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Abstract

In November 2004, the Society of Automotive Engineers (SAE) released the aerospace
standard AS5506, named the Architecture Analysis & Design Language (AADL). The AADL
is a modeling language that supports early and repeated analyses of a system’s architecture
with respect to performance-critical properties through an extendable notation, a tool
framework, and precisely defined semantics.

The language employs formal modeling concepts for the description and analysis of
application system architectures in terms of distinct components and their interactions. It
includes abstractions of software, computational hardware, and system components for (a)
specifying and analyzing real-time embedded and high dependability systems, complex
systems of systems, and specialized performance capability systems and (b) mapping of
software onto computational hardware elements.

The AADL is especially effective for model-based analysis and specification of complex real-
time embedded systems. This technical note is an introduction to the concepts, language
structure, and application of the AADL.

CMU/SEI-2006-TN-011 Xi
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Section 1: Introduction

1 Introduction

This document, Part 1 of a use guide for the Architecture Analysis & Design Language
(AADL), provides an introduction to the language and AADL specifications.” The AADL is
defined in the Society of Automotive Engineers (SAE) standard AS5506.°

1.1 Document Summary

Readers who are unfamiliar with the AADL will be able to gain a fuller understanding of the
purpose, capabilities, notation, and elements of this modeling language. Table 1-1
summarizes the content in this document.

Table 1-1: Summary of Content in this Document

Section
Number Content Summary
Section 2 summarizes the AADL language and introduces the AADL as a
2 framework for the design and analysis of the architectures of component-based

systems.

Section 3 provides a foundation for more detailed and problem-oriented

3 material in other sections of the document. This section also presents a
conceptual overview of the AADL abstractions; subsequent sections supply
details on the syntax and semantics of various language constructs.

Section 4 focuses on an AADL textual (natural language) specification as a
human-readable set of representations that consists of a collection of textual
4 declarations that comply with the AADL standard [SAE 06a]. The graphical
representations associated with the textual declarations are also included
throughout this document to highlight the relationship between the
representations.

Section 5 presents the software component abstractions (process, thread,
5 thread group data, and subprogram) and provides example declarations for
these components.

Section 6 provides the execution platform component abstractions (processor,

6 memory, bus, and device) and provides example declarations for these
components.
7 Section 7 discusses the system abstraction and presents examples of the

specification of composite systems and their instances.

The use guide for the AADL will be published initially as a series of technical notes.

For more information on the development, ongoing applications, and future plans of the AADL, go
to http://lwww.aadl.info. To purchase a copy of the standard, go to http://www.sae.org/servlets
/productDetail?PROD_TYP=STD&PROD_CD=AS5506.

CMU/SEI-2006-TN-011 1




Section 1: Introduction

Table 1. Summary of Content in this Document (cont.)

Section

Number Content Summary

Section 8 describes the abstractions that support the specification of
8 component interactions. Examples of the specification of component interfaces
and their interconnections are presented.

Section 9 presents the specification of alternative operational states of a

9 system. Modes mode transitions, and examples of their specification are
described.

10 Section 10 describes the use of the AADL flows concept and presents
examples of the specification of abstract flows throughout a system.

11 Section 11 discusses property constructs and presents examples of property
type and name definitions, property set declarations, and property associations.

12 Section 12 describes the constructs for organizing an AADL specification. It

includes examples of AADL architectural pattern sets.

The Appendix (pages 117-125) provides tabular summaries of the features, components, and
built-in properties of the language.

1.2 Reader’s Guide to Technical Interests

Readers familiar with the AADL standard document will be able to take advantage of the
detailed descriptions and examples (in textual and graphical forms) shown in the technical
interest areas that are correlated with sections in this document in Table 1-2.

Table 1-2: Technical Interests and Relevant Sections in this Document

Section Numbers Technical Considerations

5.4,55,8.3.1,8.3.2, 8.4, Modeling Application Software—These sections address data
and 8.5 and subprogram components and their interactions (e.g., calls
and component access.

5.1,5.2,5.3,8.1, 8.2, Execution Tasking and Concurrency—These sections present
8.3.1,8.3.2,and 8.4.2 relevant aspects of runtime interaction, coordination, and timing
associated with multiple execution paths.

6, 7, and 8.3.3 System Instances and Binding Software to Hardware
Components—These sections discuss issues and capabilities in
defining a complete instance of a system architecture.

11 Properties of Model Elements—This section discusses assigning
values to properties and defining new properties within an AADL
model.
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Table 1-2: Technical Interests and Relevant Sections in this Document (cont.)

Section Numbers

Technical Considerations

9and 11.2

Partitioning Runtime Configurations—These sections present the
structuring of alternative architectural configurations for a system.

10, 11.3,11.4, and 11.5

Analysis Abstractions—These sections discuss capabilities that
facilitate analysis of a system architecture.

1.3 Conventions Used in this Document

The textual and graphical illustrations used in this technical note reflect the styles used in the
AADL standard document [SAE 06a], except where noted. In addition, for consistency and
clarification in this document, we have represented AADL core language concepts and key
specification elements the same way (i.e., using the same type style and format) in textual
examples and explanatory text (in sections 4 through 12). Also, we have used the AADL icon
(‘.'2\-) to indicate a different semantics than that represented by a similar graphical symbol in
the Unified Modeling Language (UML).
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2 SAE AADL Overview

The SAE AADL standard provides formal modeling concepts for the description and analysis
of application systems architecture in terms of distinct components and their interactions. The
AADL includes software, hardware, and system component abstractions to

o specify and analyze real-time embedded systems, complex systems of systems, and
specialized performance capability systems

e map software onto computational hardware elements

The AADL is especially effective for model-based analysis and specification of complex real-
time embedded systems.

2.1 Abstraction of Components

Within the AADL, a component is characterized by its identity (a unique name and runtime
essence), possible interfaces with other components, distinguishing properties (critical
characteristics of a component within its architectural context), and subcomponents and their
interactions.

In addition to interfaces and internal structural elements, other abstractions can be defined for
a component and system architecture. For example, abstract flows of information or control
can be identified, associated with specific components and interconnections, and analyzed.
These additional elements can be included through core AADL language capabilities (e.g.
defining new component properties) or the specification of a supplemental annex language.®

The component abstractions of the AADL are separated into three categories:

1. application software

a. thread: active component that can execute concurrently and be organized into
thread groups

b. thread group: component abstraction for logically organizing thread, data, and
thread group components within a process

c. process: protected address space whose boundaries are enforced at runtime
d. data: data types and static data in source text

e. subprogram: concepts such as call-return and calls-on methods (modeled using a
subprogram component that represents a callable piece of source code)

®  Annex libraries enable a designer to extend the language and customize an AADL specification to

meet project- or domain-specific requirements. An annex document is an approved extension to the
core AADL standard. [SAE 06a].
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2. execution platform (hardware)
a. processor: schedules and executes threads
b. memory: stores code and data

c. device: represents sensors, actuators, or other components that interface with the
external environment

d. bus: interconnects processors, memory, and devices
3. composite

a. system: design elements that enable the integration of other components into
distinct units within the architecture

System components are composites that can consist of other systems as well as of software or
hardware components.

The AADL standard includes runtime semantics for mechanisms of exchange and control of
data, including

e message passing

e event passing

e synchronized access to shared components

o thread scheduling protocols

e timing requirements

e remote procedure calls

In addition, dynamic reconfiguration of runtime architectures can be specified using
operational modes and mode transitions.

2.2 Architectural Analysis

The AADL can be used to model and analyze systems already in use and design and integrate
new systems. The AADL can be used in the analysis of partially defined architectural patterns
(with limited architectural detail) as well as in full-scale analysis of a complete system model
extracted from the source code (with completely quantified system property values).

AADL supports the early prediction and analysis of critical system qualities—such as
performance, schedulability, and reliability. For example, in specifying and analyzing
schedulability, AADL-supported thread components include the predeclared* execution
property options of periodic, aperiodic (event-driven), background (dispatched once and
executed to completion), and sporadic (paced by an upper rate bound) events. These thread
characteristics are defined as part of the thread declaration and can be readily analyzed.

* There is a standard predeclared property set named AADL_Pr opert i es that is part of every

AADL specification [SAE 06a].
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Within the core language, property sets can be declared that include new properties for
components and other modeling elements (e.g. ports and connections). By utilizing the
extension capabilities of the language, too, additional models and properties can be included.
For example, a reliability annex can be used that defines reliability models and properties of
components facilitating a Markov or fault tree analysis of the architecture [SAE 06b]. This
analysis would assess an architecture’s compliance with specific reliability requirements.

Collectively, these AADL properties and extensions can be used to incorporate new and
focused analyses at the architectural design level. These analyses facilitate tradeoff
assessments among alternative design options early in a development or upgrade process.

AADL components interact exclusively through defined interfaces. A component interface
consists of directional flow through

e (data ports for unqueued state data

e event data ports for queued message data
e event ports for asynchronous events

e synchronous subprogram calls

o explicit access to data components

Interactions among components are specified explicitly. For example, data communication
among components is specified through connection declarations. These can be midframe
(immediate) communication or phase-delayed (delayed) communication. The semantics of
these connections assures deterministic transfer of data streams. Deterministic transfer means
that a thread always receives data with the same time delay; if the receiving thread is over- or
under-sampling the data stream, it always does so at a constant rate.

Application components have properties that specify timing requirements such as period,
worst-case execution time, deadlines, space requirements, arrival rates, and characteristics of
data and event streams. In addition, properties identify the following:

e source code and data that implement the application component being modeled in the
AADL

e constraints for binding threads to processors, source code, and data onto memory
The constraints can limit binding to specific processor or memory types (e.g., to a processor

with DSP support) as well as prevent colocation of application components to support fault
tolerance [Feiler 04].
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3 AADL Language Abstractions

The core language concepts and key specification elements of AADL are summarized in
Figure 3-1. In AADL, components are defined through type and implementation
declarations. A Component Type declaration defines a component’s interface elements and
externally observable attributes (i.e., features that are interaction points with other
components, flow specifications, and internal property values). A Component
Implementation declaration defines a component’s internal structure in terms of
subcomponents, subcomponent connections, subprogram call sequences, modes,
Flow implementations, and properties. Components are grouped into application
software, execution platform, and composite categories. Packages enable the organization of
AADL elements into named groups. Property Sets and Annex Libraries enable a designer to
extend the language and customize an AADL specification to meet project- or domain-
specific requirements.”

Component Type PP ! «subprogram
. s T T = ethread
identifier : : ! .thread grou
« extends {component_type} H * ports H H rocesg p
+featureSsanannnnnnnnnnnnnsfaennnnnPt oacgess : i_tprocess i
- flows ; * subprogram : ~memory
- properties Rl . ; : - device
i e processor
£ l ~ ~—y :
-, ~o
' ~o -
..... ~N o
- ~ Package
) N public
Component implementation —_— e — e e
Property Set identifier private
property types « extends {component implementation} - declarations
property definitions erefinestype B rieesssssenes
BOMSES * subcomponents 1 eport
econnectionSsssssssssnsns [ ..>E . access
« call sequences i e+ parameter ;
modesana,,. ) Eeeeeee Annex
flows e, Library
_ e, peessss
properties Taaay ! v modes i
i +mode transitions :
Legend more details < references 4 implements

Figure 3-1:  Summary of AADL Elements

®  Annex libraries enable a designer to extend the language and customize an AADL specification to

meet project- or domain-specific requirements. An annex document is an approved extension to the
core AADL standard.
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3.1 Components

Components form the central modeling vocabulary for the AADL. Components are assigned
a unique identity (name) and are declared as a type and implementation within a
particular component category. A component category defines the runtime essence of a
component. There are three distinct sets of component categories:
1. application software

a. thread: a schedulable unit of concurrent execution

b. thread group: a compositional unit for organizing threads

C. process: a protected address space

d. data: data types and static data in source text

e. subprogram: callable sequentially executable code
2. execution platform

a. processor: components that execute threads

b. memory: components that store data and code

c. device: components that interface with and represent the external environment

d. bus: components that provide access among execution platform components
3. composite

a. system: a composite of software, execution platform, or system components

Each of the component categories is discussed in separate sections of this document. The
syntax and semantics of declarations in an AADL specification are discussed in Section 4.1.

3.2 Component Types

An AADL component type declaration establishes a component’s externally visible
characteristics. For example, a declaration specifies the interfaces of a thread component.
A component type declaration consists of a defining clause and descriptive subclauses; Figure
3-2 shows a type declaration of a thread. Features are the interfaces of the component.
Flows specify distinct abstract channels of information transfer. Properties define
intrinsic characteristics of a component. There are predefined properties for each
component category (e.g., the execution time for a thread).

* thread <name>
»  extends

* features

«  flows

:  properties

Figure 3-2:  Subclauses of a Type Declaration
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The extends subclause enables one component type declaration to build upon another. A
component declared as an extension inherits the characteristics of the original component
(i.e., it is a subclass of the original). Within a component declared as an extension of another
type, interfaces, flows, and properties can be added; partially declared elements of the
antecedent component type can be detailed; and properties can be modified (refined). These
qualities permit the modeling of variations in the interfaces of a family of related
components.

3.3 Component Implementations

A component implementation specifies an internal structure in terms of
subcomponents, interactions (cal I's and connections) among the features of
those subcomponents, Flows across a sequence of subcomponents, modes that
represent operational states, and properties.

The subclauses of an implementation declaration are summarized in Figure 3-3. The
subcomponents, connections, and cal I's declarations specify the composition of a
component as a collection of components (subcomponents) and their interactions. Flows
represent implementations of flow specifications in the component type or end-to-end flows
to be analyzed (i.e., flows that start in one subcomponent, go through zero or more
subcomponents, and end in another subcomponent). Modes represent alternative operational
modes that may manifest themselves as alternate configurations of subcomponents,

cal Is sequences, connections, Flow sequences, and properties. Properties
define intrinsic characteristics of a component. There are predefined properties for each
component implementation.

thread implementation <typeidentifier>.<implementationidentifier>
extends
refines type
subcomponents
calls
connections
flows
modes
properties

Figure 3-3:  Subclauses of an Implementation Declaration

Multiple implementations of a component type can be declared, allowing multiple variants
with the same external interfaces to be modeled because each implementation provides
a realization of a component that satisfies the same interface specified by the component
type. In addition, a component implementation may extend and refine other previously
declared component implementations. Extended implementations (declared with the
extends subclause) inherit the characteristics of the original component
implementation and all of its predecessors. Refinement allows partially specified
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component implementations (templates) to be completed, while extension allows a
component implementation to be expressed as variation of a common component
description through additions. In addition, an extends implementation declaration can
add property values to the Features of its corresponding type. These additions can be
made through the refines type subclause.

Component decomposition is defined through subcomponents declarations within
component imp lementation declarations. A subcomponent represents the decomposition
element and the classifier (named implementation) represents a choice in a family.
A component instance is created by instantiating a component implementation and each
of its subcomponents recursively.

3.4 Packages, Property Sets, and Annexes

AADL packages permit collections of component declarations to be organized into separate
units with their own namespaces. Elements with common characteristics (e.qg., all
components associated with network communications) can be grouped together in a
package and referenced using the package name. Packages can support the independent
development of AADL models for different subsystems of a large-scale system by
providing a distinct namespace for each group of subsystem elements.

A property set is a named grouping of property declarations that define new
properties and property types that can be included in a specification. For example, a
security property set can include definitions for security levels required in a database
system. These properties are referenced using the property set name and can be
associated with components and other modeling elements (e.g., ports or connections) within a
system specification. Their declaration and use become part of the specification.

An annex enables a user to extend the AADL language, allowing the incorporation of
specialized notations within a standard AADL model. For example, a formal language that
enables an analysis of a critical aspect of a system (e.g., reliability analysis, security, or
behavior) can be included within an AADL specification.®

Each of these elements is described in more detail in other sections of this document.

®  Annex libraries enable a designer to extend the language and customize an AADL specification to

meet project- or domain-specific requirements. An annex document is an approved extension to the
core AADL standard.
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4 AADL System Models and Specifications

An AADL system model describes the architecture and runtime environment of an
application system in terms of its constituent software and execution platform (hardware)
components and their interactions. An AADL model is captured in a specification consisting
of syntactically and semantically correct AADL declarations. A complete AADL system
model includes all of the declarations required to instantiate a runtime instance of an
application system that the specification represents (e.g., an aircraft’s flight control system).

From a user perspective, an AADL specification and its constituent declarations can be
expressed textually, graphically, in a combination of those representations, or as Extensible
Markup Language (XML). The AADL textual and graphical notations are defined by the
SAE AADL standard and its extensions [SAE 06a]. The XML form is defined in Extensible
Markup Language (XML) 1.0 (Third Edition) [W3C 04]. Figure 4-1 summarizes the
alternative representations of an AADL specification, showing sample textual, graphical, and
XML representations.

AADL Textual

thread data_processing

AADL Graphical

= - = -

features p |
raw_speed_in: in data port; _
speed_out: out data port; -’ data_processing =
Properties I
Period => 20 ms; I o o -

end data_processing;

XML

<threadType name="data_processing">
<features>
<dataPort name="raw_speed_in"/>
<dataPort name="speed_out"
direction="out"/>
</features>

Figure 4-1:  AADL Representations
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4.1 AADL Textual Specifications

This section focuses on an AADL textual (natural language) specification as a human-
readable collection of textual declarations that comply with the AADL standard [SAE 06a].
Graphical notations associated with the textual specifications are included in this document to
highlight the relationship between representations and to help the reader visualize the
architecture. Detailed descriptions of the graphical representations for AADL constructs and
declarations are provided in the graphical standard.” The principal AADL declarations are

summarized in Table 4-1.

Table 4-1: Principal AADL Declarations

Declaration

Description

Component Type:

system, process, thread, thread
group data, subprogram,
processor, device, memory, and
bus

The component type declaration establishes the
identity (component category and name) and
defines the features, flows, and properties of a
component type. A component type declaration may
also declare the type as an extension of another
type (extends).

Component Implementation:
system, process, thread, thread
group data, subprogram,
processor, device, memory, and
bus

The component implementation declaration
establishes the identity (component category, type,
and name) and defines the refinements (refines
type subclause), subcomponents, calls,
connections, flows, modes, and properties of a
component implementation. The identity must
include a declared component type consistent with
the component category. The component
implementation declaration may also declare the
implementation as an extension of another
implementation (extends subclause).

Port Group Type

Port group type declarations establish the identity
(name) and define the features and properties of a
grouping of ports and/or port groups. Within the
features declaration, a port group may be defined
as the inverse of another port group. A port group
type declaration may also declare the port group as
an extension of another port group type (extends).

Package

The package declaration establishes the identity
(name) of a collection of AADL declarations, groups
those declarations into private and public sections,
and declares properties associated with a package.
Packages are used to logically organize AADL
declarations. AADL component type,
implementation, and port group declarations placed
in AADL packages can be referenced by
declarations in other packages.

The complete set of graphical symbols for AADL components is presented in “Graphical AADL

Notation,” a draft document at the time of the publishing of this technical note.

12
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Table 4-1: AADL Declarations (cont.)

Property Set

Property set declarations introduce additional
properties, property types, and property constants
that are not included as predeclared AADL
properties.® Each property set has a unique global
name and provides a unique namespace for the
items declared in it. In other words, properties and
property types declared in a property set are
referenced by property set name and item name.

Annex Library

Annex library declarations establish the identity

language. Annex declarations are used to extend
AADL'’s core modeling and analysis capabilities.

(name) and define the contents of a set of reusable
declarations that are not part of the standard AADL

4.2 Graphical Representations

The AADL’s graphical notation facilitates a clear visual presentation of a system’s structural

hierarchy and communication topology and provides a foundation for distinct architecture
perspectives. Graphical notation elements for AADL components are shown in Figure 4-2.

The letter-shaped AADL icon (++) is used to indicate a different semantics than that

represented by a similar graphical symbol in the Unified Modeling Language (UML). This

symbol is not required in notation; it can be used where a distinction from a UML symbol is

necessary. Additional symbols, such as circles, are used to represent component properties

(e.g., the period of a thread).

Application Software

“¥ data

subprogram processor

Execution Platform

[rern ]
p— =

! thread 1/
I ﬁm
) B,

Composite

Figure 4-2:  AADL Graphical Notation

8

There is a standard predeclared property set named AADL_Pr operti es that is a part of every
AADL specification [SAE 06a].
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4.3 Example Specification

Table 4-2 contains an excerpt from an AADL textual specification and includes sample
graphical representations of portions of the specification.’ The excerpt shows simplified
component type, component implementation, and subcomponents declarations (i.e.,
only some of the features, flows, or properties are declared) and illustrates the
pattern other examples in this document will follow.

In the example shown in Table 4-2, related type and implementation declarations are
grouped together. Individual declarations can be arranged in any order within an AADL
specification. For example, a component type declaration that includes a specific port
group as one of its interfaces (Features) can precede that port group’s type declaration.
An alternative organization might involve grouping together all type declarations. In addition,
all or some of the declarations shown in Table 4-2 can be partitioned into groups using
packages. The options provided by packages and their implications are discussed in
Section 12 (Organizing a Specification).

The excerpt in Table 4-2 contains one process and two thread component type
declarations. The process type definition has the component type identifier (name)
control _processi ng. Two data ports, in data portandout data port,are
declared for this process type. The sensor _dat a and cormand_dat a data types are
declared in individual data type declarations.

