to obtain an unbiased
estimate this value.

The method above does not refer to the non-restarted strategy DTD. DTD
is deterministic and thus a single run (and corresponding single performance
vector) should be sufficient to describe its performance. However, unlike the
other strategies, DTD does not select the saturated example randomly, but it
selects the first positive example for saturation. To avoid artifacts arising from
any particular example ordering, we obtain instead an average conditional cost.
That is, we thus perform Step 2a above P = |E™| times, each time selecting
a different saturant. This results in P performance vectors: Appendix A shows
how these performance vectors can be used to obtain a biased (lower bound)
estimate of the expected cost for any value of s%%f.

182

3.3 Results

Figures 2-5 show diagrammatically the estimated expected number of evaluated
clauses (‘expected cost value’) as a function of the restart cutoff parameter ~.
Each graph has 2 kinds of plots: horizontal lines, representing (a lower bound on)
the cost of the deterministic strategy DTD; and non-constant lines representing
a randomised strategy. Each line is tagged with a number, which represents the
sufficient clause score s°*f. Thus, in Fig. 2, for the plot labelled “Mutagenesis:
RTD?”, the horizontal line tagged “10” with a constant cost of 10,000 indicates
that the expected number of clauses explored by DTD before finding a clause
with score 10 is 10,000. The corresponding costs, for different values of the
cutoff parameter v for RTD is shown by the lowermost non-constant line (each
entry is tagged by “10”). Figures associated to the graphs domain contain 20
such plots (corresponding to all possible clause scores: some plots may overlay),
figures belonging to the mutagenesis domain contain 7 plots (corresponding to
s%4f =10,20,...70).2 In all the diagrams, the highest vertical (cost) coordinate
should be interpreted as: “c,,q, or higher” as all points corresponding to an
expected cost in the interval [¢;qz,00] are plotted with the vertical coordinate
Cmax-

Broadly, there are remarkable similarities in the plots from different strategies
for a given problem domain, as well as from the same strategy for different
problem domains. The principal trends are these:

1. The setting of the cutoff parameter v has a very strong impact on the ex-
pected cost. A choice close to its optimal value may reduce the expected cost
over DTD up to a 1,000 times for mutagenesis with RRR, GSAT or WSAT*.
With RTD, the reduction is even higher for very low s5%/.

2. v =100 is a ‘good’ choice for all the investigated strategies in both domains.
For the graph problems, the value is close to optimal (in the considered
range of) for all strategies and for all of them it leads to similar expected
costs, with the exception of WSAT where the costs are significantly higher®
In mutagenesis, v & 100 is a local minimum for all strategies (for RTD it is
even the optimum) when s/ > 30.

3. v < 10 appears to be uniformly a ‘bad’ choice for all randomised strategies
on the graph problems.

4. For a given domain, expected costs of the different restarted strategies are
roughly similar, especially in the vicinity of v = 100 (once again, WSAT on
the graphs problem is the exception).

3 We do not plot lines for further scores s*“f = 80,90...P since these were not
achieved by any of the strategies in any of the runs.

4 In mutagenesis, the high expected costs of DTD are due to several positive examples,
whose saturation leads to an unfavorable search space.

5 A tentative explanation of this may lie in the fact that the explored clause score is
a particularly good heuristic for node selection in the noise-free graph problems. In
these circumstances the randomization inherent in WSAT may be having a detri-
mental effect on the mean performance of WSAT.

183

5. For both domains, other than very high values of s%%f, the costs of the
restarted strategies are uniformly lower than that of the non-restarted strat-
egy DTD for a wide range of v (100 < v < 10, 000).

3.4 Discussion

For large intervals of the cutoff parameter ~, the restarted randomised search
strategies (RTD, RRR, GSAT, WSAT) exhibit similar performance, outperform-
ing the non-restarted deterministic clause search (DTD) in terms of the cost.
However, two issues require further investigation before conclusions can be made
concerning the ranking of the strategies. First, DTD (and RTD) always begins
the search with the most general definite clause allowed by the language restric-
tion. It is therefore biased towards evaluating shorter clauses than RRR, GSAT
or WSAT which often means spending less total evaluation time for the same
number of clauses scored. If processor time is assigned to the search cost, it is
possible that both top-down strategies may improve their relative performance
with respect to the restarted methods (of course, the empirical results suggest
that the latter may evaluate far fewer clauses). Second, our measurement scheme
does not assign any cost to the computation needed to construct a bottom clause
for each restart. Clearly, the corresponding overhead time grows linearly with
decreasing v (there will be more restarts). As a result, when computation time
is viewed as the search cost, the optimum value of v is likely to shift to a higher
value than that determined in our experiments, and the large performance su-
periority of the the restarted methods observed for small v is likely to reduce.

It is encouraging that two apparently very different domains and all restarted
strategies have yielded a similar range of ‘good’ values for the + parameter.
However, the plots, especially on in the graphs domain, highlight a further aspect:
there is quite a sharp increase in costs for values of « that are just below the
optimum. This suggests that it would thus be useful to consider a restarted
algorithm that is less dependent on the location of the optimal . A solution
may lie in a cutoff value gradually (for example, geometrically) growing with
each restart. This idea of dynamic restarts has been considered before [7] and
may result in a more robust search algorithm.

4 Concluding Remarks

Search is at the heart of all modern Inductive Logic Programming systems, and
most have thus far employed well-known deterministic search methods. In other
fields confronted with very large search spaces, there is now substantial evidence
that the use of randomised restarted strategies yield far superior results to de-
terministic ones (often making the difference between getting a good solution, or
none at all). Unfavourable conditions for deterministic search observed in those
fields—the heavy-tailed character of search cost distributions—have also been
reported in the context of the search conducted by many ILP systems [11]. In

184

Graphs: RTD

1%
o ">
S 7
S
o
-
@
o
o
o
S
-
— &
T T T
1 100 10000
cutoff
cutoff vs. cost where cost = E[C | score, cutoff]; for various scores
Mutagenesis: RTD
o
o
S
o
—
@
o
o
o
S
-
—

T T T
1 100 10000

cutoff
cutoff vs. cost where cost = E[C | score, cutoff]; for various scores

Fig. 2. Randomised Top-Down vs. Deterministic Top-Down (horizontal lines) search

185

o

o

o

o

—
-
%]
o
o

o

o

-

—

o

o

o

o

—
1)
o
(]

o

o

—

—

Fig. 3.

search

Graphs: RRR

=F =
= 2 —
13 —= pa

Cw ai—
o
7

ER
ey

T T T
1 100 10000

cutoff
cutoff vs. cost where cost = E[C | score, cutoff]; for various scores

Mutagenesis: RRR

T T T
1 100 10000

cutoff
cutoff vs. cost where cost = E[C | score, cutoff]; for various scores

‘Randomised Rapid Restarts’ vs. Deterministic Top-Down (horizontal lines)

186

cost

cost

10000

100

10000

100

Graphs: GSAT

i S >
g = = %
A
- E
‘I- T T
1 100 10000
cutoff

cutoff vs. cost where cost = E[C | score, cutoff]; for various scores

Mutagenesis: GSAT

T T
100 10000

cutoff
cutoff vs. cost where cost = E[C | score, cutoff]; for various scores

Fig. 4. GSAT vs. Deterministic Top-Down (horizontal lines) search

187

cost

cost

10000

100

10000

100

Graphs: WSAT

g <) a(u~v

= =
I P
. = R D

)(‘/_ R
E
A
T T T
1 100 10000
cutoff

cutoff vs. cost where cost = E[C | score, cutoff]; for various scores

Mutagenesis: WSAT

T T
100 10000

cutoff

cutoff vs. cost where cost = E[C | score, cutoff]; for various scores

Fig. 5. WSAT vs. Deterministic Top-Down (horizontal lines) search

188

this paper, we have presented what appears to be the first systematic study of a
number of randomised restarted search strategies for ILP. Specifically, we have
adopted a Monte Carlo method to estimate the search cost—measured by the
number of clauses explored before a ‘good’ clause is found—of these strategies
on two quite different ILP problems. The result is encouraging: in each domain,
for a wide range of values for a parameter v controlling the number of restarts,
randomised restarted methods have a lower search cost than a deterministic
general-to-specific search.

The performance sample generated has also provided some useful insights
into the randomised techniques. First, it appears that there may a ‘good’ value
for v that works adequately for across many domains. Second, although they
differ in the choice of the first element of the search and the refinement strategy
employed, all randomised methods appear to perform similarly. Third, there
may be some value in exploring a randomised restarted search strategy with a
dynamically growing value of ~.

While accepting all the usual caveats that accompany an empirical study such
as this, we believe the results here to be sufficiently encouraging for researchers to
explore further the use of randomised restarted search methods in ILP, especially
with other data domains and scoring functions.

A Calculating Expected Cost from Performance Vectors

We describe here a technique for estimating the conditional expected cost value
E[C|s*% 4] for each of the five strategies in Section 2.1. We exploit the fact
that the expected cost for a strategy with arbitrarily set s/ and v parameters
can be estimated from a sample of executions of the algorithm in Fig. 1 where
5%/ = P (where P is the maximum possible score) and v = oco. Since we require
all trials terminate in a finite time, we let ¢®! equal to some large finite value
Cmaz (for the experiments in the paper ¢;q, = 200,000) for each of the random
trials. As we shall see below, setting a finite ¢*! will bias the estimates for
non-restarted strategies, but will still allow us to obtain unbiased estimates for
restarted strategies for all values of vy < ¢!,

Recall that executing the experimental method described in Section 3.2 re-
sults, for each strategy and problem, in a set of ‘performance’ vectors ¢; =
[ci(0),. .., ¢i(Smax;)] where 1 < 4 < 6000 for the randomised strategies RTD,
RRR, GSAT and WSAT; and 1 < i < P = |E*| for the deterministic strategy
DTD. With each ¢; ¢;(s) is the number of clauses evaluated before achieving (or
exceeding) score s for the first time and $;,4,, is the maximum score achieved
on run %

For DTD, E[C|s*%/, v =] is obtained by simply averaging the c;(s**/) over
all ¢’s. However, it is possible that in some of the trials ¢, the maximum score
P is not achieved after evaluating ¢,,q. clauses. In such cases, there exist values
5°4f < P such that c;(s°%f) is not defined. Here we set ¢;(5°*/) = ¢ynqz+1. Thus,
the cost we associate to non-restarted strategies will represent lower bounds of
their expected cost.

189

For the restarted searches RTD, RRR, GSAT and WSAT, let the sequence
of steps 4-14 in Fig. 1 be called a try. The probability that s5*/ is achieved in
the ¢-th try (and not in tries 1...¢ — 1), given the cutoff value ~, is

Fy|s*) (1 = Fy(y]s™))" (2)

where the conditional cumulative distribution F'(z|s) = P(C < z|s) represents
the probability of achieving or exceeding the score s having evaluated x of fewer
clauses. It is estimated for a given score s from the empirical data as the fraction

F(CL"S)% |{Cl|cl(s) S(EH (3)
{ei}l

Note that the consequence of s not being achieved in a particular run ¢ is simply
that the condition ¢;(s) < x does not hold. That is, run i is counted as a
realization of the random trial with an ‘unsuccessful’ outcome. Thus to estimate
F(z|s) we do not need to assign a value to ¢;(s) in such a case (as was done
above for DTD) and the the estimate remains unbiased.
The expected number of tries initiated before achieving s*%f is

E[T]s™ 9] = F(ols™) ¢ (1= F(y]s™)) " (4)
t=1

It equals 1 for F(y|s*“f) = 1 and for F(v|s**) = 0 we set E[T|s*“/,~] = co. If
0 < F(v]s**f) < 1, it can be shown that Expression 4 converges to

1
E[T|s5f A = ——
T = Py

If we simply assumed that the algorithm evaluates exactly ~ clauses in each try
including the last, then the expected number of evaluated clauses would be

()

E[C|s**f 4] = vE|[R|s**, -7 __ 6
[Cls** 4] = vE[R|s™ 7] Fly]seh) (6)

However, E[C|s*%/~] is imprecise because the algorithm may achieve s/ eval-
uating fewer than ~ clauses in the last try. The expected total number of clauses
evaluated in all but the last try is

VBT = 17 2] = (i — 1) @

Due to the linearity of the expectation operator, we can determine the correct
total expected cost by adding to the above value the expected number of clauses
evaluated in the last try. For this purpose, consider the family of conditional
probability distributions

Dy(n) = P(N =n|(t—1) xy < C < ty, s | 5) (8)

190

For t = 1,2,..., each D; describes the probability distribution of the number
of evaluated clauses in the t-th try under the specified parameters s°%/,~, and
given that the t-th try is the last in the search, ie. an acceptable clause is found
therein. Since individual tries are mutually independent, the distributions D,
are identical for all ¢, that is, for an arbitrary ¢ it holds D;(n) = D;(n). Because
in the first try it holds® that N = C, we can write

Di(n) = P(C =n|C <7, ss“f) (9)

We did not include v in the conditional part because its value does not affect
the probability of the event C' = n given that C < ~, ie. given that no restart
occurs. Applying basic probability algebra,

P(C =n,C < ~|s*)
P(C < ols*f)

If n >« then D;(n) = 0. Otherwise, we can drop the C' < =y conjunct (implied
by C'=n) from the nominator expression:

Dy(n) = (10)

_ P(C=n|s") F(n|s*) — F(n — 1]s*/)
P =Bl T T FGle) .

