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FEEDBACK CONTROL OF BIFURCATION
AND CHAOS IN DYNAMICAL SYSTEMS

Evap H. ABED AND Hua O. WANG

Department of Electrical Engineering and the
Institute for Systems Research
University of Maryland
College Park, MD 20742 USA

ABSTRACT. Feedback control of bifurcation and chaos in nonlinear dy-
namical systems is discussed. The article sumnarizes some of the recent
work in this area, including both theory and applications. Stabilization
of period doubling bifurcations and of the associated route to chaos is
considered. Open problems in bifurcation control are noted.

1 Introduction

The past two decades have witnessed a steadily increasing ap-
preciation of nonlinear dynamics across a broad range of disciplines.
Applications of bifurcation and chaos have appeared in many areas of
science, engineering and the social sciences. Our main purpose in this
article is to discuss the role which nonlinear dynamics has played in the
cross-disciplinary field of automatic control. We also discuss in some
detail the analysis and control of period doubling bifurcations, and ap-
plication to control of the associated route to chaos. Thoughts on some
open problems are given, emphasizing the needed interplay between
nonlinear dynamics and control theory.

Bifurcations are qualitative changes in the phase portrait of a
dynamical system that occur as a system parameter (a bifurcation pa-
rameter) is quasistatically varied. In this article we focus on dynamical
systems depending on a scalar bifurcation parameter, and described by
a set of ordinary differential or difference equations. Moreover, we sup-
pose that for a nominal parameter range, a system of interest operates at
a stable fixed point, i.e., at equilibrium. As the bifurcation parameter is
varied, the fixed point can lose stability. This results in a bifurcation, in
which new limit sets arise. These new limit sets are known as bifurcated
solutions. Typical bifurcated solutions include fixed points and periodic
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solutions in the vicinity of the nominal fixed point. The bifurcation may
also entail the disappearance of the nominal fixed point, through a fold
bifurcation. In this case, unless another limit set bifurcates from the
nominal fixed point at the fold bifurcation, we would generally expect
divergence of the system trajectory to another attractor. This would
likely be associated with a loss of system performance, and possible
system failure.

Bifurcations of fixed points and periodic orbits from a nominal
fixed point are among the simplest in nonlinear dynamics. Elegant
results for the analysis of these bifurcations are available. Limit sets
emerging from such a bifurcation often undergo further bifurcations. To
distinguish these bifurcations, the first bifurcation, which occurs along
the nominal solution branch, is termed a primary bifurcation. A solution
bifurcating off of the primary bifurcation branch is termed a secondary
bifurcation. The successive bifurcations can become rather complex,
and can lead to chaotic (or turbulent) behavior. Chaos is an irregular,
seemingly random dynamic behavior displaying extreme sensitivity to
initial conditions. Nearby initial conditions result, at least initially, in
trajectories that diverge exponentially fast.

Among the areas discussed in this article, the control of bifurcation
and chaos by feedback is our major focus. Our work on control of chaos
is to a large extent an application of bifurcation control, which is a grow-
ing set of results for control of bifurcations of various types. Although
control of nonlinear dynamics is in general an intractable subject, bifur-
cation control tends to focus on control problems which are localized in
state space near the nominal fixed point. Large variations in parameter
space are permitted in the theory. By controlling the location, ampli-
tude and stability of primary bifurcations, it is often possible to achieve
satisfactory performance over a wide range of parameters. Moreover,
in some situations it may be advantageous to introduce new bifurca-
tions from the nominal branch. These new bifurcated solutions may
serve as signals of impending collapse (“stall”). Alternatively, they may
be judiciously combined with existing dynamical features of the system
to extend the operating region to parameter ranges which cannot be
attained with linear control.