The thread type definition identifiers are cont rol _i nand cont r ol _out . An
implementation declaration of the process type cont r ol _pr ocessi ng is shown.
The component implementation identifier is speed_control . An
implementation is referenced by using both the component type identifier and the
component imp lementation identifier, separated by a period (.). A reference to a
thread implementationi nput _processi ng_01 of the thread type

cont rol _i nisshown in the declaration of the subcomponent cont r ol _i nput . Thus,
contr ol _i nput isan instance of the component implementation

control _in.input_processing 01.

Graphical representations of the process type declaration cont r ol _pr ocessi ng and
the process implementation declaration are shown in the latter portions of Table 4-2.
The process implementation symbol in the example is bounded with a bold line.
Bold-lining of an implementation symbol is optional. It can be useful in distinguishing
component type and component implementation representations visually. A solid black
triangular symbol represents a data port. Port and other features symbols are
discussed in Section 8 (Component Interactions).

In the example specifications shown here and in Sections 5-12, we typically follow the pattern of
displaying the textual representation followed by the graphical representation in portions of the
same table, as shown in Table 4-2. Where needed to provide clarification, we have placed the
textual and graphical representations in separate tables and figures.

14 CMU/SEI-2006-TN-011



Section 4: AADL System Models and Specifications

Table 4-2: A Simplified Example of an AADL Specification®®

-- A process type definition with the conmponent type
-- identifier (nane) "control processing" is shown bel ow.

process control processing
features

i nput: iIn data port sensor_dat a;
out put: out data port comuand_dat a;
end control _processing;

-- Belowis an inplenentation of process type "control processing"
-- The conponent inplenentation identifier(nane)is "speed _control"
-- The inplenentation is referenced by using both the conponent type
-- identifier and the conmponent inplenmentation identifier, separated
-- by a period(.)in the form control _processing.speed _control.

-- Areference to a thread i nplenmentation “input_processi ng_01"

-- of the thread type “control _in” is shown below in the

-- declaration of the subconmponent “control _input”

process implementation control processing. speed _contro
subcomponents

control _input: thread control _in.input_processing 01;
control _output: thread control _out. output_processing 01;
end control _processing. speed_control

-- The declaration of the thread type “control _in” is shown bel ow
thread control _in

end control _in;

-- The declaration of the thread inplenentation

-- “control _in.input_processing 01" is shown bel ow.
thread implementation control _in.input_processing 01
end control _in.input_processing _01;

-- The declaration of the thread type “control _out” is shown bel ow.
thread control _out
end control out;

-- The declaration of the thread inplenentation

-- “control _out.output_processing 01" is shown bel ow.
thread implementation control out. output_processing 01
end control _out.output_processing_01;

-- The declaration of the data type “sensor_data” is shown bel ow.
data sensor_data
end sensor_data

-- The declaration of the data type “comrand_data” is shown bel ow
data conmand_dat a
end comand_dat a;

19 Comment lines in an AADL specification are prefaced by two dashes (--).
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Table 4-2: A Simplified Example of an AADL Specification (cont.)

input output

control_processing

process type control _processi ng

control_processing.speed_control

e e

Icomrol_inputl’ I’control_output,
input II ’ Vi ] output
1 1 ! /
! P /
1 7
1
i ______ e /

process implementationcontrol _processing. speed_control

4.4 Type Declarations

The structures for a component type declaration (area labeled @) and a type declaration that
extends another type (area labeled @) are shown in Table 4-3, along with sample component
type declarations (area labeled ®). The sample type declarations are for a process type

si npl e_speed_control andathread type dat a_nanagenent . The first line of
each declaration begins with the appropriate component category reserved word in boldface.
In these examples, process and thread are reserved words.

Table 4-3: Sample Component Type Declarations

component_category type_identifier @®
features
flows
properties

endtype_identifier ;

component_category type_identifier @
extends uni que_conponent type_identifier
features
flows
properties

end type_identifier
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Table 4-3: Sample Component Type Declarations (cont.)

process si npl e_speed_control ©
features

raw _speed: in data port speed_type;

t oggl e_node: in event port;

throttle cnd: out data port throttl e _data;

flows none;

end si npl e_speed_contr ol

thread dat a_managenent extends system nmanagemnent
features

i n_data: refined to In data port speed_type;

out data: out data port throttl e dat a;

end dat a_nmanagenent ;

data speed_type
end speed_type;

data throttle data
end throttle_data;

thread syst em nanagenent
features

i n_data: in data port;
end syst em managenent ;

The component type classi Fier (name) of the type follows the component category
reserved word. A component type declaration may contain up to four subclauses that are
identified with these reserved words:

o Teatures: specifies the interaction points with other components, including the inputs
and accesses required by the component and all the outputs and items the component
provides

o Tlows: defines specifications of logical flows through the component from incoming
interaction points to outgoing interaction points (These flows can be used to specify end-
to-end flows without having to expose or have available any implementation detail
of the component. Flows can trace data, control, or mixed flow by connecting event and
data ports.)

e properties: specifies properties of the component that apply to all instances of this
component unless overwritten in implementations or extensions

e extends: is used where a type extends another type, as shown for the thread type
dat a_rmanagenent in Table 4-3

If there are no entries under the subclause reserved words features, flows, or
properties, they may be omitted, or the reserved word statement none can be used to
signify explicitly that there are no entries. For example, the reserved word subclause flows
is omitted in the thread type declaration for dat a_rmanagenent and none is used in the
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other empty subclause cases in Table 4-3. The use of none explicitly designates that the
subclause is empty. The use of none avoids the misinterpretation of a developer’s accidental
omission of a subclause declaration as intentional.

In Table 4-3, these declarations under the features subclause in the type declaration for
si npl e_speed_cont rol define ports for the type:

raw_speed: in data port speed_type;
t oggl e_node: iIn event port;
throttle cnd: out data port throttle_data;

Notice that there isone Iin data port declaration in the features section of the type
syst em managenent . The type declaration for dat a_rmanagenent extends the type
syst em nanagenent . Within this type extension declaration, the in data port

i n_dat a declaration is completed by including refined to and adding the data type
speed_t ype tothe port declaration, and an out data port declaration is added.

A component type declaration is terminated by the reserved word end followed by the
component’s type classifier and a semicolon (;).

4.5 Implementation Declarations

A component implementation declaration structure (O and @) and a sample declaration
(®) are shown in Table 4-4. The basic form (®) declares a distinct implementation. The
second form (@) includes the reserved word extends, indicating that the declared
implementation extends another.

In the sample declaration (® in Table 4-4), a thread implementation with the name
control I aws. control _i nput isdeclared as an implementation of the type
control | aws. The implementation name is formed using the type identifier
followed by a specific identifier for the implementation. These are separated by a period
(). Withinthe cont r ol _I aws. contr ol _i nput declaration, a single data
subcomponent is declared, the reserved word statement (none) is used for the cal s
subclause, and the other subclauses are omitted.
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Table 4-4. Component Implementation Declarations

component_category implementation implementation_name @®
refines type
subcomponents
calls
connections
flows
modes
properties
end implementation_name ;

component_category implementation implementation_name @
extends another_implementation_name
refines type
subcomponents
calls
connections
Tflows
modes
properties
end implementation_name ;

thread control | aws ©
end control _| aws;

data static_data
end static_data;

thread implementation control | aws. control _i nput
subcomponents

configuration data: data static_data;

calls none;

end control _| aws. control _i nput;

4.6 Package Declarations

Packages provide a way to organize component type declarations, implementation
declarations, and property associations within an AADL specification. Each package
introduces a distinct namespace for component classifier declarations, port group
type declarations, annex library declarations, and property associations.

For example, a component type may be declared within a package and used in multiple
subsystem declarations. This is shown in Table 4-5 where the package

acut at ors_sensor s includes a device speed_sensor thatis used in the primary
and backup implementation of the system cont r ol . Note that the package name
with a double colon (: -) is used to precede the device speed_sensor whenitis
referenced (e.g., in the subcomponent declaration within the implementation
declarations). The comment line (- - ..) is used to indicate other declarations that are not
shown. Packages are discussed in more detail in Section 12.1 (Packages).
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Table 4-5. Example Packages

package actuators_sensors
public

device speed_sensor

end speed_sensor;

end actuators_sensors;

system contro
end control

system implementation control.primry
subcomponents
speed_sensor: device actuators_sensors::speed_sensor

end control.primary;

system implementation control . backup
subcomponents
speed_sensor: device actuators_sensors::speed_sensor

endnéontrol.backum

4.7 Property Set Declarations

Property set declarations allow the addition of properties to the core AADL
property set. These additions can be used to support specialized modeling and analysis
capabilities that can be defined in AADL annexes. Declarations in an AADL specification can
refer to packages and property sets that may be separately stored. More details on
property set declarations can be found in Section 11.3 (Defining New Properties).
References to property names, types, and constants declared within a property set
are prefaced by the name of the property set.

4.8 Annex Library Declarations

Annex library declarations enable extensions to the core language concepts and syntax.
Often these extensions support custom analyses using specialized models and abstractions
(e.g., an error annex that supports reliability analysis). Annex libraries define a sublanguage
that can be used in annex subclauses within component type and implementation
declarations. Annex libraries are declared within packages and annex subclauses can be
included within component type and imp lementation declarations. These subclauses use
the elements declared in the annex library (e.g., associating values or expressing assertions
with elements of the annex).*

1 The language can also be extended through annex documents, which are approved extensions to the
core AADL standard.

20 CMU/SEI-2006-TN-011




Section 4: AADL System Models and Specifications

4.9 Namespaces

There is a global namespace for an AADL specification. Packages and property set
names are in the global namespace. Their content can be named anywhere by preceding it
with the package name. Component declarations placed directly in an AADL specification
are visible only within that AADL specification. They are not accessible from within
packages or other AADL specifications; they are considered to reside in an anonymous
namespace. An AADL specification acts as a local work area whose component declarations
are only locally visible.

4.10 Partial Specifications

A number of declarations within a syntactically and semantically correct specification can be
partially completed. For example, neither the identity (type or implementation) of a
component contained within another nor the data type for the ports in a data connection
between components needs to be specified until a complete representation is instantiated
from the specification (i.e., the design is finalized).

The flexibility to develop partial specifications can be used effectively during design,
especially in the early stages where details may not be known or decided upon. This
flexibility allows the syntactic checking of an incomplete specification and enables extended
semantic, domain, or project-specific analysis to be conducted. For example, the detailed
signal timing can be specified and signal latency can be analyzed without a complete or
detailed specification of the representation of data communicated through ports or other
elements of the design. Similarly, using the flow specification construct, end-to-end flows can
be analyzed without the system hierarchy being detailed to the level required for
instantiation.

4.11 Extends, Refines, and Partial Specification

When coupled with the extends, refines, and implementation facilities of the
language, partial specification can be used to define a core type or implementation
pattern. This core pattern can be used to generate a family of components (i.e., core patterns
with less detail and descendants with more specific and modified declarations). Table 4-6
shows an example of the use of extends. The basi ¢ system component type
declaration forms the core for two type extensions, basi ¢_pl us and cont r ol . Within the
extensions, the data input port declaration i nput _dat a is completed with a data type,
and an additional port is added.

A more detailed discussion of the extension and refinement capabilities and additional
example patterns is presented in Section 12.2 (Design Patterns).

CMU/SEI-2006-TN-011 21



Section 4: AADL System Models and Specifications

Table 4-6: A Simple Extends and Refines Example

system basic

features

i nput _data: in data port;

end basi c;

system basi c_pl us extends basic

features

i nput _data: refined to in data port sensor_dat a;
in_event: in event port;

end basi c_pl us;

system control extends basic

features

i nput _data: refined to in data port speed_dat a;
i n_event _data: in event data port;

end control

data sensor_data
end sensor_data

data speed_dat a

end speed_dat a;
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5 Software Components

Software component abstractions represent processed source text (executable binary images)
and execution paths through executable code. Executable binary images (i.e., executable code
and data) are the result of processing (such as compiling or linking) source text associated
with a component. A component’s source text may be written in a conventional programming
language (e.g., Ada, Java, or C), domain-specific modeling language (e.g.,
MatLab/Simulink), or hardware description language (e.g., VHDL). The source text may also
be an intermediate product of processing those representations (e.g., an object file).

The AADL software component abstractions are

e process (Section 5.1): represents a protected address space

o thread (Section 5.2): represents a unit of concurrent execution

o thread group (Section 5.3): represents a compositional unit for organizing threads
e (data (Section 5.4): represents data types and static data in source text

e subprogram (Section 5.5): represents callable sequentially executable code

5.1 Process

The process abstraction represents a protected address space, a space partitioning where
protection is provided from other components accessing anything inside the process. The
address space contains

e executable binary images (executable code and data) directly associated with the
process

e executable binary images associated with subcomponents of the process

e server subprograms (executable code) and data that are referenced by external
components

A process does not have an implicit thread. Therefore, to represent an actively
executing component, a process must contain a thread.

5.1.1 Textual Representation

Table 5-1 contains a partial listing of the textual specification for a process. The process
is shown with examples of all three of its allowed subcomponent categories: (1) thread, (2)
thread group, and (3) data. In this listing, simplified type and implementation
declarations for the components are provided. Two ports are shown, one as input and one as
output for the process. In a complete specification, connections that define the
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information flow would be declared within the process implementation. Only the
subcomponent declarations of the process implementation of

control _processi ng. speed_control are shown explicitly. Other details of the
specification are not included. These omissions are legal for a syntactically correct partial
specification as discussed in Section 4.10 (Partial Specifications).

Table 5-1: Textual Representation of a Sample Process

process control _processing
features

i nput: in data port;

out put: out data port;

end control _processing;

process implementation control _processing. speed_contro
subcomponents

control _input: thread control _in.input_processing 01;
control output: thread control out.output_ processing 01;
control _thread_group: thread group

control _threads.control _thread_set_01;

set point_data: data set_point_data_type

end control _processing. speed_control

thread control _in
end control _in;

thread implementation control _in.input_processing 01
end control _in.input_processing 01;

thread control _out
end control out;

thread implementation control _out. out put_processi ng_01
end control _out. output_processing_01;

thread group control threads
end control _threads;

thread group implementation control threads.control thread_set 01
end control _threads.control _thread set 01;

data set _point_data_type
end set poi nt _dat a_type;

5.1.2 Graphical Repesenation

A graphical representation of the process implementation from Table 5-1
control _processi ng. speed_control isshown in Figure 5-1. The process is
shown with examples of its allowed subcomponent categories: thread, thread group,
and data. As shown in Figure 5-1, two threads (cont r ol _i nput and

contr ol _out put), asingle data component (set _poi nt _dat a), and a thread
group (control _t hread_gr oup) are contained within the process
implementationcontrol _processing. speed_control .
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control_processing.speed_control
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Figure 5-1:  Graphical Representation of a Sample Process

5.1.3 Properties

For the process and its subcomponent threads, predeclared properties for processes
enable the specification of the

e runtime enforcement of memory protection

o relevant source file information

o source file loading times

e scheduling protocols

e Dinding constraints

In addition, there are properties that can be inherited and shared by a process’s
subcomponent threads (e.g., Per i od, Deadl i ne, or Act ual _Processor _Bi ndi ng).
These include predeclared properties as well as new properties, defined as
prescribed in Section 11.3 (Defining New Properties).*

5.1.4 Constraints

An AADL process represents only a protected address space. Consequently, processes
must contain at least one explicitly declared thread or thread group subcomponent. In

other words, it is not equivalent to a POSIX process that represents both a protected address
space and an implicit thread.

Table 5-2 summarizes the permitted type declaration and implementation declaration
elements of a process. A process can only be a subcomponent of a system component.
A summary of the allowed subcomponent relationships and features is included in the
Appendix on pages 117-119.

2" There is a standard predeclared property set named AADL_Pr oper ti es that is a part of every
AADL specification [SAE 06a].
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Table 5-2;: Summary of Permitted Process Declarations

Category Type Implementation
Features: Subcomponents:
e server subprogram e data
e port e thread
e provides data access e thread group
process e requires data access Subprogram calls: no
Flow specifications: yes Connections: yes
Properties yes Flows: yes
Modes: yes
Properties yes
5.2 Thread

A thread isa concurrent schedulable unit of sequential execution through source code.
Multiple threads represent concurrent paths of execution. A variety of execution
properties can be assigned to threads, including timing (e.g., worst case execution
times), dispatch protocols (e.g., periodic, aperiodic, etc.), memory size, and processor
binding.

5.2.1 Textual Representation

Sample thread type, implementation, and subcomponents declarations are shown
in Table 5-3. In Table 5-3, there are two thread type and three thread
implementation declarations. Two of the thread implementation declarations
describe separate implementations of the same thread type dat a_i nput . Instances of
threads are defined in subcomponents subclause declarations of the process
implementation dat a_managenent .

Related type and implementation declarations are grouped together in this example.
This grouping of declarations is used for clarity and is not a required organization within a
specification.
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Table 5-3. A Sample Thread Declaration

thread dat a_processing
end data_processing;

thread implementation data_processing.integrated _data processing
end data_processing.integrated_data_processing;

thread dat a_i nput
end data_input;

thread implementation data_input.roll_data_input
end data input.roll_data_input;

thread implementation data_input.pitch_data_input
end data_input.pitch_data_ input;

process dat a_managenent
end dat a_nanagenent ;

process implementation

dat a_managemnent . aut ononous_subnari ne_dat a_managenent
subcomponents

roll _input: thread data_input.roll _data_input;
pitch_input: thread data_input.pitch_data_ input;
attitude_data_processi ng: thread

dat a_processi ng. i nt egrat ed_dat a_processi ng;

end dat a_nmanagenent . aut ononous_submari ne_dat a_nanagenent ;

5.2.2 Graphical Representation

A graphical representation of the thread implementation

control | aws. control _i nput and its associated textual representation are shown in
Table 5-4. No interfaces for the type or other details of the type or implementation
declarations are shown.

In the example, the data instance conf i gur at i on_dat a is defined as a subcomponent
of the thread, and the referenced identifier is a data type rather than a data
implementation. This is legal only if there are no implementation declarations of
the data type anywhere within the specification.
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Table 5-4. A Sample Thread Implementation with One Subcomponent

thread control | aws
end control _| aws;

—————————— —
/ / _
¢ control_laws.control_input data static_dat a
/ ‘ / end static_data;
Il #% configuration_data / thread implementation
/ / control | aws.control _input
: / subcomponents
__________ o

configuration_data: data
static_data;
end control | aws. control _input;

5.2.3 Thread Execution

A graphical state machine representation of thread execution is shown in Figure 5-2. A
round-cornered rectangle represents an execution state of a thread or a composite state that
includes at least one execution state. The ovals are non-execution states. Transitions between
states are represented by directed arcs. Arcs may originate, join, diverge, or terminate at
junction points depicted as small circles.

Instances of a thread can transition between various scheduling states as the result of

normal execution (e.g., preemption or completion of initialization) or faults/errors. There are
predefined entry points for each of the thread execution states: Initialize, Compute, and

Recover. The initialize and compute entry points are used for normal execution.

If thread execution results in a fault that is detected, the source text may handle the error. If
the error is not handled in the source text, the thread is requested to recover and prepare
for the next dispatch. If an error is considered unrecoverable, its occurrence is propagated as
an event through the thread’s predeclared out event data port Error (not shown in
Figure 5-2). All threads have an Error out event data port that allows an
unrecoverable error with descriptive information to be signaled.
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Figure 5-2:  Thread Execution State Machine

5.2.4 Properties

Predeclared properties support the detailed description of each of the execution phases
of a thread. There are entry point properties that specify entry into code associated
with each of these execution phases (Figure 5-2):

1. Initialize allows threads to perform application specific initialization.

2. Activate allows actions to restore application states between mode switches.

3. Compute represents the code to be executed on every thread dispatch.

4. Recover allows threads to perform fault recovery actions.

5. Deactivate allows actions to save application states between mode switches.

6

Finalize executes when thread is asked to terminate as part of a process unload or stop.

In addition, there are execution time and deadline properties for each of these execution
phases (not shown in Figure 5-2).

A thread’s scheduling-related properties include Di spat ch_Pr ot ocol and Peri od.
The supported protocols are

e periodic: repeated dispatches occurring at a specified time interval (a Per i od)

e aperiodic: event-triggered dispatch of threads

o sporadic: event-driven dispatch of threads with a minimum dispatch separation

e background: a dispatch initiated once with execution until completion

Periodic, aperiodic, and sporadic protocols typically involve hard deadlines for the thread.
The predeclared and user-defined thread properties can be used to specify critical
runtime aspects of a thread within a system’s architectural representation, enabling the
early analyses of thread behavior.
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Table 5-5 is an example of some property associations for a thread. Entry points and
associated execution times are declared for initialization and nominal execution.

Table 5-5: Sample Thread Properties

thread control

properties

-- nom nal execution properties

Conput e_Entrypoi nt => "control _ep";
Conput e_Execution _Tine => 5 nms .. 10 ms;
Conput e_Deadl i ne => 20 ns;

Di spatch_Protocol => Peri odi c;

-- initialization execution properties
Initialize_ Entrypoint => "init_control";
Initialize_Execution_Time => 2 nms .. 5 ms;
Initialize Deadline => 10 nms;

end contr ol

5.2.5 Constraints
Table 5-6 summarizes the legal subclause declarations for a thread.

Table 5-6: Summary of Permitted Thread Subclause Declarations

Category Type Implementation
Features: Subcomponents
e server subprogram e data
e port Subprogram calls: yes
thread e provides data access Connections: yes
e requires data access Flows: yes
Flow specifications: yes Modes: yes

Properties yes Properties yes

A thread executes within the protected virtual address space of a process, either as an
explicitly declared subcomponent or as a subcomponent of a thread group within a
process. Thus, threads must be contained within (i.e., only be a subcomponent of) a
process orathread group. Multiple concurrent threads can exist within a process.