Now we can calculate the expected number E[N|(t —1)xy < C < rv,5%% 4] of
clauses evaluated in the last try as

[eS) Y 2l nssuf _ n— SSUf
S i = Y nbim) = 3ot EE T

n=1

Summing up Eq. 7 with Eq. 12 we get the expected total number of evaluated
clauses:

oy | T (F(n]s™) — F(n— 1]s))
BlOls™ 3l =7 (Fmssuf) - 1) ! Flyls)
(13)

Recall that the conditional distribution F(.].) used above can be estimated from
the performance vectors as described by Eq. 3.

References

1. hitp://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/mazims.htmi.

2. M. Botta, A. Giordana, L. Saitta, and M. Sebag. Relational learning as search in
a critical region. Journal of Machine Learning Research, (4):431-463, 2003.

3. S. Dzeroski. Relational data mining applications: An overview. In Relational Data
Mining, pages 339—-364. Springer-Verlag, September 2001.

5 Within the first try, the total number of evaluated clauses equals the number of
clauses evaluated in the current try.

191

4.

5.

10.

11.

D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, 1989.

C. Gomes and B. Selman. On the fine structure of large search spaces. In Pro-
ceedings the Eleventh International Conference on Tools with Artificial Intelligence
ICTAI’99, Chicago, IL, 1999.

. C. P. Gomes, B. Selman, N. Crato, and H. A. Kautz. Heavy-tailed phenomena in

satisfiability and constraint satisfaction problems. Journal of Automated Reason-
ing, 24(1/2):67-100, 2000.

H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman. Dynamic restart policies,
proceedings of the eighteenth.

S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming, 13(3-4):245-286, 1995.

B. Selman, H. J. Levesque, and D. Mitchell. A new method for solving hard sat-
isfiability problems. In Paul Rosenbloom and Peter Szolovits, editors, Proceedings
of the Tenth National Conference on Artificial Intelligence, pages 440-446, Menlo
Park, California, 1992. AAAT Press.

A. Srinivasan, S. Muggleton, M. J. E. Sternberg, and R. D. King. Theories for
mutagenicity: A study in first-order and feature-based induction. Artificial Intel-
ligence, 85(1-2):277-299, 1996.

F. Zelezny, A. Srinivasan, and D. Page. Lattice-search runtime distributions may
be heavy-tailed. volume 2583, pages 333-345, 2003.

192

Establishing Identity Equivalence in Multi-Relational Domains

Jesse Davis, lés Dutra, David Page, \tor Santos Costa
Dep of Computer Science and Dep of Biostatistics and Medidaimatics
University of Wisconsin-Madison
{jdavis,dutra,page,vitd@biostat.wisc.edu

Keywords: Information Extraction and Link Analysis, Knowl edge Discovery and Dissemination

Abstract Logic. Modern ILP systems can handle significant databases,
containing millions of tuples.

A second challenge in Intelligence Analysis arises from
false positivesor false alarms. In our task, a false positive
corresponds to incorrectly hypothesizing that two names re
fer to the same individual. A false positive might have seri-
ous consequences, such as incorrectly adding individaals t
a no-fly list. False positives will always cause valuablesgtim
to be wasted. False positives reduce trust in the system: if
an expert system frequently gives spurious predictions, an
alysts will ignore its output. For all of these reasons, it is
essential to limit the false positive rate. Unfortunatetyel-
ligence analysis is particularly susceptible to false tpees,
as one is often trying to detect anomalies that occur rarely i
the general population. For example, in a city with 1 million
individuals, there are 499 billion possible alias pairstHis
case, even a false positive rate of only 0.001% will result in
about 5 million false positives, or about five bad aliases per
person.

We propose a two step methodology to address these chal-
lenges. First, we learn a set of rules that can achieve high re

1 Introduction call, that is, they should be able to recognize most of the tru
- aliases. Unfortunately, some of these rules may have poor
Determiningldentity Equivalenceor Alias Detection, is & precision, meaning that they falsely classify identityrpais
common problem in Intelligence Analysis. Two different yjiases. The second step addresses this problem. Instead of
identifiers are equivalent aliasesif both refer to the same 5t considering each rule as an individual classifier, wattr
object. One traditional example of aliasing centers around ey ryle as a feature of a new classifier. We use machine
mistyped or variant author names in documents. For examgarning methods to obtain a classifier that takes advaufage
ple, one might want to determine if a citation for V.S. Costayhe characteristics of the individual rules. We use Bayesia

and one for Vitor S. Costa refer to the same author. In this si Networks as our model, as they calculate the probability tha
uation one evaluates matches based on textual similacty. F pair of identities are aiiases.

thermore, the central information comes from the surround- .
ing text (Pasula et al. 2002). However, Intelligence Anislys e have evaluated our approach on synthetic datasets de-
involves more complex situations, and often syntacticlsimi Veloped by Information Extraction & Transport, Inc. within
ity is either unavailable or inapplicable. Instead, alsas®ist the EAGLE Project (Schrag 2004). We were provided with
be detected through object attributes and through interact artificial worlds, characterized bindividuals and relation-
patterns. ships between these individuals. Our results show exdellen
The Intelligence Analysis domain offers two further chal- Performance for several of the datasets.
lenges to this problem. First, information is commonly etbr This paper is organized as follows. In Section 2 we discuss
in relational database management systems (RDBMS) and ik P applied to alias detection. In Section 3 we give a brief
volves multiple relational tables. The format of the datg-su overview of Bayesian networks. In Section 4 we present and
gests using multi-relational datamining techniques ssdha discuss our results. We compare our work with related work
ductive Logic Programming (ILP). ILP systems leatnes, in Section 5. Finally, in Section 6 we provide a more in depth
which can contain fields from different tables, in First Qrde discussion of the datasets and our results.

Identity Equivalence or Alias Detection is an im-
portant topic in Intelligence Analysis. Often, ter-
rorists will use multiple different identities to avoid
detection. We apply machine learning to the task of
determining Identity Equivalence. Two challenges
exist in this domain. First, data can be spread across
multiple tables. Second, we need to limit the num-
ber of false positives. We present a two step ap-
proach to combat these issues. First, we use In-
ductive Logic Programming to find a set of rules
that are predictive of aliases. In the second step,
we treat each learned rule as a random variable in
a Bayesian Network. We use the Bayesian Net-
work to assign a probability that two identities are
aliases. We evaluate our technique on several data
sets and find that layering Bayesian Network over
the rules significantly increases the precision of our
system.

193

2 ILP For Alias Detection hand-crafting rules that use aggregates over properti@s co
monly found in the ILP learned rules.

Even inventing new attributes, it is impossible to find a sin-
e rule that correctly identifies all aliases. In the nextise,
We discuss our approach for combining rules to form a better
Slassifier.

Inductive Logic Programming (ILP) is a framework for
learning relational descriptions (Lavrac and DzeroskiZ00
Given sets of positive and negative examples and backgrou
knowledge, an ILP system learns a set of rules to discriraina
between the positive and negative instances. ILP is appr
priate for learning in multi-relational domains as the feat
rules are not restricted to contain fields or attributes feina 3 Bayesian Networks
gle table in a database. . , ,
We use Srinivasan’s Aleph ILP System (Srinivasan 2001)One of the drawbacks of applying ILP to this problem is
Aleph uses the Progol algorithm (Muggleton 1995) to learnthat each qlatabas_e .for a world is extremely large. The con-
rules described as Prolog programs. Aleph induces rules if€duUence is that it is intractable to use all the negative ex-
two steps. Initially, it selects an example and searches th@mPles when leaming the rules, which makes the final set
databases for the facts known to be true about that specifféf, 'ules more susceptible to false positives. First, by sam-
example. The Progol algorithm is based on the insight thaP!ind the negative examples, we have changed the propor-
some of these facts should explain this example. If so, i?on of the population that has aliases. Second, in ILP the
should be possible to generalize those facts so that thelgwou'inal classifier traditionally consists of forming a disjtion
also explain the other examples. The algorithm thus geserat ©Ve' the learned clauses, resulting in a decision list. An un

generalized combinations of the facts, searching for the-co S€€N example is applied to each clause in succession until it
binations with best performance. matches one of them. If the example does not match any rule,

One major advantage of using ILP is that it produces unihen it receives the negative classification. Unforturyatak
derstandable results. We show a sample rule generated Ijsiunction of clauses maximizes the number of false posi-

Aleph: tives. These issues suggest a simple_> apprloach Whe_re. we rep-
) resent each learned rule as an attribute in a classifier. We
alias(dy,Id>) used Bayesian networks to combine the rules for two reasons.
suspect{ds), First, they allow us to set prior probabilities to reflect thee
suspect{ds), proportion of the population that has aliases. Second, each
phonecall{d»,/d;), prediction has a probability attached to it. We can view the
phonecall(ds,/d). probability as a measure of confidence in the prediction. We

experiment with several different Bayes net models for com-
The rule says that two individualsl, and/d, may be aliases bining the rules. Naive Bayes (Pompe and Kononenko 1995)
if (i) they both made phone calls to the same intermediate inS straightforward approach that is easy to understandastd f
dividual Ids; and(ii) individualsId, andIds; have the same to train.
attribute (suspect). The rule reflects that in this world alod
suspects are more likely to have aliases. Moreover, an indi- S
vidual and its aliases tend to talk to the same people. \)

The next rule uses different information: :

alias((dy,Ids) +
Rule n-2

hascapability(d;,Cap),
hascapability(d,,Cap),

groupmember{d,; ,G), Rule 1 Rule 2 Rule 3
groupmember{d,,G),

isa(G,nonthreatgroup).