Our main motivation for the study of control of bifurcation and
chaos relates to a performance vs. stability trade-off that appears in a
variety of forms in various applications. It is often the case that sig-
nificant improvement in performance is achieved by operation near the
stability boundary. From the remarks above, such operation may well
lead to bifurcation phenomena in the presence of small disturbances.
Achieving increases in performance while maintaining an acceptable
safety margin is an important current engineering challenge. An essen-
tial aspect of this challenge is the design of controllers which facilitate



operation of systems in nonlinear regimes with a negligible margin of
stability. It is important to note that linearized models are not ade-
quate for prediction or control of a system’s response near the stability
boundary.

It has not been our purpose in writing this article to perform a
comprehensive literature review, nor to provide an exhaustive discus-
sion of research on the control of bifurcations. We have attempted to
balance discussion of our own work with a review of other research in
the control of bifurcations. The reference list is incomplete, but an
attempt was made to include significant contributions reflecting vari-
ous views. With the availability of several recent reviews of control of
chaos [18],[28],(64], we have not attempted to discuss this area in detail.
We do, however, discuss how control of chaos can be achieved through
control of bifurcations.

The article proceeds as follows. Section 2 contains a general dis-
cussion of the literature tying nonlinear dynamics to control theory.
This literature is broadly classified as belonging either to the “nonlinear
dynamics of control systems” category or to the “control of nonlinear
dynamics category.” In Section 3, we discuss some of our recent re-
sults on control of period doubling bifurcations. In Section 4 we briefly
discuss the application of bifurcation control, including the results of
Section 3, to the control of chaos. Concluding remarks are collected in
Section 5.

He who seeks for methods
without having a definite problem in mind
seeks for the most part in vain.

— David Hilbert 1862-1943
2 Control and Nonlinear Dynamics

Nonlinear dynamic phenomena have always had some influence on
control system design. For instance, the describing function method was
developed to predict periodic solutions and their stability in controlled
systems containing nonlinearities such as saturation and backlash; the
knowledge gained could then be used to specify hardware tolerances
[26]. In addition, control to delay the onset of aircraft stall resulted in
stall of increased severity at a higher angle of attack [8].

More recently, advances in nonlinear dynamics have stimulated
new research linking bifurcation, chaos and control. This research can
be viewed as being divided into two categories. In the first category,
efforts concentrated on studying nonlinear dynamics of control systems.
That is, results of the analysis type were sought, but focusing on control
systems. In the second category, efforts have been directed at control of
bifurcation and chaos in dynamical systems. Thus, in this second stage



of research, emphasis has been placed on design techniques which result
in prescribed nonlinear dynamics for controlled processes.

We note that some of the references, though of relevance to the
subject of this article, do not fall under one of these categories. For
instance, the paper [41] discusses the stimulation of bifurcation by feed-
back control as an aid in system identification.

2.1. Nonlinear Dynamics of Control Systems

Nonlinear dynamics of control systems has been studied from sev-
eral viewpoints and with varying goals. In this subsection we discuss
several such efforts.

Control theory includes a large body of results on stability and os-
cillation of nonlinear system models under parameter uncertainty. Many
of these results are graphical in nature, and are expressed in terms of
the system frequency response [48]. Criteria for bifurcation and chaos
of general nonlinear systems have been obtained which are reminiscent
of these classical control systems results. An advantage of these results
is their inherent computational efficiency. Mees and Chua [49] gave a
frequency domain version of the Andronov-Hopf Bifurcation Theorem,
which includes a graphical test for stability of the bifurcated periodic so-
lutions. Baillieul, Brockett and Washburn [13] gave sufficient conditions
for chaotic behavior of a class of nonlinear systems, also expressed in the
frequency domain. Genesio and Tesi [27] give frequency domain criteria
for the approximate prediction of chaotic behavior. Their approach is
based on the method of harmonic balance [26],[48].

Adaptive control techniques are algorithms for the continuous ad-
justment, or adaptation, of control laws as a means for coping with
system uncertainty. Adaptive control schemes are inherently nonlinear.
Even a linear uncertain system results in a nonlinear system when con-
trolled adaptively. Thus, it is conceivable that an adaptively controlled
linear system may exhibit oscillations and even chaotic behavior. This
has been demonstrated by several researchers. Recent articles on this
subject include Mareels and Bitmead [46],[47] and Salam and Bai [62].