A summary of the allowed subcomponent relationships and features is included on pages
117-119 in the Appendix.
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5.3 Thread Group

Athread group is a component abstraction for logically organizing thread, data, and
thread group components within a process. Thread groups do not represent a virtual
address space or a unit of execution. They provide a foundation for the separation of concerns
in the design, defining a single reference to multiple threads and associated data (e.g., threads
with a common execution rate or all threads and data components needed for processing
input signals).

5.3.1 Textual Representation

Table 5-7 is a sample textual specification for a thread group that contains a thread
component, two data components, and another thread group. Simplified thread
group type and implementation declarations are shown. For example, only the
subcomponents declarations part of the control . rol | _axi s component
implementation declaration is shown. No details of the thread group
implementationcontrol _| aws. rol | are shown. Notice that the data
subcomponent declarations cont r ol _dat a and er r or _dat a reference data
implementation declarations rather than data type declarations, reflecting the
flexibility that static data components can be declared at any level of the hierarchy. The
thread group type declaration for cont r ol includes a property association that
defines a Per i od of 50 ms. This value is assigned to (inherited by) all of the threads
contained in the thread group.

Table 5-7: A Sample Thread Group AADL Textual Specification

thread group control

properties

Period => 50 ns;

end control

thread group implementation control.roll_axis
subcomponents

control _group: thread group control | aws.roll
control data: data data_control.prinary;
error_data: data data_error.|og;
error_detection: thread nonitor.inpl;

end control.roll _axis;

thread nonitor

end nonitor;

thread implementation nonitor.inp

end nonitor.inpl;

data data contro

end data_control

data implementation data_control.primary
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Table 5-7: A Sample Thread Group AADL Textual Specification

end data_control.prinmary;

data data_error

end data_error;

data implementation data_error.| og

end data_error. | og;

thread group control | aws

end control | aws;

thread group implementation control |aws.roll
end control _laws.roll;

5.3.2 Graphical Representation

Figure 5-3 contains a graphical representation of the implementation of the thread
group control . rol |l _axi s shown textually in Table 5-7. Notice that the names
(identifiers) of the graphical subcomponents of the thread group match those contained
in the textual representation of the thread group’s implementation declaration. Partial
declarations are permitted in the initial specification of the system (e.g., subcomponent
declarations may not have component type or implementation references). This partial
specification capability is particularly useful during early design stages where details may not
be known or decided. Component classifier references can be added or completed in
subcomponent refinements or declared in component imp lementation extensions. For
example, in Table 5-7 the declaration for the subcomponent er r or _det ect i on does not
have to include the thread component classifier noni t or. i npl . This reference
could be added later in an extension of the thread group implementation
control .roll _axis.

d
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Figure 5-3: A Sample Thread Group Graphical Representation
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5.3.3 Properties

Predeclared thread group properties include declarations relating to the
specification of

e source text

e timing characteristics

e relevant memory, processor, and connection bindings*®

For example, there are Act ual and Al | owed_Pr ocessor _Bi ndi ng properties for
threads within the thread group, as well as properties that describe thread
handling during mode changes (e.g., Act i ve_Thr ead_Handl i ng_Pr ot ocol that
specifies the protocol to use for execution at the time instant of an actual mode switch).™

5.3.4 Constraints

Athread group can be a subcomponent only of a process or another thread
group. Table 5-8 summarizes the permitted elements of a thread group’s type and
implementation declarations.

Table 5-8: Elements of a Thread Group Component

Category Type Implementation
Features: Subcomponents:
e server subprogram e data
e port e thread
thread e provides data access e thread group
group e requires data access Subprogram calls: no
Flow specifications: yes Connections: yes
Properties yes Flows: yes
Modes: yes
Properties yes

A summary of the allowed subcomponent relationships and features is included on pages
117-119 in the Appendix.

3 The mapping of software to hardware components of a system that are required to produce a
physical system implementation is called binding [SAE 06a].

Y Actual _Processor_Bindi ng, Al | oned_Processor _Bi ndi ng, and
Acti ve_Thread_Handl i ng_Pr ot ocol are predeclared properties in the standard
predeclared property set AADL_Properti es.
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5.4 Data

The AADL data abstraction represents static data (e.g., numerical data or source text) and
data types within a system. Specifically, data component declarations are used to represent

o application data types (e.g., used as data types on ports and parameters)

e the substructure of data types via data subcomponents within data implementation
declarations

e (data instances

Data types in the application system can be modeled by data component type and
implementation declarations. A data type (and implementation) declaration can
be used to define the data associated with ports and parameters. It is sufficient to model an
application source text data type with a data component type and relevant property
declarations; it is not necessary to declare a data implementation. Consistency checks
can be done on the data type associated with connections between ports and parameters.
Data subcomponent declarations can be used to define the substructure of data types and
instances. For example, fields of a record can be declared as data subcomponents in a data
implementation declaration.

Data instances are represented by data subcomponent declarations within a software
component or system implementation. Currently data subcomponents cannot be
declared in subprograms. For example, data instances within source text (e.g., the instance
variables of a class or the fields of a record) are represented by data subcomponent
declarations in a data component implementation. These data instances can be
declared as accessible by multiple components as outlined in Section 8.3 (Subcomponent
Access). Data component types can have subprograms as features, allowing for
modeling of abstract data types or classes with access methods.

5.4.1 Textual Representation

Sample data type and implementation declarations are shown in Table 5-9 that
includes three data type declarations and a data implementation declaration
addr ess. ot her s of the data type declaration addr ess. In addition, a thread
implementation declaration is shown with data subcomponents that reference the
data types defined in Table 5-9.

As the commented description in the table explains, the first part of the table shows the data
type st ri ng used in a port declaration. Specifically, it shows the declaration of a data
type speed_dat a_t ype used to declare the data type for an input data port of the
process control | er. The property association defines the size of the data type as
16 bits. Only relevant portions of the cont r ol | er process type declaration are included.
The second part of the table shows an example of the declaration of the substructure of a
data implementation. The substructure of the data Implementation
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addr ess. ot her s consists of four data subcomponents with data types st ri ng and

i nt . In the third and final portion of the table, the thread implementation

declaration for addr ess_pr ocessi ng. addr ess_| ookup includes a specific data
instance of the data implementation address. ot her s asasubcomponent.

Notice that the data subcomponent declarations within the data implementation

addr ess_ot her s reference only the data type declaration. Subcomponents

subclauses can reference a data type declaration rather than a data implementation

declaration only if there is no more than one implementation of that data type.

Table 5-9: Sample Data Component Declarations

-- string as a data type used in a port declaration --
data speed_data_type

properties

Source_Data_Size => 16 bits;

end speed_dat a_type;

process controll er

features

i nput: iIn data port speed_data_type;

end controller;

-- a data inmplenentation with substructure
data address

end addr ess;

data implementation address. others
subcomponents

street : data string

street nunber: data int;

city: data string;

zi pcode: data int;

end address. ot hers;

-- supporting data decl arations

data string

end string;

-- int as type

data int

properties

Source_Data_Size => 64b;

end int;

-- a data instance of the data inplenentation “address.others
thread address_processing

end addr ess_processi ng;

thread implementation address_processi ng. address_| ookup
subcomponents

address_01: data address. ot hers;

end addr ess_processi ng. address_| ookup;
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5.4.2 Graphical Representation

Figure 5-4 contains graphical and corresponding textual representations for the data
subcomponents of the data implementation addr ess. ot her s and the thread
implementation address_processi ng. address_| ookup presented in

Table 5-9.

f thread address_pro cessing

,’address_processing.address_lookup ¢ end address_processing;

7 thread implementation
/ address processing.address_lookup
¥ subcomponents

i
f! address_01 7 address_01: data address.others;

end address_processing.address_loockup:

- address.others
data implementation address.others
subcomponent s ' '
street : data string:; " street gty
streetnumber: data int:
city: data string;

zipcode: data int; : :
end address.others; " streetnumber " zipcode

Figure 5-4: Sample Data Component Graphical Representations

5.4.3 Properties

The predeclared properties for data components enable specification of
e source text for the data component

o name of the relevant data type declaration

o name of the relevant static data variable in the source text

e (datasize

e concurrency access protocol for shared data

Base types can be modeled using data types by

1. defining a new property (such as BaseType) that takes a (data) classifier as
property value

2. applying this property to data components

3. declaring data component base types (such as Si gnedl nt 16 or Unsi gnedI nt 8)
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For example, BaseType => classifier BaseTypes: : Si gnedl nt 16; could be a
property declared in the data type speed_dat a_t ype, where the data type
Si gnedl nt 16 is declared in the package BaseTypes.

5.4.4 Constraints

Table 5-10 summarizes the legal elements within data type and data implementation
declarations. Notice that only data components can be subcomponents within a data
component.

A data component can be a subcomponent of a data, thread, thread group,
process, or system component. A summary of the allowed subcomponent relationships
and features is included on pages 117-119 in the Appendix.

Table 5-10:  Legal Elements of Data Type and Implementation Declarations

Category Type Implementation
Features: Subcomponents:
e subprogram e data
e provides data access Subprogram calls: no
data Flow specifications: no Connections: access
Properties yes Flows: no
Modes: yes
Properties yes

A data subcomponent subclause can reference a data type declaration that does not have a
data implementation. For example, the reference for the subcomponent st r eet of
the data implementation address. ot her s shown in Figure 5-4 is to the data
type st ri ng. However, if a data type declaration has more than one associated data
implementation declaration, both the component type and a component
implementation must be present in a component classifier reference in order to
completely identify the classifier.

5.5 Subprogram

The subprogram component abstraction represents sequentially executable source text—a
callable component with or without parameters that operates on data or provides server
functions to components that call it. A subprogram and its parameter signature are
declared through component declarations but are not instantiated as subcomponents. Instead,
cal Is to subprograms are declared in cal I's sequences in thread and subprogram
implementations. More details on cal I's to subprograms and example cal I's declarations
are provided in Section 8.4 (Subprogram Calls).
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The modeling roles for subpr ogr ans include the representation of

e amethod call for operation on data
e Dasic program cal I's and call sequencing

e remote service/procedure calls

These calls can include data transfer into or out of the subprogram. Parameters, declared
as features of a subprogram, provide the interface for the transfer of data into or out of
a subprogram.

5.5.1 Textual Representation

Table 5-11 is an example of a subprogram representing a service (method) call for
operation on data. It shows the relevant component type and implementation
declarations and the declaration of that subprogram as one of the features

scal e_acc_dat a within a data component accel er onet er _dat a. The feature
scal e_acc_dat a represents an entry point into source text that operates on the data
component accel er onet er _dat a.

Table 5-11:  Subprogram Textual Representation

subprogram scal e_data

end scal e_dat a;

subprogram implementation scal e_dat a. scal e_sensor _data
end scal e_dat a. scal e_sensor _dat a;

data accel eroneter _data

features

scal e_acc_data: subprogram scal e_dat a. scal e_sensor _dat a;
end accel eroneter _dat a;

process sensor_systens

end sensor_syst ens;

process implementation sensor_systens. sensor_processi ng
subcomponents

acc_data: data accel eroneter_dat a;

scale_it: thread process_data. scal ¢;

end sensor_syst ens. sensor _processi ng;

5.5.2 Graphical Representation

Figure 5-5 contains graphical and corresponding textual representations for the process
implementation sensor_syst ens. sensor _processi ng shown in Table 5-11.
The subprogramscal e_acc_dat a is represented by an oval that adorns the data
subcomponent acc_dat a of the process implementation

sensor _syst ens. sensor _processi ng. The thread scal e_i t is not shown in
the figure.
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sensor_systems.sensor_processing

Fo%

acc_data

Figure 5-5:Subprogram Graphical Representation

Table 5-12 shows both textual (upper portion) and graphical (lower portion) representations
of an example of a subprogram abstraction representing a server subprogram.

In this textual representation, the two process i1mplementation declarations
(control .tenp_control and manage_dat a. manage_t enp) are bound to separate
memory components (e.g., memories associated with individual processing nodes on a
distributed computing network). The thread implementation

control _I aw. | i near withinthe control .tenp_control process
implementation calls the subprogramacqui r e. t enp that is declared as a
server subprogram feature in the thread type r ead.

In the graphical representation of the specification shown in the lower portion of Table 5-12,
the subroutine entry pointr ead_i t is identified as a feature of the subcomponent thread
t enrp_r eader . In addition, the call get _t enp is shown in the thread

control .tenp_control,andthe binding of this call to theread_i t subprogram
is shown with an arrowed line. This call can be a remote call, where the server
subprogram threadt enp_r eader is bound to a separate processor than the
calling thread | i near 01. More details on subprogram cal I's and a remote client-
server example can be found in Section 8.4 (Subprogram Calls).

Table 5-12: Example Textual and Graphical Subroutine Declarations

process control
end control;
process implementation control.tenp_control
subcomponents
linear0l1l: thread control |aw.linear;
end control .tenp_control;
thread control | aw
end control | aw,
thread implementation control _| aw. | i near
calls {
get _tenp: subprogram acquire.tenp; };
end control _| aw. linear;
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Table 5-12: Example Textual and Graphical Subroutine Declarations (cont.)

process manage_dat a

end nanage_dat a;

process implementation nanage_dat a. manage_t enp
subcomponents

tenp_reader: thread read.read_tenp;

end nanage_dat a. manage_t enp;

thread read

features

read_it: server subprogram acquire.tenp;
end read;

thread implementation read.read_tenp
end read.read_tenp;

subprogram acquire

end acqui re;

subprogram implementation acquire.tenp
end acquire.tenp;

control.temp_control

server

subprogram call temp_reader Vs

5.5.3 Properties

Predeclared subprogram properties include declarations relating to the
e source text for the subprogram

e memory requirements

e memory binding

e characteristics related to cal I's into the subprogram
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5.5.4 Constraints

Table 5-13 summarizes the permitted elements of a subprogram’s component type and
implementation declarations.

Table 5-13:  Restrictions on Subprogram Declarations

Category Type Implementation
Features: Subcomponents:
e out event port e none
e out event data port Subprogram calls: yes
Connections: yes
subprogram | * Portgroup
prog e requires data access Flows: yes
e parameter Modes: yes
Flow specifications: yes Properties yes
Properties yes

The interactions of subprograms are constrained to

o event-based interfaces: out event port, out event data port, and a port
group consisting only of these event port types

e data interfaces: through parameters of cal I's to and returns from the subprogram

Out event ports and out event data ports support modeling subprograms that raise an
event (with or without associated data) that must be passed through an enclosing thread
to other components. A subprogram may require access to data but cannot contain static
data subcomponents.
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6 Execution Platform Components

Execution platform components represent computational and interfacing resources within a
system. This representation includes complex hardware and associated software systems. For
example, in one model a Linux computing resource can be represented as a processor
and, in an implementation model of the processor, as a system with Linux
software mapped onto an execution platform processor.

There are four categories of execution platform components in the AADL.:

1. processor (Section 6.1): represents components that execute threads
2. memory (Section 6.2): represents components that store data and code

3. bus (Section 6.3): represents components that provide access among execution platform
components

4. device (Section 6.4): represents components that interface to the external environment

Within an AADL specification, software components must be mapped onto execution
platforms through b inding relationships. These bindings define where code is executed and
data and executable code are stored within a system. For example, a thread must be bound
to a processor for execution and a process must be bound to memory. Similarly,
connections among components within a system must be bound to appropriate execution
platform components (e.g., a simple connection is bound to a single bus or a connection
within a complex distributed system is bound to a sequence of buses and intermediate
processors and devices). Additional information on binding is in Section 7 (System
Structure and Instantiation).

A collection of execution platform components contained within an AADL system
abstraction can be used to model complex physical computational resources. For example,
memory that represents a hard disk and a processor that supports software execution within a

system can model a database server. Similarly, a collection of software and execution
platform components (i.e., a system implementation) can represent a virtual machine

layer within a layered system architecture model.

6.1 Processor

A processor is an abstraction of hardware and associated software that is responsible for
scheduling and executing threads. Processors can execute threads that are declared in
application software systems or threads that reside in components accessible from those
processors.
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Processors themselves may have embedded software (e.g., an operating system) that
implements scheduling and other capabilities that support thread execution. Alternatively,

separate software components or other software virtual machines can supply this support,
provided that software is bound to memory that is accessible by the processor.

6.1.1 Textual and Graphical Representations

Table 6-1 shows a type and implementation declaration for a processor. Both textual

and corresponding graphical representations are shown. In this example, a single
processor system with memory contained inside of the processor is shown. No

other interconnections are required.

Table 6-1: A Sample Processor Textual and Graphical Representation

processor I ntel Linux

properties

Har dwar e_Sour ce_Language=> VHDL;

Har dwar e_Descri pti on_Source_Text =>
"intel vhdl 1, intel _vhdl 2"; Type
end | ntel Linux;

processor implementation
Intel Linux.lIntel Linux 01

Intel_Linux

subcomponents Intel_Linux.Intel_Linux_01
HSRAM memory RAM I nt el _RAM —
end Intel Linux.Intel Linux_ 01;
memory RAM

end RAM Implementation

memory implementation RAM | nt el _RAM
end RAM | nt el RAM

In the textual representation, the properties subclauses define the hardware description
language (Har dwar e_Sour ce_Language) and the files that contain the source text for
the hardware description (Har dwar e_Descri pti on_Sour ce_Text ). The
processor implementation declarationof I ntel _Li nux. Intel Linux_01
includes a single memory subcomponent HSRAM The memory subcomponent’s type and
implementation declarations are shown.

The corresponding graphical representations of type and implementation are shown to
the right of the textual representation in Table 6-1. The nesting of the memory graphic
(labeled HSRAM) within the processor graphic shows containment. The optional bold line
(discussed in Section 4.3) is not used for the processor implementation graphic.
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6.1.2 Properties

Predeclared processor properties can be used in a processor declaration. In
addition to the hardware description properties included in the example from Table 6-1,
other properties include a Schedul i ng_Pr ot ocol property that must have a
value if threads are bound to the processor and an Al | owed_Di spat ch_Pr ot ocol
property that specifies the dispatch protocols supplied by the processor.*”

6.1.3 Constraints

Table 6-2 summarizes the permitted elements of a processor’s type and implementation
declarations.

Table 6-2: Summary of Permitted Processor Declarations

Category Type Implementation

Features: Subcomponents:
e server subprogram e memory
e port Subprogram calls: no

processor ° port group Connections: no
e requires bus access Flows: yes
Flow specifications: yes Modes: yes
Properties yes Properties yes

A processor can only be a subcomponent of a system component. A summary of the
allowed subcomponent relationships and features is included on pages 117-119 in the
Appendix.

6.2 Memory

Memory abstractions represent storage components for data and executable code (i.e.,
subprograms, data, and processes are bound to memory components). Memory
components include randomly accessible physical storage (e.g., RAM, ROM) or complex
permanent storage such as disks or reflective memory. Since they have a physical runtime
presence, memory components have properties such as word size and word count.

The memory component can represent memory inside of a processor or a separate
execution platform unit that must be connected to a processor through a bus. Memory banks
can be modeled as a single or composite memory unit.

> There is a standard predeclared property set named AADL_Pr oper ti es that is a part of every
AADL specification [SAE 06a].

44 CMU/SEI-2006-TN-011



Section 6: Execution Platform Components

6.2.1 Textual and Graphical Representations

An example memory declaration and its graphical representation are shown in Table 6-3. In
this example, a memory of the type RAMis declared with a single feature bus01 that
establishes that all instances of RAMrequire access to the bus membus . hsbus. No explicit
properties for this type are declared. The type and implementation declarations for
the requires bus access to bus01 are shown at the end of the listing.

The memory implementation RAM conpRAMdeclares that this implementation
of the memory type RAMincludes memory subcomponents HSRAMD1 and SRAMD1. No
modes or properties are declared. The subcomponents of the memory
implementation RAM conpRAMare declared as implementations of a common type
XRAM An expanded memory composition can be used to model a complicated memory
bank. These examples show that memory can only contain other memory components and
must be connected to a bus unless it is enclosed in a processor.

Table 6-3: A Sample Memory Textual and Graphical Representation

memory RAM

features

bus01: requires bus access nenbus. hsbus;
end RAM

memory implementation RAM conpRAM
subcomponents

HSRAMD1: memory XRAM HSRAM
SRAMD1: memory XRAM SRAM

end RAM conpRAM

memory XRAM

end XRAM

memory implementation XRAM HSRAM

end XRAM HSRAM m

memory implementation XRAM SRAM ~_

end XRAM SRAM RAM.compRAM

bus nenbus
end nenbus;

bus implementation nmenbus. hsbus
end nenbus. hsbus;

——
g

0
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6.2.2 Properties

Predeclared memory properties include
e memory access protocol

e word size

e other important descriptive characteristics of storage units

e The default value for memory access (Menory_Pr ot ocol ) is read—write but can be
associated with the values of read only or write only.

6.2.3 Constraints

Table 6-4 lists the permitted elements of memory type and implementation
declarations.

Table 6-4: Summary of Permitted Memory Declaration Subclauses

Category Type Implementation
Features Subcomponents:
e requires bus access e memory
Flow specifications: no Subprogram calls: no
memory Properties yes Connections: no
Flows: no
Modes: yes
Properties yes

A memory component can only be contained within a memory, processor, or system
component. Moreover, an individual memory component must be contained in a
processor, declared a subcomponent of a memory unit, or connected to a processor
through a bus. A summary of the allowed subcomponent relationships and features is
included on pages 117-119 in the Appendix.