Rule n-1 Rule n

Two individuals may be aliases because they have a common Figure 1: ATAN Bayes Net.

capability, and because they both belong to the same non-
threat group. The major drawback with Naive Bayes is that it assumes
Clearly, these two rules are not precise as the patterns thethat the clauses are independent of each other given the clas
rules represent could easily be applied to ordinary individ value. Often, we expect the learned rules to be strongly
als. One observation is that we are only using the originatelated. We used Tree Augmented Naive Bayes networks
database schema. An analyst might define views, or inferre(TAN) (Friedman et al. 1997), which allows for a slightly
relations, that highlight interesting properties of iridivals. more expressive model. Figure 1 shows an example of a TAN
For instance, the first rule indicates that an individual anchetwork. Friedman, Geiger and Goldszmidt evaluated the
its aliases tend to communicate with the same people. Walgorithm for its viability on classification tasks. The TAN
thus might want to compare sets of people an individual ananodel, retains the basic structure of Naive Bayes, but also
its aliases talk to. In the spirit of aggregate construcfmn permits each attribute to have at most one other parent, al-
multi-relational learning (Knobbe et al. 2001; Neville ét a lowing the model to capture dependencies between attsbute
2003; Perlich and Provost 2003), we have experimented witifo decide which arcs to include in the augmented network,

194

the algorithm makes a complete graph between all the non- We present results on the wet-run data in this paper. For the
class attributes, where the weight of each edge is givereas tHirst set of data we used the wet-run datasets plus group infor
conditional mutual information between those two attridsut mation derived by the Kojak system (Adibi et al. 2004) (we
A maximum weight spanning tree is constructed over thigdid not have access to this information for the second batch
graph, and the edges that appear in the spanning tree anédata). Using the rules learned from the training data, we
added to the network. Geiger proved that the TAN model carronverted each of the evaluation datasets into a set of propo
be constructed in polynomial time with a guarantee that thdional feature vectors, where each rule appears as anudtrib
model maximizes the Log Likelihood of the network struc- in the feature vector. Each rule served as a binary attribute
ture given the dataset (Friedman et al. 1997). which received a value of one if the rule matched the example
We have also experimented with other structure learningind a zero otherwise.

approaches, such as the Sparse Candidate algorithm (Fried-We first report results from an earlier version of the EA-
man et al. 1999), but did not obtain significant improvementsGLE simulator, where only a single alias was allowed per
as discussed by Davis et al. (2004). entity. For space reasons, we only show results for three out

of six of the datasets. Results for the other three are simila
4 Experiments We used five fold Cross validation in thesg gxperiments.

For each application we show precision versus recall
This section presents our results and analysis of the perfocurves for the three methods: Naive Bayes, TAN and voting.
mance of our system on EAGLE datasets (Schrag 2004). Thé/e used our own software for Naive Bayes and TAN.
datasets are generated by simulating an artificial worlt wit
large numbers of relationships between agents. The data fo-
cuses onndividualswhich have a set of attributes, such as bataset 1
the capability to perform some actions. Individuals maypals 1 T ' ' '
obtain resources, which might be necessary to perform ac- f
tions. Individuals belong to groups, and groups particpat
a wide range oéventsIn our case, given that some individu-
als may be known through different identifiers (e.g., thtoug § 0.6 b 10 1
two different phone numbers), we were interested in recog- © D w
8 —
o

o
[ee]
T

nizing whether two identifiers refer to the same individual.
The EAGLE datasets have evolved toward more complex
and realistic worlds. We evaluate our system for datasets ge
erated by two versions of the simulator. The results from the : T
first version of the simulator are indexed with numbers while s i
the newer datasets are indexed by roman numerals. Datasets 0
vary with size, both in the number of individuals and in the ac
tivity level of each individual. Datasets also differ on ebs Recall
ability, the amount of information available as evidence; o
corruption, the number of errors; and on clutter, the amotint
irrelevant information. Each dataset includes pre-preegs
data, calledprimary data, with group information, and on

Figure 2: Precision Recall for Dataset 1

secondandata. The primary data contains a number of pre- Dataset 2
sumed aliases, which may or may not be true. 1o , , , j
Each experiment was performed in two rounds. In the L TAN

first round, thedry-run, we received a number of datasets

plus their corresponding ground truth. This allowed us to ex

periment with our system and validate our methodology. In

the second round, theet-run we received datasets without

ground truth and were asked to present a hypothesis. We hal

a limited amount of time to do so. Later, we received the : | 1

ground truth so that we could perform our own evaluation. S
We adopted the following methodology. Rule learning is 0.2 } ~ A

quite expensive in these large datasets. Moreover, we have | K B

found that most rules are relevant across the datasets, as 0 ‘ ‘ B il

we believe they capture aspects common to each simulated 0 0.2 0.4 0.6 0.8 1

world. Consequently, we only performed rule learning dgirin Recall

the dry-run. We used Srinivasan’s Aleph ILP system (Srini-

vasan 2001) running on the YAP Prolog system. Ground-truth Figure 3: Precision Recall for Dataset 2

was used for training examples (and not used otherwise). The

best rules from all datasets were passed forward to the wet- The Precision Recall curves for the different datasets are

run. seen in Figures 2 through 4. We compare TAN and Naive

Pre&sion
o
[e)}
T
-
=
Y
A —
/
L

195

Dataset 3 Dataset II

i TAN N TAN
Ng
0.8 E EL} Voting -~] 0.8 I A Voting]
g X g \
S 0.6 ' S 0.6t N\ g
4 a \
0 3 N
® 0.4 ® 0.4t \ 1
o % [\L
0.2 0.2 f \ :
AN
. \
0 0 . . . e
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Recall Recall
Figure 4: Precision Recall for Dataset 3 Figure 6: Precision Recall for Dataset Il

Bayes with unweighted voting, an ensemble method (Davigble to find rules which have excellent recall, and the Bayes

et al. 2004). On each curve, we included 95% confidencaets perform quite well at also achieving good precisiore Th

intervals on the precision score for selected levels oflkeca results are particularly satisfactory using TAN on datdset

The curves were obtained by averaging the precision and rexs shown in Figure 5, where we can achieve precision over

call values for fixed thresholds. We achieved the best iesult60% for very high level recall. Dataset Il was the hardest

for datasets 2 and 3, and did the worst on dataset 1, wheie all datasets for us. It shows a case where it is difficult to

precision levels did not achieve 0.5. achieve both high precision and recall. This is becausether
The second set of results comes from a more recent versida little information on individuals. In this case, improg

of the simulator. Dataset sizes were at least as large, gebig recall requires trusting in only one or two rules, resulting

than before. The new simulator supported social network attow precision.

tributes, which could be used for the aliasing task. Thererro

levels were increased and each individual could have upto si

aliases. We used the same methodology as before, with two Dataset III
differences. First, we used ten fold cross validation ineord 1 ' ' ' AN
to be able to perform significance tests. Second, we pooled
the results across all ten folds to generate the precisiailre 0.8 f Voting — 1
curves. Due to space constraints, we only present results fo B b
3 datasets: Datasets I, Il, and Ill. The Precision/Recallesi S 0.6 |)
are shown in Figures 5, 6, and 7. @
[0} |
® 0.4 f| g
o 4]
Dataset I V\
l————— 0.2 F4 ‘\ i
— 2\
N BN
0.8 R 0 = ‘ :
N 0 0.2 0.4 0.6 0.8 1
§ 06| \\ | Recall
é \"sL Figure 7: Precision Recall for Dataset IlI
S 0.4t E
. ‘\ The precision recall curve for the TAN algorithm domi-
0.2 TAN H nates the curves for Naive Bayes and ensemble voting on all
- ”] six datasets. We have calculated the areas under the Preci-
0 voting ‘ R sion/Recall curve for each fold in datasets |, Il, 1l and the
0 0.2 0.4 0.6 0.8 1 differences are statistically significant with 99% confiden
Recall For each dataset, there are several places where TAN yields
at least a 20 percentage point increase in precision, for the
Figure 5: Precision Recall for Dataset | same level of recall over both Naive Bayes and voting. On

two of the six datasets, Naive Bayes beats voting, while on
Our results show much better performance for Datasets the remaining four they have comparable performance. One
and II. This is due to better rule quality. In this case we werereason for TAN’s dominance compared to Naive Bayes is the

196

presence of rules which are simply refinements of other ruleample as a feature vector, and then uses a feature-vector
The TAN model is able to capture some of these interdeperiearner to produce a final classifier. To our knowledge, the
dencies, whereas Naive Bayes explicitly assumes thag thesvork closest to ours is the one by Pompe and Kononenko
dependencies do not exist. The Naive Bayes independen¢£995), who were the first to apply Naive Bayes to combine
assumption accounts for the similar performance comparedauses. Other work in this category was by Srinivasan and
to voting on several of the datasets. King (1997), for the task of predicting biological actie$ of

In situations with imprecise rules and a preponderance ofmolecules from their atom-and-bond structures. Some other
negative examples, such as link discovery domains, Bayesiawork, especially on propositionalization of First Ordergio
models and especially TAN provide an advantage. One ared@OL) (Alphonse and Rouveirol 2000), has been developed
where both TAN and Naive Bayes excel is in handling im-that converts the training sets to propositions and then ap-
precise rules. The Bayes nets effectively weight the pimtis plies feature vector techniques to the converted data. i$his
of each rule either individually or based on the outcome ofsimilar to what we do, however we first learn from FOL and,
another rule in the case of TAN. The Bayesian nets furthethen learn the network structure and parameters using#he fe
combine these probabilities to make a prediction of the finature vectors obtained with the FOL training, resulting inanu
classification allowing them to discount the influence of-spu smaller feature vectors than in other work.

rious rules in the classification process. Ensemble votiegd ~ Our paper contributes two novel points to this category of
not have this flexibility and consequently lacks robustriess work. First, it highlights the relationship between thigesa
imprecise rules. Another area where TAN provides an adgory of work and ensembles in ILP, because when the feature-
vantage is when multiple imprecise rules provide significanyector learner is Naive Bayes the learned model can be con-
overlapping coverage on positive examples and a low level ofjdered a weighted vote of the rules. Second, it shows that
overlapping coverage on negative examples. The TAN netwhen the features are ILP-learned rules, the independsnce a
work can model this scenario and weed out the false positivegumption in Naive Bayes may be violated badly enough to
One potential disadvantage to the Bayesian approach is th@feld a high false positive rate. This false positive rata ca

it could be overly cautious about classifying something as &e reduced by permitting strong dependencies to be explic-

positive. The high number of negative examples relative tqtly noted, through learning a Tree Augmented Naive Bayes
the number of positive examples, and the corresponding corretwork (TAN).

cern of a high false positive rate, helps mitigate this ptigén
problem. In fact, at similar levels of recall, TAN has a lower

false positive rate than voting. 6 Conclusions and Future Work

5 Related Work Identity Equivalence is an important problem in Intelligen
Identity Uncertainty is a difficult problem that arises in ar Analysis. Quite often, individuals want to hide their iden-

eas such as Citation Matching, Record Linkage and Delities, and therefore we cannot rely on textual information

Duplication in Databases, Natural Language Processing, iU\1/stead, we need to use attributes and contextual infoomati

addition to Intelligence Analysis. A seminal work in thigar e show that good results can be achieved by using multi-

is the theory of Record Linkage (Fellegi and Sunter 1969)relatlonal learning to learn rules, whose output is then-com

based on scoring the distances between two feature vectol?gqed to lower the faise positive rate. We were particularly

(using Naive Bayes in the original work) and merging resord terested in Bayesian methods for the latter because they ass

below some threshold. Systems such as Citeseer (Lawreng te a probability with each prediction, which can be teug

et al. 1999) apply similar ideas by using text similarity.eTh Of as the classifier's confidence in the final classificatioe. W
field of record matching has received significant contriby-compare how three different approaches for combining rules

tions (Monge and Elkan 1996; Cohen and Richman 20025"”;”‘.ed b%.ant ![LP SYStetF” perfé)rm obn an aéqF:ica\L;[\ilor:jwhere
Buechi et al. 2003; Bilenko and Mooney 2003; Zelenko et al. t?aa:ésesu ejfr%egtgﬁrr?hg;oneaganugon?ig/r?tl : Ilc};. eretH:e{fgon
2003; Hsiung et al. 2004). On the other hand, it has beeR Xper y W Ignif y 10w

observed that interactions between identifiers can beairuci POSVe rat_e through rule con?b_manon schemes._]
in identifying them (Morton 2000). Pasula et al. (2002) use We obtained the best precision recall results in our appli-
relational probabilistic models to establish a probatidliset- ~ cation using a TAN network to combine rules. Precision was
work of individuals, and then use Markov Chain Monte Carlo@ major concern to us due to the high ratio of negative ex-
to do inference on the citation domain. McCallum and Well-amples to positive examples. TAN had better precision than
ner (2003) use discriminative models, Conditional RandoniNaive Bayes or unweighted voting, because it is more robust
Fields, for the same task. These approaches rely on prigit handling redundancy between rules.
understanding of the features of interest, usually texetbas In future work we plan to experiment with different appli-
Such knowledge may not be available for Intelligence Analy-cations and Bayesian network structures. We are interested
sis tasks. in learning rules with aggregates. We plan to further con-
Detecting features of interest was therefore our first steptinue work based on the observation that we learn a single
and the present work fits into the popular category of usCLP(BN) network (Santos Costa et al. 2003). This obser-
ing ILP for feature construction. Such work treats ILP- vation suggests that a stronger coupling between the karni
constructed rules as Boolean features, re-represent®egach phases could be useful.