Bifurcations induced by variation of control gains and system pa-
rameters in controlled systems have been considered by many authors
(e.g., [5], [16], [17], [19], [22], [33], [50], [56], [59]). Delchamps [22] has
shown that the quantized linear feedback control of linear systems can
result in chaotic behavior. Also, Chang and coworkers have systemati-
cally studied bifurcations and chaos induced by traditional linear control
designs applied to practical, nonlinear systems. In [16], the bifurcation
characteristics of nonlinear systems under conventional proportional-
integral-derivative (PID) control are studied. It was found that the
controlled system can exhibit a rich set of dynamic behaviors, including
multiple equilibrium points, limit cycles, tori and strange attractors. In



[17] control of chaos is implemented in a system displaying intermit-
tency. Global effects of controller saturation on system dynamics were
investigated in [19].

2.2. Control of Nonlinear Dynainics

In this subsection we discuss a number of problem classes and ap-
proaches to the control of nonlinear dynamic phenomena. These prob-
lem classes share an emphasis on control of nonlinear dynamic phe-
nomena. However, the specific objectives differ among the problem
classes. The pertinence of any of these methods depends heavily on the
envisioned application and performance requirements. The classes of
problems discussed next are bifurcation control, control of chaos, and
control of qualitative behavior.

Bifurcation control deals with using a control input to modify the
bifurcation characteristics of a parametrized system. The control can be
a static or dynamic feedback, or an open-loop control law. The objec-
tive of control can be stabilization and/or delay of a given bifurcation,
reduction of the amplitude of bifurcated solutions, optimization of a per-
formance index near bifurcation, re-shaping of a bifurcation diagram,
or a combination of these.

Optimization and optimal control of bifurcation and branching
are studied by, e.g., Qin [58] and Doedel, Keller and Kernévez [23].
Open-loop control (as opposed to feedback) is studied by, e.g., Baillieul
[12], Colonius and Kliemann [21] and Tung and Shaw [71]. Baillieul
uses a time-periodic forcing signal to delay an Andronov-Hopf bifurca-
tion. Colonius and Kliemann use the control sets construct to determine
bifurcations of the reachable set near an Andronov-Hopf bifurcation.
Tung and Shaw consider the improvement in performance that can be
obtained using open-loop control of a model of impact print hammer
dynamics. An article by Antman and Adler [6] investigates the design
of material properties to achieve a prescribed global buckling response.
Cibrario and Lévine [20] considered the control of hysteretic bifurcation
diagrams with application to thermal runaway of continuous stirred tank
reactors. Henrich, Mingori and Monkewitz [32] use linear feedback to
stabilize the nominal equilibrium point of a system undergoing pitchfork
or Andronov-Hopf bifurcation.

Much of the research of the authors and coworkers in the area of
bifurcation control relates to stabilization, or “softening,” of bifurca-
tions, and implications for improved system performance and robust-
ness. Subsequent sections are devoted to recent results of the authors
in this area, and to a discussion of applications. Thus it is not neces-
sary to also summarize these results in this section. However we note
that the need for control laws which soften (stabilize) a hard (unstable)
bifurcation has been articulated by many in the past, in a variety of



contexts. For instance, stabilization of business cycles in the capital-
ist economy is considered by Foley [24] using a model which exhibits
Andronov-Hopf bifurcation. Several other references at the end of this
chapter also note the preference for soft bifurcations over hard bifurca-
tions. This is closely related to the commonly employed terminology of
“safe” vs. “dangerous” stability boundaries [63].