6.3 Bus

A bus represents hardware and associated communication protocols that enable interactions
among other execution platform components (i.e., nemory, processor, and device).
For example, a connection between two threads, each executing on a separate
processor, is over a bus between those processors. This communication is specified
using access and binding declarations to a bus. Buses can be connected directly to
other buses to represent complex inter-network communications. Thus, connections between
components can be bound to a sequence of buses or a sequence of buses with intervening
Processors.
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6.3.1 Textual and Graphical Representations

Since a bus acts only as a shared component, its interactions (Features) are specified as
bus access features in component type declarations. For example, a processor
requires access to a bus in order to communicate with memory that contains the threads
executing on that processor. Similarly, a bus may require access to another bus.
Alternatively, a system may provide access to one of its bus subcomponents.

Table 6-5 shows a portion of an AADL textual specification and its corresponding graphical
representation. Included in the example are a processor type declaration for

I nt el _Li nux and two bus type declarations for X_1553 and ARI NC_629. The
processor type declaration for I nt el _Li nex includes a requires bus access
declaration for the bus X_1553. HS_1553 and the bus type declaration X_1553 includes
arequires bus access forthe bus ARI NC_629. HS 629. These required accesses
are shown in the graphic on the right side of Table 6-5. The implementation declarations
for both buses are also shown in the textual specification in Table 6-5.

Table 6-5: A Sample Bus Specification: Textual and Graphical Representation

processor I ntel Linux

features

A1553: requires bus access X 1553. HS 1553;
end Intel Linux;

bus X_1553 Intel_Linux
features

A629: requires bus access

ARI NC_629. HS_629; < %

end X 1553; X_1553.HS_1553

end X_1553. HS_1553;

bus ARI NC 629 ARINC_629.HS_ 629
end ARI NC 629;

bus implementation ARI NC 629. HS 629
end ARI NC 629. HS_629;

bus implementation X 1553. HS 1553 ;;j

6.3.2 Properties

There are a number of predeclared properties that can be used to specify important bus
characteristics:

e transmission characteristics such as allowed connection and access protocols, message
sizes, transmission time, propagation delay
o hardware source language descriptions

e data movement time characteristics such as the time to move a byte or block of data and
any fixed data movement overhead time
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6.3.3 Constraints

Table 6-6 summarizes the permitted elements of bus type and implementation
declarations.

Table 6-6: Summary of Permitted Bus Declaration Subclauses

Category Type Implementation
Features Subcomponents:
e requires bus access e None
Flow specifications: no Subprogram calls: no
bus Properties yes Connections: no
Flows: no
Modes: yes
Properties yes

A bus component can only be a subcomponent of a system component. A summary of the
allowed subcomponent relationships and features is included on pages 117-119 in the
Appendix.

6.4 Device

Device abstractions represent entities that interface with the external environment of an
application system. Those devices often have complex behaviors. They may have internal
processors, memory, and software that are not explicitly modeled. Alternatively, they may
require driver software that is executed on an external processor. A device’s external driver
software may be considered part of a processor’s execution overhead, or it may be treated as
an explicitly declared thread with its own execution properties. Examples of devices
are sensors and actuators or standalone systems such as a Global Positioning System.

6.4.1 Textual and Graphical Representations

A device can interact in complex ways with other components. For example, a device
may have a physical connection to a processor via a bus as well as logical connections
through ports to application software components. As with all logical connections among
components residing on distinct execution platform elements, these logical connections must
be supported by (be bound to) physical connections.

Table 6-7 shows an excerpt from an AADL specification that describes a device

Rol | _Rat e_Sensor interacting through a bus with a processor | nt el _RTCS. The
processor executes the device driver for the Rol | _Rat e_Sensor . The requirement for
bus access is specified in the type declaration for Rol | _Rat e_Sensor . Similarly, the
need for bus access is declared within the processor type declaration for

I nt el _RTOS. Notice that the out data port declared on the roll rate sensor device
provides the rate data from the sensor. A device can be used to represent a more complex
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physical element, such as an engine where the ports can represent the engine’s sensors and
actuators.

Table 6-7: A Sample Device Specification: Textual and Graphical Representation

processor Intel RTCS
features

A1553: requires bus access
X 1553. HS_1553;

Roll_Rate_Sensor

end Intel RTCS;

device Rol |l _Rate_ Sensor
features

A1553: requires bus access
X 1553. HS_1553; X_1553.HS_1553
raw roll _rate: out data port;

end Rol | Rate_Sensor

bus X 1553

end X 1553;

bus implementation X 1553. HS 1553
end X 1553. HS 1553; Intel RTOS

Devices can be viewed from different perspectives. They are integral to the execution
environment, both in terms of the application computing system (software and execution
platform components) and the physical environment in which the application system exists.
Thus, a device can be viewed as

¢ aphysical component that interfaces with the application software through ports (and
port groups), as shown in Figure 6-1

e part of the application system interacting with execution platform components and the
application system, as shown in Figure 6-2

e aunitin the environment that is accessed or controlled by the application system, as
shown in Figure 6-3

The complexity and nature of interactions of a device depend upon how it is included in
the architecture. If a device is included as part of the execution platform system, there are
numerous logical connections to the application system. If it is included as part of the
application system, there are physical connections via bus access across the system
hierarchy. In general, it is preferable to place the device declaration with the application
code, since the emphasis is on its interaction with the application and the number of
connections to the execution platform is then limited to the bus.
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A Physical Hardware

Device At
Processor || [ ’ Application

Figure 6-1: A Device as Part of the Physical Hardware

Figure 6-2: A Device as Part of the Application System

A,“.‘.Controlled Environment

++ Control System
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Figure 6-3: A Device as Part of the Controlled Environment

The data port, port group, and connections abstractions—along with their
graphical representations—depicted in Figure 6-1 through Figure 6-3 are discussed in Section
8: Component Interactions.

6.4.2 Properties

Device properties encompass the dual software and hardware character of a device.

e software-specific properties
- source code files
- source code language
- code size
- execution platform binding properties
e execution platform (hardware) properties, such as those specifying the files that

contain the hardware description language for the device and the language used for that
description

e properties for specification of the thread properties of the device software
executing on a processor, such as dispatch protocols and execution time-related
properties

50 CMU/SEI-2006-TN-011



Section 6: Execution Platform Components

6.4.3 Constraints

Table 6-8 summarizes the permitted elements of device type and implementation
declarations. A device component can only be a subcomponent of a system component. A
summary of the allowed subcomponent relationships and features is included on pages 117—
119 in the Appendix.

Table 6-8: Summary of Permitted Device Declaration Subclauses

Category Type Implementation

Features Subcomponents:

e port e none

e port group Subprogram calls: no
device e server subprogram Connections: no

e requires bus access Flows: yes

Flow specifications: yes Modes: yes

Properties yes Properties: yes
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7 System Structure and Instantiation

This section presents the language abstractions for structuring and integrating AADL
elements into a complete representation of an application system that includes a system
component, component bindings, source code elements, and instantiation.

7.1 System Abstraction

The system abstraction represents a composite of software, execution platform, or system
components. System abstractions can be organized into a hierarchy that can represent
complex systems of systems as well as the integrated software and hardware of a dedicated
application system (e.g., flight navigation system or database server). Used early in the
modeling process to generically represent a component, system components can be formed
into a model that is transformed later—some system components being translated into
process components and contained components being translated into thread and
thread group components.

7.1.1 Textual and Graphical Representations

A system can consist of various combinations of software, execution platform, and system
components. For example, a system may consist only of software (i.e., process or data
components) or execution platform components. Thread and thread group components
cannot be subcomponents of a system, since they must be contained within a process or
a thread group.

The composition of a system implementation is declared through subcomponent
declarations. Table 7-1 provides textual and graphical representations of a system
implementation of the systemtype i nt egr at ed_cont r ol . The details of the type
declaration are not included. The explicit subcomponent declarations are shown in the
system implementation declaration of

integrated _control.integrated _control system However, many of the
other subclauses are omitted. The supporting declarations are not shown (e.g., the process
type declaration for the process type control ler). In the graphical portrayal of the
system implementation, the subcomponents of i nt egr at ed_control _system
of the type i nt egr at ed_cont r ol are shown.
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Table 7-1: A Sample System Specification: Textual and Graphical Representation

system integrated contro

end integrated control

system implementation integrated control.integrated control system
subcomponents

control _process: process controller.speed_control
set _point_data: data set_points;

navi gati on_system system core_system navi gation
real _tine_processor: processor rt_fast.rt_processor
hs_nmenory: memory rt_nmenory. hi gh_speed;

hi gh_speed_bus: bus networ k_bus. HSbus;

end integrated _control.integrated _control _system

o ——— oy r——— oy

control_ / ,control_ of
input ,I II output ,I
- m = o = - m m = =l
= ——— —_—

de .
A navigation_system
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7.1.2 Constraints

Table 7-2 summarizes the permitted elements of a system type and implementation
declarations. Notice that a system cannot contain a thread or thread group; they must
be contained in a process. A system can be a subcomponent only of another system
component. A summary of allowed subcomponent relationships and features is included on
pages 117-119 in the Appendix.

Table 7-2: Summary of Permitted System Declarations

Category Type Implementation
Features: Subcomponents:
e server subprogram e data
e port e process
e port group e processor
e provides data access e memory
e provides bus access e bus
system e requires data access e device
e requires bus access e system
Flow specifications: yes Subprogram calls: no
Properties yes Connections: yes
Flows: yes
Modes: yes
Properties yes

7.2 System Instance

A system instance represents the runtime architecture of an operational physical system.
That physical system may be a stand-alone system or a system of systems. A system
instance consists of application software components and execution platform components.
Component type and component implementation declarations are architecture blueprints
that define the structure and connectivity of a physical system architecture. They must be
instantiated to create a complete system instance. A system instance that represents the
containment hierarchy of the physical system is created by instantiating a top-level system
implementation and then recursively instantiating the subcomponents and their
subcomponents.

Once instantiated, the application component instances can be bound to execution platform
components (i.e., each thread is bound to a processor; each source text, data
component, and port is bound to memory and each connection is bound to a bus if
necessary). There is no explicit textual representation for system instances. Instead,
system instances are created and stored as system instance models in XML. System
instance models can be operated on by analysis and generation tools.

In a fully specified system, the application components are modeled to the level of threads and
possibly refined to subprogram cal I's within threads. Similarly a fully specified

execution platform includes processors to execute application code, memory to store
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application code and data, devices that represent the physical environment of the embedded
application, and buses that connect these components. Certain system analyses require fully
specified system models. For example, scheduling analysis cannot be performed until all the
application threads are specified and are bound to processors.

Early in the development process it is desirable to have partially specified system models and
be able to instantiate them for analysis. For example, we may represent an application
system as a collection of interacting subsystems without providing details of their
implementation. Subsystems are modeled as Ssystem components or process components.
We can instantiate this partial application system together with an execution platform
model into a partial system instance model. We can assign resource budgets in terms of
CPU cycles and memory requirements to the application subsystems and resource capacities
to the execution platform. Given this data we can analyze various bindings of application
components to the execution platform and ensure that the budgets do not exceed the capacity.
We can also add Flow specifications to individual subsystem components and end-to-end
Flows to the application system. Based on these Flow specifications, flow analyses such as
an end-to-end response time analysis can be performed without a fully detailed system
model. "

7.3 Binding to Execution Platform Components

For a complete system specification (one that can be instantiated), software components
must be bound to appropriate execution platform components. For example, threads must
be bound to processing elements and processes must be bound to memory. Similarly,
interprocessor connections must be bound to buses, and subprogram cal s must be
bound to their server subprogram. These bindings are defined through property
associations.

There are three categories of binding properties that provide support for declaring:

1. allowed bindings
2. actual bindings
3. identified available memory and processor resources

For example, there is an Al | owed_Menory_Bi ndi ng predeclared property that
identifies possible memory components for binding and an Act ual _Menory_Bi ndi ng
predeclared property that specifies the memory component to which code and data from
source text is bound. The Avai | abl e_Menory_Bi ndi ng property specifies the set of
contained memory components that are available for the binding to a system’s internal
components from outside the system."’

1" For more information on analysis, see AADL publications and presentations at www.aadl.info.
' Al'l owned_Menory_Bi ndi ng and Act ual _Menory_Bi ndi ng are predeclared properties in
the property set AADL_Pr oper ti es that is part of every AADL specification [SAE 06a].
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8 Component Interactions

Representations of the interactions among components are restricted to defined connections
established between interface elements. Connections establish one of the following
interactions:

e port connections (Sections 8.1 and 8.2): These are explicit relationships declared between
ports or between port groups that enable the directional exchange of data and
events among components.

e component access connections (Section 8.3): These are explicit declarations that enable
multiple components access to a common data or bus component.

e subprogram calls (Section 8.4): These are explicit declarations within component
implementations that enable synchronous call/return access to subprograms.

e parameter connections (Section 8.5): These are relationships among data elements
associated with subprogram calls.

Interface elements are declared within the Features section of a component type
declaration. Paths of interaction (i.e., connections) between interface elements are declared
explicitly within component implementations.

8.1 Ports

A port represents a communication interface for the directional exchange of data,
events, or both (event data) between components. Ports are classified as

e data port: interfaces for typed state data transmission among components without
queuing
Data ports are represented by typed variables in source text. The structure of the
variable/array is defined by the data type [data classifier] on the ports.
Connections between data ports are either immediate or delayed.

e event port: interfaces for the communication of events raised by subprograms,
threads, processors, or devices that may be queued
Examples of event port use include: triggers for the dispatch of an aperiodic
thread, initiators of mode switches, and alarm communications. Events such as alarms
may be queued at the recipient, and the recipient may process the queue content. Event
ports are represented by variables within source text that are associated with runtime
service calls.

e event data port: interfaces for message transmission with queuing
These interfaces enable the queuing of the data associated with an event. An example
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of event data port use is modeling message communication with queuing of

messages at the recipient. Message arrival may cause dispatch of the recipient and allow
the recipient to process one or more messages. These ports are represented by port

variables in source text that are associated with relevant runtime service calls.

8.1.1 Port Declarations

Ports are declared as Features in component type declarations. Ports are directional. An
out port represents a component’s output and an §n port represents a component’s input. An
in out port represents input and output to a component that maps to a single static variable.
An In out data port represents both an incoming and an outgoing port such that the
outgoing and incoming connections can be made to different components.

The graphical representations for data ports, event ports, and event data ports are summarized
in Figure 8-1.

} Data port
in
in out

) Event port

» Event data port

Figure 8-1: Port Graphical Representations

Table 8-1 has an example textual specification and corresponding graphical representation
that includes port and port connection declarations. Within component type specifications,
appropriate ports declarations are grouped together in the Features section. Supporting
data type definitions are included at the end of the table. Many of the other details of the
specification are not shown. For example, declarations of data types used in data port
declarations are not included, as in the declaration of the port c_dat a_out where the
declaration of the data type pr ocessed_dat a is not shown.

In addition to user-defined ports, there are implicitly declared ports for threads.*® For
example, Er r or is an implicitly declared out event data port for all threads and
may be declared as part of a connection involving a thread. In addition, there is an implicit
Conpl et e out event port that, if connected, raises an event, signaling the
completion of a thread. Implicit ports can be used directly in connection declarations. They
are not included in a features subclause.

8 The predeclared ports for a thread are Di spat ch, Conpl et e, and Er r or [SAE 06a].
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8.1.2 Port Connections

Connection declarations between ports are also shown in Table 8-1. A connection declaration
consists of

optional identifier (name)

colon (2)

port connection descriptor (e.g., data port)

source port

connection symbol (e.g., the symbol -> for an immediate connection)

© gk~ 0w

destination port

The pattern for port connection textual declaration is shown in the box below:

name : [descriptor] [source port] [connection symbol] [destination port]

Graphically, connections are solid lines between the ports involved in the connection,
sometimes with adorned with double cross hatching. See Section 8.1.5 (Immediate and
Delayed Communications).

For example, in Table 8-1, the connection c_dat a_t r ansf er is between the out data
portc_data out ofthe threadi nput (writtenasi nput.c_dat a_out) and the
in data portc_data_in ofthe threadcontrol pl us_out put (writtenas
control plus_output.c_data_in). The connections declaration br ake_i n:
event port brake -> input.brake_event; connectsthe in event port
br ake of process implementationcontrol . speed _control tothe In
event porthbrake_event of the thread subcomponent i nput . A name for the
data port connection between control pl us_out put.c_cnd_out and
throttle_cnd isnotincluded in this example. The implicit event data port

Er r or is used in the connection er r or _connect i on. It is connected to the out event
data port Error_Si gnal butnot declared explicitly as a feature in the originating
thread.

Table 8-1: Sample Declarations of Data, Event, and Event Data Ports

process control

features

speed: in data port raw speed;

brake: in event port;

set _speed: in event data port raw set_speed;
throttle cnd: out data port conmand_dat a;
Error_Signal : out event data port;

end control

thread control __in

features

speed_i n_data: in data port raw speed;
brake_event: in event port;
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Table 8-1. Sample Declarations of Data, Event, and Event Data Ports (cont.)

set _speed_edata: in event data port raw set_speed;
c_data out: out data port processed_dat a;
end control _in;

thread control _out
features
c_data_in: in data port processed_data;

c_cnd_out: out data port comuand_dat a;
end control _out;

process implementation control.speed contro

subcomponents

i nput: thread control _in.input_processing_01;

control _plus_output: thread control _out. output_processing 01;
connecti ons

speed_in: data port speed -> input.speed_in_data,;
brake_in: event port brake -> input.brake_event;
set _speed_in: event data port set_speed -> input.set_speed_edat a;
c_data transfer: data port input.c_data out ->
control plus_output.c data_in;

data port control _plus_output.c_cnd out -> throttle_cnd;
error_connection: event data port input.Error -> Error_Si gnal
end control.speed_control

thread implementation control _in.input_processing_01
end control _in.input_processing 01;

thread implementation control out. output_processing 01
end control out.output_processing 01;

data raw _speed
end raw_speed;

data raw _set speed
end raw set speed;

data conmand_dat a
end comand_dat a;

data processed_data
end processed_dat a;

control.speed_control

-—em e - -1
YT I' control_
c_datfa_out ; Plus_output/

speed speedrin_data throttle_cmd

brake
set_speed
Error_Signal

set_speed_edata
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8.1.3 Connections in System Instance Models

A connection instance represents the actual flow of data and control between components of
a system instance model. In case of a fully specified system, this flow is a transfer
between two thread instances, a thread instance and a processor instance, or a
thread instance and a device instance. The data flow may be in either direction.
However, at least one thread must be included. In the AADL standard, connection
instances in a fully specified system model are called semantic connections.

In the case of a partially specified system, the system instance model is expanded through
the component hierarchy to the subcomponents for which no implementation detail is
provided, regardless of their component category. In this case, connection instances may be
between ports of system component instances or process component instances.
According to the AADL standard, those connection instances are not semantic connections,
but they are essential to certain analyses of partial system instance models.

Connection instances that are semantic connections are illustrated in Figure 8-2. In this
figure, data is communicated between two threads in different processes. The data
connection between the two threads is expressed by connection declarations that must follow
the component hierarchy. In other words, there is a connection declaration from the original
thread to its enclosing process, from that process to the second process, and from
that process to the contained destination thread. Note that threads cannot arbitrarily
communicate with other threads in the system. The enclosing process determines, through
the ports in its type declaration and the connection declarations to those ports, which data
from its threads should be passed on to threads in other processes.

In a system instance model, the sequence of data connection declarations from a thread
to its enclosing process, to the second process, and to the thread contained in the
second process results in a connection instance. If two threads are subcomponents
within the same process or thread group, the connection instance is represented by a
single connection declaration between those threads in the enclosing component
implementation. While there may be a series of port-to-port connections involved in a
data transfer (system instance connection) between two threads, data is transferred
directly from the sending thread to the receiving thread. From an application source
code perspective, the sending thread assigns a value to a variable/array and the receiving
thread receives that value in a corresponding variable/array.
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/ o {_ connection declarations
Application System

collect_data_process scale_data_process

semantic connection

J

Figure 8-2: A Semantic Connection between Thread Instances

Figure 8-3 illustrates a connection instance in a partial system instance model. In this
model, the data collection process and the data scaling process have not been
detailed out. The data connection between the two processes results in a connection
instance in the system instance model. This connection instance is not considered a
semantic connection according to the AADL standard, but the connection instance can be
used in a fault propagation analysis or flow analysis of this partially specified system.

| connection declaration |

Application System

collect_data_process scale_data_process

g
-------

v 4

N
| connection instance |

Figure 8-3: A Connection Instance in a Partially Specified System Instance Model

8.1.4 Port Communication Timing

The timing of system instance data communication via ports depends upon the type of
components involved (i.e., thread, device, or processor) and the nature of their
connections. Communication timing is expressed in terms of execution completion,
deadline, and dispatch times. For data port transfer out of threads, the data is ready for
transfer at the completion of the thread, regardless of dispatch or scheduling
characteristics. The timing of the delivery of the data to a receiving component is
established by the nature of the data connection between them—immediate or delayed.

For event and event data ports, a source thread executes a Rai se_Event call.
This call results in the immediate transfer of control for an event port and the immediate
transfer of both control and data for an event data port.
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8.1.5 Immediate and Delayed Communications

The type of connection between thread data ports establishes specific timing
semantics for data that is transferred between originating and terminating threads. Data port
connections can be immediate or delayed. This section presents the basic timing
semantics for these inter-thread connections. It does not address the potential impact of
bus speeds, communication protocols, or partitions on these connections.