197

7 Acknowledgments Andrew McCallum and Ben Wellner. Toward conditional
Support for this research was partially provided by U.S. Air models of identity uncertainty with application to proper
Force grant F30602-01-2-0571. We would also like to thank houn coreference. IfWeb, pages 79-84, 2003.

Irene Ong, Bob Schrag, and Jude Shavlik for all their helpAlvaro E. Monge and Charles Elkan. The field matching
Inés Dutra and Vitor Santos Costa are on leave from Federal problem: Algorithms and applications. KDD, pages

University of Rio de Janeiro, Brazil. 267-270, 1996.
Ref Thomas S. Morton. Coreference for NLP Applications. In
ererences ACL, 2000.

J. Adibi, H. Chalupsky, E. Melz, and A. Valente. The KO- S. Mu -
; : ’ . . Muggleton. Inverse entailment and Progdew Genera-
JAK Group Finder: Connecting the Dots via Integrated tion Computing13:245-286, 1995,

Knowledge-Based and Statistical ReasoningPltoceed- .)] .))
ings of the Sixteenth Innovative Applications of Artificial Jennifer Neville, David Jensen, Lisa Friedland, and Mithae
Intelligence Conference (IAAI-04)age To Appear, 2004. Hay. Learning relational probability trees. KDD 03,

E. Alphonse and C. Rouveirol. Lazy propositionalisationfo ~ P29€S 625-630. ACM Press, 2003. ISBN 1-58113-737-0.
relational learning. In Horn W., editat4th European Con- Hanna Pasula, Bhaskara Marthi, Brian Milch, Stuart J. Rus-

ference on Atrtificial Intelligence, (ECAI'00) Berlin, Alle sell, and Ilya Shpitser. Identity uncertainty and citation
magne pages 256—260. |0S Press, 2000. matching. InNIPS pages 1401-1408, 2002.

Mikhail Bilenko and Raymond J. Mooney. Adaptive dupli- Claudia Perlich and Foster Provost. Aggregation-based fea
cate detection using learnable string similarity measures ture invention and relational concept classesKD '03,
In KDD, pages 39-48, 2003. pages 167-176, 2003. ISBN 1-58113-737-0.

Martin Buechi, Andrew Borthwick, Adam Winkel, and U. Pompe and |. Kononenko. Naive Bayesian classifier
Arthur Goldberg. Cluemaker: A language for approximate within ILP-R. In L. De Raedt, editoRroceedings of the
record matching. IhQ, pages 207-223, 2003. 5th International Workshop on Inductive Logic Program-

William W. Cohen and Jacob Richman. Learning to match Ming pages 417-436. Department of Computer Science,
and cluster large high-dimensional data sets for data inte- Katholieke Universiteit Leuven, 1995.
gration. InKDD, pages 475-480, 2002. Vitor Santos Costa, David Page, Maleeha Qazi, and James

Jesse Davis, Vitor Santos Costa, Irene M. Ong, David Page, Cussens. CLRB{\): Constraint Logic Programming for
and Ins C. Dutra. Using Bayesian Classifiers to Combine Probabilistic Knowledge. IProceedings of the 19th Con-

Rules. In3rd Workshop on Multi-Relational Data Mining ~ ference on Uncertainty in Artificial Intelligence (UAIQ3)
Seattle, USA, August 2004. pages 517-524, Acapulco, Mexico, August 2003.

|. Fellegi and A. Sunter. Theory of record linkagéournal ~ Robert C. Schrag. EAGLE Y2.5 Performance Evaluation
of the American Stastistical Associatjod4:1183-1210, Laboratory (PE Lab) Documentation Version 1.5. Inter-
19609. nal report, Information Extraction & Transport Inc., April

N. Friedman, I. Nachman, and D. Pe’er. Learning bayesian 2094'
network structure from massive datasets: The “sparse car\. Srinivasan.The Aleph Manua2001.
didate” algorithm. IrProceedings of the 15th Annual Con- A srinivasan and R. King. Feature construction with induc-

ference on Uncertainty in Artificial Intelligence (UAI-99) {jve logic programming: A study of quantitative predic-
pages 206-215, San Francisco, CA, 1999. Morgan Kauf- tjons of biological activity aided by structural attribste

mann Publishers. In S. Muggleton, editoiProceedings of the Sixth Inductive
Nir Friedman, David Geiger, and Moises Goldszmidt. Logic Programming WorkshohNAI 1314, pages 89-104,

Bayesian networks classifiefdlachine Learning29:131— Berlin, 1997. Springer-Verlag.

163, 1997.

Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella.
Paul Hsiung, Andrew Moore, Daniel Neill, and Jeff Schnei- Kernel methods for relation extractiofournal of Machine
der. Alias detection in link data sets. Master’s thesis, Learning Researg8:1083—-1106, 2003.
Carnegie Mellon University, March 2004. Carnegie Mel-
lon University.

Arno J. Knobbe, Marc de Haas, and Arno Siebes. Proposi-
tionalisation and aggregates. RKDDO1, pages 277-288,
2001.

N. Lavrac and S. Dzeroski, editorRelational Data Min-
ing. Springer-Verlag, Berlin, September 2001. ISBN 3-
540-42289-7.

Steve Lawrence, C. Lee Giles, and Kurt D. Bollacker. Au-
tonomous citation matching. IAgents pages 392-393,
1999.

198

View Learning for Statistical Relational Learning: With an Application to
Mammogr aphy

Jesse Davis, Elizabeth Burnside, Inés Dutra, David Page,
Raghu Ramakrishnan, Vitor Santos Costa, Jude Shavlik
University of Wisconsin - Madison
1210 West Dayton
Madison, WI 53706, USA
email: jdavis@cs.wisc.edu

Abstract

Statistical relational learning (SRL) constructs
probabilistic models from relational databases. A
key capability of SRL is the learning of arcs (in
the Bayes net sense) connecting entries in differ-
ent rows of a relational table, or in different tables.
Nevertheless, SRL approaches currently are con-
strained to use the existing database schema. For
many database applications, users find it profitable
to define alternative “views” of the database, in ef-
fect defining new fields or tables. Such new fields
or tables can also be highly useful in learning. We
provide SRL with the capability of learning new
views.

1 Introduction

Statistical Relational Learning (SRL) focuses on algorithms
for learning statistical models from relational databases. SRL
advances beyond Bayesian network learning and related tech-
niques by handling domains with multiple tables, represent-
ing relationships between different rows of the same table,
and integrating data from several distinct databases. SRL
techniques currently can learn joint probability distributions
over the fields of a relational database with multiple tables.
Nevertheless, they are constrained to use only the tables and
fields already in the database, without modification. Many
human users of relational databases find it beneficial to de-
fine alternative views of a database—further fields or tables
that can be computed from existing ones. This paper shows
that SRL algorithms also can benefit from the ability to define
new views, which can be used for more accurate prediction of
important fields in the original database.

We will augment SRL algorithms by adding the ability to
learn new fields, intensionally defined in terms of existing
fields and intensional background knowledge. In database
terminology, these new fields constitute a learned view of
the database. We use Inductive Logic Programming (ILP)
to learn rules which intensionally define the new fields.

We test the approach in the specific application of creating
an expert system in mammography. We chose this applica-
tion for a number of reasons. First, it is an important prac-
tical application with sizable data. Second, we have access

eemenre & TS
.‘

. (Ca ™ Rod-like

Figure 1: Expert Bayes Net

Density

to an expert developed system. This provides a base refer-
ence against which we can evaluate our work. Third, a large
proportion of examples are negative. This distribution skew
is often found in multi-relational applications. Last, our data
consists of a single table. This allows us to compare our tech-
niques against standard propositional learning. In this case, it
is sufficient for view learning to extend an existing table with
new fields. It should be clear that for other applications the
approach can yield additional tables.

2 View Learning for Mammography

Offering breast cancer screening to the ever-increasing num-
ber of women over age 40 represents a great challenge. Cost-
effective delivery of mammaography screening depends on a
consistent balance of high sensitivity and high specificity. Re-
cent articles demonstrate that subspecialist, expert mammog-
raphers achieve this balance and perform significantly better
than general radiologists [24; 1]. General radiologists have
higher false positive rates and hence biopsy rates, dimin-
ishing the positive predictive value for mammography [24;
1]. Despite the fact that specially trained mammographers
detect breast cancer more accurately, there is a longstanding
shortage of these individuals [6].

An expert system in mammography has the potential to
help the general radiologist approach the effectiveness of a

199

subspecialty expert, thereby minimizing both false negative
and false positive results.

Bayesian networks (BNs) are probabilistic graphical mod-
els that have been applied to the task of breast cancer diag-
nosis from mammography data [12; 2; 3]. BNs produce di-
agnoses with probabilities attached. Because of their graphi-
cal nature, they are comprehensible to humans and useful for
training. As an example, Figure 1 shows the structure of a
Bayesian network developed by a subspecialist, expert mam-
mographer. For each variable (node) in the graph, the Bayes
net has a conditional probability table giving the probability
distribution over the values that variable can take for each
possible setting of its parents. The Bayesian network in Fig-
ure 1 achieves accuracies higher than that of other systems
and of general radiologists who perform mammograms, and
commensurate with the performance of radiologists who spe-
cialize in mammography [2].

Figure 2 shows the main table (with some fields omitted for
brevity) in a large relational database of mammography ab-
normalities. Data was collected using the National Mammog-
raphy Database (NMD) standard established by the American
College of Radiology. The NMD was designed to standard-
ize data collection for mammography practices in the US and
is widely used for quality assurance. Figure 2 also presents
a hierarchy of the types of learning that might be used for
this task. Level 1 and Level 2 are standard types of Bayesian
network learning. Level 1 is simply learning the parameters
for an expert-supplied network structure. Level 2 involves
learning the actual structure of the network in addition to its
parameters.

Notice that to predict the probability of malignancy of an
abnormality, the Bayes net uses only the record for that ab-
normality. Nevertheless, data in other rows of the table may
also be relevant: radiologists may also consider other abnor-
malities on the same mammogram or previous mammograms.
For example, it may be useful to know that the same mam-
mogram also contains another abnormality, with a particular
size and shape; or that the same person had a previous mam-
mogram with certain characteristics. Incorporating data from
other rows in the table is not possible with existing Bayesian
network learning algorithms and requires statistical relational
learning (SRL) techniques, such as probabilistic relational
models [8]. Level 3 in Figure 2 shows the state-of-the-art
in SRL techniques, illustrating how relevant fields from other
rows (or other tables) can be incorporated in the network, us-
ing aggregation if necessary. Rather than using only the size
of the abnormality under consideration, the new aggregate
field allows the Bayes net to also consider the average size
of all abnormalities found in the mammogram.

Presently, SRL is limited to using the original view of the
database, that is, the original tables and fields, possibly with
aggregation. Despite the utility of aggregation, simply con-
sidering only the existing fields may be insufficient for accu-
rate prediction of malignancies. Level 4 in Figure 2 shows the
key capability that will be introduced and evaluated in this pa-
per: Using techniques from rule learning to learn a new view.
The new view includes two new features utilized by the Bayes
net that cannot be defined simply by aggregation of existing
features. The new features are defined by two learned rules

that capture “hidden” concepts central to accurately predict-
ing malignancy, but that are not explicit in the given database
tables. One learned rule states that a change in the shape of
the abnormality at a location since an earlier mammogram
may be indicative of a malignancy. The other says that an in-
crease in the average of the sizes of the abnormalities may be
indicative of malignancy. Note that both rules require refer-
ence to other rows in the table for the given patient, as well as
intensional background knowledge to define concepts such as
“increases over time.” Neither rule can be captured by stan-
dard aggregation of existing fields.

3 View Learning Framework

One can imagine a variety of approaches to perform view
learning. Our closing section discusses a number of alterna-
tives, including performing view learning and structure learn-
ing at the same time, in the same search. For the present work,
we apply existing technology in a new fashion to obtain a
view learning capability.