A recent flurry of activity in the control of chaos was sparked by
the paper [54] of Ott, Grebogi and Yorke. Their method involves local
stabilization of an unstable periodic orbit embedded in a chaotic at-
tractor (see also [60]). The periodic orbit is selected to ensure a desired
level of performance. Ergodicity of the chaotic attractor results in tra-
jectories eventually entering a neighborhood of the stabilized periodic
orbit. Thereafter, the system operates on the chosen periodic orbit. We
mention one particular application of this method [30], since it illus-
trates the performance improvement that can be achieved using control
of nonlinear dynamics. This is a study of control of a multimode laser
well into its usually unstable regime.

The foregoing discussion of results on the control of chaos is of
necessity very brief. In Section 4 we discuss the bifurcation control
approach to the control of chaos. This approach entails considering
a system over a parameter range which includes regular and chaotic
regimes. The bifurcation sequence taking the system from regular be-
havior to chaotic behavior is controlled by imparting a sufficient degree
of stability to a primary bifurcation in the sequence. A guiding theme
in this approach is to maintain stability of bifurcated solution branches
since they cannot give rise to secondary bifurcations unless they lose
stability.

In the control of qualitative behavior of nonlinear systems, the goal
is to determine a feedback control which transforms the phase portrait
into a desired one. A typical problem is to determine a feedback which
results in the introduction of a limit cycle in the neighborhood of an
equilibrium point [66]-[68]. The method of entrainment and migration
controls proposed by Jackson [37] may be viewed in this context. In
this method, a control is sought to drive a system to follow a goal
dynamics which is specified by a chosen dynamical model. The control
of homoclinic orbits is considered by Bloch and Marsden [14]). They
show that arbitrarily long residence times in the neighborhood of the
homoclinic orbit can be achieved. They apply this result to the control
of bursting phenomena in the near wall region of a turbulent boundary
layer.



The angles of the boundary of stability

are always directed outside,

driving a wedge into the domain of instability.

This is apparently the consequence of a very general principle,
according to which everything good is fragile.

— Vladimir Arnold [7]
3 Bifurcation Control

In this section we describe our work on bifurcation control, em-
phasizing recent results. We begin by briefly summarizing the results
of [1], [2].

3.1. Local Static State Feedback Stabilization

Our early work on bifurcation control {1}, [2] focused on obtaining
stabilizing feedback control laws for general one parameter families of
nonlinear control systems

&= fu(z,u). (1)

Here £ € IR" is the state vector, u is the scalar control, p € IR is
the bifurcation parameter, and the map f, is smooth in z, u and p.
In (1], [2] it was assumed that Equation (1) with the control set to 0
undergoes either an unstable Andronov-Hopf bifurcation or an unstable
stationary bifurcation from a nominal equilibrium point zo(u) at the
critical parameter value g = 0. It was assumed that the equilibrium
zo(p) exists and depends smoothly on g in a neighborhood of p = 0.

The control laws derived in [1], [2] transform an unstable (i.e., sub-
critical) bifurcation into a stable (i.e., supercritical) bifurcation. These
control laws were taken to be of the general form u = u(z). These
are known as static state feedbacks. Using Taylor series expansion of
the vector field f,,, smooth static state feedback control laws were de-
signed rendering the assumed Andronov-Hopf bifurcation or stationary
bifurcation locally attracting. Stability of the bifurcated solutions was
measured using leading coefficients in Taylor expansions of the dom-
inant characteristic exponents. The projection method of bifurcation
analysis was employed [35]. Details are to be found in [1], [2].

Several applications of these results have been conducted. Among
these are stabilization problems in tethered satellites [44], magnetic
bearing systems [51], voltage dynamics in electric power systems [75],
and compressor stall in gas turbine jet engines [10], [11], {45}, [76].
In these applications, bifurcation control resulted in significant perfor-
mance improvements. Successful experimental results have been re-
ported in the area of compressor control for gas turbine jet engines [11].