For immediate connections, data transmission is initiated when the source thread
completes and enters the suspended state. The value delivered to the in data portofa
receiving thread is the value produced by the sending thread at its completion. For an
immediate connection to occur, the threads must share a common (simultaneous) dispatch.
However, the receiving thread”s execution is postponed until the sending thread has
completed its execution. This aspect can be seen in Figure 8-4, where the immediate
connection specifies that the thread cont r ol must execute after the thread

r ead_dat a, within every 50 ms period. In addition, the value that is received by the
thread cont r ol isthe value output by the most recent execution of the thread
read_dat a.

|‘ read_data ,'l Illlcontrol .’

L 2 /
Immediate connection | = =Z00=====— !/
dictates execution order

read_data read_data read_data
controlF————§ control————§) control

! Timeline
T, (20H2) T,., (20H2) T.., (20H2)

Figure 8-4:  An Immediate Connection

For the graphical timelines in Figure 8-4 through Figure 8-9, a horizontal bar above the
timeline that is labeled with a thread name represents the execution time of that thread.
The left edge represents the start and the right edge represents the termination of the
thread’s execution. A solid or segmented arrow between thread execution bars
represents a data transfer between threads. A segmented arrow represents a delayed (e.g.,
Figure 8-5) or a repeat transfer (e.g., Figure 8-6).

For the two threads illustrated in Figure 8-4, a partial textual specification is shown in Table
8-2. The connection i mredi at e_Cl1 is declared as immediate using the single-headed
arrow symbol (->) between the out data portand in data port. Notice the

Per i od property association (50 ns) within each of the thread type declarations.
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Table 8-2: AADL Specification of an Immediate Connection

thread read_data

features

i n_data: in data port;

out _data: out data port;
properties

Period => 50 ns;

end read_dat a;

thread basic_contro

features

i n_data: in data port;

out data: out data port;
properties

Period => 50 ns;

end basi c_control

process implementation control speed. i npl
subcomponents

read_data: thread read data
control : thread basic_control
connections

i medi ate_Cl: data port read_data.out _data -> control.in_data;
end control _speed.inpl;

For a delayed port connection, the value from the sending thread is transmitted at its
deadline and is available to the receiving thread at its next dispatch. For delayed port
connections, the communicating threads do not need to share a common dispatch. In this
case, the data available to a receiving thread is that value produced at the most recent
deadline of the sending thread. If the deadline of the sending thread and the dispatch of
the receiving thread occur simultaneously, the transmission occurs at that instant. The
impact of a delayed connection can be seen in Figure 8-5, where the thread cont r ol
receives the value produced by the thread r ead_dat a in the previous 50 ms frame. A
shown in Figure 8-5, a delayed connection is symbolized graphically by double cross
hatching on the connection arrow between the ports.

For the two threads illustrated in Figure 8-5, a partial textual specification is shown in Table
8-3. This specification has some differences from the one in Table 8-2: the connection

del ayed_C1 is declared as delayed using the double-headed arrow (->>) and the Per i od
property association is declared in a properties subclause within the process. This
association specifies that the value of 50 s is the period of contained threads unless
overridden within an individual thread’s declaration.
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Data available at
deadline of read_data.

u
read_data contro| m read_data

read_data
—_—

LR = LS
&5 —wsss H N
iliii.—-‘_ . SSsas control ig‘

[l -
! ! Timeline

i
I
T, (20H2) Ti.2 (20H2)

Forces ‘control’ to receive
data from the previous frame.

Figure 8-5: A Delayed Connection

Table 8-3. AADL Specification of a Delayed Connection

Thread read_dat a

features

i n_data: iIn data port;

out _data: out data port;

end read_dat a;

thread basic_contro

features

in_data: in data port;

out _data: out data port;

end basic_control

process implementation control _speed. i npl
subcomponents

read_data: thread read data

control : thread basic_control

connections

del ayed_Cl: data port read_data. out_data ->> control.in_data;
properties

Period => 50 ns;

end control _speed.inpl;

8.1.6 Oversampling and Under-Sampling

For communication between different frequency periodic threads with simultaneous dispatch,
both delayed and immediate communications can be used to ensure a well-defined exchange.

Consider the example of two simultaneously dispatched threads r ead_dat a and cont r ol
shown in Figure 8-6 and Figure 8-7. In the case of a delayed connection, the value from

r ead_dat a is available at its deadline. It is received by the two executions of cont r ol
whose dispatch coincides with or follows that deadline (e.g., r ead_dat a may have a
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preperiod deadline). Thus, the two executions of cont r ol occurring within an execution
frame of r ead_dat a receive the value produced in the preceding frame of r ead_dat a.

In contrast, consider the case of immediate connections as shown in Figure 8-7, the values
available for two sequential executions of cont r ol are the same, the value produced within
the 10 Hz execution frame of r ead_dat a. This result is accomplished by delaying the
execution of the first cont r ol within the frame until the completion of r ead_dat a.
Notice that this can only occur if both r ead _dat a and an execution of cont r ol can
successfully complete (i.e., meet deadline) within the execution frame of cont r ol .

,read data / Icontrol /
— T ¥ >—
! /

reads every value twice I

read_data _ _ read data

iiii:;_ a5 H
\ -=i=====~ ---iii__.is__
SSags H SFssss-
E control srsayg contr ;c A&l SEssaa) control

! ! ! ! Timeline.
T; (20Hz) T,.; (20Hz) T, (20Hz) \
T, (10Hz) T..(10Hz)  datavalue from

previous (10Hz) frame

Preemption & concurrency
are possible.

Figure 8-6:  Oversampling with Delayed Connections

lread data / Icontrol /
N e iy
2
1

Immediate connection | ==Z0l = ====-
affects execution order. reads every value twice ]

same data value
read_data AN read data
control ~“control control
L 1
I Timeline
T; (20Hz) T..1 (20Hz) T.,, (20Hz)
T; (10Hz) Tj.1 (10Hz)

Figure 8-7:  Oversampling with Immediate Connections

Consider the situation where a periodic thread is sending to a simultaneously dispatched
higher frequency thread. For a delayed connection, as shown in Figure 8-8, the data
provided to an execution of cont r ol is the value produced by r ead_dat a that is
available at the simultaneous dispatch of the threads. That value is produced at the most
recent r ead_dat a deadline, which may coincide with the thread’s dispatch. In the case of
an immediate connection as shown in Figure 8-9, the value provided to the thread
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contr ol is the value produced by r ead_dat a at the end of its first execution after the
simultaneous dispatch, and the execution of cont r ol is delayed until r ead_dat a has
completed.

) - = LoD
,read data / 'control /
7 W »—

/ /

L /
B read_data read_data read_data read_data
| TRy e— — — —
i SESaaL. TEEsaa, "Eﬁ;i
S®ss5,. control i SSsag control
R hdhaly Sz
i : i \ I
! i ! ! Timeline
T, (20Hz) T, (20H2) T.., (20Hz) \
T,(10H2) Tj.1 (10Hz) most recent data value

from previous (10Hz) frame

Figure 8-8:  Under-Sampling with Delayed Connections
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Figure 8-9: Under-Sampling with Immediate Connections

8.1.7 Properties

A variety of predeclared port properties provide details on the interface represented by
the port, including properties relating to the

e source text for the port

o whether a connection is required for the port

e port binding characteristics

e entry points associated with event and event data ports

For example, Sour ce_Narme is used to specify the name of the port variable in the source
code. Requi r ed_Connect i on is used to indicate whether the component’s
implementation is aware of a port’s having a connection (i.e., the connection may be
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optional) or whether the component assumes the connection to always be in place.™ Port-
specific execution time, deadline, and source code entrypoints can be specified for each port
to reflect that each may cause a different piece of code to be executed. Several properties
allow the queue characteristics of event and event data ports to be specified.

In addition, predeclared port connection properties allow the declaration of specific
connection protocols and binding properties relating to the connection. Binding
properties allow the declaration of actual and allowed binding as well as the
specification of restrictions on the co-location of software elements associated with the
connection.

8.1.8 Port and Port Connection Constraints

There are restrictions on the topology of port connections. An out data port can be
connected to (i.e., send data to) data ports of multiple components—a “fan-out” of data. An
in data port, however, is restricted to a single incoming connection. In other words,
because it does not support queuing, an in data port cannot have a “fan-in” from
different sources; the outputs from those sources would overwrite one another. If queuing of
data is desired, an event data port should be used. In contrast, event ports and event
data ports support both data fan-out and fan-in. Fan-in is supported because these ports
support queuing. Multiple inputs at an event or event data port enable the
specification of the sequencing of disparate events as well as the queuing of events.

While it is permissible to omit the explicit declaration of the data type for a data or event
data port, the explicit declaration allows checking of consistency of data type and size
for the connections made between ports. Thus, the connection from the out data port of
the thread r ead to the in data port of the thread scal e in Figure 8-3 requires
that the data type declaration for each of these ports and all of the intervening ports must be
the same for a complete system specification. However, incomplete port specifications are
permitted. For example, it is acceptable for one end of a connection not to have a data type
declared while the other end does. Similarly, one end of a connection can have just a data
component type while the other end has a data implementation with the same type.

8.2 Port Groups

The port group abstraction represents a collection of ports or other port groups. The
content and structure of a port group are declared completely through a port group
type declaration. There is no implementation declaration. Port groups are declared in the
Features section of component types and reference a port group type. They may be
incompletely specified by not referring to a port group type or by referring to a port
group type containing ports that themselves are not completely specified.

¥ Sour ce_Nane and Requi r ed_Connect i on are in the predeclared property set
AADL_Properti es thatis part of every AADL specification [SAE 06a].
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Port groups can be used to

o reduce the number of connection declarations

o simplify graphical presentations

o allow a single reference to multiple related ports, connections, and entities in a
specification

e group ports with common properties (e.g., all event ports)

e mix port types and directions

8.2.1 Port Groups and Port Group Type Declarations

A port group is defined in a type declaration that explicitly identifies the individual ports
and port groups that it comprises. Example port group declarations and their declaration
as Features within a component type are shown in Table 8-4. As with other component
type declarations, properties of the port group can be declared and a port group
type can be extended and refined.

The declarations in the Table 8-4 are excerpts from a complete specification and include only
relevant declarations and portions of declarations needed to show what is required in
specifying a specific port group. In the tables, port group type declarations are
shown in the left column and example references to the type and supporting declarations are
shown in the right column.

Table 8-4: Sample Port Group with Mixed Port Types

port group reference

port group type declaration

(with supporting declarations)

port group roll _set

features

roll _data: in data port;

roll _cnmd: out data port c_form
engage: in event port;

errors: port group error_set;
end rol |l _set;

data c_form
end c_form

port group error_set
features

sensor_error: in data port;
range_error: out event port;
end error_set

process contro

features

roll_01: port group roll _set;
end control

A port group type can be declared as the inverse of another port group type. This
relationship is indicated by the reserved words inverse of and the name of a port
group type. The Features of the inverted port group must be in the same order as in
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the referenced port group but with the opposite directions. A port group type that is
named in an inverse of statement cannot itself contain an inverse of statement.

Thus, a chaining of inverses, such as B inverse of A and C inverse of B, is not permitted. An
example of the use of the key word inverse of is shown in Table 8-5.

Table 8-5: A Port Group Type Declaration and its Inverse

port group GPS socket
features

Wakeup: in event port;

onservation: out data port position;
end GPS _socket;

port group GPS pl ug
features
WakeupEvent: out event port;
Observati onData: in data port position;
inverse of GPS socket
end GPS_pl ug;

Figure 8-10 contains graphical icons for port groups and their connections. The graphical
symbols of a port group represent the Features declaration of the port group
within a component type declaration. Port groups can bundle different port types and
directions.

Port Group :'é _____ 4
(as a feature of a thread) ’ /

Port Group Connection
(between two port groups that | | @ )
are each a feature of system)

Port GrOUp Bundle Port group
(mixed directions and ports)

Figure 8-10: Graphical Representations of Port Groups

8.2.2 Port Group Connections

Connections can be made between port groups, individual ports, and the
individual ports within a port group. Within a component, elements of a port
group in its component type can be individually connected to ports of subcomponents.
However, elements of a port group of a subcomponent cannot be individually connected
to other subcomponents. In other words, grouping and pulling apart elements of a port
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group can occur when going up or down the component hierarchy, but not within the same
level of the component hierarchy.

Figure 8-11 shows a graphical representation of a port group identified as
node_control _group and its inverse, with relevant excerpts from a corresponding
AADL specification for a simple cruise control system. The connection declaration between
the port groups is shown in Table 8-6 that includes excerpts from an AADL specification.

mt_group node_control _group_i nver se
features
cc_on_in: in event port;
cc_off_in: in event port;
brake_on_in: in event port;
inverse of node_control _group
end nmode_cont rol _group_i nverse;

cc_process_subsystem

- oy

controller

\/
K

port group node_control _group
features

cc_on_out 01: out event port;
cc_of f_out01l: out event port;
brake_on_out01l: out event port;

end node_cont rol _group; -
Figure 8-11: Sample Port Group Connections

Table 8-6: Sample Port Group Connection Declarations

process implementation process_subsystem cc_process_subsystem

subcomponents

process_raw data: thread process_data.cc_process_raw dat a;
control l er: thread control.cc_control

connections

d to_c: port group process raw data.nc_out -> controller.nc_in;

end process_subsystem cc_process_subsyst em

thread process_data

features

nc_out: port group node_control _group
end process_dat a;

thread control

features

nc_in: port group node_control _group_inverse;
end control

Port groups can be effective in grouping related data and connections. For example, the
individual outputs of multiple sensors (devices) within a sensor subsystem (grouped in a
system) can be bundled together into a single port group. In that instance, all of the
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sensor data is transferred through a single connection declaration from the sensor subgroup to
a control processing system. The information provided by the ports within the port group

is distributed through separate connections to individual control processing subsystems.

8.2.3 Aggregate Data Ports

Time consistency in data transmission can be achieved using an aggregate data port
group. An aggregate data port group consists exclusively of data ports that have the
same direction (i.e., all out data ports) with an Aggr egat e_Dat a_Port property
value of true.? For this specialized port group, data transmission from multiple ports is
time coordinated—that is, if data associated with the port group is produced by a set of
simultaneously dispatched periodic threads, the recipients of that data receive a consistent set
of values from the most recent dispatch or a consistent set of values from the previous
dispatch of the threads.

8.2.4 Properties

Predeclared port group properties can be used to establish a port group as an
aggregate data port and define port group memory binding characteristics. Port
group connections can have properties that reflect the properties of the ports that
compose the port group. For example, there isa Sour ce_Text property that
specifies the source files associated with the port group and an

Al | owed_Menory_Bi ndi ng property that specifies the set of memory components to
which data and event data ports within the port group can be bound.

8.3 Subcomponent Access

Data and bus subcomponents are made accessible throughout a system through explicit
features declarations within type declarations of components. For data components, this
capability supports modeling of shared access to a common data area or static data. For bus
components, this access models the connectivity of execution platform components
through buses whose access they share.

The access declarations are
e provides: indicates that a component provides access to a data or bus component
contained within it

e requires: indicates that a component requires access to a data or bus component that
is external to it

 Aggregat e_Dat a_Port is a predeclared property for every AADL specification [SAE 06al.
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8.3.1 Data Access Declarations

Examples of a data subcomponent access declaration are shown in Table 8-7. There is
an optional identifier for the declaration.

Table 8-7; Data Access Declarations

process contro

features

cc_set _point_data: requires data access data_sets.set_ points;
error_| og_data: provides data access | ogs. error_| ogs;

end control

data data_sets
end data_sets;

data implementation data_sets.set_points
end data_sets.set_points;

data | ogs
end | ogs;

data implementation | ogs. error_I| ogs
end | ogs. error_| ogs;

8.3.2 Data Access Connections

The connections (paths) for subcomponent access are declared in connections
declarations within component implementations. The access connection specifies the path
from the component providing access to the component requiring access (i.e., from
provides to requires).

Table 8-8 presents an example of data access connections declarations. The lower
portion of Table 8-8 is a graphical representation of these data access dependencies. The
example shows some of the declarations for the system implementation

basi c_control . aut o_cc that are relevant to the data access relationships for the
system. The thread subcomponent cc_al gori t hmof the process cc_contr ol
requires access to the local data subcomponent comm error _| og

(1 ogs. error_| ogs) . Inaddition, the thread subcomponent conm er r or s requires
access to the data subcomponent comm error _| og (Il ogs. error_| ogs) of the
process cc_error_nonit or. This connection is a remote connection across address
spaces, where the process cc_cont r ol provides access to its data subcomponent.

Notice the concurrent access to the data subcomponent conm error _| og

(1 ogs. error_I| ogs) inthe example. The predeclared property
Concurrency_Control Protocol canbe used to coordinate this access (e.g., to
ensure mutually exclusive access). Other predeclared properties for data subcomponent
access identify whether the required or provided access isread_onl y,wite_only,or
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read write.ARequired_Access property association must be the same as the
Provi ded_Access property of the component that is accessed.?

Table 8-8: Shared Access across a System Hierarchy

system implementation basic_control.auto_cc

subcomponents

cc_control: process control.cc_control

cc_error_nonitor: process nonitor.error_nonitor

connections

a 01: data access cc_control.error_| og_data ->

cc_error_nonitor.error_data_in;

end basic_control . auto_cc;

process control

features

error_| og_data: provides data access | ogs.error_| ogs
{Provi ded_Access => access read_only;};

end control

process implementation control.cc_contro
subcomponents
commerror_log: data |logs.error_logs {Provided Access =>
read_ write;};
cc_algorithm thread al gorithmcc;
connections
data access commerror_log -> error_I| og_dat a;
data access commerror_log -> cc_algorithmerror_I| og_data;
end control.cc_control

thread al gorithm

features

error_|log_data: requires data access | ogs.error_| ogs
{Required_Access => access read wite;};

end al gorithm

thread implementation al gorithm cc
end al gorithm cc;

data | ogs
end | ogs;

data implementation | ogs. error_I| ogs
end | ogs. error_| ogs;

process nonitor

features

error_data_in: requires data access | ogs.error_| ogs
{Required_Access => access read _only;};

end nonitor;

1 The predeclared properties Concur r ency_Cont rol _Prot ocol , Requi red_Access, and
Provi ded_Access are included in the property set AADL_Pr opert i es. This property set
declaration is part of every AADL specification [SAE 06a].
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Table 8-8: Shared Access across a System Hierarchy (cont.)

process implementation nonitor.error_nonitor
subcomponents

commerrors: thread malgorithmerrors;

end nonitor.error_nonitor;

thread m al gorithm
features
c_error_data: requires data access | ogs.error_| ogs
{Requi red_Access => access read_only;};
end m al gorithm

thread implementationmalgorithmerrors
end malgorithmerrors;

basic_control.auto_cc \
r requires data access to

cc_control comm_error_log
- )y T 7 (logs.error_logs —read_write)
l'ccfalgorithm U
Y
comm_error_log %provides data access to \
comm_error_log

(logs.error_logs)

requires data access to

cc_error_monitor
;- -=
,/comm_errors Y
, S comm_error_log

(logs.error_logs —read_only)

8.3.3 Bus Access and Bus Access Connections

In addition to access to data, access to buses is declared explicitly in AADL. Table 8-9 shows
an example of bus access for a simplified cruise control system that consists of a cruise
control unit (system component) and driver input, speed sensor, and throttle devices.
The additional execution hardware for the system consists of a processor that executes
the cruise control system application software and a bus connecting the hardware
components. The figure in the lower portion of Table 8-9 is a graphical representation for
required access Features and connections to the bus declared in the text. It also
shows the data connections for the system. Some of the details of the subcomponent
declarations are not complete in the sample specifications.
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Table 8-9: Basic Bus Access and Access Connection Declarations

system implementation cruise_control _system i npl

subcomponents

driver_input_unit: device driver_input_unit;

speed_sensor: device speed_sensor

CCU. system CCU system

throttle actuator: device throttle_actuator

Mb55: processor M55;

CANBuUs: bus CANBus. i mpl ;

connections

-- data port connections not included

-- bus access connections

bus_access_01: bus access CANBus -> driver_input_unit.bus_access;
bus_access_02: bus access CANBus -> speed_sensor. bus_access;
bus_access_03: bus access CANBus -> throttle_ actuator.bus_access;
bus_access_04: bus access CANBus -> M55. bus_access;

end cruise_control _system i npl;

device driver_input_unit
features
set _speed: out data port;

bus_access: requires bus access CANBus. i mpl;
end driver_input _unit;

system crui se_control _system

end cruise_control _system

bus CANBus

end CANBus;

bus implementation CANBus. i npl

end CANBus. i mpl;

system CCU system

end CCU system

device speed_sensor

features

bus_access: requires bus access CANBus. i npl;
end speed_sensor;

device throttl e_actuator

features

bus_access: requires bus access CANBus. i npl;
end throttl e _actuator;

processor M55

features

bus_access: requires bus access CANBus. i npl ;
end Mb55;
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Table 8-9: Basic Bus Access and Access Connection Declarations (cont.)

ﬂuise_control_system.impl \

driver_input -
_unit throttle_
-~ actuator
CCuU
speed_
sensor D M555

\ CANBus /

Table 8-10 illustrates how to model two subsystems with hardware components and bus
connections. Some of the specifications are not complete (e.g., type rather than
implementation classifiers are used in defining some of the components and
subcomponents). In the illustration, one subsystem is connected to the other by a bus
provided by the second subsystem. Specifically, the application system requires bus
access to the network system’s 1553 bus. The bus access, requires, provides,
and connections are shown both graphically (lower portion of Table 8-10) and as AADL
text declarations.