Any relational database can be naturally and simply rep-
resented in a subset of first-order logic [21]. Inductive logic
programming (ILP) provides algorithms to learn rules, also
expressed in logic, from such relational data [15], possibly to-
gether with background knowledge expressed as a logic pro-
gram. ILP systems operate by searching a space of possible
logical rules, looking for rules that score well according to
some measure of fit to the data. We use ILP to learn rules to
predict whether an abnormality is malignant. We treat each
rule as an additional binary feature; true if the body, or condi-
tion, of the rule is satisfied, and otherwise false. We then run
the Bayesian network structure learning algorithm, allowing
it to use these new features in addition to the original fea-
tures. Below is a simple rule, covering 48 positive examples
and 123 negative examples:

Abnormality A in nmamobgram M
may be malignant if:
A's tissue is not asymetric,
M cont ai ns anot her abnormality A2,
A2's margins are spicul ated, and
A2 has no architectural distortion.

This rule can now be used as a field in a new view of the
database, and consequently as a new feature in the Bayesian
network. The last two lines of the rule refer to other rows of
the relational table for abnormalities in the database. Hence
this rule encodes information not available to the current ver-
sion of the Bayesian network.

4 Experiments

The purposes of the experiments we conducted are two-fold.
First, we want to determine if using SRL yields an im-
provement compared to propositional learning. Secondly, we
want to evaluate whether using Inductive Logic Programming
(ILP) to create features, which embody a new “view” of the
database, adds a benefit over current SRL algorithms. We
looked at adding two types of relational attributes, aggregate
features and horn-clause (ILP) rules. Aggregate features rep-
resent summaries of abnormalities found either in a partic-
ular mammogram or for a particular patient. We performed

200

Patient Abnormality

Date Mass Shape ...

Mass Size Location Benian/Malian

P1 1 5/02 Spic
P1 2 5/04 Var

1 3 5/04 Spic

0.03 RU4 B
0.04 RU4 M
0.04 LL3 B

Level 1.

Level 2.

e Dz D

Increase in
average size of
abnormalities

Shape change
in abnormality
at this location

Parameter Learning:

Given: Features (node labels, or fields
in database), Data, Bayes net structure
L earn: Probabilities. Note:
probabilities needed are Pr(Be/Mal),
Pr(ShapelBe/Mal), Pr (Size|Be/Mal)

Structure Learning:

Given: Features, Data

L earn: Bayes net structure and
probabilities. Note: with this structure,
now will need Pr(Size|Shape,Be/Mal)
instead of Pr(Size|Be/Mal).

Aggregate Learning:

Given: Features, Data, Background
knowledge — aggregation functions
such as average, mode, max, etc.

L ear n: Useful aggregate features,
Bayes net structure that uses these
features, and probabilities. New
features may use other rows/tables.

View Learning:

Given: Features, Data, Background
knowledge — aggregation functions
and intensional ly-defined relations
such as “increase’ or “same location”
L earn: Useful new features defined
by views (equivalent to rules or SQL
queries), Bayes net structure, and
probabilities.

Figure 2: Hierarchy of learning types. Levels 1 and 2 are available through ordinary Bayesian network learning algorithms,
Level 3 is available only through state-of-the-art SRL techniques, and Level 4 is described in this paper.

a series of experiments, aimed at discovering if moving up
in the hierarchy outlined in Figure 2 would improve perfor-
mance. First, we tried to learn a structure with just the orig-
inal attributes which performed better than the expert struc-
ture. This corresponds to Level 2 learning. Next, we added
aggregate features to our network. Finally, we created new
features using ILP. We investigated adding the features pro-
posed by the ILP system as well as the aggregate to the net-
work.

We experimented with a number of structure learning al-
gorithms for the Bayesian Networks, including Naive Bayes,
Tree Augmented Naive Bayes [7], and the sparse candidate
algorithm [9]. However, we obtained best results with the
TAN algorithm in all experiments, so we will focus our
discussion on TAN. In a TAN network, each attribute can
have at most one other parent in addition to the class vari-

201

able. The TAN model can be constructed in polynomial
time with a guarantee that the model maximizes the Log
Likelihood of the network structure given the dataset [10;
71.

4.1 Methodology

The dataset contains 435 malignant abnormalities and 65365
benign abnormalities. To evaluate and compare these ap-
proaches, we used stratified 10-fold cross-validation. We ran-
domly divided the abnormalities into 10 roughly equal-sized
sets, each with approximately one-tenth of the malignant ab-
normalities and one-tenth of the benign abnormalities. When
evaluating just the structure learning and aggregation, 9 folds
were used for the training set. When performing aggregation,
we used binning to discretize the created features. We took
care to only use the examples in the train set to determine the
cut bin widths. When performing “view learning”, we had

two steps in the learning process. In the first part, 4 folds of
data were used to learn the ILP rules. Afterwards,the remain-
ing 5 folds were used to learn the Bayes net structure and
parameters.

When using cross-validation on a relational database, there
exists one major methodological pitfall. Some of the cases
may be related. For example, we may have multiple abnor-
malities for a single patient. Because these abnormalities are
related (same patient), having some of these in the training
set and others in the test set may cause us to perform better
on those test cases than we would expect to perform on cases
for other patients. To avoid such “leakage” of information
into a training set, we ensured that all abnormalities associ-
ated with a particular patient are placed into the same fold for
cross-validation. Another pitfall is that we may learn a rule
that predicts an abnormality to be malignant based on proper-
ties of abnormalities in later mammograms. We never predict
the status of an abnormality at a given date based on findings
recorded with later dates.

We present the results of our first experiment using both
ROC and precision recall curves. Because of our skewed
class distribution, or large number of benign cases, we prefer
precision-recall curves over ROC curves because they better
show the number of “false alarms,” or unnecessary biopsies.
Therefore, we use precision-recall curves for the remainder of
results. Here precision is the percentage of abnormalities that
we classified as malignant that are truly cancerous. Recall is
the percentage of malignant abnormalities that were correctly
classified. To generate the curves, we pooled the results over
all ten folds in the following manner. We treat each prediction
as if it had been generated from the same model. We sorted
the estimates and used all possible split points to create the
graphs.

4.2 Results

The relational database containing the mammography data
contains one row for each abnormality in a mammogram.
Fields in this relational table include all those shown in the
Bayesian network of Figure 1. Therefore it is straightforward
to use existing Bayesian network structure learning algo-
rithms to learn a possibly improved structure for the Bayesian
network. We compared the performance of the best learned
networks against the expert defined structure shown in Fig-
ure 1. We estimated the parameters of the expert structure
from the dataset using maximum likelihood estimates with
Laplace correction. Figure 3 shows the ROC curve for these
experiments, and Figure 4 shows the Precision-Recall curves.
Figure 7 shows the area under the precision-recall curve for
the expert network (L1) and with learned structure (L2). We
only consider recalls above 50%, as for this application ra-
diologists would be required to perform at least at this level.
We further use the paired t-test to compare the areas under
the curve for every fold. We found the difference to be statis-
tically significant with a 99% level of confidence.

With the help of a radiologist, we selected the numeric and
ordered features in the database and computed aggregates for
each of these features. We determined that 27 of the 36 at-
tributes were suitable for aggregation. We computed aggre-
gates on both the patient and the mammogram level. On the

1 vs Level 2

Leve

(0]

~ 0. |

&

g o A

‘0

g o |

g

= 0.2 |
Level 2 ——
Level 1 -

0 . .) |
0 0.2 0.4 0.6 0.8 1

Fal se Positive Rate

Figure 3: ROC Curves for Structure Learning. (Level 2)

Level 1 vs Level 2
1 ' '
Level 2 ——
Level 1 -
0.8 | |
< i
S 0.6 |
2 i
5 ;
© 0.4t |
s i
0.2 |
0 .) ‘
0 0.2 0.4 0.6 0.8 1

Recal

Figure 4: Precision Recall Curves for Structure Learning.
(Level 2)

patient level, we looked at all of the abnormalities for a spe-
cific patient. On the mammogram level, we only considered
the abnormalities present on that specific mammogram. To
discretize the averages, we divided each range into three bins.
For binary features we had predefined bin sizes, while for
the other features we attempted to get equal numbers of ab-
normalities in each bin. For aggregations functions we used
maximum and average. The aggregation introduced 108 new
features. For the interested reader, the following paragraph
presents further details of our aggregation process.

We used a three step process to construct aggregate fea-
tures. First, we chose a field to aggregate. Second, we se-
lected an aggregation function. Third, we needed to decide
over which rows to aggregate the feature, that is, which keys
or links to follow. This is known as a slot chain in PRM termi-
nology. In our database, two such links exist. The patient id
field allows access to all the abnormalities for a given patient,
providing aggregation on the patient level. The second key is
the combination of patient id and mammogram date, which
returns all abnormalities for a patient on a specific mammo-
gram, providing aggregation on the mammogram level. To

202

Conparison of All Levels of Learning

' Level 4 —
Level 3 -
0.8 1 Level 2 -]
Level 1
c
S0.6f |
]
©
© 0.4} |
o
0.2 |
0 . .) ‘
0 0.2 0.4 0.6 0.8 1

Recal

Figure 6: Precision Recall Curves for Each Level of Learning

demonstrate this process we will work though an example of
computing an aggregate feature for patient 1 in the database
given in Figure 2. We will aggregate on the Mass Size field
and use average as the aggregation function. Patient 1 has
three abnormalities, one from a mammogram in May 2002
and two on a mammogram from May 2004. To calculate the
aggregate on the patient level, we would average the size for
all three abnormalities, which is .0367. To find the aggregate
on the mammogram level for patient 1, he have to perform
two separate computations. First, we follow the link P1 and
5/02, which yields abnormality 1. The average for this key
mammogram is simply .03. Second, we follow the link P1
and 5/04, which yields abnormalities 2 and 3. The average
for these abnormalities is .04. Figure 5 shows the database
following .

Next we tested whether useful new fields could be com-
puted by rule learning. Specifically, we used the ILP system
Aleph [26] to learn rules predictive of malignancy. Several
thousand distinct rules were learned for each fold, with each
rule covering many more malignant cases than (incorrectly
covering) benign cases. In order to obtain a varied set of
rules, we ran Aleph using every positive example in each fold
served as a seed for the search. We avoid the rule overfit-
ting found by other authors [18] by doing breadth-first search
for rules and by having a minimal limit on coverage. Each
seed generated anywhere from zero to tens of thousands of
rules. We post processed the rules using a greedy algorithm,
where we select the best scoring rule that covers new exam-
ples first. For each fold, the 50 best clauses were selected
based on 3 criteria: (1) they needed to be multi-relational; (2)
they needed to be distinct; (3) they needed to cover a signif-
icant number of malignant cases. The resulting views were
added as new features to the database. Figure 6 includes a
comparison of all levels of learning.

We can observe very significant improvements when
adding multi-relational features. Both rules and aggregates
achieved better performance. Aggregates do better for higher
recalls, while rules do better for medium recalls. We believe
this is because ILP rules are more accurate than the other fea-
tures, but have limited coverage.

Areas under the Precision Recall Curves

008

Level4
Level 3

007

006

Level 2
005

0.04

Level 1

003

002

001

Figure 7: Area Under the Curve For Recalls Above 50%

Level 4 performs as well as aggregates for high recalls, and
close to ILP for medium recalls. According to the paired t-test
the improvement of Level 4 over Level 2 is significant, using
the area under the curve metric, at the 99% level. Meanwhile,
Level 3 presents an improvement over Level 2, using the area
under the curve metric, at the 97% confidence level.

Levels 1 and 2 correspond to standard propositional learn-
ing whereas levels 3 and 4 incorporate relational information.
In this task, considering relational information is crucial for
improving preformance. Furthermore, the process of gener-
ating the views in Level 4 has been useful to the radiologist
as it has potentially identified novel correlations between at-
tributes.