We note that the results of [1], [2] though formulated for bifur-
cation problems, also provide solutions to feedback stabilization prob-
lems for critical nonlinear systems, i.e., systems with eigenvalues on the
imaginary axis. The recent book [9] and the review paper [69] provide
overviews of many nonlinear stabilization results, and the nonlinear sta-
bilization area continues to be very active.

3.2. Dynamic Feedback in Bifurcation Control

Use of a static state feedback control law u = u(x) has poten-
tial disadvantages in nonlinear control of systems exhibiting bifurcation
behavior. In general, a static state feedback

u= e - 2o(u))

designed with reference to the nominal equilibrium path zo(g) of (1)
will affect not only the stability of this equilibrium but also the loca-
tion and stability of other equilibria. Now suppose that (1) is only an
approximate model for the physical system of interest. Then the the
nominal equilibrium branch will also be altered by the feedback. A main
disadvantage of such an effect is the wasted control energy that is as-
sociated with the forced alteration of the system equilibrium structure.
Other disadvantages are that system performance is often degraded by
operating at an equilibrium which differs from the one at which the
system is designed to operate.

For these reasons, we have developed bifurcation control laws for
systems (1) which are dynamic state feedback control laws of a spe-
cial form. Specifically, we have incorporated high pass filters known as
washout filters into the structure of the allowed controllers. In this way,
we guarantee preservation of all system equilibria even under model
uncertainty. The discussion below follows our papers [42], [43], [73].

Washout filters are used commonly in control systems for power
systems and aircraft. The main purpose of using these filters is to
achieve equilibrium preservation in the presence of system uncertainties.
A washout filter is a stable high pass filter with transfer function

¥ _ s
)= e TG D @

In the following, washout filters are incorporated into bifurcation control
laws for (1). Specifically, in (1), for each system state variable z;, i =
1,...,n, introduce a washout filter governed by the dynamic equation

z = — dyz (3)
along with output equation

Yi = —diz; 4)



Here, the d; are positive parameters (this corresponds to using stable
washout filters). Finally, we require that the control u depend only on
the measured variables y, and that u(y) satisfy «(0) = 0.

In this formulation, n washout filters, one for each system state,
are present. In fact, the actual number of washout filters needed, and
hence also the resulting increase in system order, can usually be taken
less than n.

The advantages of using washout filters stem from the resulting
properties of equilibrium preservation and automatic equilibrium (oper-
ating point) following. Indeed, since u(0) = 0, it is clear that y vanishes
at steady state. Hence the & subvector of a closed loop equilibrium
point (x, z) agrees exactly with the open loop equilibrium value of z.
Also, since Eq. (4) can be written as

yi = @i — dizi = (2 — 2o,(1)) — di(zi — 20,()) (5)

the control function © = u(y) is guaranteed to center at the correct
operating point.

In [42], [43] stabilization of Andronov-Hopf bifurcations using wash-
out filter-aided control laws is studied. Estimates for the tolerable de-
gree of model uncertainty are obtained, and an application to a nonlin-
ear aircraft model is given. In [29] the washout filter concept is used in
the control of a periodic solution of a continuous-time system. Here, a
judiciously chosen transfer function attenuates frequencies near that of
the nominal periodic solution.

3.3. Control of Period Doubling Bifurcations

The three generic bifurcations for one parameter families of dis-
crete-time maps are the fold bifurcation, the period doubling bifurca-
tion, and the Neimark-Sacker-Moser bifurcation. In this section, we
summarize results on the period doubling bifurcation as derived in [3],
which may be consulted for details. In designing stabilizing control laws
for the period doubling bifurcation, it is useful to have a framework for
the analysis of these bifurcations and, specifically, their stability. The
approach used here and the formulas we obtain are applicable directly
to system (6), not requiring invariant manifold reduction or coordinate
transformation. This approach is an instance of the projection method
[35]. We note that Iooss and Joseph [35] perform an analysis of period
doubling bifurcations for continuous-time systems using the projection
method.