Table 8-10: Example Bus Access Connection Declarations

system cont ai ni ng_syst em

end cont ai ni ng_system

system implementation contai ni ng_systeminp
subcomponents

net wor k: system networKk;

application: system application;
connections

bus access net wor k. network_bus -> application. network_bus;
end cont ai ni ng_system i npl ;

system net wor k

features

net wor k_bus: provides bus access B 1553;
end net work;

system implementation network. i npl
subcomponents

B 1553: bus B 1553;

connections

C01: bus access B 1553 -> networ k_bus;

end network.inmpl;
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Table 8-10: Example Bus Access Connection Declarations (cont.)

system application

features

networ k_bus: requires bus access B 1553;
end application;

system i npl ement ati on application.inpl
subcomponents

PC processor: processor PC;

connections

bus access network _bus -> PC processor. network_bus;
end application.inpl;

processor PC

features

net wor k_bus: requires bus access B _1553;
end PC;

bus B 1553

end b_1553;

/containing_system.impl \

network

application

PC_processor

/

8.4 Subprogram Calls

Subprogram calls are declared through cal I's declarations within a thread or
subprogram implementation. The subprogram that is called must be declared
through a subprogram type declaration and possibly a subprogram
implementation declaration, as discussed in the Section 5.5.1 (Subprogram
Declarations).

In the current version of the AADL standard, subprograms are not declared as instances
through a subprogram subcomponent declaration. The need for such instances is inferred
from the cal I's and can take into account sharing of subprogram libraries across
processes. The specific subprogram called is declared through a property association of
the predeclared property Act ual _Subpr ogram Cal | . The example in Table 8-12
illustrates this principle.
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8.4.1 Call Sequences

There may be a sequence of cal I's declared within a component implementation. An
example is shown in the partial specification of Table 8-11 where the cal I s sequence

t wo_cal | s involves a call to the subprogram implementations acqui re. t enp and
then adj ust . | evel . The associated subprogram declarations are also shown. The
cal Is sequence is determined by the subprogram cal I's declaration order. In other
words, the cal I's order is linear. If more complex call orderings are desired, an annex
notation could provide specification of other orderings, such as a “branch” or “iteration.”
Alternatively, one can specify different cal I's sequences that are active under different
modes. For more details on the use of modes, see Section 9 (Modes).

Notice that subprograms may call other subprograms. This circumstance is shown in
Table 8-11 where the subprogram implementation adj ust. | evel callsthe
subprogramfi nd. t enp_val ues.

Graphically, subprogram cal I s are represented by subprogram symbols, arranged left
to right within a thread implementation or subprogram symbol. A call sequence
arrow may be included as shown in the figure in the lower potion of Table 8-11.

Table 8-11:  Example Subprogram Calls

thread implementation control.thermal _contro

calls
two_cal |l s: {
get tenp: subprogram acquire.tenp;
adj ust _| evel : subprogram adj ust. | evel;

b

end control.thermal _control

subprogram acquire
end acqui re;

subprogram implementation acquire.tenp
end acquire.tenp;

subprogram adj ust
end adj ust;

subprogram implementation adjust. | eve
calls

{

find_scal e_val ues: subprogram find.tenp_val ues;

end adj ust. | evel;

subprogram fi nd
end find;

subprogram implementation find.tenp_val ues
end find.tenmp_val ues;
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Table 8-11: Example Subprogram Calls (cont.)

call sequence arrow
(optional)

8.4.2 Remote Calls

Remote client-server interactions can be modeled using server subprogram calls as
shown in the partial specification in Table 8-12. The property association

Act ual _Subprogram Cal | declares that the subprogram call cal | _server
within the thread cal | i ng_t hr ead, which is a subcomponent of the process

cl i ent _process, is being made to the subprogram contained within the server
process (server _process). This is an example of a contained property association
that is discussed in more detail in Section 11.2.2 (Contained Property Associations).

Table 8-12:  Client-Server Subprogram Example

system implementation client_server_sys.inpl
subcomponents
client_process: process client_process.inmpl;
server_process: process server_process.inpl;
properties
Act ual _Subprogram Call => reference server_process.
server _thread. service
applies to client _process.
cal l'ing_thread. call _server;
end client_server_sys.inpl;
process client_process
end client process;
process implementation client process.inpl
subcomponents
cal ling_thread: thread calling.inpl;
end client_process.inpl;
thread cal ling
end cal |l i ng;
thread implementation calling.i nmpl
calls {
cal |l _server: subprogram service_it ;

b
end cal ling.inmpl;
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Table 8-12:  Client-Server Subprogram Example (cont.)

process server_process

features

servi ce: server subprogram service it;
end server_process;

process implementation server_process.inp
subcomponents

server_thread: thread server_thread.inpl;
end server_process.inpl;

thread server _thread

features

servi ce: server subprogram service_it;
end server _thread

thread implementation server_thread.inp
end server _thread.inmpl;

subprogram service_it

end service_it;

ﬁient_server_system.impl \

client_process

server subprogram call binding:
Actual_Subprogram_Call =>

reference server_process.server_thread.service
applies to client_process.calling_thread.call_server;

server_process

8.4.3 Properties

Subprogram cal ls properties identify the allowed and actual server subprograms
involved in a remote server subprogram call. In addition, these properties can be
used to specify the allowed and actual binding of the calls to physical elements that support a
remote server subprogram call. If no values are assigned to these properties, the
subprogram call is a local call to a server subprogram.?

2 |n the AADL standard, the subprogram cal I's of all threads must either be local cal I's or

be bound to a server subprogram whose thread is part of the same mode, in a completely
instantiable system [SAE 06a].
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8.5 Data Exchange and Sharing in Subprograms

A subprogram can receive and provide data through a variety of mechanisms including

e parameter (passing by value)
e access (passing by reference)

o global/static (shared) data

These diverse and often implicit aspects of data that are followed in programming languages
can be modeled and explicitly documented in an AADL representation through parameters,
access features, and their associated connections.

8.5.1 Data Exchange by Value: Parameters and Connections

A parameter represents call and return data values passed into and out of a
subprogram. These exchanges by value are declared as typed data features in the
type declaration of a subprogram, similar to data port declarations. Parameter
connections are used to describe the flow of data into and out of a subprograms and
the data flow through a sequence of subprogram cal ls within a thread. These
connections can be useful in a comprehensive flow analysis when used in conjunction
with Flows declarations. For more detail on the use of parameters in flow analysis, see
Section 10 (Flows).

Table 8-13 presents textual and graphical representations of the parameters and the
parameter connections associated with a cal I's sequence within a thread. Ina

graphical representation

e parameters are represented as solid arrows (»), like data ports

e parameter connections are shown as solid lines (==) between parameters or
between a parameter and a port (on a containing thread of the subprogram
call)

e subprogram calls are represented by ovals () labeled with the call (e.g.,
scal e) and called subprogram type

o calls sequence is indicated by an arrow with an open arrow head (—) (Alternatively, a
cal Is sequence can be specified by the ordering of the cal I's from the left to the
right.)

Notice that the in event data porti n_dat a of the thread scal e_dat a is
connected to the parameter i n_par anet er of the subprogram scal e. Parameters
can be connected to In data port, out data port, and event data port.
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Table 8-13: Example Parameter Connections

thread scal e_data
features
in_data: in event data port;
out _data: out data port;
end scal e_dat a;
thread implementation scal e_dat a. i npl
calls {
scal e: subprogram scal e;
edit: subprogram edit_range;
updat e: subprogram updat e_set;
b
connections
parameter in_data -> scal e.in_paraneter;
parameter scale.interimvalue -> edit.interimval ue;
parameter edit.out paraneter -> update.io_paraneter;
parameter update.io_paranmeter -> out_data;
end scal e_data.inmpl;
subprogram scal e
features
i n_paraneter: iIn parameter;
i nteri mvalue: out parameter;
end scal e;
subprogram edi t _range
features
interi mval ue: iIn parameter;
out _paraneter: out parameter;
end edit_range;
subprogram updat e_set
features
i 0o_paraneter: in out parameter;
end updat e_set

8.5.2 Data Passing by Reference and Global Data

The flow of data into and out of a subprogram can involve references to data (e.g.,
pointer values) or access to common data values (i.e., global or static data), rather than
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explicit data passing. These data reference mechanisms are described through data
requires/provides data access declarations in an AADL model.

For example, consider the annotated pseudocode and corresponding AADL textual
representation in Table 8-14. In the pseudocode, examples of subprogram cal I's with
data reference and the use of global data are shown. In the Passing by reference
section of pseudocode, the function scal e modifies data (referenced with the pointer p1)
using the scale factor v1. In the second implementation of scal e (the Global variable
section of Table 8-14), a parameter data value (the scale factor) is passed and a common
dataelement r aw_dat a is scaled.

Within AADL, both of these options are represented with v1 as a parameter, whereas the
pointer p1 and the common data r aw_dat a are represented as a data access feature of
the subprogram scal e. The thread pr ocessi ng has a call to the subprogram
scal e. A corresponding AADL representation for the Global variable pseudocode explicitly
shows the thread receiving the data value for v1 through the in data portscal ar
and using that value in the subprogram call, as indicated by the parameter connection
VC1 in the thread. In contrast, the pointer reference to the data to be scaled is represented
asadata access inthe subprogram type declaration for scal e. The explicit
reference to r aw_dat a in the subprogram scal e is the requi res statement in the
thread type declaration. The AADL specification allows an implementation using
either option shown in pseudocode.

Table 8-14:

Examples of Passing by Reference and Global Data

Pseudocode

AADL Representation

Passing by reference:
scale (v1, pl)

vlis areal that is
the scal e factor.

pl is a pointer to a
data set ‘raw data’
that is to be scal ed.

processing that calls
t he subprogram

call scale (v1, pl);

subprogram scal e

features

vl: in parameter real;

pl: requires data access raw_dat a;
end scal e;

data raw data

end raw dat a;

data rea

end real

thread processing

features

scal ar: in data port real

pl: requires data access raw dat a;
end processing;
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Table 8-14. Examples of Passing by Reference and Global Data (cont.)

Global variable:

vari abl e and
processi ng
definitions:

real: raw data
scal e(vl)
{
X .=

raw_dat a

}
processi ng that
calls the
subpr ogram

call scale(vl);

thread implementation processing.inpl
calls {
scal e_it: subprogram scal e;
H
connections
VCl: parameter scalar -> scale it.vl;
PCl: data access pl -> scale_it.pl
end processing.inpl;
process dat a_nmanagenent
features
scal ar: 1n data port real
end dat a_nanagenent ;
process implementation dat a_nanagenent. i npl
subcomponents
r data: data raw data;
dat a_processi ng: thread processing.inpl;
connections
Cl: data port scal ar -> data_processing. scal ar
C2: data access r_data -> data processing.pl
end data_nanagenent.i npl ;

8.5.3 Method Calls in AADL

Cal Is to object methods can be represented in AADL as cal Is to subprogram
features of a data component. Consider the pseudocode in Table 8-15 where the method
error Tot al of the class Er r or Log returns an integer value that is the total number of
errors currently in the log. The corresponding AADL representation involves the declaration
of an enclosing process implementation that establishes instances of the thread
noni t or and the data component Er r or Dat a, as well as the required data access
of the thread noni t or to Er r or Dat a. The implementation of the thread

noni t or involves the call sequence to subprograms er r or Tot al andr eset . The

integer type return value for er r or Tot al is represented as the out parametert ot al .
The data access connections are shown graphically in the figure of Table 8-15 and
indicate the subprogram and thread access to Er r or Dat a.

Table 8-15: Methods Calls on an Object

Object-Oriented Pseudocode AADL Representation

class ErrorLog { process implementation
int errorTotal () { | mai ntenance.contro

. subcomponents
} nmonitor: thread nonitor.errors;
voi d reset () { ErrorData: data ErrorlLog
. connections
} Cl: data access ErrorData ->

noni tor. | og_access;
end nmai ntenance. control
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Table 8-15:

Methods Calls on an Object (cont.)

public static void nmain()

{

ErrorLog stabilizer =
ErrorLog();

int errors;

errors =
stabilizer.errorTotal ();
stabilizer.reset();

new

thread nonitor
features
| og_access:
ErrorLog;
end noni tor;
thread implementation nonitor.errors
calls {
errors: subprogram ErrorlLog. errorTot al
reset it: subprogram ErrorlLog.reset;
};

Connections

Data access | og_access ->
reset it.this;

Data access | og_access -> errors.this;
end nonitor.errors;

data ErrorlLog

requires data access

features
errorTotal : subprogram errorTot al
reset: subprogram reset;

end ErrorlLog;

subprogram error Tot al

features
this:
total:

requires data access ErrorlLog;
out parameter
BaseTypes: :integer;

end errorTotal;
subprogram reset
features

this: requires data access ErrorlLog;
end reset;

this:
T T log_access:
il 9= '

ErrorData

errorTotal
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9 Modes

A modes abstraction is an explicitly defined configuration of contained components,
connections, and property value associations. Modes represent alternative
operational states of a system or component. For example, modes for a cruise control system
maybe{initialize, disengaged, engaged}, where each of these modes may
involve different sets of processes, executing threads, or active connections (e.g., in the
initialization mode there are no connections to sensors).

Modes may specify different cal I's sequences to be used in a thread or subprogram.
Modes also may represent different logical states of any component, such as a thread or
subprogram, for which different property values apply. For example, under different
modes a thread may have different execution times to represent an algorithm that can
execute with different levels of precision. Modes may also represent different hardware
configurations such as processors that are active at any one time.

9.1 Modal Specifications

Modes are represented as states within a state machine abstraction. Each distinct
configuration of a component is identified as one mode (state) within the modal state
machine abstraction for the component. The configuration that defines each mode and the
events that cause the transitions in the behavior of the component must be specified. Each
modal state machine must have at least two modes, one of which must be declared as the
initial mode for the component.

Modes can be used to represent alternative system configurations in a variety of ways. They
can establish

e alternative configurations of active components and connections and the transitions
among these configurations
e variable call sequences within a thread

o mode-specific properties for software or hardware components

9.1.1 Modal Configurations of Subcomponents and Connections

Table 9-1 presents both textual and graphical representations of modes transition
specifications for a simplified controller thread within a cruise control system. In this
example, mode transitions are triggered by external events. Only the relevant ports are shown
in the type declaration for the thread cont r ol . Neither type nor implementation
declarations are complete. The graphic shows the mode transition view for the thread.
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There are two modes, i dl e and contr ol | i ng, and three event ports in this example.
Thei dl e mode is the initial mode. The event brought into the thread by event
portcc_engage results in a mode transition to the cont r ol | i ng mode (the thread
configuration that provides the functionality to maintain a set speed). The event carried
through the event portcc_resune_el also results in a switch to the cont rol | i ng
mode using the previous value of the speed setting. Event port cc_br ake results in an
exiting of the cont r ol | i ng mode to the i dl e mode.

Table 9-1: Sample Graphical and Textual Specifications for Modes

thread contro

features

cc_engage : in event port;
cc_resune_el : in event port;
cc_brake: in event port;

end contr ol

thread implementation control.cc_contro

modes

idle : initial mode;

controlling : mode;

idle -[ cc_engage, cc_resune_el ]-> controlling;
controlling -[ cc_brake]-> idle;

end control.cc_control;

e e e e e e e ey

U ’
/control.cc_control /
7
/ /
’ ’
/ ’
’ ’
/ _-4&, cc_engage
’ T
’ /
’ . \ ’
T \ U
cc_brake )" Vo
K w <cc_resu me_el
’ ’
/ ’
e e e e e e e —————————— 7

The example in Table 9-2 shows a multimode process where internal events result in mode
changes of a process. In the textual specification for the process

control _al gorithns.inpl,the modes section defines the two operational modes of
ground and f | i ght and the transitions between them. The transitions are triggered by
out event ports fromthe thread control | er thatis a subcomponent of the
process implemenationcontrol _al gorithns.inpl. The specification for the
process implementation includes in modes clauses that define the subcomponents
and connections active in each mode.
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In the upper right portion of the figure in Table 9-2, a graphic shows the modes and their
transitions that are triggered by the events from the cont r ol | er thread. In that figure,
the f I i ght mode configuration is shown in black and the gr ound mode is shown in gray.
This distinction illustrates that the gr ound_al gori t hns thread and its
connections are not part of the f | i ght mode.

Table 9-2: Modes Example

process control _al gorithmns

features

status_data: in data port;

aircraft_data: in data port;

comand: out data port;

end control _al gorithns;

process implementation control _al gorithns.inpl

subcomponents

controller: thread controller

ground_al gorithns: thread ground_al gorithnms in modes (ground);
flight _algorithnms: thread flight _algorithnms in modes (flight);
connections

Cl: data port aircraft_data -> ground_al gorithns.aircraft_data in
modes (ground);

C2: data port aircraft_data -> flight _algorithns.aircraft_data in
modes (flight);

C3: data port ground_al gorithns. command data -> comand in modes
(ground);

C4: data port flight_al gorithnms.command data -> comand in modes
(flight);

modes

ground: initial mode;

flight: mode;

ground -[controller.switch_to_flight]-> flight;

flight -[controller.switch to _ground]-> ground

end control _al gorithmns.inpl;

thread controller

features

status_data: in data port;

swi tch_to_ground: out event port;

switch_to_flight: out event port;

end control |l er;

thread ground_al gorithns

features

aircraft_data: in data port;

command_data: out data port;

end ground_al gorit hns;

thread flight_al gorithns

features

aircraft_data: in data port;

conmand_dat a: out data port;

end flight_al gorithns;
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Table 9-2: Modes Example (cont.)

control_algorithms

,———-—

controllerq ¢ -
>~ =

JAg -

N

algorithms

9.1.2 Modal Configurations of Call Sequences

Alternative cal I's sequences can be specified using modes. The example in Table 9-3
shows a noni t or thread that checks software and hardware and reports anomalies. The
thread employs a sequence of cal I's to subprograms when the thread is in the

nom nal mode. When an error is detected, an er r or _condi t i on is signaled through
the event porterror_event. Thissignal results in a mode switch and changes the
subprogram cal s sequence of the thread.

Table 9-3: Mode-Dependent Call Sequences

thread nonitor

features

error_event: in event port;
repaired: in event port;
end noni tor;

thread implementation nonitor.inp

calls
nom nal _sequence: {
call _cksw. subprogram check_sw,
cal | _ckhw. subprogram check_hw,
call _report: subprogram report;
} iIn modes (noninal);
error_sequence: {
call _al arm subprogram al arm
call _diag: subprogram di agnose;
cal Il report: subprogram report;
} In modes (error_condition);
modes

nom nal : initial mode;

error_condition: mode;

nom nal -[error_event]-> error_condition;
error_condition -[repaired]-> nomnal;
end nonitor.inpl;
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9.1.3 Mode-Specific Properties

Property values assignments can be mode-dependent. These mode-specific property
associations can be used to define alternative characteristics and behavior for components.
For example, consider the partial specification in Table 9-4 that has a modified version of the
process implementation forcontrol _al gorithns.inpl shown in Table 9-2.
In this example, the cont r ol | er thread has a different execution time for the gr ound
mode than for the f | i ght mode.

Table 9-4: Mode-Specific Component Property Associations

process implementation control _al gorithns.inpl

subcomponents

control l er: thread controller {Conpute_Execution_Tine => 2 ns..5ns
in modes (ground);

Conput e_Execution_Tine => 3 ns..7ns in modes (flight);};

ground_al gorithns: thread ground_al gorithns in modes (ground);
flight_algorithms: thread flight_algorithnms in modes (flight);

end control _al gorithms.inpl;

90 CMU/SEI-2006-TN-011




Section 10: Flows

10 Flows

AADL Tlows specification capabilities enable the detailed description and analysis of an
abstract information path through a system. A complete path for an abstract information
flow—an end-to-end flow implementation—begins at a source component and terminates
at a sink component. The specification of an end-to-end flow involves the declaration of the
elements of the Flow (sources, sinks, and paths) and explicit implementation
declarations that describe the details of a complete path through the system.

A source component of a Flow is characterized by the feature (e.g., port, port group, or
parameter) through which the flow emerges from the component. Similarly, a sink
component of a Flow is characterized by the feature through which the flow enters the
component and terminates. Details of a flow path are described by identifying the entry
and exit features of each intermediary component and subcomponent involved in the flow.

10.1 Flow Declarations

Flows are directional. To specify a complete flow, declarations in component types and
implementations are required. For a component type, Flows declarations designate a

e source: a feature of a component

e sink: afeature of a component

o Tlow path: aflow through a component from one feature to another

Table 10-1 shows a partial specification for a simplified cruise control system with ¥low
source, flow sink, and Flow path declarations within component type declarations.
Notice that the Flow path br ake_f | owthrough the system component

crui se_control hasan in event data portasitsoriginand an out data
port as its termination feature. The lower portion of the table includes a graphical
representation of the declarations.

Table 10-1: Flow Declarations within a Component Type Declaration

device brake_peda
features
brake_event: out event data port fl oat_type;
flows
Fl owl: Fflow source brake_event;
end brake_pedal
system crui se_contro
features
brake_event: in event data port;
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Table 10-1: Flow Declarations within a Component Type Declaration (cont.)

throttle setting: out data port float_type;
flows

brake_fl ow Tflow path brake event -> throttle_setting ;
end cruise_control;

device throttle_actuator
features
throttle setting: in data port float type;
Fflows
Fl owl: Fflow sink throttle setting;
end throttl e_actuator;

flow source flow sink
brake_, 7 cruise_control throttle_
edal actuator

flow path
10.2 Flow Paths

Within a component implementation, flow declarations define the details of

o flow paths through a component

e end-to-end flows within the component

10.2.1 Flow Path through a Component

A Tlow path through a component consists of alternating sequences of paths through and
connections among subcomponents within the component. This path begins and ends at
features of the component type and is a realization of the corresponding Flow path
declared in the component’s type declaration. Table 10-2 shows the Flows

imp lementation declarations through the component cr ui se_control . i npl for the
flow path brake_f | owdeclared in the type declaration cr ui se_cont r ol of Table
10-1. It also shows a graphical representation of the flow path.