5 Related Work

Research in SRL has advanced along two main lines, meth-
ods that allow graphical models to represent relations and
frameworks that extend logic to handle probabilities. Along
the first line, probabilistic relational models, or PRMs, intro-
duced by Friedman, Getoor, Koller and Pfeffer, represent one
of the first attempts to learn the structure of graphical mod-
els while incorporating relational information[8]. Recently
Heckerman, Meek and Koller have discussed extensions to
PRMs and compared them to to other graphical models[11].
A statistical learning algorithm for probabilitistic logic rep-
resentations was first given by Sato [23] and later, Cussens
[5] proposed a more general algorithm to handle log linear
models. Additionally, Muggleton [16] has provided learning
algorithms for stochastic logic programs. The structure of the
logic program is learned using ILP techniques, while the pa-
rameters are learned using an algorithm scaled up from that
used for stochastic context-free grammars.

Newer representations garnering arguably the most atten-
tion are Bayesian logic programs [13] (BLPs), constraint
logic programming with Bayes net constraints, or CLP(BN)
[4], and Markov Logic Networks (MLNs) [22]. Markov
Logic Networks are most similar to our approach. Nodes of
MLNSs are the ground instances of the literals in the rule, and
the arcs correspond to the rules. One major difference is that
in our approach nodes are the rules themselves. Although we

203

Patient Abnormality | Date Mass Shape MassSize | Location Average Average Be/Ma
Patient Mammogram
Mass Size Mass Size
P1 1 5/02 Spic 0.03 RU4 0.0367 0.03 B
P1 2 5/04 Var 0.04 RU4 0.0367 0.04 M
P1 3 5/04 Spic 0.04 LL4 0.0367 0.04 B

cannot work at the same level of detail, our approach makes it

Figure 5: Database after Aggregation on Mass Size Field

We believe that further improvements are possible.

straightforward to combine logical rules with other features,
and we now can take full advantage of propositional learning
algorithms.

The present work builds upon previous work on using ILP
for feature construction. Such work treats ILP-constructed
rules as Boolean features, re-represents each example as
a feature vector, and then uses a feature-vector learner to
produce a final classifier. To our knowledge, Pompe and
Kononenko [19] were the first to apply Naive Bayes to com-
bine clauses. Other work in this category was by Srinivasan
and King [25], who use rules as extra features for the task of
predicting biological activities of molecules from their atom-
and-bond structures. Popescul et.al. [20] use £ — means to
derive cluster relations, which are then combined with the
original features through structural regression. In a different
vein, Relational Decision Trees [17] use aggregation to pro-
vide extra features on a multi-relational setting, and are close
to our Level 3 setting. Knobbe et al. [14] proposed numeric
aggregates in combination with logic-based feature construc-
tion for single attributes. Perlich and Provost discuss several
approaches for attribute construction using aggregates over
multi-relational features [18]. The authors also propose a hi-
erarchy of levels of learning: feature vectors, independent at-
tributes on a table, multidimensional aggregation on a table,
and aggregation across tables. Some of these techniques in
their hierarchy could be applied to perform view learning in
SRL.

6 Conclusions and Future Work

We presented a method for statistical relational learning
which integrates learning from attributes, aggregates, and
rules. Our example application shows benefits from the sev-
eral levels of learning we proposed. Level 2, structure learn-
ing, clearly outperforms the expert structure. We further show
that multi-relational techniques can achieve very significant
improvements, even on a single table domain, and that the
most consistent improvement is obtained by using Level 4,
both aggregates and new views.

makes sense to include aggregates in the background knowl-
edge for rule generation. Alternatively, one can extend rules
with aggregation operators, as proposed in recent work by
Vens et al. [27]. We have found the rule selection problem
to be non-trivial. Our greedy algorithm often generates too
similar rules, and is not guaranteed to maximize coverage.
We would like to approach this problem as an optimization
problem weighing coverage, diversity, and accuracy.

Our approach of using ILP to learn new features for an
existing table merely scratches the surface of the potential
for view learning. A more ambitious approach would be to
more closely integrate structure learning and view learning.
A search could be performed in which each “move” in the
search space is either to modify the probabilistic model or to
refine the intensional definition of some field in the new view.
Going further still, one might learn an intensional definition
for an entirely new table. As a concrete example, for mam-
mography one could learn rules defining a binary predicate
that identifies “similar” abnormalities. Because such a predi-
cate would represent a many-to-many relationship among ab-
normalities, a new table would be required.

7 Acknowledgments

Support for this research was partially provided by U.S. Air
Force grant F30602-01-2-0571. Elizabeth Burnside is sup-
ported by a General Electric Research in Radiology Aca-
demic Fellowship. Inés Dutra is on leave from Federal Uni-
versity of Rio de Janeiro, Brazil. Vitor Santos Costa is on
leave from the University of Porto, Portugal and the Federal
University of Rio de Janeiro, Brazil. We would like to thank
Rich Maclin for reading over several drafts of this paper. We
would also like to thank the referees for their insightful com-
ments.

References

[1] M.L. Brown, F. Houn, E.A. Sickles, and L.G. Kessler.
Screening mammography in community practice: pos-
itive predictive value of abnormal findings and yield of

204

follow-up diagnostic procedures. AJR Am J Roentgenol,
165:1373-1377, 1995.

[2] E.S. Burnside, D.L. Rubin, and R.D. Shachter. A
Bayesian network for screening mammography. In
AMIA, pages 106—110, 2000.

[3] E.S. Burnside, D.L. Rubin, and R.D. Shachter. Using
a Bayesian network to predict the probability and type
of breast cancer represented by microcalcifications on
mammography. Medinfo, 2004:13-17, 2004.

[4] V. Santos Costa, D. Page, M. Qazi, and J. Cussens.
CLP(BN): Constraint logic programming for proba-
bilistic knowledge. In UAI-03, pages 517-524, Aca-
pulco, 2003.

[5] J.Cussens. Parameter estimation in stochastic logic pro-
grams. Machine Learning, 44(3):245—-271, 2001.

[6] G. Ecklund. Shortage of qualified breast imagers could
lead to crisis. Diagn Imaging, 22:31-33, 2000.

[71 Nir Friedman, David Geiger, and Moises Goldszmidt.
Bayesian networks classifiers. Machine Learning,
29:131-163, 1997.

[8] Nir Friedman, L. Getoor, D. Koller, and A. Pfeffer.
Learning probabilistic relational models. In Proceed-
ings of the 16th International Joint Conference on Arti-
ficial Intelligence. Stockholm, Sweden, 1999.

[9] Nir Friedman, 1. Nachman, and D. Pe’er. Learning
Bayesian Network Structure from Massive Datasets:
The “Sparse Candidate” Algorithm. In UAI-99, pages
206—215, San Francisco, CA, 1999. Morgan Kaufmann
Publishers.

[10] Dan Geiger. An entropy-based learning algorithm of
Bayesian conditional trees. In UAI-92, pages 92-97,
San Mateo, CA, 1992. Morgan Kaufmann Publishers.

[11] D Heckerman, C Meek, and D Koller. Probabilis-
tic Entity-Relationship Models, PRMs, and Plate Mod-
els, Technical Report MSR-TR-2004-30, Microsoft Re-
search. Technical report, Microsoft Research, 2004.

[12] C.E. Kahn Jr, L.M. Roberts, K.A. Shaffer, and P. Had-
dawy. Construction of a Bayesian network for mammo-
graphic diagnosis of breast cancer. Comput Biol Med.,
27:19-29, 1997.

[13] K. Kersting and L. De Raedt. Basic principles of learn-
ing Bayesian logic programs, 2002.

[14] Aro J. Knobbe, Marc de Haas, and Arno Siebes.
Propositionalisation and aggregates. In PKDDO01, pages
277-288, 2001.

[15] S.H. Muggleton. Inductive Logic Programming. New
Generation Computing, 8:295-318, 1991.

[16] S.H. Muggleton. Learning stochastic logic pro-
grams. Electronic Transactions in Artificial Intelli-
gence, 4(041), 2000.

[17] Jennifer Neville, David Jensen, Lisa Friedland, and
Michael Hay. Learning relational probability trees. In
KDD °’03, pages 625—630. ACM Press, 2003.

[18] Claudia Perlich and Foster Provost. Aggregation-based
feature invention and relational concept classes. In KDD
’03, pages 167-176, 2003.

[19] U. Pompe and I. Kononenko. Naive Bayesian classifier
within ILP-R. In L. De Raedt, editor, ILP95, pages 417—
436, 1995.

[20] Alexandrin Popescul, Lyle H. Ungar, Steve Lawrence,
and David M. Pennock. Statistical relational learning
for document mining. In ICDMO03, pages 275-282,
2003.

[21] R.Ramakrishnanand J. Gehrke. Database Management
Systems. McGraw Hill, 2000.

[22] Matt Richardson and Pedro Domin-
gos. Markov logic networks.
http://www.cs.washington.edu/homes/pedrod/kbmn.pdf;,
2004,

[23] T.Sato. A statistical learning method for logic programs
with distributional semantics. In L. Sterling, editor,
Proceedings of the Twelth International conference on
logic programming, pages 715—729, Cambridge, Mas-
sachusetts, 1995. MIT Press.

[24] E.A. Sickles, D.E. Wolverton, and K.E. Dee. Perfor-
mance parameters for screening and diagnostic mam-
mography: specialist and general radiologists. Radiol-
ogy, 224:861-869, 2002.

[25] A. Srinivasan and R. King. Feature construction with
inductive logic programming: A study of quantitative
predictions of biological activity aided by structural at-
tributes. In ILP97, pages 89—104, 1997.

[26] Ashwin Srinivasan. The Aleph Manual, 2001.

[27] Celine Vens, Anneleen Van Assche, Hendrik Blockeel,
and SaSo DzZeroski. First order random forests with
complex aggregates. In ILP, pages 323—340, 2004.

205

Learning to Extract Genic Interactions Using Gleaner

Mark Goadrich
Louis Oliphant
Jude Shavlik

RICHM@CS.WISC.EDU
OLIPHANTQCS.WISC.EDU
SHAVLIKQCS.WISC.EDU

Department of Biostatistics and Medical Informatics and Department of Computer Sciences, University of
Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706 USA

Abstract

We explore here the application of Gleaner,
an Inductive Logic Programming approach
to learning in highly-skewed domains, to the
Learning Language in Logic 2005 biomedical
information-extraction challenge task. We
create and describe a large number of back-
ground knowledge predicates suited for this
task. We find that Gleaner outperforms stan-
dard Aleph theories with respect to recall and
that additional linguistic background knowl-
edge improves recall.

1. Introduction

Information Extraction (IE) is the process of scan-
ning unstructured text for objects of interest and facts
about these objects. Recently, biomedical journal arti-
cles have been a major source of interest in the IE com-
munity for a number of reasons: the amount of data
available is enormous; the objects, proteins and genes,
do not have standard naming conventions; and there is
interest from biomedical practitioners to quickly find
relevant information (Blaschke et al., 2002, Shatkay &
Feldman, 2003, Eliassi-Rad & Shavlik, 2001, Ray &
Craven, 2001, Bunescu et al., 2004).

IE can be framed as a machine learning task: given
information in unstructured text documents, extract
the relevant objects and relationships between them.
We believe that Inductive Logic Programming (ILP)
is well-suited for IE in biomedical domains. ILP of-
fers the advantages of (1) a straight-forward way to
incorporate domain knowledge and expert advice and
(2) produces logical clauses suitable for analysis and
revision by humans to improve performance.

Appearing in Proceedings of the 4" Learning Language in
Logic Workshop (LLL05), Bonn, Germany, 2005. Copy-
right 2005 by the author(s) /owner(s).

In this article, we report both the data-preparation
techniques and the results of applying Gleaner (Goad-
rich et al., 2004) to the Learning Language in Logic
2005 biomedical information extraction task of learn-
ing genic interactions. Gleaner is a two-stage ILP algo-
rithm that (1) learns a broad spectrum of clauses and
(2) then combines them into a thresholded disjunctive
clause aimed at maximizing precision for a particular
choice of recall. We compare our results to standard
Aleph (Srinivasan, 2003) using recall and precision,
and discuss areas open to future research.