Period doubling bifurcations are most readily analyzed in a dis-
crete-time setting. In discrete-time, the nominal periodic orbit (fixed
point) is given whereas in the continuous-time setting it must be ap-
proximated as a waveform. Of course, to obtain the discrete-time model,



a device such as the Poincaré return map must be used, and this also
involves approximation.

Next we give a simple derivation of the basic period doubling bifur-
cation result for an n-dimensional map, as well as an associated stability
calculation. The projection method is employed in the derivation. This
is followed by an application of the resulting expressions in the synthesis
of stabilizing controllers.

Period Doubling Bifurcation Stability Analysis
Consider the system

Tey1 = Fu(er) (6)

where k is an integer index, r; € R", u € R is the bifurcation param-
eter, and the mapping f, is sufficiently smooth in z and p.

We proceed to derive a theorem which gives sufficient conditions
for a period doubling bifurcation to occur for Equation (6). In the
course of the derivation, we also obtain an explicit test for stability
of the period doubled orbit. Not surprisingly, this test reduces to a
standard calculation in the case of scalar maps [31]. The next hypothesis
is invoked in the theorem.

(P) The map F, of Eq. (1) is sufficiently smooth and has a fixed
point at & = 0 for p = 0. The linearization of (6) along the fixed
point which is the continuous extension of the origin possesses an
eigenvalue Ay () with A;(0) = —1 and A{(0) # 0. All remaining
eigenvalues of the linearization have magnitude less than unity.

Expanding the map F, in a Taylor series about (¢ = 0, = 0),
we have

Fu(z) = A(p)z + Q(z,2) + Cla, @, @) + . ..

Here, A(u) is a matrix, Q(z, ) is a quadratic form generated by a
symmetric bilinear form, and C(z, z, z) is a cubic form generated by a
symmetric trilinear form, and the dots indicate higher order terms in z
and p. (Reference [25] contains a discussion of multilinear forms which
is relevant to this work.) We seek conditions under which a period-2
orbit bifurcates from £ = 0 at u = 0.

Let £ := the left eigenvector of A(0) associated with the eigenvalue
—1, and 7 := the right eigenvector of A(0) associated with the eigenvalue
—-1.

Next, applying the recursion above to x4, we have

Tppo =A (W)zs + A()Q(zk, 1) + A(W)C (2, Th, T2) + . . .

+ QAW + Qzk, o) + ..., Alp)ar + Q(zk, o) +...)

+ C(A(p)er + Qrg,ap) + ..oy ooy o)+
(7)



A period-2 orbit z, if one exists, must therefore satisfy
0 =(A%(p) — Dz + A(W)Q(z, z) + A(p)C(z,z,2) + ...
+ Q(A(p)x + Q(z,z)+ ..., A(p)z+ Q(z,x)+...)

+CAp)z+Q(z,x)+..., ..., ...)+... ®
=:A(p)e + Qx,z) + C(z,x,2) + . ..
where
Alp) =A%) -1
Q(z,z) = A(0)Q(=, 2) + Q(A(0)z, A(0)z) )
C(z,z,z) := A(0)C(z, z,z) + 2Q(A(0)z, Q(z, x))
+ C(A(0)z, A(0)z, A(0)z)
Since
A(O)yr = —r, LA(0)= —£ (10)
we have
A%(O)yr =7, LA%(0) =4 (11)
which implies
(A2(0)~Dr=0, LA%’(0)-1)=0 (12)

Thus, A(0) possesses a zero eigenvalue, which is seen also to be simple,
by the Spectral Mapping Theorem. Also by this theorem we find that
%/\1(/1(;1))“:0 is nonzero if —f;Al(A(;t))L,:g # 0. This explains the
presence of this latter condition in (P). The foregoing is a sketch of a
proof for a theorem on period doubling bifurcation.

We have shown, by reducing the problem to one of standard sta-
tionary bifurcation analysis, that the system (6) possesses a nontrivial
period doubled orbit z(€) emanating from z = 0 for y = p(¢) near 0.