The Flows implementation originates at the br ake_event event data port
and proceeds through to the data portthrottl e_setting. The flow involves the
connections C1, C3, and C5 within the component implementation

crui se_control.inpl,aswell as the paths through the subcomponents of that
implementation. Notice that the nature of the data within the ¥low changes and
involves event data ports aswell as data ports.
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Table 10-2:  Flow Implementation Declarations through a Component

system implementation cruise_control.inp

subcomponents

data_in: process interface;

control | aws: process control

connections

Cl: event data port brake_event -> data_in. brake event;

C3. data port data_in.out_port -> control _laws.in_port;

C5: data port control |aws.out_port -> throttle_setting;

flows

brake_flow. Flow path brake_event -> Cl -> data_in.interface_flowl ->
C3 -> control _laws.control _flowl -> C5 ->

throttle setting;

end cruise_control.inpl;

process interface

features

brake_event: in event data port ;

out _port: out data port float type;

flows

interface flowl: flow path brake_event -> out_port;

end interface;

process contro

features

in_port: in data port float _type

out port: out data port float type;

flows

control _flowl: Fflow path in_port -> out_port;

end contr ol

flow path
interface_flow1l

flow path
control_flow1

“+ cruise_control

brake_event

C3

connections

throttle_setting

data_in control_laws

10.2.2 End-to-End Flow within a Component

An end-to-end flow within a component involves the declaration of a path from a flow
source to a flow sink within the component. The partial specification in Table 10-3
illustrates this type of declaration: an end-to-end flow is defined between the source

Fl owl in the device component br ake _pedal and the sink FI owl in the device
componentt hrottl e_act uat or.
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Table 10-3:  An End-to-End Flow

system implementation conpl ete.inp

subcomponents

brake _pedal : device brake_ pedal

crui se _control: system cruise_control

throttl e actuator: device throttle_actuator;
connections

Cl: event data port brake_pedal . brake _event ->

crui se_control . brake_event;

C2: data port cruise_control.throttle_setting ->
throttle actuator.throttle_setting;

Fflows

brake flow. end to end flow brake pedal . Flowl -> Cl ->
cruise control.brake flow -> C2 -> throttle_actuator. Fl owl;
end comnpl ete.inmpl;

device brake_peda

features

brake_event: out event data port;

Fflows

Fl owl: Fflow source brake _event;

end brake_ pedal

system crui se_contro

features

brake_event: in event data port;
throttle_setting: out data port float_type;
flows

brake_flow Fflow path brake event -> throttle_setting;
end crui se_control

device throttle_actuator

features

throttle_setting: in data port float_type;
Fflows

Flowl: flow sink throttle setting;

end throttl e _actuator;

data fl oat type

end fl oat _type;

flow source Flowl flow sink Flowl

brake ruise_control
pedal C1 /

@W path brake_flovD
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11 Properties

Properties provide descriptive information about

components

subcomponents
o features

e connections

o flows

e modes

e subprogram calls

A property has a name, type, and an associated value. Properties can be assigned
values through property association declarations.

There are built-in property types and predeclared properties in the AADL standard.
Collectively, these properties and property types encompass common attributes for
the elements of the language. For example, a predeclared property of a port is

Requi r ed_Connect i on, which is of type aad Iboolean and has a value of true or
false.? Its predeclared (default) value is true. However, a property association can assign
the value false, allowing the port to be unconnected. A summary of AADL built-in
property types is included on page 122 in the Appendix.

In addition to providing predeclared properties and built-in property types, AADL
also permits the defining of new properties and property types. For example, to
define a new property (e.g., Pri ori t y) for a thread, a user would declare a
property name, type, and association of the new property. The property type declared
for a new property may be a built-in type (e.g., aadl integer), or a new type can be
declared using a property type declaration.

11.1 Property Declarations

The declarations relating to properties are listed below.

e property association (Section 11.2): assigns a value or list of values to a named
property

2 Requi red_Connect i on is included in the predeclared property set named
AADL_Properti es thatis part of every AADL specification [SAE 06a].
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e property set (Section 11.3): defines a named collection of property types, names, and
constants

o Property type (Section 11.4) defines a property type and specifies the set of
acceptable values for properties of that type.

o Property name (Section11.5) defines a property by declaring a name, identifying a
type for the property, and applying it to a category of element within the specification
(i.e., mode, port group, flow, port, server subprogram, or connection).

e Property constant (Section 11.6) defines a name for a property value that can be
referenced in property expressions wherever the value itself is permissible.

Property name, property type, and property constant declarations must be contained within a
property set declaration.

11.2 Assigning Property Values

A property can be assigned a value or a list of values through a property association
declaration. Property values can be associated with properties directly within individual
component declarations, through an inherited value or an explicit contained property
association referencing elements within a hierarchal component. In addition, property
associations can be declared as being mode- or platform-binding specific.

11.2.1 Basic Property Associations

Property associations can be included within the properties section of component
type or implementation declarations or within declarations for subcomponents,
features, connections, flows, modes, and subprogram cal I's and their
refinements.

Sample component property association declarations are shown in Table 11-1 where an
implementation speed_dat a of the thread type dat a_pr ocessi ng is declared
with associations for two standard properties. The Peri od property is assigned a
single value of 100 ns. The Conput e_Executi on_Ti ne assigned value is a range. In
addition, the 1n data port declaration sensor _dat a includes a property association
that declares the port need not be connected, and the thread subcomponent declaration
for dat a_pr ocessi ng includes a property association declaring the initialization
execution time range for the thread (1 nms .. 2 ns).

Table 11-1:  Basic Property Association Declarations

thread dat a_processing

features

sensor _data: in data port {Required_Connection => false;};
end data_processing;

thread implementation data_processi ng. speed_dat a
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Table 11-1: Basic Property Association Declarations (cont.)

properties

Peri od => 100 ns;

Conpute_Execution_Tine => 5 nms .. 10 ns;
end dat a_processi ng. speed_dat a;

process implementation control .inp

subcomponents
dat a_processi ng: thread data_processi ng. speed_data
{Initialize Execution Tine => 1 ns .. 2 ns;};

end control .inpl;

Access property associations are used to detail the character of subcomponent access,
both requires and provides. Table 11-2 shows two access property associations,
where the process cont r ol requiresread_onl y access to set point data

dat a_sets. set _poi nts and providesread_w it e access to its internal error
logs. This is a modification of an example from Table 8-7.

Table 11-2:  Sample Access Property Associations

process control
features
cc_set point_data: requires data access data_sets.set _points
{Requi red_Access => access read_only;};
error_| og_data: provides data access | ogs.error_| ogs
{Provi ded_Access => access
read write;};
end contr ol

11.2.2 Contained Property Associations

Property associations for individual components have been shown in earlier examples
(e.g., Table 11-1). These declarations assign values for instances of the component. However,
explicit property associations may be omitted for a number of the elements of an
individual component. In these cases, values can be assigned through contained property
association declarations or inherited from declarations higher in the component containment
hierarchy.

A contained property association can be used to assign a property value to
subcomponents, features, Flows, connections, or modes defined within a
component. A value can be assigned to an element that is deeply nested within the
component. In addition, with contained property associations, configuration parameters
for a system can be defined at a single point (e.g., at the highest point possible in the
component hierarchy). In that way, the parameters provide a centralized set of properties
and values for elements of a model that can readily be identified, adjusted, and reviewed.

An explicit contained property association is declared using an applies to clause that
specifically identifies an element within the component. The identification path to the
element consists of a dot-separated sequence of zero or more subcomponent identifiers
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followed by the identifier of the subcomponents, features, flows, connections,
or modes identifier to which the property association applies. Consider the partial
specification in Table 11-3 that shows the relevant type and implementation declarations
for a simplified cruise control system. The property associations within the system
implementation declaration for cc_conpl et e. i npl are property associations for
the execution time for the compute entry point of a contained thread

control _al gorit hmand the required connection value for a data port of the
contained thread adj ust .

Table 11-3 shows two contained property associations within the system
implementationcrui se_control . i npl.Inthe first association, the computation
time for the compute entry point of the subcomponent thread cont rol _al gori t hmis
assigned therangeof 2 nms.. 5 mns. The thread cont r ol _al gori t hmis contained
within the process cont rol _| aws that is a subcomponent of the system

crui se_control . Inthe second association, the Requi r ed_Connect i on property
is assigned the value Fal se for the out data port of the contained thread adj ust .

Table 11-3: Contained Property Associations

system cc_conpl ete

properties

Period => 20ns;

end cc_conpl et e;

system implementation cc_conplete.inp

subcomponents

brake _pedal : device brake_ pedal

crui se_control: system cruise_control.inpl;

throttl e actuator: device throttle_actuator

connections

Cl: event data port brake_pedal . brake_event ->

crui se_control. brake_event;

C2: data port cruise_control.throttle_setting ->

throttle_actuator.throttle_setting;

properties

Conput e_Execution_Tine => 2 ns.. 5 nms applies to
crui se_control.control | aws. control _al gorithm

Requi red_Connecti on => false applies to
crui se_control.control | aws. adj ust. out_port;
end cc_conplete.inpl;
system implementation crui se_control.inp
subcomponents
data_in: process interface;
control _| aws: process control.inpl;
connections
Cl: event data port brake event -> data_in. brake event;
C3: data port data_in.out_port -> control _laws.in_port;
C5: data port control |aws.out _port -> throttle_setting;
end cruise_control.inpl;

process control
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Table 11-3:  Contained Property Associations (cont.)

features

in_port: in data port ;

out _port: out data port ;

end contr ol

process implementation control.inpl
subcomponents

adj ust: thread adj ust_sensor_val ue.inpl;
control _algorithm thread al gorithminpl;
end control.inpl;

thread adj ust_sensor_val ue

features

in_port: in data port;

out _port: out data port;

end adj ust _sensor_val ue;

thread implementation adj ust_sensor_val ue.i npl
end adj ust _sensor_val ue. i npl;

thread al gorithm

features

in_port: in data port;

out _port: out data port;

end al gorithm

thread implementation al gorithm i npl
end al gorithm i npl;

///’;onmpmmjmm

/ brake_ i
pedal

| Requi red_Connecti on => false
" - :l

" cruise_control \

throttle_
actuator

control_law,

j—_—————
¢ control_
algorithm/

/2 /4
adjust

Eut__port

T
\ Period => 20 ns
Conmput e_Execution_Time => 2 ms..5ns
e
I
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Contained property associations are required when a property value involves a reference
to another part of a model. For example, the binding property of a thread must refer
to the processor to which it is bound. However, that reference is represented as a path
relative to the location at which the property association is specified. Thus, the
property association must be declared as contained property association attached to a
model component that is the common parent of the component being referenced and the
component to which the property value belongs.

An example of a contained property association across a component hierarchy is shown in
Figure 11-1 for the property Al | owed_Pr ocessor _Bi ndi ng. The property
association is included in the specification for the system component Avi oni ¢s_sys and
declares that the thread obser ve can be bound to the processor | i nux1.

Allowed_Processor_Binding =>
reference Avionics_platform.linux1
applies to Avionics_SW.guidance.observe

)
o*
o*
o
o
o
3

[Avionics_sys: system

____—
[Avionics_SW: system ] [Avionics_platform: system }
/\ /\

/ guidance: process // control: process /

’ linux1: processor pentium U
observe: thread compute: thread

Figure 11-1: Contained Property: Allowed_Processor_Binding

11.2.3 Inherited Property Associations

There is an implicit form of a property association that can be declared for contained
components. This form involves properties defined with the inherit reserved word.
For these properties, a property association declaration within a component is
assigned to any subcomponent to which the property applies. For example, a Per i od
property association within a process declaration applies to all of the threads contained
within it, unless an individual thread property association declaration assigns a
different value to the Per i od. An example Per i od property declaration within a
system type declaration is shown in Table 11-3. A graphical representation is shown in the
lower portion of that table. See Section 11.5 for more information.

One should be cautious in using this implicit property assignment for subcomponents. An
inadvertent omission of a specific assignment for a contained component is not readily

detectable and may result in an incorrect property value assignment. In the example shown in
Table 11-3, Per i od for the thread adj ust defaults to an execution time of 20 ns. If

the intention had been to have a Per i od of 10 ns, there would have to be an explicit
declaration for the Per i od of the adj ust subcomponent.
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11.2.4 Mode or Binding Specific Property Associations

Property associations can be specialized to specific modes or bindings by declaring this
specialization in the property association. For example, the computation time and period
property associations from Table 11-3 are declared for a specific processor binding
in Table 11-4. Thus, alternative thread execution times and other processor-dependent
properties can be declared based upon processor bindings through the In
binding declaration. In Table 11-4, the Requi r ed_Connect i on property
association is specializedtothe i ni ti al i ze mode in the system implementation
declaration cc_conpl et e. i npl .

Table 11-4:  In Binding and In Mode Property Associations

system cc_conpl ete

properties

Period => 20 ns in binding (Intel);

end cc_conpl et e;

system implementation cc_conplete.inp

subcomponents

brake_pedal : device brake_pedal

crui se_control: system cruise_control.inpl;

throttle_actuator: device throttle_actuator

Intel: processor Intel.inpl;

connections

Cl: event data port brake_pedal . brake_event ->

crui se_control . brake_event;

C2: data port cruise_control.throttle_setting ->

throttle actuator.throttle setting;

modes

initialize: initial mode;

nomi nal : mode;

properties

Conput e_Execution_Tine => 2 ns.. 5ns applies to

cruise_control.control | aws.control _algorithm in binding (Intel);

Conput e_Execution_Tine => 3 ns.. 7nms applies to

cruise _control.control _|aws.control _algorithm in binding (AVD);

Requi red_Connecti on => false applies to
cruise_control.control _| aws. adj ust. out _port in modes (initialize);

end cc_conplete.inpl;

processor | ntel

end Intel

processor implementation Intel.inpl

end Intel.inpl
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11.2.5 Property Values

The values that are assigned to properties can take a variety of forms:

¢ individual values associated with a basic built-in type like aadlboolean,
aadlstring, aadlinteger, oraadlreal

e arange of values, as shown in Table 11-4 for execution times

o values with or without units (e.g., Per i od)

e anenumeration value set (e.g., the Requi r ed_Access property)
o values that include model elements as well as explicit component classifiers
e individual values or lists of values

The property type reference allows a property value to refer to a model element
according to the containment hierarchy. For example, in Figure 11-1 the

Al | owed_Pr ocessor _Bi ndi ng declaration references a specific processor in the
system hierarchy. The properties of type classifier allow component classifiers
to be used as property values. In Table 11-5, the first property association for the
property Al | owed_Processor _Bi ndi ng_Cl ass restricts the binding to
processors of type Power PC. The classiTier value can be a component
implementation ora list of classi Fier references, as shown in the second
property association for the property Al | owed_Pr ocessor _Bi ndi ng_Cl ass in
the lower part of Table 11-5.

Table 11-5:  Classifier Property Types

Al | oned_Processor_Bi nding O ass => processor Power PC;

processor Power PC

end Power PC,

Al | oned_Processor _Bi ndi ng_C ass => (processor Power PC. 4, processor
Power PC. &) ;

-- where Power PC. G4 and Power PC. G5 are processor inplenentations of
-- of the processor type PowerPC

Property value assignments can be indirect and used to centralize the declarations of system
parameters. For example, the property associations in Table 11-6 use the keyword value
to assign values to the Deadl i ne and Per i od properties of the thread

al gorithminpl.Inthe property setti m ng, the property H Rat e is defined
as a constant of the type Ti me with a value of 5 ns. Per i od is assigned the value of
H Rat e, andthe Deadl i ne is assigned the value of Per i od. Thus, a change in all of
these assignments can be accomplished simply by changing the value of Hi Rat e.
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Table 11-6:  Property Associations with Value

thread implementation al gorithminp
properties

Deadl i ne => value (Period);

Period => value (timng::H Rate);
end al gorithminpl;

property set tining is

H Rate: constant Time => 5 ns;

end timng

Built-in property types are summarized on page 122 in the Appendix. Details on declaring
additional property types are discussed in Section 11.4.

11.3 Defining New Properties

A property set is a named collection of property type, property name, and property constant
declarations. A named property set can be used to augment a general specification or
defined as part of an AADL annex.

Table 11-7 shows the form and content of a sample property set declaration

set _of faults and includes examples of property name, property type, and property
constant declarations. The property named comm er r or _st at us is defined as a
property of type aadlboolean (true or false) that applies to system and
device components. A property type Speed_Range is defined as a range of real
values from 0. 0 nph. . 150. 0 nph. The constant Maxi nrum Faul t s is defined as
the integer value 3.

For more details on

e property type declaration: see Section 11.4
e property name declaration: see Section 11.5

e property constant declaration: see Section 11.6
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Table 11-7:  Sample Property Set Declarations

system implementation data_processi ng. accel eroneter_data
properties

set _of faults::conmerror_status => true;
end dat a_processi ng. accel eronet er _dat a;

property set set _of faults 1is

-- An exanpl e property nane decl aration

comm error_status: aadlboolean applies to (system, device);

-- An exanple property type declaration

Speed_Range : type range of aadlreal 0.0 nph..150.0 nph units (nph);
-- An exanpl e property constant declaration

Maxi mum Faul ts : constant aadlinteger => 3;

end set_of faults;

11.4 Property Type Declarations

A property type declaration defines a property type by associating an identifier with it and
establishing the set of legal values for a property of that type. The declaration consists of

the desired identifier for the property type

a colon (2)

1

2

3. the reserved word type
4. an explicit type definition
5

a terminating semicolon (;)

The pattern for a property type declaration is shown in the box below:

identifier: type property type definition;

A property type definition may be an AADL built-in property type, a specialized type
explicitly defined within the declaration, or a reference to previously defined property type.

In the examples shown in Table 11-8, the property type bi t _er r or is defined as an
aadlboolean property type. The predefined aadlboolean property type has two legal
values, true and false. The property types f aul t _cat egory and

faul t _condi ti on are defined as enumeration types. An enumeration property
type defines a specific set of identifiers as its legal values.

Type declarations can be more complex than simple base types. For example, the type
nunber _of _conponent s is declared in the property setnore_types asan
aadlinteger that ranges over the value 0 .. 25.The property boat | engthiis
declared as a type of aadlreal with the units of feet that ranges over the values of 7. 5
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150. 0 units ( feet ).Thepropertyvoltage_ranges isa type of
aadlreal that is a range of values that canspan 0. 0 .. 5.3 units (volts).

Table 11-8:  Sample Property Type Declarations

property set set _of faults is

bit _error: type aadlboolean

fault _category: type enumeration (benign, tolerated, catastrophic);
fault _condition: type enumeration (okay, error, failed);

ti me_del ay: type aadlreal units (seconds) ;

end set _of faults;

property set nore_types is

nunber _of _conponents: type aadlinteger 0 .. 25;

boat | ength : type aadlreal 7.5 .. 150.0 units ( feet );

vol t age_ranges : type range of aadlreal 0.0 .. 5.3 units (volts);
end nore_types;

11.5 Property Name Declarations

A property name declaration defines a property by declaring a name, identifying a type for
the property, and applying the property to a category of element within the specification (i.e.,
component, mode, port group, flow, port, server subprogram, or connection). A property
name declaration consists of

desired identifier for the property name
colon (2)
neither, either, or both of the reserved words (access or inherit)

reserved words (applies to)

1

2

3

4. explicit type identifier
5

6. property owner category or the reserved word (al l)
7

terminating semicolon (;)

The pattern for a property name declaration is shown in the box below:

name : [access inherit property type applies to (property owner category);

A property owner category can be a component (e.g., system, thread, device), mode, port
group, flow, port (event or data), server subprogram, parameter, or connections (port group,
event port, data port, access, or parameter).

Example property name declarations within a property setset of names are shown
in Table 11-9. Property name declarations can include the access and inher it options. A
property declared with the reserved word Inher it indicates that a value is inherited
from a containing component, if a property value cannot be determined for a component.
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This inheritance can be seen in the declaration for the propertycriti cal _unit thatis
declared as inherit and as type aadlboolean and applies to all component categories.
A property declared with the reserved word access is associated with access to a
subcomponent rather than to the data component itself. The property queue_access is
declared as a true-false access property for a data component. This can be used to
restrict required access to a data queue. The property

requi red_sensor _array_si ze isdeclared as type ar r ay that is declared within the
property setset_of types thatis shown in the lower portion of Table 11-9.
Similarly, the property danger ous_vol t ages is declared with a type

vol t age_r anges that is declared in the property set nor e_t ypes found in Table
11-8.

Table 11-9: Sample Property Name Declarations

property set set_of nanes is

critical _unit: inherit aadlboolean applies to (all);

gueue_access: access aadlboolean applies to (data);

requi red_sensor_array_size: inherit set_of types::array applies to
(system, process, thread);

danger ous_vol tages: nore_types::voltage_ranges => 5.1 .. 5.3 volts
applies to (processor);

end set _of nanes;

property set set_of types is
array: type enumeration (single, double, triplex);
end set _of types;

11.6 Property Constant Declarations

Property constants are property values that are known by a symbolic name. Property
constants are provided in the predeclared property sets and can be defined in named property
sets. They can be referenced in property expressions by name wherever the value itself is

permissible.