2. Data Preparation

Our dataset for this article is the Learning Language
in Logic challenge task!, where the goal is to learn
to recognize the interaction in English sentences be-
tween protein agents and their gene targets in Bacil-
lus subtilis. Sentences in the training set contained
either a direct reference between an agent and a tar-
get, such as “GerE stimulates cotD transcription,” or
an indirect reference, such as “GerE binds to a site
on one of these promoters, cotX [...],” where the rela-
tion between GerE and cotX is mediated by the phrase
“these promoters.” The organizers call these two sub-
tasks without co-reference and with co-reference and we
chose to learn on them separately, first learning only
relationships without co-reference, and second learn-
ing only relationships with co-reference.

The training data consist of 80 sentences found in the
Medline? database, and contain 106 relations without
co-reference and 59 relations with co-reference. For
each subtask, we used the other trainset as our tune-
set to find an appropriate threshold for making testset
predictions. While they are slightly different tasks, we
found that the benefit of more examples outweighed
dividing the training sets into subfolds.

http://genome.jouy.inra.fr/texte/LLLchallenge/
Zhttp://www.ncbi.nlm.nih.gov /pubmed

206

2.1. Example Filtering

Positive examples for this dataset, consisting of
word/word pairings, have been labeled by the
challenge-task committee, while negative examples
were left up to the participants. We define negative
examples on a per-sentence basis by first finding all
words which participate in a positive relationship. The
pairings among these words which are not labeled as
positives are used as negatives for training and tun-
ing. This produced 414 without co-reference negative
examples and 261 with co-reference negative examples.

The testset was provided to us unlabeled, and con-
tained sentences for both the task with co-reference
and the task without co-reference. Unlike the train-
ing data, the testset also contained sentences which
did not contain any relations. For the testset, we cre-
ated examples from the pairing of all possible protein
and gene names found in a provided dictionary. This
produced 936 total testset examples. In subsequent
experiments, we reduced this to 618 examples by re-
moving testset examples where the agent and target of
the relation were identical (since this never happened
in the trainset). Ultimately there were 54 positive and
410 negative test examples for the without co-reference
task and 29 positive and 384 negative test examples for
the with co-reference task.

2.2. Background Knowledge

To prepare the data for learning via Inductive Logic
Programming, we constructed a variety of background
knowledge from sentence structure, statistical word
frequencies, lexical properties, and biomedical dictio-
naries, examples of which can be seen in Table 1.

Our first set of relations comes from the sentence struc-
ture. We use the Brill tagger (1995) retrained on the
GENIA dataset (Kim et al., 2003) to predict the part
of speech for each word. Then we employ a shallow
parser created by Burr Settles that uses Conditional
Random Fields (Lafferty et al., 2001) trained on a
standard corpus (Sang, 2001) to derive a flat parse
tree, such that there are no nested phrases, for all sen-
tences in our dataset. All phrases have the sentence
as the root, and therefore all words are only members
of one phrase. Figure 1 shows a sample sentence parse
divided into one level of phrases.

Each word, phrase, and sentence is given a unique
identifier based on its ordering within the given ab-
stract, such as ab11011148_senl ph2 wil. This al-
lows us to create relations between sentences, phrases
and words based not on the actual text of the doc-
ument but on its structure, such as sentence_child,

Sentence Fragment

Phrase Type NP VP PP NP
el el .
Part Of Speech N V v P N N N
Text yukD was transcribed by SigK RNA polymerase ...

Figure 1. Sample Sentence Parse
P=preposition, NP=noun phrase,
PP=prepositional phrase)

(N=noun, V=verb,
VP=verb phrase,

phrase_previous and word next about the tree struc-
ture and sequence of words, and predicates like
nounPhrase, article, and verb to describe the part
of speech structure. To include the actual text of
the sentence in our background knowledge, the predi-
cate word_ID_to_string maps these identifiers to the
words. In addition, the words of the sentence are
stemmed using the Porter stemmer (Porter, 1980), and
currently we only use the stemmed version of words.

General sentence-structure predicates like
word before and phrase_after are added, al-
lowing navigation around the parse tree. Phrases are
also tagged as being the first or last phrase in the
sentence, likewise for words. The length of phrases is
calculated and explicitly turned into a predicate, as
well as the length (by words and phrases) of sentences.
Also, phrases are classified as short, medium or long.
An additional piece of useful information is the
predicate different phrases, which is true when its
two arguments are distinct phrases.

Another group of background relations comes from
looking at the frequency of words appearing in the
target phrases in the training set. We believe these
frequently occurring words could be indicators of some
underlying semantic class and will be helpful for iden-
tifying correct phrases in the testset. We created
Boolean predicates for several ratios - 2 times, 5 times
and 10 times the general word frequency across all sen-
tences in a given training set - using the following for-
mula to determine which words matched which ratios:

P(w; = word|w; € Target Phrase)
P(w; = word|w; ¢ Target Phrase)

For example, the words “depend,” “bind,” and “pro-
tein” are at least 5 times more likely to appear in pro-
tein phrases than in phrases in general in the without
co-reference training set. These gradations are cal-
culated for both target arguments, protein and gene.
We automatically create semantic classes consisting of
these high frequency words. These semantic classes are
then used to mark up all occurrences of these words in
a given training and testing set.

A third source of background knowledge is de-

207

cameras
Text Box

Table 1. Translation from Sample Sentence “ykuD was transcribed by SigK RNA polymerase from T4 of sporulation,” to
Prolog. This sentence is from the abstract whose PubMed ID is 11011148. Not all predicates created are listed.

Background Some of the Prolog Predicates Created
Knowledge
Sentence sentence(ab11011148 sen4) .
Structure phrase(ab11011148_sen4 phO0) .

phrase(ab11011148_sen4 phl).

word(ab11011148_sen4_ph0_w0) .

word(ab11011148_send4 phl wl).

word(ab11011148_send phl w2) .
phrase_child(ab11011148 _send4 phO, ab11011148_send4 phO0 w0) .
word next(ab11011148 send4 phO w0, ab11011148_send phO_wl).
word_ID_to_string(ab11011148 send4 phl wl, ‘ykuD’).
target_arg2 before_target_argl(ab11011148 send).

Part Of Speech

np_segment (ab11011148 sen4 phO0) .
vp_segment (ab11011148_sen4 phl).
n(ab11011148_sen4 ph0_w0) .
v(ab11011148 sen4 phl wl).
prep(ab11011148_send phl w3).

Medical Ontologies

phrase_contains mesh term(ab11011148 sen4 ph3, ‘RNA’).

Lexical Properties

phrase_contains_alphanumeric word(ab11011148 _send ph5).
phrase_contains_specific word(ab11011148 sen4 phl, ‘transcribed’).
phrase_contains originally leading cap(ab11011148 sen4 ph3).

Word Frequency

phrase_contains_some_arg 2x word(ab11011148 sen4 ph3).

rived from the lexical properties of each word.
Alphanumeric words contain both numbers and alpha-
betic characters, (such as “sigma 32” and “Spo0A~P”)
whereas alphabetic words have only alphabetic char-
acters. Other lexical and morphological features in-
clude singleChar (“a”), hyphenated (“membrane-
bound”) and capitalized (“RNA”). Also, words are
classified as novelWord (“sporulation”) if they do not
appear in the standard /usr/dict/words dictionary
in UNIX. Lexical predicates are then augmented to
make them more applicable to the phrase level and
therefore more general. These predicates are also cre-
ated for pairs and triplets of words, so we can assert
that a phrase has the word “bind” tagged as a verb all
in one step when we search the hypothesis space.

For our fourth source, we incorporate semantic knowl-
edge about biology and medicine into our back-
ground relations by using the Medical Subject Head-
ings (MeSH)?. As we did for the sentence struc-
ture, we have simplified this hierarchy to only be
one level. Phrases are labeled with the predicate
phrase_contains mesh_term if any of the words in the
given phrase match any words in MeSH.

3http://www.nlm.nih.gov/mesh/meshhome.html

Additionally, predicates are added to de-
note the ordering between the phrases.
Target_argl before_target_arg2 asserts that
the protein phrase occurs before the gene phrase,
similarly for target_arg2 before target_argl. Also
created are identical target args (which is true
when the protein and gene phrases are the same
phrase, such as the phrase “sigmaB dependent katX
expression”) and adjacent_target_args (which says
the adjacent phrases contains both the gene and
protein), as well as the count of phrases before and
after the target arguments. Overall, we defined 215
predicates for use in describing the training examples.

2.3. Enriched Data

Background knowledge was also provided by the chal-
lenge task organizers. They processed the corpus with
Link Parser (Temperly et al., 1999), a tool for auto-
matically constructing a syntactic parse tree, and re-
fined the output to create two type of additional infor-
mation. First, each word was assigned its root word,
called a lemma. For instance, the word “are” would
have the lemma “be.” The second type of informa-
tion was the syntactic relations between words. This
included appositive, complement, modifier, negation,

208

cameras
Text Box

Table 2. Pseudo-code for Gleaner Algorithm

Initialize Bins:
Create B recall bins, bin% , bin%, .., bing,
to uniformly divide the recall range [0,1]

Populate Bins:

For i =1 to K until N clauses are generated
Pick seed example to find bottom clause
Use Rapid Random Restart to find clauses
After each generation of a new clause ¢

Find the recall bin, for ¢ on the trainset
If the precision x recall of c is best yet
Replace c in bin, ;

Determine Bin Threshold:
For each bin;
Find highest precision theory m and L,, € [1, K]
on trainset such that
recall of “At least L of K clauses match
examples” ~ recall for bin;

Evaluate On Testset:
Find precision and recall of testset using each
bin’s “at least L of K” decision process

object and subject relations about the sentence gram-
mar, as well as predicted parts of speech for each word
in a relationship, for a total of 27 possible relations.
For example, in the sentence “ykuD was transcribed by
SigK RNA polymerase from T4 of sporulation,” Link
Parser reports that the noun ‘yukD’ is the subject of
the verb ‘transcribed’, ‘polymerase’ and ‘T4’ are com-
plements of ‘transcribed’, and ‘RNA’ and ‘SigK’ are
modifiers of ‘polymerase’.

We chose to ignore the lemma information, since we
previously incorporated the stem of each word, and
only focused on the 27 syntactic information predi-
cates. We compare the inclusion versus exclusion of
this enriched background information in our results.

3. Gleaner

Gleaner (Goadrich et al., 2004) is a randomized search
method which collects good clauses from a broad spec-
trum of points along the recall dimension in recall-
precision curves and employs an “at least N of these
M clauses” thresholding method to combine sets of se-
lected clauses. Pseudo-code for our algorithm appears
in Table 2.

Gleaner uses Aleph (Srinivasan, 2003) as its underlying
engine for generating clauses. As input, Aleph takes

[]
0.9 .,. L)
.
08{ e e ",
i '. o oo [
071 o ..
c . * o.
Qo6 "t .l @
»n o o o o L]
'S 051° ° o
o - R A
Q@ 4]l ¢ ¢ e L L0 00
o * . o’ o .
0sl ¢ ° . STt e
’ e °° «” . .)
* . o e oo « @ ®.0 @
0.2 . . e . .)
o o’ '. ®e o %0 oo © L'. ®
. .
0.1 A P '.' R
. . .
0.0 : : :
0.0 0.2 0.4 0.6 08 1.0
Recall

Figure 2. A sample run of Gleaner for one seed and 20 bins,
showing each considered clause as a small circle, and the
chosen clause per bin as a large circle. This is repeated
for 100 seeds to gather 2,000 clauses (assuming a clause is
found that falls into each bin for each seed).

background information in the form of either inten-
sional or extensional predicates, a list of modes declar-
ing how these predicates can be chained together, and
a designation of one predicate as the “head” predicate
to be learned. At a high-level overview, Aleph sequen-
tially generates clauses for the positive examples by
picking a random example to be a seed. This exam-
ple is then saturated to create the bottom clause, i.e.
every relation in the background knowledge that can
be connected by relations to this example in a fixed
number of steps. The bottom clause determines the
possible search space for clauses. Aleph heuristically
searches through the space of possible clauses until the
“best” clause is found or time runs out. When enough
clauses are learned to cover (almost) all of the positive
training examples, the learned clauses are combined
to form a theory. In our experiments, we will compare
Gleaner to standard Aleph theories.