To determine the stability of the period doubled orbit, we obtain
formulas for bifurcation stability coefficients. These are simply coef-
ficients in the Taylor expansions in an amplitude parameter € of the
critical eigenvalue of the period doubled orbit. Let this eigenvalue be
given by

B(e) = Bre + fae® + . .. (13)
Then, using formulas obtained in [2] for stationary bifurcation stability
coefficients, we find:

ﬂl = ZQ(T', T‘)
= (JA0)Q(r, ) + Q(A(0)r, A(0)1)]
= —LQ(r,r) + £Q(—r, —1) (14)

= —fQ(T, 1“) + eQ(T', 7')
=0



As for 3, we have:

P2 = QK[O(T) Ty T) - 2@(7”, A_Q(T', T))] (15)

Here

A= (TA4+ Fo A7 (16)

This analysis shows that 8, = 0 and that, generically 82 # 0. Hence,
we have that if A;(0) = —1, A{(0) # 0, B2 # 0, then there is a pitchfork
bifurcation for the sped-up system, giving two period-2 orbits occur-
ring either supercritically or subcritically. For the original system, this
means there is a single period doubled orbit occurring either supercriti-
cally or subcritically. Whether the period doubled orbit is supercritical
or subcritical is determined by the sign of ;. The period doubled orbit
is supercritical if S < 0 but is subcritical if 83 > 0. It is reassuring to
note that specialization of this result to the case in which F, is a scalar
map agrees with Theorem 3.5.1 in Guckenheimer and Holmes [31]. In
fact, for scalar maps f; = —2¢ where a is as given in [31, p. 158].

1. THEOREM. (Period Doubling Bifurcation Theorem) If (P) holds,
then a period doubled orbit bifurcates from the origin of (6) at p = 0.
The period doubled orbit is supercritical and stable if By < 0 but is
subcritical and unstable if 85 > 0.

Stabilizing Controllers
We now consider the control of a period doubling bifurcation in
the system (k is an integer)

Tryr = fu(ze, ug) (17)

where z; € IR" is the state, u is a scalar control input, g € R is the
bifurcation parameter, and the mapping f, is sufficiently smooth in z,
u and p.

Suppose the zero-input version of (17) satisfies hypothesis (P).
This leads to a period doubling bifurcation for the zero-input version of
(17). Take the control u to be of the form

u(g;k) = I{Qul‘k + Cu(l'k, Tk, xk)

where @, is a real symmetric n x n matrix and Cy(z, z, z) is a cubic form
generated by a scalar valued symmetric trilinear form Cy(z,y, z). Note
that u(z;) contains no constant terms or terms linear in z;. A constant
termm would physically represent a continuous expenditure of control
energy. The absence of a linear term in the control is intentional. This
reduces the complexity of the calculations, and facilitates treatment of
the bifurcated solution stabilization problem separately from that of



delaying the occurrence of the bifurcation to higher parameter values.
Thus, this choice of structure of the control law reflects a two-stage
control design philosophy in which linear terms in the control are used
to modify the location of a bifurcation and nonlinear terms are used to
modify its stability.

The following theorem summarizes stabilization results for period
doubling bifurcations which are given in detail in [3]. These results
have also been extended to incorporate washout filters in the control
laws. Discrete-time versions of washout filters and washout filter-aided
bifurcation control laws are also discussed in [3] and in other work in
preparation.

2. THEOREM. Suppose that hypothesis (P) holds for the zero-input
version of (17). If the critical eigenvalue —1 is controllable for the
assoctated linearized system, then there is a feedback up(xy), containing
only third order terms in the components of xy, that results in a locally
stable bifurcated period-2 orbit for jt near Q. This feedback also stabilizes
the origin for f = 0. If, on the other hand, the critical eigenvalue —1
ts uncontrollable for the associated linearized system, then generically
there is o feedback uy(wy), containing only second order terms in the
components of xy, that results in a locally stable bifurcated period-2 orbit
Jor p near 0. This feedback also stabilizes the origin for y = 0.