Here are the basic declaration forms for a property constant declaration:

identifier: constant (type) => property value

identifier: constant list of (type) => property values

In the forms shown above
o Identifier is the name that can be used as a value in property associations.
o Entry (type) is a built-in type or a type declared in a property set.

o Property value or values must be of the type included in the constant declaration.
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Some sample declarations are shown in Table 11-10, where, for the property set
limts_set,

e Max_Thr eads is defined as an integer value of 256.

e M ni num val ue is defined as a real value of 5. 0.

e Default Fault _Stat e is defined as a constant of the type f aul t _condi ti on
with the value of okay.

The type f aul t _condi ti on, mentioned in Table 11-10, is defined in the package
set _of faults,asshownin Table 11-8.

Table 11-10: Sample Property Constant Declarations

property set limts_set is

Max_Threads : constant aadlinteger => 256 ;

M ni mum val ue: constant aadlreal => 5. 0;

Default Fault State: constant set of faults::fault _condition =>
okay;

end limts_set
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12 Organizing a Specification

This section presents language constructs that can be used to organize an AADL specification
by grouping like elements using packages or design patterns.

12.1 Packages

A package is a named grouping of declarations and property associations that can be
used to organize a specification. Packages establish distinct namespaces. However, they do
not define an architectural hierarchy or design structure and cannot be declared inside other
packages.

A package is divided into publ ic and private segments. Declarations in the public
segment are visible outside the package, whereas declarations in the private segment
are visible only within the package. To reference an element in the publl i c segment from
outside a package, preface the element’s identifier with the package name. In Table 12-1
for example, a process type conpr ess_di spl ay_dat a contained in the public
segment of the package di spl ay_dynanmni cs_set would be referenced from outside
the package as di spl ay_dynam cs_set: : conpress_di spl ay_dat a.

Also in Table 12-1, the specification for the system di spl ay_nanagenent references
the conpr ess_di spl ay_dat a process declared in the package

di spl ay_dynam cs_set . The data component new_f or mat declared in the
private segment of the package cannot be accessed from outside. However, the data
component di spl ay_dat a can be, since it is declared in the publ i c segment of the
package.
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Table 12-1: Example Package Declaration

package di spl ay_dynam cs_set

-- Elenments accessible fromoutside the package are listed follow ng
-- the key word public

public

process conpress_di spl ay_data

features

di splay_data_i nput: in data port display_dat a;

formatted data: out data port;

data_error: out event port;

end conpress_di spl ay_dat a;

data di spl ay_data

end di spl ay_dat a;

-- Elenments accessible only inside the package are |isted foll ow ng
-- the key word private

private

data new f or nat

end new fornmat;

end di spl ay_dynani cs_set;

-- The subconponent declaration bel ow references a process in

-- display_dynani cs_set

system implementation di spl ay_nanagenent. i nmp

subcomponents

conpress_data: process di splay_dynam cs_set::conpress_di spl ay_dat a;

éﬁd di spl ay_managenent . i npl ;

A package name can include multiple identifiers separated by a double colon (: : ). Thus, a
package name like “primary_control_system::roll_axis::control_components” is permitted.
This naming flexibility can be useful for packages that have been developed independently
and have been assigned the same name. For example, consider two engineering teams
working on a project, team red and team blue. Each team develops a package with the name
“sensor_control.” These packages can be renamed “team_red::sensor_control” and
“team_blue::sensor_control”.?* This would establish separate namespaces for each package
and allow references to components with the same name within each package. That is,
“team_red::sensor_control::controller” would reference a different declaration than
“team_blue::sensor_control::controller.” In addition, this flexibility can be used to associate
packages logically. For example, two packages “roll_control” and “yaw_control” can be
associated by renaming them “aircraft::roll_control” and “aircraft::yaw_control.”

Packages can be used to organize layers of a design. For example, a package can be
defined for a flight manager subsystem using constituent component subsystems, packages

* The AADL standard states that “A defining package name must be unique in the global namespace.

This means that the first identifier in a package name must be unique in the global namespace.
Succeeding identifiers in the package name must be unique within the scope of the previous
identifier” [SAE 06a].
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that contain generic (common) descriptions, or packages containing only data types (e.g., a
data dictionary). This concept is shown in the partial specification and packages of Table
12-2 where the Fl i ght _Manager type declaration and declarations within the package
avi oni cs_subsyst ens reference components defined in separate packages.

In particular, in the portion of Table 12-2 labeled @, the Fl i ght _Manager component
type declaration extends the Fl i ght _Manager system type declared in the

avi oni cs_subsyst ens package. In the section labeled @, the data type

avi oni cs_dat a: : raw_dat a, declared in the package avi oni cs_dat a in the
section labeled @, is used in the avi oni cs_subsyst empackage. And, in table section
®, the GPS subcomponent is an instance of the implementation GPS. i npl from the
avi oni cs_sensor package. The comment lines (- - ....) indicate that other
declarations required for a complete system specification are not shown.

Table 12-2:  Example Design Organization Using Packages

system Fl i ght Manager ®
extends avi oni cs_subsystens: : Fl i ght _Manager
end Flight_Manager
system implementation Flight Manager. conmon
subcomponents
NSP : process avi oni cs_subsyst ens: : Navi gati onSensor Processi ng;
GPS : device avionics_sensors::GPS.ml;

end Flight Manager. conmon;

package avi oni cs_subsyst ens @
public

system Fli ght _Manager

features

i nput _data: in data port avionics_data:: raw data;

out put _data: out data port avionics_data:: processed_data;
end Flight_Manager ;

process Navi gati onSensor Processi ng

end Navi gati onSensor Processi ng;

end avi oni cs_subsystens ;

package avi oni cs_sensors ©;
public

device GPS

end GPS;

device implementation GPS. mi |

end GPS. mil;

end avi oni cs_sensors;
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Table 12-2: Design Organization Using Packages (cont.)

package avi oni cs_data @
public

data raw dat a

end raw dat a;

data processed_data

end processed_dat a;

end avi oni cs_dat a;

12.2 Design Patterns

A collection of specifications can be defined that form a set of extensible design patterns.
Using AADL extension and refinement capabilities, these patterns can be used to develop
specific application models.

12.2.1 Type Extensions

Elements of a design pattern set can involve core type declarations whose features are
only partially defined. These core types as well as their descendents can be repeatedly
extended, defining more specific types through feature refinements (refined to), as
shown in Table 12-3. In that example, the core type one_di nensi onal _control is
extended to form two specific types: (1) rol I _control and (2) pitch_control .In
these extensions, the partially defined in portand out portare refined to include
specific data types. For the type declaration forr ol | _cont r ol , another input data port
is added.

In general, new Features can be added; partially defined features, completed; and
property associations, added or modified. In the example in Table 12-3, the

Requi red_Connect i on property value is changed inther ol | _contr ol extension.?
Inthe pi t ch_cont rol extension, the Sour ce_Name property association is added.
The refinement options for type extension declarations are summarized on page 124 in the
Appendix.

% The default value for the predeclared property Requi r ed_Connect i on is true. However, it is
declared explicitly as true in this example to demonstrate the refinement of property associations.
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Table 12-3:  Example Type Extension

process one_di nensi onal _contro

features

conmanded_val ue: in data port;

actuat or _comand: out data port {Required_Connection => true;};
end one_di nmensi onal _contr ol

process roll _control extends one_di mensi onal _contro

features

conmanded_val ue: refined to in data port roll_cnd_data;

actuator_comand: refined to out data port aileron_cnd_data
{Requi red_Connection =>

false; };

cross_coupling_state: in data port coupling_data;

end roll _control

process pitch_control extends one_di nensi onal control

features

conmanded_val ue: refined to in data port pitch_cnd_data

{Source_Nanme => "commanded pitch file";};
actuator _comuand: refined to out data port el evator_cnd_dat a;
end pitch_control

12.2.2 Refinements within Implementations

Inan implementation declaration, the refines type subclause can be used to add or
modify feature property associations of an implementation’s type. For example, consider
the server subprogram features for the thread type r eader shown graphically
and as AADL text in Table 12-4. There are two thread implementations, one for
reading temperature (r eader . t enp) and one for reading pressure (r eader . pr essur e).
Each modifies the computation execution time value and adds a property association that
defines a value for the subprogram’s compute deadline. Note that including the name of the
feature being refined (in this example a subprogram) in the refined to statement is
optional. In the example, the subprogramr ead_dat a is included within the refined
to declaration for the thread implementationreader .t enp butis not included in
the refined to declaration for the thread implementation

reader. pressure.
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Table 12-4. Example Refines Type Implementation Subclauses

thread reader

features

read_it: server subprogram read_data {Conpute_ Execution Tinme => 2
ns ..5 ns;};

end reader;

thread implementation reader.tenp

refines type

read_it: refined to server subprogram read_data
{Conpute_Execution Time => 2 ms .. 4 ns; Conpute_Deadline => 5 ms;
1

end reader.tenp;

thread implementation reader. pressure
refines type
read_it: refined to server subprogram {Conpute_ Execution Tine => 2
m .. 4 s,
Conpute_Deadline => 5 ns; };
end reader. pressure;

7 reader /
/ /
An - am o o o = - /
N A
4 ~
4 N
. 7’ .
implements ¢ N, implements
A Y
—— e - i — -
CeaaiD ’ ’
/ /
¢ reader.temp 4 ¢ reader.pressure 7/
’ ’ ’
An = o o = - == = - , An = o o = Em == == - /

12.2.3 Implementation Extensions

Implementations can extend other implementations, modifying the underlying
implementations and adding characteristics to them. Individual implementations can be
extended multiple times, and extensions themselves can be extended. Implementation
extensions can be integrated with type extension declarations to create an interrelated set of
component types and implementations.

Table 12-5 shows example implementation extension declarations with accompanying
type extension declarations for a flight control system. The type extension for

flight _control _systemaddsan additional in data port

sensor _set _r edundant . Relationships among the declarations are shown graphically
following the textual AADL specification. The refinement options for implementation
extension declarations are summarized on page 125 in the Appendix.
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Table 12-5:  Example Implementation Extensions

system flight _control system
features

sensor_set: in data port;
end flight_control _system

system flight _control _system redundant extends
flight_control _system

features

sensor_set _redundant: in data port;

end flight _control _system redundant;

system implementation flight_control _system basic
end flight_control _system basi c;

system implementation flight control system UAV ext ends
flight_control _system basic
end flight_control _system UAV,

system implementation flight control systemredundant. R UAV extends
flight _control system UAV
end flight_control _system redundant. R _UAV

Flight Control extends Flight Control
System System — Redundant

implements .. implements

Flight Control T extends Flight Control extends Flight Control

System.basic System.UAV } System.R_UAV
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12.2.4 Example Design Patterns

In this section, the extension and refinement capabilities of the AADL are used to define a
family of N-way Voting Lane components. Each N-way component constitutes a lane within
a redundant composite of N-lanes and receives output data and system status opinions from
the other lanes. Figure 12-1 shows a three-way lane system component.

vote_of_others

output_of_other_01 error_vote

output_of_other_02

three-way

input_data output_data

»—

Figure 12-1: Three-way Voting Lane Component

The family of N-way Lane components depicted in Figure 12-2 is built upon extensions and
refinements of generic type-implementation pairs. The core pair is a two-way voting
generic type two-way and a generic implementation of that type two-way.g. The generic
two-way voting type and implementation are extended to create a three-way voting
generic type-implementation pair; the generic three-way voting type and
implementation are extended to create a four-way voting generic type-
implementation pair.

i | implementation | i

/\

Generic type-
implementation pair.

T -

/\

. implements | implements

three—;/vay.g ]<)—[ four—\;vay_g ]<H

KT -

Figure 12-2: Generic N-way Voting Lanes Type-Implementation Pairs

Generic type-implementation pairs can be extensions along a well-defined aspect of
the design. In this example of N-way lane components, the aspect is the number of redundant
lanes (voting ways) for the system. Generic implementations consist of general subclause
declarations that can readily be refined in subsequent implementation extensions. In
cascading generic implementations, partially defined subcomponents, calls,
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connections, flows, and modes are added. As appropriate, property associations
are modified and added.

In cascading generic type declarations, Features are partially defined, and basic
property associations are declared. Generic type declarations consist of the following
elements:

o partially defined features that can be completed in the refinements of a specialized
extends type declarations

o basic flow declarations that can be used throughout the family with modifications only to
the flow declaration property associations

e general property associations that characterize a component

In creating the family of type-implementation pairs illustrated in Figure 12-2, for
instance, the two-way generic type is extended to create a three-way type by adding
Teatures that are partially defined rather than complete (e.g., data ports without data
classifTiers to handle the additional inputs from other lanes). The three-way generic
implementation results from the extension of the two-way generic implementation.
In this implementation extension, subcomponents, connections, modes, and
other elements are added. Generic declarations should be sufficiently general to allow
refinement by subsequent “voting” implementation extensions. The extension and
refinement capabilities for types and implementations are summarized on pages 124-125 in
the Appendix.

A specific realization of an aspect (e.g., a three-way system) is defined by an extension of the
associated type-implementation pair, as shown in Figure 12-3. In the specific type
extensions (extends), features are completed, features and flows are added, and
relevant property associations are modified or added.

These declarations result in specialized realizations of the generic type. The specific
implementation extensions (such as the three-way implementation generated from
the three-way.g implementation in Figure 12-3) refine the general pattern of their
associated generic implementations, providing all of the details required for instantiation. In
the extension subcomponents definitions are completed; and cal I's, connections,
Flows, and modes are added.

three-way { three-way_ref
o
Example extension of a generic type-
implementation pair to create a
specialized implementation.
three-way.g three-way_ref.impl

Figure 12-3: Specialized Extension and Refinement
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Component-Subcomponent Relationships

Table 13-1 summarizes the permitted component—subcomponent relationships for each of the
component abstractions in the AADL.

Table 13-1:  Allowed Component-Subcomponent Relationships

Category Component Permitted Permitted
Group Category Subcomponents Subcomponent of
thread
process data system
thread group
thread data Process
thread group
process
thread
Software
data data data
thread group
system
data
thread group thread Fr:?eczfdss rou
thread group group
subprogram None allowed None
processor memory system
processor
Execution | memory memory memory
Platform system
bus None allowed system
device None allowed system
process
data
processor
Composite | system memory system
bus
device
system
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Allowed Features

Table 13-2 and Table 13-3 summarize the allowed features for each of the component
abstractions in the AADL.

Table 13-2:  Allowed Features for Components

Category Component

Group Category Allowed Features

server subprogram
port/port group
provides data access
requires data access

process

server subprogram
port/port group
provides data access
requires data access

thread

data subprogram
Software e provides data access

server subprogram
port/port group
provides data access
requires data access

thread group

out event port

out event data port
port group (event only)
requires data access
parameter

subprogram

server subprogram
processor e port/port group
e requires bus access

Execution memory requires bus access
Platform .
bus requires bus access
port/port group
device e server subprogram

e requires bus access

server subprogram
port/port group
provides data access
provides bus access
requires data access
requires bus access

Composite system
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Features and Allowed Components

Feature

Allowed Feature of Component
or Component Category

port
port group

all port types

system
process
thread
thread group
processor
device

e event port
e event data port
e port group (events only)

subprogram (component)

subprogram

server

system
process
thread
thread group
processor
device

subprogram (data)

data

access

provides data

system
process
thread
thread group
data

requires data

system

process

thread

thread group
subprogram (component)

provides bus

system

requires bus

system
processor
memory
bus
device

parameter

subprogram (component)
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Constraints Summary

Table 13-4 contains a summary of the legality rules for AADL components from Version 1.0

of the standard.
Table 13-4.  Constraints/Restrictions for Components
Component .
Category Type Implementation

Features: Subcomponents:
e subprogram e data
e provides data access Subprogram calls: no

data Flow specifications: no Connections: access
Properties yes Flows: no

Modes: yes
Properties yes

Features: Subcomponents:
e Out event port e none
e out event data port Subprogram calls: yes
. port group Connections: yes

subprogram ; .

prog e requires data access Flows: yes

o parameter Modes: yes
Flow specifications: yes Properties yes
Properties yes
Features: Subcomponents:
e server subprogram e data
e port Subprogram calls: yes

thread e provides data access Connections: yes

e requires data access
Flow specifications: yes
Properties yes

Flows: yes
Modes: yes
Properties yes

thread group

Features:
e server subprogram
e port

e provides data access
e requires data access
Flow specifications: yes
Properties yes

Subcomponents:
e data
e thread

e thread group
Subprogram calls: no
Connections: yes
Flows: yes

Modes: yes
Properties yes

process

Features:

e server subprogram

e port

e provides data access
e requires data access
Flow specifications: yes
Properties yes

Subcomponents:

e data

e thread

e thread group
Subprogram calls: no
Connections: yes
Flows: yes

Modes: yes
Properties yes
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Table 13-4.  Constraints/Restrictions for Components (cont.)
nglgggf;t Type Implementation
Features: Subcomponents:
e server subprogram e memory
e port/port group Subprogram calls: no
processor . requirgs bL!S access Conngctions: no
Flow specifications: yes Flows: yes
Properties yes Modes: yes
Properties: yes
Features Subcomponents:
e requires bus access e memory
Flow specifications: no Subprogram calls: no
memory Properties yes Connections: no
Flows: no
Modes: yes
Properties yes
Features Subcomponents:
e requires bus access e none
Flow specifications: no Subprogram calls: no
bus Properties yes Connections: no
Flows: no
Modes: yes
Properties yes
Features Subcomponents:
e port/port group e none
e server subprogram Subprogram calls: no
device e requires bus access Connections: no
Flow specifications: yes Flows: yes
Properties yes Modes: yes
Properties yes
Features: Subcomponents:
e server subprogram e data
e port/port group e process
e provides data access e processor
e provides bus access e memory
e requires data access e bus
system e requires bus access e device
Flow specifications: yes e system
Properties yes Subprogram calls: no
Connections: yes
Flows: yes
Modes: yes
Properties yes
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Built-in Property Types
Table 13-5 summarizes the AADL standard built-in property types.

Table 13-5:  AADL Built-in Property Types

Property Type Definition
aadlboolean Two values, true or false
aadlstring All legal strings of the AADL

An explicitly listed set of enumeration identifiers as

enumeration
the set of legal values

An explicitly listed set of measurement unit identifiers

units as the set of legal values
aadlreal A real value or a real value and its measurement unit
aadlinteger An integer value or an integer value and its
9 measurement unit
Closed intervals of numbers indicating that a
range property of this type has a value that is itself a range

term and specifies the number type of values in the
range term

Subset of syntactically legal component classifier
classifier references whose category matches one of
component categories in the specified list

Subset of syntactically legal references to those
components, whose category matches one of
reference component categories in the specified list, or to
connections or to server subprogram features;
indicated by the reserved word reference
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Table 13-6 liststhe AADL reserved words. Reserved words are case insensitive.

Appendix

Table 13-6: AADL Reserved Words
aadlboolean end modes reference
aadlinteger enumeration none refined
aadlreal event not refines
aadlstring extends of requires
access false or server
all features out set
and flow package sink
annex flows parameter source
applies group path subcomponents
binding implementation port subprogram
bus In private system
calls inherit process thread
classifier initial processor to
connections inverse properties true
constant Is property type
data list provides units
delta memory public value
device mode range
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Refinements within Type Extensions

Table 13-7 summarizes the refinement capabilities within type extension declarations.

Table 13-7:  Type Extensions and Associated Refinements

Refinements within Type Extensions

Subclause | Refinement Description (refined to)
data e add ports (no refined to)
e complete partial declaration (add a data type or an
event implementation classifier; change a data type
ports data classifier to a data implementation classifier)

o redefine or add port property associations

event e add event ports (no refined to)
e redefine or add event port property associations

e add port groups (no refined to)

e complete partial declarations (add missing type

port group reference; change data type classifier to
implementation classifier)

e redefine or add port group property associations

e add server or data subprogram features (no refined

features to)

subprogram e complete partial declarations (change type classifier
to an implementation classifier; no changes of
subprogram type or implementation classifiers)

e redefine or add subprogram property associations

e add parameters (no refined to)

e complete partial declaration (no change of

parameters parameter classifier to type or implementation;
change a type classifier to implementation)

o redefine or add parameters property associations

e add subcomponent access features (no refined to)

o complete partial declaration (no subcomponent

subcomponent classifier to type or implementation; type classifier to

access implementation)

o redefine or add subcomponent property
associations

e add flow specifications (no refined to)

flow . S
ows e redefine or add flow property associations

properties o redefine or add component property associations
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Refinements within Implementation Declarations

Table 13-8 summarizes the refinements associated within standard implementation
declarations and implementation declarations that extends another.

Table 13-8: Implementations Extensions and Associated Refinements

Refinements within Implementation Extensions

Subclause Refinement Description

refines type o redefine or add feature property associations

e add subcomponents (no refined to)

e complete partially referenced component classifier declaration
subcomponents e modify in modes with a new set of mode references

o redefine or add subcomponent property associations
calls e add calls or call sequences (no refined to)

e no modification of call sequences

e add connections (no refined to)
¢ modify “in modes” references
o redefine or add connection property associations

connections

e add flow specifications (no refined to)

¢ modify in modes with a new set of mode references or mode
flows transition references

e redefine or add flow implementation property associations

e add modes (no refined to)
modes ¢ redefine or add mode property associations

properties o redefine or add component property associations
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