After initialization, the first stage of Gleaner learns a
wide spectrum of clauses, as illustrated in Figure 2.
We search for clauses using 100 random seed examples
to encourage diversity. In our experiments, the recall
dimension is uniformly divided into 20 equal sized bins,
[0,0.05],[0.05,0.10],...,[0.95,1.00]. For each seed, we
consider up to 25,000 possible clauses using Rapid
Random Restart (Zelezny et al., 2003). As these
clauses are generated, we compute the recall of each
clause and determine into which bin the clause falls.
Each bin keeps track of the best clause appearing in its
bin for the current seed. We use the heuristic function
precision X recall to determine the best clause. At the
end of this search process, there will be 20 clauses col-
lected for each seed and 100 seed examples for a total
of 2,000 clauses (assuming a clause is found that falls

209

cameras
Text Box

into each bin for each seed).

The second stage (modified slighly from (Goadrich
et al., 2004)) takes place once all our clauses have been
gathered using random search. Gleaner combines the
clauses in each bin to create one large thresholded dis-
junctive clause per bin, of the form “At least L of these
K clauses must cover an example in order to classify
it as a positive.” Each of these theories could generate
their own recall-precision curves, by exploring all pos-
sible values for L on the tuneset, starting with L = K
and incrementally lowering the threshold to increase
recall. These 20 curves will overlap in their recall and
precision results, and we choose the theory which cre-
ated the highest points along this combined curve on
the tuneset, irrespective of the bin which generated the
points. We will end up with 20 recall-precision points,
one for each bin, that span the recall-precision curve.

A unique aspect of Gleaner is that each point in the
recall-precision curve could be generated by a separate
theory, instead of the usual setup to create a curve,
where one hypothesis is transformed into many by
ranking the examples and then finding different thresh-
olds of classification. This separate-theory method is
related to using the ROC convex hull created from sep-
arate classifiers (Fawcett, 2003). We believe using sep-
arate theories is a strength of our Gleaner approach,
such that each theory, and therefore each point on our
curves, is not hindered by the mistakes of previous
points; each theory is totally independent of the oth-
ers.

An end-user of Gleaner will be able to choose their pre-
ferred operating point from this recall-precision curve.
Our algorithm will then be used to generate testset
classifications using the closest bin to their desired re-
call results by using our found threshold L.

4. Results

There were two dimensions on which to vary our train-
ing methods, learning on data containing co-references
or on data without co-references, and including the
provided linguistic information (enriched) or using
only the basic data. Tables 3 and 4 show the results of
Gleaner on the testset data for all four combinations,
using the restriction that the same word cannot be
both agent and target in a relation*. A sample clause
learned by Aleph can be found in Table 5. This clause
has focused on the common property that agents are
before targets, agents are nouns with internal capital

4For our challenge-task submission, we used all 936 pos-
sible test examples. Using the non-identical restriction re-
sulted in a small increase in our precision results.

Table 3. Results of Gleaner, Aleph theory, and baseline
all-positive prediction on LLL challenge task without co-
reference.

ALG ENRICHED F1 RECALL PRECISION
GLEANER - 41.7 79.6 28.3
V4 25.1 79.6 14.9
ALEPH 1K - 50.0 62.9 40.6
31.0 59.2 21.0
ALEPH 25K - 30.7 44.4 23.5
V4 26.1 42.5 18.8
ALL Pos N/A 20.1 100.0 11.2

Table 4. Results of Gleaner, Aleph theory, and baseline
all-positive prediction on LLL challenge task with co-
reference.

ALG ENRICHED F1 RECALL PRECISION
GLEANER - 17.7 79.3 10.0
v 18.5 82.7 10.4
ALEPH 1K - 31.6 51.7 22.7
vV 19.3 37.9 13.0
ALEPH 25K - 19.9 20.6 19.3
vV 19.1 24.1 15.9
ALL Pos N/A 12.5 100.0 6.7

letters and are complements of nouns which comple-
ment verbs, while targets are in noun phrases without
negatively correlated words in the training set.

We chose our preferred operating point by choosing
the bin with the highest F'1 measure on the tuning set;
these were bin [0.55, 0.60] on the basic dataset without
co-reference, [0.65, 0.70] on the enriched dataset with-
out co-reference and bin [0.90, 0.95] on the dataset
with co-reference. With the enriched data, similar
recall points can still be achieved, however there is
a marked decrease in precision for the without co-
reference dataset. We plan to explore the use of the
enriched data from Link Parser (Temperly et al., 1999)
in our future work on this and other information-
extraction datasets.

We also show a comparison of Gleaner to two other
algorithms. First, we examine the results of a single
Aleph theory learned for each training set combina-
tion. We restrict each clause learned to have a min-

210

cameras
Text Box

Table 5. Sample Clause with 20% Recall and 94% Precision on Without Co-reference Training Set

agent_target(A,T,S) :-
n(A),
complement_of N_N(G,A),
word _parent(A,F),
word_parent(T,E),

isa_np_segment(E),

complement_by_V_PASS_N(G,_),
phrase_contains_some_internal_cap_word(F,_JA),
phrase_contains_no_arg_halfX_word(E,arg2,),
target_argl_before_target_arg2(A,T).

where the variable A is the agent, T is the target, S is the sentence,
and ‘.’ indicates variables that only appear once in the clause.

1.0
0.9
0.8
0.7

Gleaner Basic
0.6 L

057 Aleph Basic 1K
- Aleph Basic

A

- . Gleaner Enriched
r

~

0.4

Precision

03 . Al_e[_yh-Enrlched 1

Yoo, * s

- - u
~ <

N \\\/\
Aleph Basic 25K " " = < ¥a

0.2

[
o Aleph Enriched 25K 7

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

Figure 3. Recall-Precision Curves for Gleaner and Aleph
on the dataset without co-reference.

imum precision of 75.0 and to cover a minimum of 5
positives in the training set. We also consider a maxi-
mum of both 1,000 and 25,000 clauses for each “best”
clause in a theory. With the basic data, we see Aleph
improves in precision, however recall is much lower
that our results with Gleaner. We also notice a large
drop in precision and recall between 1,000 clauses and
25,000 clauses, which we attribute to overfitting. Sec-
ond, we compare to the algorithm of calling every ex-
ample positive, which guarantees us 100% recall, and
notice that Gleaner has an increase in precision over
this baseline in both datasets.

Figure 3 shows recall-precision curves for Gleaner and
recall-precision points for the Aleph theories on the
dataset without co-reference, while Figure 4 shows
results on the dataset with co-reference. Gleaner is
able to span the whole recall-precision dimension, al-
though with less than stellar results on the without

0.9 -

0.8 -

0.7

0.6

0.5 -

0.4

Precision

Gleaner Basic
/Aleph Enriched 1K
¢ o< Aleph Enriched 25K

0.3 .
A‘/Aleph Basic 1K

0.2

0.1 4 - 0
------ -

Aleph Basic 25K

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

Gleaner Enriched

Figure 4. Recall-Precision Curves for Gleaner and Aleph
on the dataset with co-reference.

co-reference dataset.. Gleaner seemed to suffer by not
distinguishing well between the agent and target; when
genic_interaction(A,B) was predicted, most often we
also predicted genic_interaction(B,A), keeping the pre-
cision lower than 50%. Another cause of our low re-
sults could be the fact that sentences with genes and
proteins but no relationships between them were not
included in the training sets, but made up almost half
of the testing set. This lack of negative sentences in the
training sets hampered our ability to distinguish be-
tween good and bad sentences when learning clauses.
Also, the size of the LLL challenge task was small
in comparison to our previous work (Goadrich et al.,
2004), creating the possibility of overfitting. Partic-
ularly affected were the enriched linguistic predicates
and the statistical predicates, which focused on irrel-
evant words (e.g. specific gene and protein words like
“sigma A” and “gerE”). Although collecting labeled

211

cameras
Text Box

data for biomedical information extraction can be ex-
pensive, we believe the benefits are worth the cost.

5. Conclusions

This paper has explored two Inductive Logic Program-
ming approaches to biomedical information extrac-
tion: Aleph, which learns many high-precision clauses
that cover the training set, and Gleaner, which learns
clauses from a wide spectrum of recall points and com-
bines them to create broad thresholded theories. We
developed a large number of background knowledge
predicates which try to capture both the structure and
semantics of biomedical text, and we evaluated these

two algorithms on the Learning Language in Logic
2005 Challenge Task.

We believe there is much work remaining in the combi-
nation of ILP and biomedical information extraction.
The logical structure of sentence parses as well as the
biological semantic class information can be readily
included in an ILP approach. This genic-interaction
dataset was particularly interesting since neither the
agent entity nor the target entity was a closed set, and
there could be crossover between them. Also worth
noting was the difference between the training set and
testing set with respect to negative examples. We plan
to further explore the issues which arose from using
this dataset and perform cross-validation experiments
to test for statistical significance of our results and to
include negative sentences in the training set.

6. Acknowledgements

We gratefully acknowledge the funding from USA
NLM Grant 5T15LMO007359-02, USA NLM Grant
1R01LMO07050-01, USA DARPA Grant F30602-01-2-
0571, and USA Air Force Grant F30602-01-2-0571.
Thanks to Burr Settles for help with parsing and tag-
ging the sentences.

References

Blaschke, C., Hirschman, L., & Valencia, A. (2002).
Information Extraction in Molecular Biology. Brief-
ings in Bioinformatics, 3, 154-165.

Brill, E. (1995). Transformation-Based Error-Driven
Learning and Natural Language Processing: A Case
Study in Part of Speech Tagging. Computational
Linguistics.

Bunescu, R., Ge, R., Kate, R., Marcotte, E., Mooney,
R., Ramani, A., & Wong, Y. (2004). Comparative
Experiments on Learning Information Extractors for

Proteins and their Interactions. Journal of Artificial
Intelligence in Medicine, 139—-155.

Eliassi-Rad, T., & Shavlik, J. (2001). A Theory-
Refinement Approach to Information Extraction.
Proceedings of the 18th International Conference on
Machine Learning.

Fawcett, T. (2003). ROC Graphs: Notes and Practical
Considerations for Researchers (Technical Report).
HP Labs HPL-2003-4.

Goadrich, M., Oliphant, L., & Shavlik, J. (2004).
Learning Ensembles of First-Order Clauses for
Recall-Precision Curves: A Case Study in Biomedi-
cal Information Extraction. Proceedings of the 14th
International Conference on Inductive Logic Pro-
gramming (ILP). Porto, Portugal.

Kim, J.-D., Ohta, T., Teteisi, Y., & Tsujii, J. (2003).
GENTA corpus - a semantically annotated corpus for
bio-textmining. Bioinformatics, 19.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. Proc. 18th In-
ternational Conf. on Machine Learning (pp. 282—
289). Morgan Kaufmann, San Francisco, CA.

Porter, M. (1980). An Algorithm for Suffix Stripping.
Program, 14, 130-137.

Ray, S., & Craven, M. (2001). Representing Sentence
Structure in Hidden Markov Models for Information
Extraction. Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI).

Sang, E. F. T. K. (2001). Transforming a Chunker
into a Parser. Linguistics in the Netherlands.

Shatkay, H., & Feldman, R. (2003). Mining the
Biomedical Literature in the Genomic Era: An
Overview. Journal of Computational Biology, 10,
821-55.

Srinivasan, A. (2003). The Aleph Manual Version 4.
http://web.comlab.oz.ac.uk/ oucl/ research/ areas/
machlearn/ Aleph/.

Temperly, D., Sleator, D., & Lafferty, J. (1999).
An introduction to the Link Grammar Parser.
hitp:/ /www.link.cs.wisc.edu/link/.

Zelezny, F., Srinivasan, A., & Page, D. (2003). Lattice-
Search Runtime Distributions may be Heavy-Tailed.
Proceedings of the 12th International Conference on
Inductive Logic Programming 2002 (pp. 333-345).
Springer Verlag.

212

cameras
Text Box

	Anken.pdf
	Abstract
	Table of Contents
	Part2.pdf
	Section 1: Executive Summary
	
	Section 2: Technical Summary
	Section 3: List of Publications
	Section 4: Appendix -- Published Papers