Gaia 1s very chaotic,
so if you reject chaos, you reject Gaia.

— Ralph Abraham [15]
4 Control of Routes to Chaos

The bifurcation control techniques discussed in the foregoing have
direct relevance for issues of control of chaotic behavior of dynamical
systems.

There are many scenarios by which bifurcations can result in a
chaotic invariant set. The current state of understanding differs con-
siderably among the various known routes to chaos. These include the
period doubling route, the Ruelle-Takens route, homoclinic bifurcation,
intermittency and the devil’s staircase. What is important about these
scenarios from a control of chaos perspective is that chaos may be sup-
pressed by controlling a bifurcation in a given route to chaos. The
theme of our research in this area, as presented in [3],[73],[74], is to de-
sign feedback control laws which ensure a sufficient degree of stability
for a primary bifurcation in such a scenario. We have successfully ad-
dressed the homoclinic and period doubling routes to chaos using this
approach. The design presented in the foregoing section is an important
component of our approach for controlling the period doubling route to
chaos.



We note that the control laws of [3], [73], [74] leave unaffected the
locations of the nominal equilibrium points, some benefits of which have
been discussed earlier. The effectiveness of the control laws in achieving
stabilization and equilibrium preservation persists even in the presence
of model uncertainty.

It is the faith that it is the privilege of man
to learn to understand, and that this is his mission.

— Vannevar Bush 1967
5 Concluding Remarks

In the last decade, there has been a marked change in the way
engineers and scientists interact with nonlinear dynamics. Whereas ten
years ago nonlinear dynamics to most of us was somewhat of a novelty, it
has become an indispensable part of our toolkit. The book [39] provides
excellent examples of how engineers and scientists are using nonlinear
dynamics concepts in understanding and controlling the behavior of
real-world systems. Notably, the contributors to [39] were brought to-
gether through the efforts of an industrial organization. Engineers and
scientists, including practitioners and researchers, are posing difficult
unsolved problems to the applied mathematicians. This said, we would
like to mention three problem areas related to the subject of this paper.

The first problem is to extend the results presented here on stabi-
lization of the period doubling route to chaos to systems described by
differential equations. The solution would need to include a method for
approximating the nominal periodic solution of interest. With knowl-
edge of the family of periodic solutions, stability coefficients may be
calculated as in [35].

The second problem concerns the control of resonance (as opposed
to bifurcation) effects in nonlinear systems. Systems can exhibit unde-
sirable dynamic behavior, such as sharp but continuous increases in
amplitude, as a parameter is varied. These nonlinear effects may be
caused by internal or other resonances.

Finally, we mention the problem of controlling a dynamical sys-
tem near a fold bifurcation, without altering the nominal equilibrium
branch. Controlling the system so as to stabilize the equilibrium up
to the fold is generally possible. However, what is a good design if the
model is uncertain? The design should detect proximity to the fold even
without access to an accurate model. Virgin [72] and others have stud-
ied related problems. An even more challenging problem is to design
a control law allowing operation past the fold bifurcation. The moti-
vation behind this problem is not to deliberately operate a system in
such a mode. The risk of collapse would be too great. Rather, such a
design would increase the system’s margin of stability significantly be-



yond what is currently considered possible. The result would be allowing
system operation closer to the fold bifurcation than would otherwise be
possible. How can such a control law be found? Certainly bifurcations
would need to be introduced in the vicinity of the fold bifurcation, re-
sulting in stable limit sets of some type past the fold bifurcation. The
limit sets could possibly be periodic or chaotic attractors. Degenerate
bifurcations and spontaneous generation of chaotic attractors, possibly
through intermittency, are ideas that may prove useful in this context.
The Shoshitaishvili Reduction Theorem [65], [7, pp. 265-267] may play
a role in addressing this issue. However, it appears likely that much of
the needed theory is not yet in existence.
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